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Abstract

In this thesis, we present two current topics in theoretical high energy physics:
We construct the Lagrangian of a deformed supergravity theory on a manifold
with a non-trivial spacetime boundary by using the geometric (or rheonomic)
approach and we discuss and analyze the supersymmetry invariance of the the-
ory. Separately, we compute some scattering amplitudes in a supersymmetric
conformal field theory with the Superspace formalism and Feynman superdia-
grams. These two different topics conceptually achieve a contact point through
the so-called AdS/CFT duality, which is actually one of the most flourishing
fields in theoretical physics today. In the supergravity limit of string theory,
this duality outlines a one-to-one correspondence between operators in the CFT
on the boundary and the fields of the supergravity theory in the bulk. It could
constitute a possible theoretical path towards the building of a theory of quan-
tum gravity, which is the last piece needed to complete the puzzle of unified
fundamental interactions. Precisely, we first give an overview of some aspects
about supersymmetry, supergravity and AdS/CFT duality, in order to intro-
duce the main two parts of the thesis: On one hand, the study of a particular
supergravity theory, which will be referred to as D = 4 generalized AdS-Lorentz
deformed supergravity theory, in the presence of a non-trivial boundary (that
is when the boundary of spacetime is not thought as set at infinity); on the
other hand, the computation of a 1-loop MHV reduced amplitude in N = 2
SCQCD (in D = 4). In the first topic discussed in this thesis, supersymmetry
is understood as a local symmetry; indeed, we are dealing with a supergravity
theory. On the converse, in the second part of this dissertation, supersymmetry
is a global symmetry.
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Chapter 1

A small vision of Nature

“Nature is a book written in mathematical characters”: This is one of the
most famous aphorisms by Galileo Galilei (1564 − 1642). From ancient times
to the present day, the study of Nature has seen several evolutions and some
critical revolutions in the main concepts and in the researching methods applied
to understand the laws underlying physical observable phenomena.

Most of the phenomena involving extended objects could be explained with
a sufficient accuracy through classical physical theories such as newtonian me-
chanics and electromagnetism; when an object belongs to a length scale equal
or smaller than 10−10m, a quantum description of its dynamics is necessary.
Today, we can contemplate a large amount of scientific achievements (both
sperimental and theoretical) in the field of physics of matter and fundamental
interactions. From a microscopic point of view, quantum mechanics (and so
its generalization quantum field theory) describes matter as made of different
elementary particles, called fermions, which are organized in gradually bigger
and more complicated structures (i.e. hadrons, atoms, molecules,...). These ag-
gregations of particles are allowed by the presence of what we call fundamental
interactions; the latter can be seen, in a microscopic description, as a different
set of particles, called bosons. In particular, we can identify some bosons as “the
messengers” of the known four forces in Nature we now list: They are the elec-
tromagnetic, the strong nuclear, the weak nuclear and the gravitational forces.
Everything we can observe in Nature is the macroscopic result of the micro-
scopic interactions between bosons and fermions, bosons and bosons, fermions
and fermions. These two different types of particles could be distinguished from
their spin: If we take n ∈ N, a boson carries a spin value n~, while on the other
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side the spin value of a fermion is 2n+1
2 ~, being ~ = h

2π where h is the Planck
constant. Now we set ~ = c = 1 (c is the light speed in vacuum) for convenience,
in order to work in natural units.

Nowadays, this corpuscular vision of Nature finds an effective description in
what is commonly called “Standard Model”. This model takes its theoretical
structure from a quantum gauge theory of fields in D = 4 spacetime dimensions
with an internal symmetry group SU(3) × SU(2) × U(1), where SU(3) is the
color symmetry of the strong nuclear force, SU(2) is the isospin symmetry of
the weak nuclear force and U(1) is the charge symmetry of the electromagnetic
force. Each particle is associated with a corresponding massless field; through
the so-called “Higgs mechanism”, in which the SU(3)×SU(2)×U(1) symmetry
breaks into SU(3)× U(1), each field interacting with the Higgs boson acquires
a proper mass value. The particle content of the Standard Model is briefly
summarized in the table below.

Name of particles Number of particles Spin

Gluon 1 (8 color states) 1
W bosons 2 1
Z boson 1 1
Photon 1 1

Higgs boson 1 0
Leptons and antileptons 6 + 6̄ 1

2
Quarks and antiquarks 6 + 6̄ 1

2

Most of the main predictions of the Standard Model have been confirmed
through several experiments of particle collisions in different research centers
such as CERN, Fermilab or many others. From a theoretical point of view,
the study of particle physics gave rise to the Feynman formalism in quantum
field theory that is already used to compute scattering amplitudes of particles.
It is possible to derive Feynman rules from the action of the theory and the
computation of scatternig amplitude becomes the perturbative computation of
all the Feynman diagrams involved in the process. Loop corrections suffer from
divergences and this fact undermines the predictivity of the theory. Fortunately,
theories such as SU(3) × SU(2) × U(1) can be renormalized by adding some
counterterms which cancel the divergences and made the results finite. Some
references about Feynman diagrams, renormalization and quantum field theory
in general are [1, 2, 3, 4]. We will deepen more some topics in the following
chapters.

The harmonic union of the SU(3)×SU(2)×U(1) gauge theory and its phe-
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nomenology makes the Standard Model the theory which better describes the
observable physics of all the particles found so far. Actually, this model requires
26 phenomenological parameters to be fixed in order to be predictive; further-
more, some important phenomena such as the confinement of quarks and their
asymptotic freedom do not find any precise interpretation. From a theoretical
point of view, it presents different formal problems like naturalness (discussed in
the next section), the hierarchy problem, the meaning of the Yukawa coupling
and other phenomenological aspects like the quantization of charge and so on
(see [5]). As a consequence, the Standard Model is not sufficient to describe
the fundamental interactions of Nature; another prove of this statement is the
complete absence of gravity in the treatment.

The Einstein’s General Relativity is a mathematical theory which describes
the gravitational interaction of extended bodies (objects, planets, stars, galax-
ies,. . . ). It includes the newtonian theory of gravity, which offers a good ap-
proximation of gravitational phenomena characterized by small velocities (i.e.
much smaller than the light speed) and long distances (i.e. much bigger than
10−10 m); in addiction to that, if we follow the full formalism, we can compute
relativistic corrections (i.e. when the velocities are next to the light speed) to the
newtonian results with high accuracy. General Relativity presents an elegant
and complete geometric theory of spacetime, where its curvature and eventually
its torsion are strictly related to gravity. The metric tensor is in a way identified
with the gravitational field; given that the metric tensor has two spacetime in-
dices, the boson associated with the gravitational force in quantum regime has
spin 2 and it is called graviton. Although this theory successfully describes the
dynamics of celestial bodies and consequently it represents a valuable starting
point for the study of cosmology, its extension of a quantum version of gravita-
tion drastically fails. In fact, if we try to build a quantum field theory of gravity
based on General Relativity, we find out that the theory is not renormalizable:
In other words, quantum corrections to scattering amplitudes of gravitons di-
verge quadratically and there is no way to add proper counterterms to save the
predictivity of the theory. In this sense, we can look at the Einstein’s theory as
an effective theory of gravity, belonging to a more generic theory.

To sum up, on one hand we looked at Standard Model as an effective theory
which succeeds in describing physical phenomena involving only electromag-
netism and nuclear forces, but it fails in giving a complete view over quantum
characteristics of Nature because it excludes gravity and the formal problems
stated before undermine its theoretical solidity; on the other hand, we saw that
General Relativity provides a classical description of gravity which can not be
extended to a quantistic one and consequently there is no way to include it in
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the Standard Model.
As we said before, what we can see in Nature are the macroscopic effects of

microscopic phenomena: In this sense, there is an undefined point of continuity
between quantum physics and classical physics. Furthermore, the corpuscular
essence of Nature suggests that there must be a unified description of physics;
in other words, there must be a theory which unifies all the fundamental in-
teractions and which offers a complete vision of Nature. The unification of
fundamental interactions is one of the most interesting and challenging prob-
lems in theoretical physics; lots of different attempts have been proposed from
the middle of the XX century to the present day. We consider briefly one of the
most promising theories that combines both gravity and gauge theories: String
Theory. Unexpectly born in 1968 from one of the attemps [6] by Veneziano to
explain the behavior of hadrons, from 1974 onwards this theory was understood
as a unified theory of quantum physics; we now move into a brief qualitative
description of it.

String theory makes the assumption that the fundamental elements of Nature
are vibrating strings; a particle like an electron is nothing but a vibration mode
of a string and the same is for each particle we mentioned before. A string is a 1-
dimensional object that can be closed if the two extremes coincide, or open if the
two extremes are disjointed. The tension of a string only depends on the string
parameter α′ (otherwise Regge slope), with length dimension [α′] = L2. We
can identify open string solutions as the solutions coming from gauge theories,
while on the other hand closed string solutions describe some possible scenarios
of quantum gravity. The first version of this theory is what we know as the
bosonic string theory: A string is represented with a bosonic field that lives in a
(1 + 1)-dimensional worldsheet and describes the dynamics of a D-dimensional
spacetime (in this case D = 26). The bosonic string theory is not appropriate
to be a “theory of everything” because it does not include fermionic states;
moreover, the bosonic case is unstable because it allows tachion solutions (i.e.
states with imaginary mass). It is possible to include fermions in the theory by
introducing a fermionic field into the worldsheet and so implementing what we
call supersymmetry: The final result is the superstring theory with D = 10. We
will give a detailed introduction of supersymmetry in Chapter 2.

At a first sight, superstring theory seems not so interesting in the unified
study of fundamental interactions: In fact, the world we experience has three
spatial dimensions and one time dimension while superstring theory introduces
so much extra-dimensions. Furthermore, it is improbable to get an experimental
confirmation of the computations in superstring theory because we need to go
next to the Planck scale MP = 1019 GeV and the highest energy reached till now
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is about 104 GeV . The first problem is solved through the concept of compact-
ified dimensions: In other words, 10-dimensional spacetime could be considered
as a spacetime with 4 extended dimensions and 6 extra-dimensions compactified
on a sphere or in a torus or in any other compact manifold. Interesting relations
between gauge theories and gravity can be found from the elegant mathematics
of strings and branes (extended objects in which open strings are connected).
One example is the set of KLT (Kawai, Lewellen, Tye) equations which derive
from the mathematics of the theory and relate an amplitude of n closed strings
with the square of a corresponding amplitude of n open strings (with n ∈ N);
broadly speaking, at each perturbative level gravity is the square of a gauge
theory (some references could be found in [7, 8, 9]). We do not deal with this
topic, but it represents a possible way to build a theory of quantum gravity by
using the known properties of quantum field theory. Another possible road to
quantum gravity is currently the most beated research direction: The Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence.

Now we can move to a more specific introduction of the main topics men-
tioned till now.
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Chapter 2

Supersymmetry and
Superspace

2.1 A possible solution of the problem of Natu-
ralness

In the previous chapter, we gave a qualitative overview of the Standard
Model, mainly focusing on the particle content and the elegant internal gauge
symmetries of the corresponding field theory. We finally stated that the Stan-
dard Model is not sufficient in order to find a complete quantum vision of Nature
and this fact is due to many reasons, both experimental and theoretical. Now
we consider a particular problem of the Standard Model: Naturalness. The
main concepts and examples presented here to introduce the problem of Natu-
ralness are taken from [5]. We consider a D = 4 flat spacetime and we assume
a mostly-minus (+,−,−,−) Minkowskian metric tensor only in this section.

The central role of this discussion is played by a fundamental scalar field;
dealing with the Standard Model, our complex scalar field is the Higgs doublet.
For our discussion, it is sufficient to consider a toy model of a generic complex
scalar φ, whose equations of motion derive from the following Lagrangian

Lφ = ∂µφ†∂µφ+m2φ†φ− λ
(
φ†φ

)2
, (2.1)

with m2 and λ real parameters. It is possible to derive the Feynman rules
directly from Lφ: In this case, we have the propagator of the field φ and the
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unique vertex of interaction is a 4-legs vertex. In order to get a predictive theory,
we can renormalize the Lagrangian in eq.(2.1); in particular, we assume to know
the value of the mass of φ from the experiments, so the parameters of Lφ must
be reorganized to reproduce the correct physics. We rename m = m0 and we
refer to it as the bare mass, while we call mR the renormalized mass and it takes
the experimental value. The relation between mR and m0 is the following one

m2
R = m2

0 + δm2. (2.2)

In the case we are analyzing, δm2 is computed with the following 1-loop diagram
(called 1-loop self-energy correction)

δm2 = λ

∫ Λ

0

d4k

(2π)
4

1

k2
=

λΛ2

16π2
,

where kµ is the loop momentum (µ = 0, . . . , 3) and Λ is a cutoff parameter.
Then eq.(2.2) becomes

m2
R = m2

0 +
λΛ2

16π2
. (2.3)

We can rewrite eq.(2.3) as

m2
0

Λ2
=
m2
R

Λ2
− λ

16π2
(2.4)

and, if we accept that the Standard Model describes physics at energies smaller
than the Planck scale, we can set mR ∼ 100 GeV and Λ ∼ MP and we realize

that
m2

0

Λ2 must be adjusted to more than 30 orders of magnitude; this fine tuning
can not be considered natural. We define Naturalness as the property that the
dimensionless ratios between free parameters or physical constants appearing in
a physical theory should take values of order 1 and that free parameters are not
fine tuned. If we consider the case of the Standard Model, we have to consider
the complete set of Feynman rules for the Higgs doublet and the computation
of the 1-loop self-energy correction leads to a sum of 1-loop diagrams like the
previous one, where we find scalar internal legs for one of them and fermionic
internal legs for the remaining ones; actually, at the end of the computation, we
find the same situation of fine tuning present before.

One of the possible paths to follow in order to solve the problem of Natural-
ness is to find a way to cancel the quadratic divergences that we find in eq.(2.3)
if we set Λ→∞; for this purpose, we now consider another toy model, usually
called the Wess-Zumino model. We have a complex scalar field φ and a fermion
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field described by a Majorana spinor ψ (ψC = Cψ̄T = ψ, see Appendix A.2 for
details). We can rewrite φ = 1√

2
(A+ iB), with A and B real scalar fields and

we define ψL = PLψ and ψR = PRψ, with PL = 1−γ5
2 and PR = 1+γ5

2 . The
Lagrangian of this model is

LWZ = ∂µφ∗∂µφ+
i

2
ψ̄∂/ψ −

∣∣∣dW
dφ

∣∣∣2 − 1

2

(
d2W

dφ2
ψ̄RψL +

d2W ∗

dφ∗2
ψ̄LψR

)
, (2.5)

where ∂/ = γµ∂µ and W (φ) = 1
2mφ

2 + 1
3λφ

3, with m and λ real parameters.
More explicitly, we have

LWZ =
1

2
∂µA∂µA+

1

2
∂µB∂µB −

1

2
m2
(
A2 +B2

)
+
i

2
ψ̄∂/ψ − 1

2
mψ̄ψ

− mλ√
2
A
(
A2 +B2

)
− λ2

4

(
A2 +B2

)2 − λ√
2
ψ̄ (A− iBγ5)ψ.

(2.6)

If we want to know the 1-loop self-energy correction for the real field A, we have
to compute the following diagrams

(a) = −iλ
2

4
4·3
∫

d4k

(2π)4

i

k2 −m2
,

(b) = −iλ
2

2
2

∫
d4k

(2π)4

i

k2 −m2
,

(c) = −
(
− iλ√

2

)2

2

∫
d4k

(2π)4
tr

(
i

k/−m
i

k/− p/−m

)
,

where, in order to avoid confusion, we wrote the corresponding fields next to
their propagators in the diagrams. These three contributes can be rewritten as

(a) = 3λ2

∫
d4k

(2π)4

1

k2 −m2
,

(b) = λ2

∫
d4k

(2π)4

1

k2 −m2
,

(c) = −λ2

∫
d4k

(2π)4

tr ((k/+m)(k/− p/+m))

(k2 −m2)((k − p)2 −m2)
,

(2.7)
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where kµ is the loop momentum and pµ is the momentum of the external leg.
With the identities tr ((k/+m)(k/− p/+m)) = 4

(
k · (k − p) +m2

)
and the fact

that 4
(
k · (k − p) +m2

)
= 2

(
(k2 −m2) + (k − p)2 −m2 − p2 + 4m2

)
, the 1-

loop self-energy correction for the field A takes the form

(a) + (b) + (c) = 2λ2

(∫
d4k

(2π)4

1

k2 −m2
−
∫

d4k

(2π)4

1

(k − p)2 −m2

+

∫
d4k

(2π)4

p2 − 4m2

(k2 −m2)((k − p)2 −m2)

)
,

(2.8)

so, the quadratic divergences still present in the first two terms cancel. However,
this fact does not imply that the model considered is finite: The cancellation
proved before involves only the quadratic divergences, whereas logarithmic di-
vergences in the scale of higher energy physics (referred to the UV cutoff Λ) are
still present. In this case, the problem of logarithmic divergences could be solved
through the standard process of renormalization in Quantum Field Theory ([2]
and references therein).

In this toy model, we see the presence of a scalar field and a fermion field,
as we can find also in the Standard Model; actually, in the Standard Model
there is a spinor field for each fermion, but at this level of discussion we can
conceptually simplify by thinking of a single spinor field with a flavor index
running on all the fermions of the theory. In this point of view, the two models
are similar, but only one of them suffers from the problem of Naturalness: In the
Wess-Zumino model, the cancellation of the quadratic divergences in eq.(2.8)
is due to the fact that in the Lagrangian of eq.(2.6) the field A (or in general
φ) and the field ψ are associated with the same mass m. Since the two fields
have the same mass, it is allowed to think about them as two component fields
of a larger structure called chiral supermultiplet; the reason of this name is
the invariance under supersymmetric transformations, which mix bosonic and
fermionic degrees of freedom. As we can see from a supersymmetric theory such
as the Wess-Zumino model, supersymmetry is an elegant solution to the problem
of Naturalness; in fact, because of the presence of more Feynman diagrams with
fermionic internal legs carrying different signs, it allows the cancellation of all
the quadratic divergences. It is possible to prove this cancellation also in more
complicated supersymmetric theories.
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2.2 Supersymmetry

We choose the convention of a mostly-plus (−,+,+,+) Minkowskian metric
tensor in a D = 4 flat spacetime. We can give a more precise introduction of
supersymmetry. First of all, supersymmetry is a spacetime symmetry between
bosonic and fermionic fields: Given Q a generator of supersymmetry, a generic
physical state |m, s〉 of mass m and spin s is transformed by Q in the following
way

Q |m, s〉 = |m, |s± 1/2|〉 . (2.9)

A boson is transformed in a fermion and a fermion is transformed in a boson;
as a consequence, Q must be a fermionic generator and it must carry a spinorial
index: This is the reason why supersymmetry is a spacetime symmetry. A
generic supersymmetric quantum field theory is associated with a numberN ∈ N
which specifies the number of generators of supersymmetry; the Wess-Zumino
model is an example of a N = 1 supersymmetric theory. Obviously, the case
N = 0 is the non-supersymmetric one and it is not considered.

We define Qα and Q̄α̇ (with α = +,− and α̇ = +̇, −̇) as Weyl spinors in order

that the structure
(
Qα
Q̄α̇

)
is a Majorana spinor; Qα and Q̄α̇ are commonly called

supercharges. In order to avoid confusions, in a theory with N = 1 there is one
generator of supersymmetry and it is represented by a Majorana spinor of four
supercharges, which are usually arranged into two Weyl spinors. An example of
supersymmetric algebra is the N = 1 super-Poincaré algebra in D = 4

[Jµν , Jρλ] = ηµλJνρ + ηνρJµλ − ηµρJνλ − ηνλJµρ,
[Jµν , Pρ] = ηνρPµ − ηµρPν ,
[Pµ, Pν ] = 0,

[Pµ, Qα] = 0,
[
Pµ, Q̄α̇

]
= 0,

[Jµν , Qα] =
1

2
(σµν) β

α Qβ ,
[
Jµν , Q̄α̇

]
=

1

2
(σ̄µν) β̇

α̇ Q̄β̇ ,

{Qα, Q̄α̇} = (σµ)αα̇Pµ,

{Qα, Qβ} = 0, {Q̄α̇, Q̄β̇} = 0,

(2.10)

where we have {Jµν , Pµ} the generators of the Poincaré group and the super-
charges Qα and Q̄α̇ (σµν = 1

2 [σµ, σν ] and σ̄µν has the same definition, with only
a change of sign for the Pauli matrices). For a generic N ≥ 1 supersymmetry
in D = 4, we have the supercharges Qiα and Q̄iα̇ with i = 1, . . . ,N and the
previous relations are modified only with some Kronecker deltas and with the
introduction of central charges in some relations.
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In the super-Poincaré algebra of eq.(2.10), we read the first three commuting
relations which describe the Poincaré algebra; the remaining commuting rela-
tions and the anticommuting relations define the enlargement of the symmetry
of spacetime. The anticommuting relations between supercharges are funda-
mental to build a supersymmetry because they allow to deceive the Coleman-
Mandula theorem (also called “no-go theorem”). This theorem states that the
only conserved charges that transform as tensors under the Lorentz group are
the generators of translations and the generators of the Lorentz transforma-
tions. As a consequence, any other conserved charge is necessarily a Lorentz
scalar and its commuting relations with the generators of Lorentz and of trans-
lations are trivial: This implies that it is impossible to enlarge the symmetry
of spacetime. Actually, supersymmetry succeeds in doing that because of the
previous anticommuting relations.

With the introduction of supercharges in the algebra, another symmetry
comes out; it is easy to verify that the algebra of eq.(2.10) is invariant under
the following transformation {

Qα → eiθQα
Q̄α̇ → e−iθQ̄α̇

with θ ∈ R a constant arbitrary parameter. As a consequence, we can include
an extra generator R so that

[R,Qα] = Qα,
[
R, Q̄α̇

]
= −Q̄α̇, [R, Jµν ] = 0, [R,Pµ] = 0, (2.11)

and these commuting relations introduce the R-symmetry; in that case, the R-
symmetry of the N = 1 supersymmetry is U(1). In general, R-symmetry is a
symmetry of supercharges; we can see it as the group of transformations which
rotate the supercharges into each other.

We enlarged the symmetry of a D = 4 flat spacetime with the introduction
of supersymmetry; now we have to organize particles into representations of
the supersymmetric algebra, also called supermultiplets. We use the formalism
of bispinorial indices [10] that is summarized in Appendix A (see in particular
from eq.(A.20) to eq.(A.30)). For simplicity, we consider a toy model of a scalar
φ and a spinor ψα; their physics is described by the Lagrangian

L =
1

2
∂αα̇φ̄ ∂αα̇φ−

i

2
ψ̄α̇∂αα̇ψα. (2.12)

16



This Lagrangian is invariant under the N = 1 supersymmetric transformation
δφ = 1√

2
εαψα

δφ̄ = 1√
2
ε̄α̇ψ̄α̇

δψα =
√

2 i∂ α̇
α φ ε̄α̇

δψ̄α̇ =
√

2 i∂αα̇φ̄ εα

, (2.13)

(i.e. δL = 0), with εα generic spinorial parameter (and ε̄α̇ its conjugate).
We want to know whether the set (φ, ψα) realizes a representation of the super-
symmetric algebra. For that purpose, we consider two different supersymmetric
transformations like eq.(2.13) with corresponding spinorial parameters ε α1 and
ε α2 and we compute the commutator of these two transformations applied to φ
and to ψα; we expect to find a translation of the two fields. Actually, we find
that

[δ1, δ2]φ =
(
ε α1 ε̄

α̇
2 − ε α2 ε̄ α̇1

)
i∂αα̇φ,

[δ1, δ2]ψα =
(
ε β1 ε̄

α̇
2 − ε

β
2 ε̄

α̇
1

)
i (∂βα̇ψα + Cαβ∂γα̇ψγ) ,

(2.14)

where we use the identity ∂αα̇ψβ = ∂βα̇ψα + Cαβ∂γα̇ψγ and Cαβ is defined by
eq.(A.21). If we rewrite i∂αα̇ = pαα̇, we find what we expect

[δ1, δ2]φ =
(
ε α1 ε̄

α̇
2 − ε α2 ε̄ α̇1

)
pαα̇φ,

[δ1, δ2]ψα =
(
ε β1 ε̄

α̇
2 − ε

β
2 ε̄

α̇
1

)
pβα̇ψα,

(2.15)

only if we impose i∂γα̇ψγ = 0, which are the equations of motion for ψα. As
a consequence, in our toy model described by eq.(2.12), the supersymmetric
algebra closes on (φ, ψα) only on-shell (i.e. with the constraints of the equations
of motion). If we include an extra scalar field F into the Lagrangian that
becomes

L =
1

2
∂αα̇φ̄ ∂αα̇φ−

i

2
ψ̄α̇∂αα̇ψα −

1

4
F̄F, (2.16)

which is invariant under the following supersymmetric transformation

δφ = 1√
2
εαψα

δφ̄ = 1√
2
ε̄α̇ψ̄α̇

δψα =
√

2 i∂ α̇
α φ ε̄α̇ + 1√

2
εαF

δψ̄α̇ =
√

2 i∂αα̇φ̄ εα + 1√
2
ε̄α̇F̄

δF = −
√

2 i∂αα̇ψα ε̄α̇
δF̄ = −

√
2 εα i∂ α̇

α ψ̄α̇

, (2.17)
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in place of eq.(2.15) we find

[δ1, δ2]φ =
(
ε α1 ε̄

α̇
2 − ε α2 ε̄ α̇1

)
pαα̇φ,

[δ1, δ2]ψα =
(
ε β1 ε̄

α̇
2 − ε

β
2 ε̄

α̇
1

)
pβα̇ψα,

[δ1, δ2]F =
(
ε α1 ε̄

α̇
2 − ε α2 ε̄ α̇1

)
pαα̇F,

(2.18)

where it is not necessary to impose any constraint. The field F satisfies the
equation of motion F = 0, so it is not a physical field; it is called auxiliary
field. In conclusion, in our toy model, with the introduction of an auxiliary
field, we find (φ, ψα, F ) as an off-shell representation of the supersymmetric
algebra. Actually, for a generic N ≥ 1 supersymmetric theory, the introduction
of auxiliary fields brings the advantage of having an off-shell supersymmetric
theory and, as we will see soon, it allows to perform calculations with the help
of Superspace techniques.

It is important to specify which values of N are allowed for a generic su-
persymmetric theory. According to [11], the largest number of supercharges
for a free field theory without gravity is 16: With more supercharges, the free
supermultiplet includes fields whose spin is larger than 1 and there is no con-
sistent theory without gravity. As we will specify later, when supersymmetry
is local we move to supergravity and the maximum spin is 2: For a consis-
tent supergravity theory, the largest number of real supercharges is 32. Talking
about supercharges, we are dealing with the components of the generators of
supersymmetry, which are Majorana spinors or, in other words, irreducible rep-
resentations of the Lorentz group. Given a generic D-dimensional spacetime, if
we call dL(D) the dimension of a spinor (i.e. the number of real components of
a spinor) in D dimensions, the maximum numbers of generators of supersym-
metry allowed for a theory without gravity (subscript “SUSY”) and for a theory
with gravity (subscript “SUGRA”) are respectively

Nmax
SUSY =

16

dL(D)
, Nmax

SUGRA =
32

dL(D)
. (2.19)

A quantum field theory with N = Nmax is maximally supersymmetric; some
known examples are summarized in the following table.

D = 3 D = 4 D = 10

Nmax
SUSY 8 4 1

Nmax
SUGRA 16 8 2

18



Now we move to a generic construction of supersymmetric representations
of N ≥ 1. Because of the structure of the anticommuting relations between
supercharges, ∀i = 1, . . . ,N it is easy to prove that Q3

i = Q̄3
i = 0: So, the

supermultiplet we build up by applying supercharges to a starting state is a
finite tower of states with the same mass (as we can read from eq.(2.9)). A
generic particle can be massive or massless, so we consider separately these two
different cases.

Massive representation of supersymmetry. In the massive representation
of N ≥ 1 supersymmetry in D = 4, the momentum of a particle of mass m is
pµ = (m, 0, 0, 0) (with µ = 0, . . . , 3) in order to follow the mass-shell relation
p2 = −m2; as a consequence, the nonvanishing anticommuting relation is

{Qiα, Q̄jα̇} = m δijδαα̇. (2.20)

We define |s〉 a vacuum state of spin s by the condition

Qiα |s〉 = 0 ∀i = 1, . . . ,N , (2.21)

and we construct the tower of states by repeatedly applying Q̄iα̇ to |s〉; we
can choose the convention that Q̄i+̇ |s〉 → |s+ 1/2〉i and Q̄i−̇ |s〉 → |s− 1/2〉i
(the contrary choice leads to the same physics). The massive supermultiplet is
represented in the following table.

Massive states Number of states

|s〉 1
Q̄iα̇ |s〉 2N

Q̄iα̇Q̄jβ̇ |s〉
(

2N
2

)
...

...(∏N
k=1 Q̄kα̇k

)
|s〉

(
2N
2N
)

The total number of states in this supermultiplet is
∑2N
k=0

(
2N
k

)
= 22N . If we

apply a supercharge Qiα to the last state of the tower, we find a combination
of the previous states: The supermultiplet in the table is a complete set of
indipendent states.
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Massless representation of supersymmetry. In the massless representa-
tion of N ≥ 1 supersymmetry in D = 4, the momentum of a particle of energy E
is pµ = (E, 0, 0, E) (with µ = 0, . . . , 3) in order to follow the mass-shell relation
p2 = 0; as a consequence, the nonvanishing anticommuting relation is

{Qiα, Q̄jα̇} = E δij (I + σ3)αα̇ → {Qi+, Q̄j+̇} = 2E δij . (2.22)

Massless particles are classified in terms of helicity, which is the projection of
the spin onto the direction of momentum. We define |λ〉 a vacuum state of
helicity λ by the conditions

Qi− |λ〉 = 0 ∀i = 1, . . . ,N ,
Q̄i−̇ |λ〉 = 0 ∀i = 1, . . . ,N ,
Qi+ |λ〉 = 0 ∀i = 1, . . . ,N ,

(2.23)

and we construct the tower of states by repeatedly applying Q̄i+̇ to |λ〉. The
massless supermultiplet is represented in the following table.

Massless states Number of states

|λ〉 1
Q̄i+̇ |λ〉 N

Q̄i+̇Q̄j+̇ |λ〉
(N

2

)
...

...(∏N
k=1 Q̄k+̇

)
|λ〉

(N
N
)

The total number of states in this supermultiplet is
∑N
k=0

(N
k

)
= 2N . Also

in this case, if we apply a supercharge Qi+ to the last state of the tower, we
find a combination of the previous states: The supermultiplet in the table is a
complete set of indipendent states.
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2.3 N = 1 Superspace

In the previous section, we showed the basis of supersymmetry and its rep-
resentations for N = 1, . . . ,Nmax.

In this section, we consider a D = 4 flat spacetime with N = 1 supersym-
metry and we construct what is commonly called “Superspace”; it completes
the introduction of supersymmetry and it provides the technical tools we need
to perform the computations in supersymmetric gauge theories. Superspace is
also fundamental for our study of a supergravity theory, but in that case further
explanations about the formalism of k-forms are needed and are discussed in
the next chapter. We will follow [10] for a review of Superspace techniques.

For simplicity, we denote GSP the N = 1 super-Poincaré group and GL
the Lorentz group. The coset GSP /GL is a set of equivalence classes of super-
Poincaré elements with equivalence rule defined as

∀g, g′ ∈ GSP g′ ' g ⇐⇒ ∃h ∈ GL : g′ = g · h. (2.24)

The group GSP is generated by the set {Pµ, Jµν , Qα, Q̄α̇} and the group GL
is generated by the set {Jµν}; as a consequence, {Pµ, Qα, Q̄α̇} are the generators
of the group GSP /GL. We assume again the bispinorial indices convention in
Appendix A and we choose a coset representative

L
(
x, θ, θ̄

)
= ei(x

αα̇Pαα̇+θβQβ+θ̄β̇Q̄β̇), (2.25)

where θα and θ̄α̇ are anticommuting constant spinorial parameters and xαα̇

are spacetime coordinates. With the help of the anticommuting relation of
supercharges, we can fix the energy dimensions of these quantities:

[P ] = E1, [Q] =
[
Q̄
]

= E
1
2 , [x] = E−1, [θ] =

[
θ̄
]

= E−
1
2 . (2.26)

The set
(
xαα̇, θα, θ̄α̇

)
is a set of coordinates of the N = 1 Superspace, defined

as the coset of super-Poincaré and Lorentz. We can compute the multiplication
of two representatives like eq.(2.25) by using the Baker-Campbell-Hausdorff
formula

∀A,B eAeB = eA+B+ 1
2 [A,B]+...; (2.27)

in our case, given that [A, [A,B]] = [B, [A,B]] = 0, it reduces into eA+B+ 1
2 [A,B].

It is easy to verify that

L
(
x, θ, θ̄

)
· L (ξ, ε, ε̄) = L

(
x+ ξ − i

2

(
εθ̄ + ε̄θ

)
, θ + ε, θ̄ + ε̄

)
, (2.28)
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which is the explicit definition of a super-translation in N = 1 Superspace. A
generic Φ

(
x, θ, θ̄

)
, which is a smooth function of the Superspace coordinates, is

called “superfield”. Given a generic superfield Φ, if we make a super-translation
with parameters

(
ξαα̇, εα, ε̄α̇

)
, from δΦ = Φ

(
x+ ξ − i

2

(
εθ̄ + ε̄θ

)
, θ + ε, θ̄ + ε̄

)
−

Φ
(
x, θ, θ̄

)
we find the operatorial definition of the supercharges as

Qα = i∂α +
1

2
θ̄α̇∂αα̇, Q̄α̇ = i∂̄α̇ +

1

2
θα∂αα̇, (2.29)

where we introduce spinorial derivatives ∂α = ∂
∂θα and ∂̄α̇ = ∂

∂θ̄α̇
, which fol-

low the relations ∂αθβ = δαβ and ∂̄α̇θ̄β̇ = δα̇
β̇
. The operatorial definitions of

eq.(2.29) are useful to build covariant derivatives which must have null anticom-
muting relations with Qα and Q̄α̇ in order to be invariant under supersymmetric
transformations. These covariant derivatives are

Dα = ∂α +
i

2
θ̄α̇∂αα̇, D̄α̇ = ∂̄α̇ +

i

2
θα∂αα̇, (2.30)

and they follow the relations collected from eq.(A.31) to eq.(A.34).
Superfields are the fundamental ingredients for all the computations in this

thesis: The advantages coming from the use of superfields is the fact that a
superfield generally contains all the fields of a given supermultiplet in the form
of a series in the spinorial coordinates, and this leads to a more compact for-
mulation of the theory and a consequent simplification of computations. For
example, if we look at the toy model of the previous section, described by the
Lagrangian of eq.(2.16), we can define the following superfields

Φ(y) = φ(y) + θαψα(y)− θ2F (y),

Φ̄(y) = φ̄(y) + θ̄α̇ψ̄α̇(y)− θ̄2F̄ (y),
(2.31)

(with a shifted variable yαα̇ = xαα̇ + i
2θ
αθ̄α̇) containing all the fields of the

theory. The action of this model

S =

∫
d4x

(
1

2
∂αα̇φ̄ ∂αα̇φ−

i

2
ψ̄α̇∂αα̇ψα −

1

4
F̄F

)
, (2.32)

can be easily written as

S =
1

4

∫
d4x d4θ Φ̄Φ, (2.33)

where we introduce the main relations of Berezin integration in Appendix A.2
(see in particular eq.(A.35) and eq.(A.36)).
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In eq.(2.31) we find two examples of constrained superfields: Φ is a chiral
superfield and its peculiarity is to be solution of the equation D̄α̇Φ = 0, which
makes it independent of θ̄α̇; on the other hand, Φ̄ is an antichiral superfield
(solution of DαΦ̄ = 0) and it is independent of θα. As we have seen from this
toy model, a superfield can be written as a θ-expansion of component fields only
depending of the spacetime coordinates. A real scalar superfield V

(
x, θ, θ̄

)
has

the expansion

V
(
x, θ, θ̄

)
= C(x) + θαχα(x) + θ̄α̇χ̄α̇(x)− θ2M(x)− θ̄2M̄(x)

+ θαθ̄α̇Aαα̇(x)− θ̄2θαλα(x)− θ2θ̄α̇λ̄α̇(x) + θ2θ̄2D′(x),
(2.34)

where the component fields are defined with the following projections

C(x) = V
(
x, θ, θ̄

)
|θ=θ̄=0,

χα(x) = iDαV
(
x, θ, θ̄

)
|θ=θ̄=0,

χ̄α̇(x) = −iD̄α̇V
(
x, θ, θ̄

)
|θ=θ̄=0,

M(x) = D2V
(
x, θ, θ̄

)
|θ=θ̄=0,

M̄(x) = D̄2V
(
x, θ, θ̄

)
|θ=θ̄=0,

Aαα̇(x) =
1

2

[
D̄α̇, Dα

]
V
(
x, θ, θ̄

)
|θ=θ̄=0,

λα(x) = iD̄2DαV
(
x, θ, θ̄

)
|θ=θ̄=0,

λ̄α̇(x) = −iD2D̄α̇V
(
x, θ, θ̄

)
|θ=θ̄=0,

D′(x) =
1

2
DαD̄2DαV

(
x, θ, θ̄

)
|θ=θ̄=0.

(2.35)

For the rest of the thesis, we usually omit the explicit dependence on coordinates
only to use a smart notation.
N = 1 Superspace is one of the most efficient tools used to study supersym-

metric gauge theories with N ≥ 1. If we try to construct a N = 2 Superspace,
we find that it is impossible to close off-shell the supersymmetry; we glean an
example from [12] to illustrate this fact. We consider the Fayet-Sohnius matter
hypermultiplet, whose on-shell degrees of freedom are organized into a SU(2)
doublet φi of four scalar fields and into two isosinglet spinor fields ψα and χ̄α̇.
They are incorporated as component fields of an isodoublet superfield Φi of
N = 2 Superspace. The superfield Φi contains a lot of redundant component
fields in addition to the physical ones listed above because of the large number
of spinorial variables; it is possible to eliminate the extra fields through the
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constraints
D(i
αΦj) = 0, D̄

(i
α̇Φj) = 0, (2.36)

where (ij) stands for symmetrization and the covariant derivatives follow the
relation {Dj

α, D̄
l
α̇} = i∂αα̇δ

jl. After having applied these constraints,

Φi = φi + θαi ψα + θ̄α̇i χ̄α̇ + derivatives terms, (2.37)

so only the physical fields and their derivatives in the higher terms of the θ-
expansion remain in Φi. At the same time, the physical fields are on-shell

�φi = 0, ∂αα̇ψα = 0, ∂αα̇χ̄α̇ = 0, (2.38)

and this is due to the fact that the constraints of eq.(2.36) are not integrable
off-shell: The covariant derivatives do not anticommute. If we want to extend
this theory off-shell and to introduce an interaction, it is not possible for us
to relax one of the constraints of eq.(2.36) in N = 2 and to use a finite set of
auxiliary fields because of the “no-go” theorem. The only way to have an off-shell
theory is to look for other Superspaces; in [12], the authors build what is called
“Harmonic Superspace”, a more complicated structure than the one introduced
in this section. N = 1 Superspace allows to formulate off-shell supersymmetric
theories not only in the N = 1 case: For example, in D = 4, it is possible to
formulate a N = 2 or a N = 4 theory by using N = 1 superfields. We will
consider these two cases respectively in N = 2 SCQCD (super conformal QCD)
and in N = 4 SYM (super Yang-Mills).

We move back to N = 1 Superspace and, for simplicity, we rewrite the action
of our toy model as

S =

∫
d4x d4θ Φ̄Φ, (2.39)

with Φ and Φ̄ respectively chiral and antichiral superfields defined in eq.(2.31).
Given a generic constant parameter λ ∈ R, the term Φ̄Φ is invariant under the
transformation {

Φ→ eiλΦ
Φ̄→ Φ̄e−iλ

, (2.40)

so the action in eq.(2.39) has a U(1) global symmetry. The equations of motion
for the superfields are found by differentiating the Lagrangian with respect to
the superfields and by taking the results equal to zero; we find

D2Φ = 0, D̄2Φ̄ = 0. (2.41)

24



These equations describe the motion of free massless fields; this case is not
interesting, so we choose to add a potential term into the action in order to
see interactions between the component fields of Φ. The way to have also
interactions with bosons of spin 1 is to construct a theory with a gauge group,
which introduces a gauge field. For that purpose, the first step is to see eq.(2.40)
as a local transformation and rewrite it in the following way{

Φ→ eiΛΦ

Φ̄→ Φ̄e−iΛ̄
, (2.42)

with Λ (x, θ) and Λ̄
(
x, θ̄
)

chiral and antichiral superfields respectively. This
time

Φ̄Φ→ Φ̄ei(Λ−Λ̄)Φ,

so U(1) is not a local symmetry of the action of eq.(2.39). The second step
consists in the introduction of a new superfield which can make the action
invariant under local transformations of U(1). This superfield required must be
a representation of U(1); for that reason, we insert eV into the action, where V
is a scalar superfield whose local transformation under U(1) is

V → V + i
(
Λ̄− Λ

)
, (2.43)

so that Φ̄eV Φ is locally invariant under U(1). The scalar superfield V is generally
defined by eq.(2.34), while we can explicit

Λ = Λ1 + θαΛα − θ2Λ2,

Λ̄ = Λ̄1 + θ̄α̇Λ̄α̇ − θ̄2Λ̄2,
(2.44)

and see the gauge transformation δV = i
(
Λ̄− Λ

)
for each component field

defined in eq.(2.35); the result is

δC = i
(
Λ̄1 − Λ1

)
= −2i Im(Λ1)

δχα = Λα
δχ̄α̇ = Λ̄α̇
δM = −iΛ2

δM̄ = iΛ̄2

δAαα̇ = 1
2∂αα̇

(
Λ1 + Λ̄1

)
= ∂αα̇Re(Λ1)

δλα = 0
δλ̄α̇ = 0
δD′ = 0

. (2.45)
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By adequately setting the parameters of Λ and Λ̄, it is possible to choose a
particular gauge in which C = χα = χ̄α̇ = M = M̄ = 0 and consequently

V = θαθ̄α̇Aαα̇ − θ̄2θαλα − θ2θ̄α̇λ̄α̇ + θ2θ̄2D′; (2.46)

this is commonly called the Wess-Zumino gauge. In this gauge, the superfield
V contains only the gauge field Aαα̇, the gaugino field λα (and its conjugate)
and an auxiliary field D′. In order to correctly add the gauge superfield V into
the action of our toy model, it is convenient to introduce a coupling constant
g which is related to the intensity of the interaction between the gauge fields
and the matter fields by replacing V → gV ; moreover, a kinetic term for V is
required since Aαα̇ and λα propagate. For that purpose, we write down the
super field-strength of V as

Wα = gD̄2DαV, (2.47)

whose square is the kinetic term for V and our toy model with gauge group
U(1) is described by the action

S =

∫
d4x d4θ Φ̄egV Φ +

1

g2

∫
d4x d2θ WαWα. (2.48)

We choose to put V into the adjoint representation of the gauge group U(1) and
Φ into the fundamental representation. It is possible to prove that W̄ α̇W̄α̇ leads
to the same terms as WαWα, so it is sufficient to include only one of them.

We considered an abelian gauge group to introduce the main concepts, but in
most cases the gauge group describing a fundamental interaction is non-abelian.
Given a gauge group SU(Nc) (Nc is the number of “color” values), generated
by Ta, the path to follow is the same as the previous one with some differences.
The first one is the inclusion of Ta which can be easily performed with the short
notation V = T aVa (and the same for each component field in V ); this must
be applied for each superfield in the adjoint representation of SU(Nc). Another
difference is the super field-strength

Wα = D̄2
(
e−gVDαe

gV
)
, (2.49)

and the kinetic term is written as tr (WαWα), where the trace is on color indices.
To sum up, we introduced supersymmetry as a solution to the problem of

Naturalness in a quantum field theory and showed that it leads to the can-
cellation of quadratic divergences in the self-energy corrections of scalars; we
pointed out the main features of N ≥ 1 supersymmetry and its massive and
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massless representations. The off-shell formulation of N = 1 supersymmetry
allowed us to construct the N = 1 Superspace as the coset of super-Poincaré
and Lorentz; this Superspace is suitable to study supersymmetric gauge theories
and supergravity theories, as we will see in the next chapter.
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Chapter 3

Supergravity

3.1 Local supersymmetry is supergravity

In the previous chapter, there is a detailed introduction of global super-
symmetry and gauge theories defined in N = 1 Superspace; this topic and its
formalism in particular will be useful for computations in Chapter 5. Now, we
are going to introduce briefly the main concepts and tools for the study of a
particular theory of supergravity that will be performed in Chapter 4.

First of all, a theory of supergravity is a theory in which supersymmetric
invariance is local; in other words, the parameters of a generic supersymmetric
transformation depend on the coordinates. It is common to use the verb “to
gauge” in order to indicate the passage from a global supersymmetry to a local
one. In this section, we show that when we gauge the supersymmetry of a
theory, this passage requires the introduction of two new fields: One field is
associated with the graviton (the quantum messenger of gravity, with spin 2)
and the second one is associated with the gravitino (the superpartner of the
graviton, with spin 3

2 ).
In order to avoid complicated computations, we consider a theory in D = 1,

where there is only a time coordinate t; we first analyze the non-supersymmetric
case and after that we extend it to the N = 1 case.
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Non-supersymmetric case. We consider a model of a free real massless
scalar field φ(t); the action of this theory is

S0 =

∫
dt L0 with L0 =

1

2
φ̇2, (3.1)

where φ̇ = dφ
dt . Given a constant parameter ξ, this theory is invariant under the

global time translation t→ t+ ξ, which transforms φ into φ+ δφ, with

δφ = −ξφ̇. (3.2)

If we look for the Noether current associated with the local time translation
with parameter ξ(t), we find that on-shell

∀ξ(t) δS0 = 0 ⇐⇒ dH

dt
= 0 with H =

1

2
φ̇2, (3.3)

where it is important to remember that, generally when a theory is defined
without any boundary, a field is thought as a function which asymptotically
vanishes and, for this reason, all the total derivatives in the integrand integrate
to zero. In conclusion, the Noether current associated with time translation is
the Hamiltonian H; now we want to include gravity to this model. In General
Relativity, a theory is invariant under diffeomorphisms: As a consequence, if we
want to couple the theory described by S0 of eq.(3.1) with gravity, we have to
make it invariant under diffeomorphisms. We use the Noether method, which
consists in adding to the Lagrangian a term that is the Noether current coupled
with a field associated with the local transformation; in our case, given a field
A(t) associated with local time translations, the action of the theory becomes

S =

∫
dt (L0 +AH) =

∫
dt (1 +A)L0. (3.4)

For simplicity, we write h = 1 + A and, by taking δS = 0 valid ∀ξ(t), we find
the following tensorial transformation rule for h

δh = hξ̇ − ḣξ. (3.5)

We end up with the Lagrangian

L =
1

2
hφ̇2, (3.6)

where h is the gravitational field coupling with the stress-energy tensor (in our
case, it has a single component, the Hamiltonian).
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N = 1 supersymmetric case. In addition to the real massless scalar field
φ(t), we introduce a real massless anticommuting field λ(t); the action of this
model is

S0 =

∫
dt L0 with L0 =

1

2
φ̇2 +

i

2
λλ̇, (3.7)

and it is invariant under the global supersymmetric transformation{
δφ = 1√

2
ελ

δλ = i√
2
φ̇ε
, (3.8)

with a generic constant spinorial parameter ε. It is easy to verify that, if we take
two generic global supersymmetric transformations with respective parameters
ε1 and ε2 and we compute the commutator of them applied separately to φ and
to λ, we find the relations

[δ1, δ2]φ = iε2ε1φ̇,

[δ1, δ2]λ = iε2ε1λ̇,
(3.9)

which mean that two global supersymmetric transformations imply a time trans-
lation. We can extend this concept for D > 1 and say that global supersym-
metry is “the square root” of translations; so, we expect to find that local
supersymmetry is the square root of General Relativity. As we did before in the
non-supersymmetric case, we find that on-shell

∀ε(t) δS0 = 0 ⇐⇒ dJ

dt
= 0 with J = − 1√

2
φ̇λ, (3.10)

so J is the Noether current associated with the local supersymmetry; we note
that J is fermionic, so it anticommutes with ε and with λ. After some sim-
ple steps, the variation of J under a local supersymmetric transformation like
eq.(3.8) is

δJ = −iεL0; (3.11)

this result is useful for the next computation. In order to make the model invari-
ant under local supersymmetric transformations, we use the Noether method as
before in the non-supersymmetric case: we introduce a field ψ associated with
local supersymmetric transformations and we couple it to the Noether current
J . Since the Lagrangian is a scalar object, the field ψ coupled with a fermionic
current must be fermionic too; another way to justify that is the fact that su-
persymmetry is generated by fermionic generators, so ψ must be itself a fermion
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because it is related to supersymmetry in the same way as a generator. Now,
if we consider L0 +ψJ as the new Lagrangian and we compute the variation of
it under an infinitesimal local supersymmetric transformation, we find that if
δψ ∼ ε̇ + . . . it is possible to cancel some terms; however, this is not sufficient
to restore the supersymmetric invariance locally. We have to introduce another
field to the Lagrangian; we denote it with h and we couple it to L0, writing the
action

S =

∫
dt L with L = h

(
1

2
φ̇2 +

i

2
λλ̇

)
+ ψJ. (3.12)

This is the only way we can introduce h in that model for different reasons.
The first reason is the continuity of the supersymmetric extension of this model
with its non-supersymmetric version: If we set λ = 0, that is to say that we
remove supersymmetry, we must achieve the Lagrangian of eq.(3.6) and this
choice is suitable for that purpose. Another reason is the fact that after having
introduced a fermionic field ψ, it is spontaneous to include a bosonic field in
order to restore N = 1 supersymmetry. Given the action of eq.(3.12), if we
require δS = 0, we find the following variations of ψ and h{

δh = iψε

δψ = hε̇− 1
2 ḣε

. (3.13)

In conclusion, we proved that local supersymmetry requires gravity: h is the
gravitational field and ψ is the field associated with the gravitino, which is seen
as the gauge field of supersymmetry.

It could be possible to follow the same path in order to prove that local
supersymmetry is supergravity for all the possible cases, expecially in some the-
ories of physical interest; however, it is sufficient to have verified this important
statement in one simple case. In the next section, we move to an introduction
of the formalism we will use in the study of supergravity.
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3.2 Gravity in the dual space

General Relativity is an effective theory of gravity; a brilliant mathematical
theory based on the theory of Special Relativity and the principle of equivalence,
also called the principle of general covariance. Given a metric tensor gµν with
µ, ν = 0, . . . , D − 1 and mostly-plus signature (D − 1, 1), we can collect the
definitions of the main mathematical objects of General Relativity

Γρµν =
1

2
gρλ (∂µgνλ + ∂νgµλ − ∂λgµν) ,

Rλµνρ = ∂ρΓ
λ
µν − ∂νΓλµρ + ΓηµνΓλρη − ΓηµρΓ

λ
νη,

Rµν = gλρRλµρν ,

R = gµνRµν ,

(3.14)

which are respectively the affine connection, the Riemann-Christoffel curvature
tensor, the Ricci tensor and the scalar curvature. It is possible to give a general
definition of a connection like Γ̃ρµν = Γρµν+Nρ

µν , where Γρµν is defined in eq.(3.14)
and Nρ

µν is the distortion term ([13] and references therein). Then, another

mathematical object we can define is the torsion T ρµν = Γ̃ρµν − Γ̃ρνµ; we consider
a theory where the torsion is set to zero. A generic free theory of gravity in the
vacuum is described by the Einstein-Hilbert action

S =
1

16πGD

∫
dDx

√
−det(g) (R− 2Λ) , (3.15)

with GD Newton constant in D dimensions ([GD] = LD−2) and we introduce
Λ cosmological constant with dimension [Λ] = E2. The Einstein equations of
motion in the vacuum for gµν are

Rµν −
1

2
gµνR+ Λgµν = 0, (3.16)

and they are the result of the extremization of eq.(3.15) with respect to gµν ;
further details about General Relativity could be found in [14].

What we used in order to present the main features of General Relativity
from the beginning of the section so far is the tensor formalism; another valid
way to describe the same physics is through the formalism of k-forms living in
the cotangent space, also called “the geometric approach”. As we will see in
Chapter 4, in the geometric approach, we can easily build a theory by starting
from its algebra, through the Maurer-Cartan equations, and with a geometric
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construction of the Lagrangian. An accurate introduction of the geometric
formalism can be found in [15]; moreover, in Appendix A.1, we summarise the
main technical details of the formalism. Now, we give a general introduction of
the main concepts of the geometric approach to gravity and supergravity, which
are essential for the computations in Chapter 4.

Given a Riemannian D-dimensional manifold M , at each point P ∈ M we
define an orthonormal local moving frame {ua} (with a = 0, . . . , D−1) spanning
a base of the tangent space TP (M) with Minkowskian metric ηab given by

ηab = ua · ub. (3.17)

The relation between the moving frame {ua} and the natural frame { ∂
∂xµ } (with

µ = 0, . . . , D − 1) is

ua = Vµa
∂

∂xµ
,

∂

∂xµ
= Vaµ ua,

(3.18)

with Vµa ,Vaµ ∈ GL(D,R) satisfying VaµV
µ
b = δab and Vµa Vaν = δµν . On the other

hand, in the cotangent space T ∗P (M), the moving frame {V a} is related with
the natural frame {dxµ} by

V a = Vaµ dxµ,
dxµ = Vµa V a.

(3.19)

The 1-form V a, which is called “vielbein”, is dual to the vector ua; we can
express an infinitesimal dispacement δP of a point P ∈M as

δP = V aua. (3.20)

In this case, we use δ instead of d because eq.(3.20) in general is not an exact
differential since P is not a function of the coordinates. If we consider an
infinitesimal translation P → P + δP , the infinitesimal change of the moving
frame in TP (M) is

δua = ub ω
b
a, (3.21)

and, since δ(ua · ub) = δηab = 0, we find that ωab = −ωba; the 1-form ωab
is called “spin connection”. If we take the exterior derivative of both sides of
eq.(3.20) and of eq.(3.21) and we replace them where necessary, we get

d(δP ) =
(
dV a + ωab ∧ V b

)
ua,

d(δua) =
(
dωba + ωbc ∧ ωca

)
ub,

(3.22)
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and this result leads to two structure equations

Rab = dωab + ωac ∧ ω b
c ,

Ra = dV a + ωac ∧ V c,
(3.23)

which are respectively the curvature 2-form Rab and the torsion 2-form Ra.
When we deal with gravity, it is useful to define a covariant derivative (that is
a derivative which transforms like a tensor). Similarly, we define a covariant
exterior derivative

Dω = d+ ω, (3.24)

that is understood as DωA
(k) = dA(k) + ω ∧ A(k) for a generic k-form A(k);

consequently, the two definitions in eq.(3.23) can be read as Rab = Dωω
ab and

Ra = DωV
a. We are talking about a D-dimensional manifold M by studying it

in the cotangent space, where we defined the 1-form fields ωab and V a and their
respective covariant exterior derivatives Rab and Ra. It is clear that computing
the components of Rab and Ra is easier than computing the components of
Rµνρλ and T ρµν ; actually, the dual formalism is chosen not for this reason, but
because it facilitates us the study of a theory through the properties coming from
its symmetries and its algebraic structure. In order to understand the meaning
of this argumentation, we have to take a step back towards group theory.

Our manifold M considered can be seen as a Lie group G: A known result
of group theory is that left-invariant vector fields on G form the Lie algebra g of
the group G. Given E ∈ G the identity element, we can think about g as TE(G)
because any left-invariant vector is determined by its value at E; obviously,
we have TE(M) = TE(G) since, in a Lie group, the manifold nature is strictly
connected with the group structure. We define a set {Ta} of generators on
TE(G) which close the relations

[Ti, Tj ] = Ckij Tk, (3.25)

where Ckij are the structure constants. Ta also fulfill the Jacobi identities

[Ti, [Tj , Tk]] + [Tj , [Tk, Ti]] + [Tk, [Ti, Tj ]] = 0, (3.26)

also written in a more compact way Cki[j C
i
lm] = 0. We can rewrite all these

informations in the cotangent space T ∗E(G), where, instead of left-invariant vec-
tors, there are left-invariant 1-forms. Given a basis {σa} of 1-form generators,
which are related with the previous ones through

σa(Tb) = δab, (3.27)
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it is possible to show (see [15]) that eq.(3.25) becomes

dσi +
1

2
Cijk σ

j ∧ σk = 0, (3.28)

commonly called “Maurer-Cartan equations”. These equations uniquely de-
termine the algebraic structure of G; as a consequence, given a theory with
symmetry group G, we can read its Lie algebra in the cotangent space through
the Maurer-Cartan equations eq.(3.28). The relation d2 = 0 for the exterior
derivative is the dual version of the Jacobi identities in the cotangent space. In
the table below are summarized the main parallelisms between tangent space
and cotangent space.

Tangent space TE(G) Cotangent space T ∗E(G)

Generators Ta σa

Lie algebra [Ti, Tj ] = Ckij Tk dσi + 1
2C

i
jk σ

j ∧ σk = 0

Jacobi identity Cki[j C
i
lm] = 0 d2 = 0

After these considerations, if we look at the definitions in eq.(3.23), Rab = 0
and Ra = 0 are nothing but the Maurer-Cartan equations of the Poincaré
algebra

[Jµν , Jρλ] = ηµλJνρ + ηνρJµλ − ηµρJνλ − ηνλJµρ,
[Jµν , Pρ] = ηνρPµ − ηµρPν ,
[Pµ, Pν ] = 0,

(3.29)

where ωab is dual to Jµν and V a is dual to Pµ.
To sum up, we study the D-dimensional manifold M (also seen as a Lie

group) through its cotangent space (its Lie algebra), where there are 1-form
generators fulfilling the Maurer-Cartan equations. Dealing with the Poincaré
algebra of eq.(3.29), that corresponds to Rab = 0 and Ra = 0, we can differen-
tiate both sides of the definitions in eq.(3.23) and use the property d2 = 0.

dRab = dωac ∧ ω b
c − ωac ∧ dω b

c

=
(
Rac − ωaf ∧ ω c

f

)
∧ ω b

c − ωac ∧
(
R b
c − ω f

c ∧ ω b
f

)
= Rac ∧ ω b

c − ωac ∧R b
c ,

dRa = dωac ∧ Vc − ωac ∧ dVc
=
(
Rac − ωaf ∧ ω c

f

)
∧ Vc − ωac ∧

(
Rc − ω f

c ∧ Vf
)

= Rac ∧ Vc − ωac ∧Rc.

(3.30)
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After some trivial steps, we find that the curvature Rab and the torsion Ra obey
the integrability conditions

DωRab = 0,

DωR
a −Rac ∧ Vc = 0,

(3.31)

which are referred to as the “Bianchi identities”. Another step is to assume that
Ra = 0 in order to study a Riemannian manifold with a Riemannian connection;
this assumption is referred to as the on-shell condition.

For completeness, there are two main formulations of gravity, which are
respectively the first-order and the second-order formulation. In the first-order
formulation of gravity, the vielbein V a and the spin connection ωab are in general
independent; in the tensor formalism, it means that the affine connection does
not depend on the metric. On the other hand, in the second-order formulation,
ωab depends on V a. Some references about both the formulations could be found
in [15, 16]. We defined the mathematical objects of eq.(3.14) in the second-order
formulation in the tensor formalism; then, we moved to the geometric approach
and we introduced the main definitions through the first-order formulation. The
on-shell condition Ra = 0 is a torsion-less condition which determines ωab in
terms of V a and consequently it moves from the first-order to the second-order
formalism.

In Section 3.3, we will briefly introduce the AdS spacetime in general and
we will use the D = 4 case as an example of the passage from the formalism
of k-forms to the tensor formalism. In Section 3.4, we will contextualize the
general features discussed so far to the N = 1 Superspace in D = 4, which will
be our working space in Chapter 4.
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3.3 Introduction to AdS spacetime

We start from the action of eq.(3.15), which leads to the Einstein equations
of eq.(3.16) briefly discussed at the beginning of the previous section. If Λ < 0,
the maximally symmetric solution to eq.(3.16) is the metric tensor describing
what is commonly called “the Anti-de Sitter spacetime” in D dimensions (abbre-
viation AdSD spacetime). We can visualize the AdSD spacetime by an isometric
embedding in a flat spacetime of one higher dimension that we choose as time-
like. So, we consider the flat spacetime RD+1

2 (the subscript indicates that there
are two time dimensions) with metric tensor ηAB = diag(−1,+1, . . . ,+1,−1),
described by a set of coordinates ξA (with A = 0, . . . , D). We can define the
manifold AdSD as the set of points ξA ∈ RD+1

2 so that

ηAB ξAξB = −l2, (3.32)

where l is a constant named “AdS radius” ([l] = L). Precisely, in RD+1
2 there are

two time dimensions whereas in AdSD there is only one time dimension because
eq.(3.32) makes the last time dimension dependent on the other D dimensions.
For instance, we show the following image of AdS2 embedded in R3

2.

In general, AdSD is an Einstein D-dimensional spacetime with negative constant
curvature, group of isometries SO(D−1, 2) and a negative cosmological constant
given by

Λ = − (D − 1)(D − 2)

4l2
, (3.33)

where we refer to l as the AdS radius. In general, eq.(3.33) is seen with a 2 rather
than a 4 in the denominator: The reason why we put 4 is to follow our conven-
tions. Solutions of AdS gravity and black holes in that background are widely
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studied because of their mathematical properties a their symmetries. In par-
ticular, AdS solutions coming from some string theories are strictly connected
through their symmetries to respective quantum conformal field theories, out-
lining what is called AdS/CFT correspondence; we will briefly introduce some
of the main concepts about it in Section 3.5.

Now we consider the specific case of D = 4 AdS spacetime, whose dynamics
in the vacuum is described by the action

S =
1

16πG

∫
d4x

√
−det(g) (R− 2Λ) , (3.34)

where G is the Newton constant in 4 dimensions. We define

e =
1

2l
, (3.35)

and for the rest of the thesis we will call e the cosmological constant instead
of Λ; this choice conforms our notation to most of recent papers dealing with
supergravity studied through the geometric (or rheonomic) approach. The group
of isometries of AdS4 is SO(3, 2) ∼ Sp(4) and its algebra reads

[Jµν , Jρλ] = ηµλJνρ + ηνρJµλ − ηµρJνλ − ηνλJµρ,
[Jµν , Pρ] = ηνρPµ − ηµρPν ,
[Pµ, Pν ] = Jµν ,

(3.36)

with Jµν generators of Lorentz transformations and Pµ generators of AdS boosts.
We move to the geometric formalism introduced in Section 3.2 and we have the
spin connection ωab dual to Jµν and the vielbein V a dual to Pµ. We fix the
length dimensions [e] = L−1, [ω] = L0, [V ] = L1 (the d operator is not associated
with any length dimension); then the Maurer-Cartan equations corresponding
to eq.(3.36) are

Rab + 4e2 V a ∧ V b = Dωω
ab + 4e2 V a ∧ V b = 0,

Ra = DωV
a = 0.

(3.37)

The Lagrangian of that theory is defined in the cotangent space as a 4-form,
since its integration over the spacetime (that is the action) must be a function
(a 0-form). We now demonstrate that this Lagrangian

L = εabcd
(
Rab ∧ V c ∧ V d + 2e2 V a ∧ V b ∧ V c ∧ V d

)
(3.38)

corresponds to the integrand of eq.(3.34) up to some constant overall factors.
The first step consists in expanding the 2-form Rab in the vielbein basis, so we
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can write Rab = Rabfg V
f ∧ V g with Rabfg parameters; after that, we change

the coordinate frame with V a = Vaµ dxµ.

L = εabcd
(
Rabfg V

f ∧ V g ∧ V c ∧ V d + 2e2 V a ∧ V b ∧ V c ∧ V d
)

= εabcd
(
Rabfg VfµVgνVcρVdσ + 2e2 VaµVbνVcρVdσ

)
dxµ ∧ dxν ∧ dxρ ∧ dxσ

= εabcd ε
µνρσ d4x

(
Rabfg VfµVgνVcρVdσ + 2e2 VaµVbνVcρVdσ

)
= εabcd det(V) d4x

(
Rabfg ε

fgcd + 2e2 εabcd
)

= det(V) d4x
(

4δfgab R
ab
fg + 48e2

)
= 4
√
−det(g) d4x

(
R+ 12e2

)
= 4
√
−det(g) d4x (R− 2Λ) ,

(3.39)

where we use the identities εabcd ε
fgcd = 4δfgab , εabcd ε

abcd = 24, δfgab R
ab
fg = R

and Λ = −6e2. This equivalence is valid if we choose the first-order formulation
and we assume the on-shell condition. This is an explicit example of the way to
convert a result got through the geometric formalism into the tensor formalism.
It is not necessary to convert into the tensor formalism the other results in that
thesis since our purpose is to study the mathematical properties of the theory
considered and this goal can be achieved through the geometric approach.
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3.4 Geometric approach to supergravity in Su-
perspace

Now, we briefly recall some of the main features of the geometric approach
for the description of N = 1, D = 4 pure supergravity (more details can be
found in [17, 18, 19]), since this will be useful in the sequel.

In the geometric approach to supergravity [15], the theory is given in terms of
1-form superfields µA defined on a Superspace that we will callM4|4 for brevity,
where the first number indicates the spacetime dimensions while the second one
indicates the spinorial dimensions. In particular, the bosonic 1-form V a and the
fermionic 1-form ψα (that is a Majorana spinor) define the supervielbein basis
{V a, ψα} in M4|4. For a technical overview of the main operations between
k-forms, see Appendix A.1.

In this framework, the supersymmetry transformations in spacetime are in-
terpreted as diffeomorphisms in the fermionic directions of Superspace and they
are generated by Lie derivatives with fermionic parameter εα (in Chapter 4 we
will remove the fermionic indices for simplicity). Then, the supersymmetry in-
variance of the theory is fulfilled requiring the Lie derivative of the Lagrangian
to vanish for diffeomorphisms in the fermionic directions of Superspace, that is
to say:

δεL = `εL = ıεdL+ d(ıεL) = 0, (3.40)

where ε is the fermionic parameter along the tangent vector dual to the gravitino.
The contribution ıεdL in eq.(3.40), which would be identically zero in space-

time, is non-trivial here, in Superspace. On the other hand, the contribution
d(ıεL) is a boundary term and does not affect the bulk result. Then, a necessary
condition for a supergravity Lagrangian is

ıεdL = 0, (3.41)

corresponding to require supersymmetry invariance in the bulk. Under eq.(3.41),
the supersymmetry transformation of the action simply reduces to

δεS =

∫
M4|4

d(ıεL) =

∫
∂M4|4

ıεL, (3.42)

where ∂M4|4 is the boundary of M4|4. When we consider a Minkowski back-
ground (or, generally, a spacetime with boundary thought as set at infinity),
the fields asymptotically vanish, so that

ıεL|∂M4|4 = 0 (3.43)
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and, consequently,
δεS = 0. (3.44)

Then, we have that, in this case, eq.(3.41) is also a sufficient condition for the
supersymmetry invariance of the Lagrangian.

On the other hand, when the background spacetime presents a non-trivial
boundary, the condition of eq.(3.43) (modulo an exact differential) becomes non-
trivial, and it is necessary to check it explicitly to get supersymmetry invariance
of the action, requiring a more subtle treatment.
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3.5 AdS/CFT correspondence

In Section 3.3 we gave a brief overview of AdS spacetime and some properties.
We mentioned that the great success of the AdS solutions is due to what is called
AdS/CFT correspondence (see the first works [20, 21, 22, 23, 24] on this topic
and references therein). This is one of the most fascinating discoveries in the
modern theoretical physics, which relates gauge theories to gravity theories; we
briefly introduce the main concepts about it.

First of all, CFT stands for conformal field theory, which is a D-dimensional
field theory invariant under conformal transformations belonging to the group
SO(D, 2). In general, conformal theories manifest interesting mathematical
properties: For example, it is possible to fix the structure of the 2-point corre-
lation function by only requiring conformal invariance. Another aspect is that
the coupling constant does not depend on the energy scale of the theory; as
a consequence, the beta function of the theory is zero. A detailed reference
dealing with conformal field theory and related topics is [25].

According to the AdS/CFT correspondence, some conformal field theories
are related to corresponding superstring theories on curved backgrounds. The
AdS/CFT correspondences that are of interest for this thesis are strong/weak
dualities. This duality states that, in the parameter range, where one of the
two theories is weakly coupled, the other one is strongly coupled and viceversa.
On one hand, this peculiarity would allow to investigate the non-perturbative
regime of a theory by means of perturbative computations performed on the
opposite side of the duality. On the other hand, however, it also makes the
correspondence very difficult to prove: In fact, no rigorous proof of the con-
jecture exists at the moment, even if it has passed several non trivial checks.
The strongest version of the AdS/CFT correspondence claims the exact equiva-
lence of the two theories for any values of the parameters. Weaker formulations
are more tractable because they concern particular simplified limits. The main
example of such weaker versions is represented by the ’t Hooft limit, in which

Nc →∞ while the ’t Hooft coupling λ = g2Nc
(4π)2 is kept fixed: This is also called

“planar limit”. In Chapter 5, we will see that, in the planar limit of a field
theory, non-planar contributions are suppressed and this fact considerably sim-
plifies perturbative computations by negletting all the Feynman diagrams which
can not be drawn in a plane (non-planar diagrams). When the field theory is
strongly coupled, the string side can be approximated by a classical theory of
supergravity on the bulk. We show a well understood example of such a cor-
respondence with a qualitative discourse: That is the duality between N = 4
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SYM in D = 4 dimensions and type IIB superstring theory on a AdS5 × S5

background [20].
As we mentioned in Section 2.2, N = 4 SYM is a maximally supersymmetric

field theory in D = 4 dimensions and it is also conformally invariant; one of the
several references about it is [26]. The field content of this theory is one vector
field, four Weyl spinors and six real scalar fields; all of them are massless. In
N = 1 Superspace, these are arranged into a scalar gauge superfield and three
chiral superfields. The symmetries of N = 4 SYM are

• superconformal group SU(2, 2|4);

• gauge group SU(Nc);

• conformal group SO(4, 2);

• R-symmetry SU(4) ∼ SO(6).

In particular, SU(2, 2|4) includes 16 real supersymmetric generators Qaα and 16
real superconformal generators Sαa . On the other hand, type IIB superstring
theory in a AdS5 × S5 background is a 10-dimensional theory where five of its
dimensions are compactified on a 5-sphere S5. For a qualitative description
of some main ideas about the AdS/CFT correspondence, we consider a set of
coincident D-branes in type IIB superstring theory; the theory contains an open
string ending on the branes which interacts with closed strings. If we take the
low energy limit, where the string lenght goes to zero, the open string does
not interact anymore with the closed string and the system is decoupled: As a
consequence, we find the 4-dimensional N = 4 SYM theory living on the brane
and a free gravity theory outside. It is possible to consider the same system
from a different point of view: D-branes are massive charged objects and a set
of these massive objects can be thought of as a generalization of a black hole. In
the low energy limit, we find again two decoupled pieces, which are free gravity
on one side and type IIB supergravity on AdS5×S5 on the other side, which is
the low energy limit of type IIB superstring theory. In both points of view, we
have found two decoupled theories, and in both case one of them is free gravity:
it is so immediate to identify the second system appearing in both description.
We are thus led to the conjecture that at all energies N = 4 SYM is dual to
type IIB superstring on a AdS5×S5 background. A first obvious check concern
symmetries on the two sides: It is easy to see that these two theories share the
same symmetry groups. In fact, SO(4, 2) is the conformal group of a D = 4 CFT
and it is also the isometry group of AdS5; moreover, global SO(6) is isomorphic
to S5. The 4-dimensional superconformal N = 4 SYM lives on the boundary
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of AdS5 space; the matching of the symmetries is an hint of duality. It is also
possible to find a matching of the parameters of the theories. The string theory
parameters are the radius r of both AdS5 and S5 and the string theory coupling
gs, while the CFT ones are the SYM coupling gYM and Nc; we also define the ’t

Hooft coupling λ =
g2YMNc
(4π)2 . These parameters can be matched into each other:

r4

l4s
= g2

YMNc,

4πgs =
λ

Nc
,

(3.45)

where ls is the string lenght. Note that the perturbation analysis of the field
theory can be trusted when the ’t Hooft coupling is small while, on the other
hand, the classical gravity description becomes reliable when gs goes to zero and
r4

l4s
is large. It is clear from eq.(3.45) that these two regime are incompatible:

In fact the AdS/CFT is a weak/strong duality. To complete the picture of the
correspondence we need a map between the observables in the two theories and
a prescription for comparing physical quantities and amplitudes. In AdS/CFT,
a field in AdS space is associated with an operator in the CFT with the same
quantum numbers and they know about each other via boundary couplings [22].

The original formulation of the AdS/CFT correspondence was later extended
to other theories with less symmetries and to theories living in a different num-
ber of spacetime dimensions. The most general AdS/CFT correspondence is
a duality relating any CFT in D dimensions to a gravity theory on AdSD+1.
However, we have to remember that this is only a conjecture: for the moment,
the most reasonable way to operate is to separately consider each theory and to
study its properties, trying to find some similarities with other models.

In this thesis, we will not study in depth the AdS/CFT correspondence or
even look for such dualities: We will focus on a supergravity theory in Chapter
4 and in Chapter 5 we will compute some scattering amplitudes in N = 2
SCQCD. However, the AdS/CFT correspondence could be a very useful tool in
order to deeply understand some properties of these theories.

Gravity and supergravity theories in diverse dimensions in the presence
of a boundary have been studied in different contexts from the early ‘70 on
[27, 28, 29, 30]. In particular, some works dealing with supergravity studied
through the geometric approach mainly focus on the symmetries of the theories
and they analyze the way to preserve the supersymmetry invariance when a non-
trivial boundary is added. Although the final result shows a supersymmetric
theory composed by a bulk and a boundary, so allowing all the possible studies
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concerning AdS/CFT, this further step is not performed since it is very compli-
cated and also the theories are commonly considered as classical supergravity.
However there are some interesting results which can prepare the ground for
further studies like these: One example is the so-called “holographic renormal-
ization”, consisting of the inclusion of appropriate counterterms at the boundary
of a supergravity theory, with a consequent elimination of the divergences of the
bulk metric near the boundary (see for instance [31] and references therein).

Regarding superconformal theories, at strong coupling the dual string de-
scription of the theory N = 2 SCQCD seems much more problematic than
N = 4 SYM. There are some proposal for the dual string/supergravity back-
ground which turn out to be either singular [32] or related to non critical models
[33]. Any advancement on the field theory side might help claryfing the correct
properties of the gravitational description.
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Chapter 4

Generalized N = 1, D = 4
AdS-Lorentz deformed
supergravity on a manifold
with boundary

This chapter shows the most relevant features of the study of a particular
supergravity theory in [34], a paper published in the “European Physical Journal
Plus”. Before going in depth, it is important to briefly contextualize this topic
underlining some recent developments.

As we saw in Section 3.5, the study of the relations between the bulk and the
boundary of a supergravity theory could be relevant in the context of AdS/CFT.
In relevant works such as [35, 36, 37, 38, 39], the inclusion of boundary terms
and counterterms to AdS gravity was studied and, on the other hand, many
authors [40, 41, 42, 43, 44, 45] considered it in the context of supergravity the-
ories, by adopting different approaches. The results of these works pointed out
to the conclusion that, in order to restore all the invariances of a supergravity
Lagrangian with cosmological constant on a manifold with a non-trivial bound-
ary (that is when the boundary is not thought as set at infinity), one needs
to add topological (i.e. boundary) contributions to the theory, also providing
the counterterms necessary for regularizing the action. More recently, in [17]
the authors constructed the N = 1 and N = 2, D = 4 supergravity theo-
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ries with negative cosmological constant in the presence a non-trivial boundary
in a geometric framework (extending to Superspace the geometric approach of
the previous works). In particular, the authors found that the supersymmetry
invariance of the full Lagrangian (understood as bulk plus boundary contribu-
tions) is recovered with the introduction of a supersymmetric extension of the
Gauss-Bonnet term. The final Lagrangian is written down as a sum of quadratic
terms in super field-strengths, reproducing the MacDowell-Mansouri action [46].
Lately, in [18] the authors explored the supersymmetry invariance of a partic-
ular supergravity theory in the presence of a non-trivial boundary, following
the prescription of [17]. Specifically, they presented the explicit construction
of a geometric bulk Lagrangian based on an enlarged superalgebra, known as
AdS-Lorentz superalgebra, showing that, also in this case, the supersymmetric
extension of a Gauss-Bonnet like term is required to restore the supersymmetry
invariance of the complete theory. In analogy to the result of [17], they obtained
that the full action can be finally written as a MacDowell-Mansouri type action.

Driven by the results of [17, 18, 19], in this chapter we explore the supersym-
metry invariance of a supergravity theory we will refer to as D = 4 generalized
AdS-Lorentz deformed supergravity, in the geometric approach in the presence
of a non-trivial boundary. We give a rapid introduction of the main concepts
cited before where necessary. Chapter 6 contains our conclusions and possible
future developments, while in Appendix A.1 we collect some useful formulas in
D = 4 spacetime dimensions.
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4.1 AdS-Lorentz superalgebras

In this section, we show some features of the AdS-Lorentz superalgebra and
of its minimal generalization; the last one will be the physical scenario of our
study.

We want to study the supersymmetry invariance of a supergravity theory
when a non-trivial boundary is introduced. A non-trivial boundary is a bound-
ary not set to infinity and on it the fields of the theory generally do not vanish.
As we saw from Section 3.5, this topic is very interesting for the AdS/CFT,
in order to study a supergravity theory and a supersymmetric conformal field
theory which are dual to each other. It is reasonable to choose a supergravity
theory on an AdS background: In an algebraic point of view, the easiest theory
in D = 4 is the N = 1 AdS4, whose Lie superalgebra is called osp(4|1). The
bosonic subgroup associated with the Lie superalgebra osp(4|1) is isomorphic
to Sp(4) × O(1), where Sp(4) ∼ SO(3, 2) is the isometry group of AdS4 and
O(1) is the R-symmetry. We read from [47] the (anti)commuting relations of
osp(4|1)

[Jab, Jcd] = ηadJbc + ηbcJad − ηacJbd − ηbdJac,
[Jab, Pc] = ηbcPa − ηacPb,
[Pa, Pb] = Jab,

[Jab, Qα] = −1

2
(γabQ)α ,

[Pa, Qα] = −1

2
(γaQ)α ,

{Qα, Qβ} = −1

2

((
γabC

)
αβ
Jab − 2 (γaC)αβ Pa

)
,

(4.1)

where {Jab, Pa} are the generators of AdS4 seen in eq.(3.36) and Qα is the gen-
erator of supersymmetry (for definitions and relations of gamma matrices, see
Appendix A.1). In the cotangent space, we have the 1-form fields {ωab, V a, ψα}
which are dual to the previous ones in such a way

ωab(Jcd) = δabcd , V a(Pb) = δab , ψ(Q) = 1, (4.2)

where we remove the spinor index for convenience. Taken the length dimensions
[ωab] = L0, [V a] = L1, [ψ] = L

1
2 and after introducing the cosmological constant

e defined in eq.(3.35), the relations of eq.(4.1) become the following Maurer-
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Cartan equations

Dωω
ab + 4e2 V a ∧ V b + e ψ̄ ∧ γabψ = 0,

DωV
a − 1

2
ψ̄ ∧ γaψ = 0,

Dωψ + e V a ∧ γaψ = 0,

(4.3)

with the quantities Dωω
ab = dωab + ωac ∧ ω b

c , DωV
a = dV a + ωac ∧ V c and

Dωψ = dψ+ 1
4ω

ab ∧ γabψ. The Maurer-Cartan equations lead to the definitions
of super field-strengths

Rab = Rab + 4e2 V a ∧ V b + e ψ̄ ∧ γabψ,

Ra = DωV
a − 1

2
ψ̄ ∧ γaψ,

Ψ = ρ+ e V a ∧ γaψ,

(4.4)

where we call Rab = Dωω
ab and ρ = Dωψ. It is possible to construct a La-

grangian of N = 1 AdS4 by following some geometric rules we will use in
Subsection 4.3.1; the bulk Lagrangian of that theory is

L =εabcd
(
Rab ∧ V c ∧ V d + 2e2 V a ∧ V b ∧ V c ∧ V d + 2e ψ̄ ∧ γabψ ∧ V c ∧ V d

)
+ 4ψ̄ ∧ γaγ5ρ ∧ V a.

(4.5)

Specifically, this Lagrangian describesN = 1 AdS4 theory with Lie superalgebra
osp(4|1), without a finite boundary: As usual, when a finite boundary is not
defined (in other words, the boundary is set to infinity), all the fields of the
theory vanish at infinity.

Given osp(4|1), we can add a further generator Zab (with Zab = −Zba) whose
behavior is similar to Jab behavior: The new larger superalgebra obtained is
called AdS-Lorentz superalgebra. It is semisimple and historically it was ob-
tained as a deformation of the so-called Maxwell supersymmetries [48, 49]; we do
not take care of the Maxwell superalgebra in this thesis. The (anti)commuting
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relations of the AdS-Lorentz superalgebra read:

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Jab, Pc] = ηbcPa − ηacPb,
[Pa, Pb] = Zab,

[Zab, Pc] = ηbcPa − ηacPb,

[Jab, Qα] = −1

2
(γabQ)α ,

[Pa, Qα] = −1

2
(γaQ)α ,

[Zab, Qα] = −1

2
(γabQ)α ,

{Qα, Qβ} = −1

2

((
γabC

)
αβ
Zab − 2 (γaC)αβ Pa

)
.

(4.6)

We observe that the Lorentz-type algebra generated by {Jab, Zab} is a subalge-
bra of eq.(4.6). In the cotangent space, we have the 1-forms {ωab, kab, V a, ψ},
with kab dual to Zab (so that kab(Zcd) = δabcd), with length dimension [kab] = L0,
and the others follow the relations of eq.(4.2). Through the same method used
for osp(4|1), for the AdS-Lorentz superalgebra we find the super field-strengths

Rab = Dωω
ab,

Ra = DωV
a + kac ∧ V c −

1

2
ψ̄ ∧ γaψ,

F ab = Dωk
ab + kac ∧ k b

c + 4e2 V a ∧ V b + e ψ̄ ∧ γabψ,

Ψ = Dωψ +
1

4
kab ∧ γabψ + e V a ∧ γaψ,

(4.7)

with Dωk
ab = dkab+ 2ωac∧k b

c and the other exterior covariant derivatives can
be read below eq.(4.3).

A formal way to derive the AdS-Lorentz superalgebra is to make a torsion
deformation of osp(4|1); we show that process in the cotangent space. We
start with osp(4|1) described by the Maurer-Cartan equations of eq.(4.3). On
the same lines of what was done in [50] in the case of osp(32|1), we can now
exploit the freedom of redefining the Lorentz spin connection in osp(4|1) by the
addition of a new antisymmetric tensor 1-form Bab (carrying length dimension
[Bab] = L0) as follows:

ωab → ω̂ab = ωab −Bab. (4.8)
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We observe that such a redefinition is always possible and also implies a change
of the torsion 2-form, that is why we will talk about a “torsion deformation” of
osp(4|1). After having performed the redefinition eq.(4.8) of the spin connection,
if we rename ω̂ab as ωab, the Maurer-Cartan equations eq.(4.3) take the following
form:

Dωω
ab +DωB

ab +Bac ∧B b
c + 4e2 V a ∧ V b + e ψ̄ ∧ γabψ = 0,

DωV
a +Bac ∧ V c −

1

2
ψ̄ ∧ γaψ = 0,

Dωψ +
1

4
Bab ∧ γabψ + e V a ∧ γaψ = 0.

(4.9)

Now, if we further require, as an extra condition, the Lorentz spin connection
ωab to satisfy Dωω

ab = 0, corresponding to a Minkowski background, then the
first equation in eq.(4.9) splits into these two equations

Rab = 0,

DωB
ab +Bac ∧B b

c + 4e2 V a ∧ V b + e ψ̄ ∧ γabψ = 0,
(4.10)

where the last one defines the Maurer-Cartan equation for the tensor 1-form
field Bab. Observe that the superalgebra obtained from osp(4|1) through the
procedure written above is not isomorphic to osp(4|1) because of the extra
constraint Dωω

ab = 0, which implies eq.(4.10), imposed on the Maurer-Cartan
equations eq.(4.9). On the other hand, renaming Bab as kab, we can see that the
four Maurer-Cartan equations obtained exactly correspond to those of the AdS-
Lorentz superalgebra previously introduced, namely the super field-strengths
of eq.(4.7) set to zero. We can thus conclude that, at the price of introducing
the (torsion) field kab fulfilling eq.(4.10) renaming Bab as kab, osp(4|1) can be
mapped into the AdS-Lorentz superalgebra, where the spin connection ωab is
identified with the Lorentz connection of a 4-dimensional Minkowski spacetime
with vanishing Lorentz curvature (albeit with a modification of the supertorsion
and of the gravitino super field-strength). Thus, we can say that the AdS-
Lorentz superalgebra can also be viewed as a “torsion-deformed” version of
osp(4|1). This was already observed in [19], but it had not been explicitly
derived yet.

Starting from the AdS-Lorentz superalgebra, we briefly introduce its minimal
generalization; it is the object of study in that chapter. The minimal generaliza-
tion of the AdS-Lorentz superalgebra of eq.(4.6) contains one more spinor charge
and also two additional bosonic charges; it can be found in [47]. In the sequel,
we will refer to this minimal generalization of the AdS-Lorentz superalgebra as
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the generalized AdS-Lorentz superalgebra. The generators of the generalized
AdS-Lorentz superalgebra are given by the set {Jab, Pa, Z̃a, Z̃ab, Zab, Qα,Σα}
and they fulfill the following relations:

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc,[
Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc,[

Z̃ab, Z̃cd
]

= ηbcZad − ηacZbd − ηbdZac + ηadZbc,[
Z̃ab, Zcd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc,

{Qα, Qβ} = −1

2

((
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

)
,

{Qα,Σβ} = −1

2

((
γabC

)
αβ
Zab − 2 (γaC)αβ Z̃a

)
,

{Σα,Σβ} = −1

2

((
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

)
,

[Jab, Pc] = ηbcPa − ηacPb,
[Zab, Pc] = ηbcPa − ηacPb,[
Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b,[

Jab, Z̃c
]

= ηbcZ̃a − ηacZ̃b,[
Z̃ab, Z̃c

]
= ηbcPa − ηacPb,[

Zab, Z̃c
]

= ηbcZ̃a − ηacZ̃b,

[Pa, Pb] = Zab,[
Z̃a, Pb

]
= Z̃ab,[

Z̃a, Z̃b
]

= Zab,

[Jab, Qα] = −1

2
(γabQ)α ,

[Pa, Qα] = −1

2
(γaΣ)α ,[

Z̃ab, Qα
]

= −1

2
(γabΣ)α ,[

Z̃a, Qα
]

= −1

2
(γaQ)α ,

[Zab, Qα] = −1

2
(γabQ)α ,

[Pa,Σα] = −1

2
(γaQ)α ,

[Jab,Σα] = −1

2
(γabΣ)α ,[

Z̃a,Σα
]

= −1

2
(γaΣ)α ,[

Z̃ab,Σα
]

= −1

2
(γabQ)α ,

[Zab,Σα] = −1

2
(γabΣ)α .

(4.11)

As we can see above, a new Majorana spinor charge appears. The introduction
of a second spinorial generator can also be found, for example, in [51, 52, 53,
50, 54] (see also [19]) and [55] in the supergravity and superstrings contexts,
respectively. It is possible to show that by setting Z̃a → 0 the Jacobi identities
of eq.(4.11) are still fulfilled. We also observe, as it was already pointed out in
[47], that the generalized AdS-Lorentz algebra {Jab, Pa, Z̃a, Z̃ab, Zab} and the
algebra {Jab, Pa, Zab} are bosonic subalgebras of eq.(4.11).

To briefly sum up, we started with osp(4|1), which is the first supersymmetric
theory in a 4-dimensional AdS background; then we made a torsion deformation
by introducing a new field and we consequently got the AdS-Lorentz superalge-
bra. After that, we added two more bosonic fields and one more fermionic field
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to the superalgebra and what we got is the generalized AdS-Lorentz superalge-
bra: Our purpose is to build a bulk supersymmetric Lagrangian of this theory
and, after the introduction of a non-trivial boundary, to restore the supersym-
metry invariance of the full Lagrangian. The result could be compared with the
one of AdS-Lorentz superalgebra.

It is interesting to study a generalization of a theory like AdS-Lorentz and,
in particular, to analyze the contributions of the extra fields to the final theory.
In other words, when we introduce some extra fields to the theory, they could
appear in the boundary terms but also in the bulk Lagrangian. In particular,
the presence of the extra fields in the boundary could be useful in the context
of the AdS/CFT duality (we can see [56] and references therein).

In the following section, we introduce in detail the generalized AdS-Lorentz
superalgebra and its relation with the starting superalgebra osp(4|1).
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4.2 Relation between the generalized AdS-Lorentz
superalgebra and osp(4|1)

As we have done in the AdS-Lorentz case, we now describe the generalized
AdS-Lorentz superalgebra eq.(4.11) in its dual Maurer-Cartan formulation.

We introduce the set of 1-form fields {ωab, V a, h̃a, k̃ab, kab, ψ, ξ} dual to the
generators {Jab, Pa, Z̃a, Z̃ab, Zab, Q,Σ}, that is

ωab(Jcd) = δabcd , V a(Pb) = δab , h̃a(Z̃b) = δab , k̃ab(Z̃cd) = δabcd ,

kab(Zcd) = δabcd , ψ(Q) = 1, ξ(Σ) = 1,
(4.12)

where both ψ and ξ are Majorana spinors. These 1-form fields have length
dimensions [ωab] = L0, [V a] = L1, [h̃a] = L1, [k̃ab] = L0, [kab] = L0, [ψ] = L1/2,
and [ξ] = L1/2. The Maurer-Cartan equations describing the generalized AdS-
Lorentz superalgebra of eq.(4.11) are:

Dωω
ab = 0, (4.13a)

DωV
a + kab ∧ V b + k̃ab ∧ h̃b −

1

2
ψ̄ ∧ γaψ − 1

2
ξ̄ ∧ γaξ = 0, (4.13b)

Dωh̃
a + k̃ab ∧ V b + kab ∧ h̃b − ψ̄ ∧ γaξ = 0, (4.13c)

Dωk̃
ab + 2kac ∧ k̃cb + 8e2 V a ∧ h̃b + e

(
ψ̄ ∧ γabψ + ξ̄ ∧ γabξ

)
= 0, (4.13d)

Dωk
ab + k̃ac ∧ k̃cb + kac ∧ kcb + 4e2

(
V a ∧ V b + h̃a ∧ h̃b

)
+ 2e ψ̄ ∧ γabξ = 0,

(4.13e)

Dωψ +
1

4
kab ∧ γabψ +

1

4
k̃ab ∧ γabξ + e

(
V a ∧ γaξ + h̃a ∧ γaψ

)
= 0, (4.13f)

Dωξ +
1

4
kab ∧ γabξ +

1

4
k̃ab ∧ γabψ + e

(
V a ∧ γaψ + h̃a ∧ γaξ

)
= 0. (4.13g)

We can then define the generalized AdS-Lorentz Lie algebra valued 2-form su-
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percurvatures (also called super field-strengths) as follows (see also [47]):

Rab = Dωω
ab, (4.14a)

Ra = DωV
a + kab ∧ V b + k̃ab ∧ h̃b −

1

2
ψ̄ ∧ γaψ − 1

2
ξ̄ ∧ γaξ, (4.14b)

H̃a = Dωh̃
a + k̃ab ∧ V b + kab ∧ h̃b − ψ̄ ∧ γaξ, (4.14c)

F̃ ab = Dωk̃
ab + 2kac ∧ k̃cb + 8e2 V a ∧ h̃b + e

(
ψ̄ ∧ γabψ + ξ̄ ∧ γabξ

)
, (4.14d)

F ab = Dωk
ab + k̃ac ∧ k̃cb + kac ∧ kcb + 4e2

(
V a ∧ V b + h̃a ∧ h̃b

)
+ 2e ψ̄ ∧ γabξ,

(4.14e)

Ψ = Dωψ +
1

4
kab ∧ γabψ +

1

4
k̃ab ∧ γabξ + e

(
V a ∧ γaξ + h̃a ∧ γaψ

)
, (4.14f)

Ξ = Dωξ +
1

4
kab ∧ γabξ +

1

4
k̃ab ∧ γabψ + e

(
V a ∧ γaψ + h̃a ∧ γaξ

)
. (4.14g)

Now, considering the Maurer-Cartan equations eq.(4.3) of osp(4|1), we observe
that, by redefining 

ωab → ω̂ab = ωab − B̃ab −Bab,
V a → V̂ a = V a − B̃a,
ψ → ψ̂ = ψ − η,

(4.15)

where both B̃ab and Bab are antisymmetric tensor 1-forms carrying length di-
mension zero, B̃a is a 1-form carrying length dimension 1, and η is a spinor
1-form carrying length dimension 1/2, if we then rename ω̂ab ⇒ ωab, V̂ a ⇒ V a,

and ψ̂ ⇒ ψ, the Maurer-Cartan equations eq.(4.3) take the following form:

Dωω
ab +DωB̃

ab +DωB
ab + B̃ac ∧ B̃cb + 2Bac ∧ B̃cb +Bac ∧Bcb

+ 4e2
(
V a ∧ V b + 2V a ∧ B̃b + B̃a ∧ B̃b

)
+ e

(
ψ̄ ∧ γabψ + 2ψ̄ ∧ γabη + η̄ ∧ γabη

)
= 0, (4.16a)

DωV
a +DωB̃

a +Bab ∧ V b +Bab ∧ B̃b + B̃ab ∧ V b + B̃ab ∧ B̃b

− 1

2
ψ̄ ∧ γaψ − ψ̄ ∧ γaη − 1

2
η̄ ∧ γaη = 0, (4.16b)

Dωψ +Dωη +
1

4
Bab ∧ γabψ +

1

4
Bab ∧ γabη +

1

4
B̃ab ∧ γabψ +

1

4
B̃ab ∧ γabη

+ e
(
V a ∧ γaψ + V a ∧ γaη + B̃a ∧ γaψ + B̃a ∧ γaη

)
= 0. (4.16c)
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Then, if we further require the Lorentz spin connection ωab to satisfy Dωω
ab = 0

(corresponding to a Minkowski background), together with the following new
extra conditions:

DωB̃
a + B̃ab ∧ V b +Bab ∧ B̃b − ψ̄ ∧ γaη = 0, (4.17a)

DωB̃
ab + 2Bac ∧ B̃cb + 8e2 V a ∧ B̃b + e

(
ψ̄ ∧ γabψ + η̄ ∧ γabη

)
= 0, (4.17b)

DωB
ab + B̃ac ∧ B̃cb +Bac ∧Bcb

+ 4e2
(
V a ∧ V b + B̃a ∧ B̃b

)
+ 2e ψ̄ ∧ γabη = 0, (4.17c)

Dωη +
1

4
Bab ∧ γabη +

1

4
B̃ab ∧ γabψ + e

(
V a ∧ γaψ + B̃a ∧ γaη

)
= 0, (4.17d)

which define the Maurer-Cartan equation for the 1-form fields B̃a, B̃ab, Bab,
and η, one can easily prove that, after having redefined B̃a ⇒ h̃a, B̃ab ⇒ k̃ab,
Bab ⇒ kab, and η ⇒ ξ, the superalgebra we end up with is exactly the gen-
eralized minimal AdS-Lorentz one, with Maurer-Cartan equations given by
eq.(4.13a)-eq.(4.13g). We observe that, again, the superalgebra obtained from
osp(4|1) through the procedure written above (namely, in this case, the gen-
eralized AdS-Lorentz superalgebra) is not isomorphic to osp(4|1), because of
the extra constraints Dωω

ab = 0, eq.(4.17a)-eq.(4.17d) imposed on the Maurer-
Cartan equations eq.(4.9). We note that these extra conditions correspond to
particular choices performed on eq.(4.16a)-eq.(4.16c). One can then define the
AdS-Lorentz super field-strengths as given in eq.(4.14a)-eq.(4.14g). Thus, we
can conclude that, at the price of introducing the extra 1-form fields h̃a, k̃ab,
kab, and ξ (satisfying eq.(4.17a), eq.(4.17b), eq.(4.17c), and eq.(4.17d), respec-
tively), osp(4|1) can be mapped into the generalized minimal AdS-Lorentz su-
peralgebra, where the spin connection is identified with the Lorentz connection
of a Minkowski spacetime with vanishing Lorentz curvature (furthermore, we
also have a modification of the supertorsion and of the gravitino super field-
strength). In this sense, the generalized minimal AdS-Lorentz superalgebra can
be interpreted as a peculiar torsion deformation of osp(4|1).

Some comments are in order. First of all, we observe that the AdS-Lorentz
and the generalized minimal AdS-Lorentz superalgebras, which, as we have seen
above, correspond to different torsion deformations of osp(4|1), can also be both
obtained from osp(4|1) by performing the so-called S-expansion procedure, as
it was done in [47]. It consists in a particular expansion process [57], of the
AdS superalgebra of eq.(4.1) [47, 58, 59, 60]. In group theory, the S-expansion
method is based on combining the multiplication law of a semigroup S with
the structure constants of a Lie algebra g, in such a way to end up with a
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new, larger, Lie algebra gS = S × g, that is called the S-expanded algebra (see
also [61] for an analytic method for performing S-expansion). In particular, the
semigroup leading from osp(4|1) to the AdS-Lorentz superalgebra eq.(4.6) is

the abelian semigroup S
(2)
M = {λ0, λ1, λ2} (according with the notation of [47]),

whose elements obey the multiplication laws

λαλβ =

{
λα+β , if α+ β ≤ 2,
λα+β−2, if α+ β > 2.

(4.18)

Similarly, the semigroup leading from osp(4|1) to the generalized minimal AdS-
Lorentz superalgebra of eq.(4.11) (again, according with the notation of [47])

is the abelian semigroup S
(4)
M = {λ0, λ1, λ2, λ3, λ4}, whose elements obey the

following multiplication laws:

λαλβ =

{
λα+β , if α+ β ≤ 4,
λα+β−4, if α+ β > 4.

(4.19)

Then, interestingly enough, we can conclude that semigroups of the type S
(2n)
M

(with n ≥ 1) can lead from osp(4|1) to different torsion deformations of it.
We argue that the same should also occur in higher spacetime dimensions. All
the above observations could help to shed some light on the relations occurring
among the aforementioned different superalgebras and physical theories based
on them.
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4.3 Generalized AdS-Lorentz supergravity in the
geometric approach

Before analyzing the generalized D = 4 AdS-Lorentz deformed supergrav-
ity theory in the presence of a non-trivial boundary of spacetime, we study
the construction of the bulk Lagrangian and the corresponding supersymmetry
transformation laws, on the same lines of [18]. Specifically, we apply the ge-
ometric approach to derive the parametrization of the Lorentz-like curvatures
involving the extra 1-form fields h̃a, k̃ab, kab, and ξ by studying the different
sectors of the on-shell Bianchi Identities; this also leads to the supersymme-
try transformation laws. Subsequently, we construct a geometric generalized
D = 4 AdS-Lorentz Lagrangian, showing that it can be written in terms of the
aforementioned Lorentz-like supercurvatures. After that, we analyze the super-
symmetry invariance of the theory in the presence of a non-trivial spacetime
boundary.

Parametrization of the Lorentz-like curvatures. We consider the follow-
ing Lorentz-type curvatures defined in Superspace:

Rab = Dωω
ab, (4.20a)

Ra = DωV
a + kab ∧ V b + k̃ab ∧ h̃b −

1

2
ψ̄ ∧ γaψ − 1

2
ξ̄ ∧ γaξ, (4.20b)

H̃a = Dωh̃
a + k̃ab ∧ V b + kab ∧ h̃b − ψ̄ ∧ γaξ, (4.20c)

F̃ab = Dωk̃
ab + 2kac ∧ k̃cb, (4.20d)

Fab = Dωk
ab + k̃ac ∧ k̃cb + kac ∧ kcb, (4.20e)

ρ = Dωψ +
1

4
kab ∧ γabψ +

1

4
k̃ab ∧ γabξ, (4.20f)

σ = Dωξ +
1

4
kab ∧ γabξ +

1

4
k̃ab ∧ γabψ. (4.20g)

Here we use the Greek letters F̃ab, Fab, ρ, and σ, in order to avoid confusion
with the generalized AdS-Lorentz supercurvatures eq.(4.14d)-eq.(4.14g). The
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supercurvatures eq.(4.20a)-eq.(4.20g) satisfy the Bianchi identities:

DωRab = 0, (4.21a)

DωR
a = (Rab + Fab) ∧ V b + F̃ab ∧ h̃b − kab ∧Rb − k̃ab ∧ H̃b

+ ψ̄ ∧ γaρ+ ξ̄ ∧ γaσ, (4.21b)

DωH̃
a = (Rab + Fab) ∧ h̃b + F̃ab ∧ V b − k̃ab ∧Rb − kab ∧ H̃b

+ ξ̄ ∧ γaρ+ ψ̄ ∧ γaσ, (4.21c)

DωF̃ab = 2
(

(Rac + Fac) ∧ k̃cb + F̃ac ∧ kcb
)
, (4.21d)

DωFab = 2
(

(Rac + Fac) ∧ kcb + F̃ac ∧ k̃cb
)
, (4.21e)

Dωρ =
1

4

((
Rab + Fab

)
∧ γabψ + F̃ab ∧ γabξ − γabρ ∧ kab − γabσ ∧ k̃ab

)
,

(4.21f)

Dωσ =
1

4

((
Rab + Fab

)
∧ γabξ + F̃ab ∧ γabψ − γabσ ∧ kab − γabρ ∧ k̃ab

)
.

(4.21g)

We write the most general ansatz for the Lorentz-type curvatures in the super-
vielbein basis {V a, ψ} of Superspace as follows

Rab = Rab cd V c ∧ V d + Θ̄ab
c ψ ∧ V c + α̂ ψ̄ ∧ γabψ, (4.22a)

Ra = Rabc V
b ∧ V c + Θ̄a

b ψ ∧ V b + β̂ ψ̄ ∧ γaψ, (4.22b)

H̃a = H̃a
bc V

b ∧ V c + Λ̄ab ψ ∧ V b + γ̂ ψ̄ ∧ γaψ, (4.22c)

F̃ab = F̃abcd V c ∧ V d + Λ̄ab c ψ ∧ V c + δ̂ ψ̄ ∧ γabψ, (4.22d)

Fab = Fabcd V c ∧ V d + Π̄ab
c ψ ∧ V c + ε̂ ψ̄ ∧ γabψ, (4.22e)

ρ = ρab V
a ∧ V b + λ̂ γaψ ∧ V a + Ωαβ ψ

α ∧ ψβ , (4.22f)

σ = σab V
a ∧ V b + µ̂ γaψ ∧ V a + Ω̃αβ ψ

α ∧ ψβ . (4.22g)

We can expand the curvatures in the directions V ∧ V , V ∧ ψ, ψ ∧ ψ; with this
ansatz, from the equations of motion we can find that the outer components
(that are the ones in the V ∧ψ and ψ∧ψ directions) are written linear in terms
of the inner components. These are the rheonomic on-shell constraints, which
eliminate superfluous degrees of freedom. Setting Ra = 0, which corresponds
to the on-shell condition, we can withdraw some terms appearing in the above
ansatz by studying the scaling constraints; since H̃a has the same weight of Ra,
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we also can directly set H̃a = 0. On the other hand, the coefficients α̂, β̂, γ̂, δ̂,
ε̂, λ̂, and µ̂ can be determined from the analysis of the various sectors (which
are ψ ∧ ψ ∧ ψ, ψ ∧ ψ ∧ V , ψ ∧ V ∧ V , and V ∧ V ∧ V ) of the on-shell Bianchi
identities in Superspace eq.(4.21a)-eq.(4.21g), with the help of the D = 4 Fierz
identities for ψ collected in Appendix A.1.

One can then show that the Bianchi identities eq.(4.21a)-eq.(4.21g) are
solved by parametrizing on-shell the full set of supercurvatures in the following
way

Rab = Rab cd V c ∧ V d + Θ̄ab
c ψ ∧ V c, (4.23a)

Ra = 0, (4.23b)

H̃a = 0, (4.23c)

F̃ab = F̃abcd V c ∧ V d + Λ̄ab c ψ ∧ V c, (4.23d)

Fab = Fabcd V c ∧ V d + Π̄ab
c ψ ∧ V c, (4.23e)

ρ = ρab V
a ∧ V b, (4.23f)

σ = σab V
a ∧ V b, (4.23g)

with

Θ̄ab
c + Π̄ab

c = εabde (ρ̄cd γeγ5 + ρ̄ec γdγ5 − ρ̄de γcγ5) ,

Λ̄ab c = εabde (σ̄cd γeγ5 + σ̄ec γdγ5 − σ̄de γcγ5) .
(4.24)

We have thus found the parametrization of the Lorentz-type curvatures of
eq.(4.20a)-eq.(4.20g). This, as we are going to show, also provides us with
the supersymmetry transformations laws.

Supersymmetry transformation laws. The parametrizations eq.(4.23a)-
eq.(4.23g) we have obtained above allow to derive the supersymmetry transfor-
mations in a direct way. Indeed, in the geometric framework we have adopted,
the transformations on spacetime are given by

δµA = (∇ε)A + ıεR
A, (4.25)

for all the superfields µA = {ωab, V a, h̃a, k̃ab, kab, ψα, ξα}, where we define the
set of parameters εA = (εab, εa, ε̃a, ε̃ab, εab, εα, εα) ([15, 19, 62] for details). The
symbol∇ in eq.(4.25) denotes the gauge covariant derivative. Then, for a generic
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εα and εab = εa = ε̃a = ε̃ab = εab = εα = 0, we have:

ıεRab = Θ̄ab
c ε V

c, (4.26a)

ıεR
a = 0, (4.26b)

ıεH̃
a = 0, (4.26c)

ıεF̃ab = Λ̄ab c ε V
c, (4.26d)

ıεFab = Π̄ab
c ε V

c, (4.26e)

ıερ = 0, (4.26f)

ıεσ = 0. (4.26g)

This provides the following supersymmetry transformation laws for the 1-form
fields:

δεω
ab = Θ̄ab

c ε V
c, (4.27a)

δεV
a = ε̄γaψ, (4.27b)

δεh̃
a = ε̄γaξ, (4.27c)

δεk̃
ab = Λ̄ab c ε V

c, (4.27d)

δεk
ab = Π̄ab

c ε V
c, (4.27e)

δεψ = Dωε+
1

4
γab ε k

ab, (4.27f)

δεξ =
1

4
γab ε k̃

ab. (4.27g)

We use the on-shell formalism, so we consider supersymmetry transformations
like eq.(4.27), which close on-shell on the fields of the multiplet; in other words,
we have to impose the equations of motion of the fields to get our theory super-
symmetric invariant.

The following step consists in the construction of a geometric bulk La-
grangian.

4.3.1 Geometric construction of the geometric bulk La-
grangian

We now construct a geometric bulk Lagrangian based on the generalized
AdS-Lorentz superalgebra. The most general ansatz for the aforementioned
Lagrangian can be written as follows:

L = µ(4) +RA ∧ µ(2)
A +RA ∧RBµ(0)

AB , (4.28)
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where the upper index (p) denotes the degree of the related differential p-forms.
Here, the RA’s are the generalized AdS-Lorentz Lie algebra valued supercurva-
tures defined by eq.(4.14a)-eq.(4.14g), invariant under the rescaling

ωab → ωab, V a → ωV a, h̃a → ωh̃a, k̃ab → k̃ab, kab → kab,

ψ → ω1/2ψ, ξ → ω1/2ξ.
(4.29)

The Lagrangian must scale with ω2, being ω2 the scale-weight of the Einstein-
Hilbert term. Thus, due to scaling constraints reasons (see [15]), some of the
terms in the ansatz eq.(4.28) disappear. Besides, since we are now constructing

the bulk Lagrangian, we can set RA∧RBµ(0)
AB = 0. Nevertheless, these terms will

be fundamental for the construction of the boundary contributions needed in or-
der to restore the supersymmetry invariance of the full Lagrangian (understood
as bulk plus boundary contributions) in the presence of a non-trivial boundary
of spacetime. Then, applying the scaling and the parity conservation law, we
are left with the following explicit form for the Lagrangian (written in terms
of the generalized AdS-Lorentz 1-form fields and of the super field-strengths
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eq.(4.14a)-eq.(4.14g)):

L = εabcd

(
Rab ∧ V c ∧ V d + α1 Rab ∧ V c ∧ h̃d + α2 Rab ∧ h̃c ∧ h̃d

+ α3 F̃
ab ∧ V c ∧ V d + α4 F̃

ab ∧ V c ∧ h̃d + α5 F̃
ab ∧ h̃c ∧ h̃d

+ α6 F
ab ∧ V c ∧ V d + α7 F

ab ∧ V c ∧ h̃d + α8 F
ab ∧ h̃c ∧ h̃d

)
+ α9 ψ̄ ∧ V aγaγ5 ∧Ψ + α10 ψ̄ ∧ h̃aγaγ5 ∧Ψ

+ α11 ψ̄ ∧ V aγaγ5 ∧ Ξ + α12 ψ̄ ∧ h̃aγaγ5 ∧ Ξ

+ α13 ξ̄ ∧ V aγaγ5 ∧Ψ + α14 ξ̄ ∧ h̃aγaγ5 ∧Ψ

+ α15 ξ̄ ∧ V aγaγ5 ∧ Ξ + α16 ξ̄ ∧ h̃aγaγ5 ∧ Ξ

+ e εabcd

(
β1 ψ̄ ∧ γabψ ∧ V c ∧ V d + β2 ψ̄ ∧ γabψ ∧ V c ∧ h̃d

+ β3 ψ̄ ∧ γabψ ∧ h̃c ∧ h̃d + β4 ψ̄ ∧ γabξ ∧ V c ∧ V d

+ β5 ψ̄ ∧ γabξ ∧ V c ∧ h̃d + β6 ψ̄ ∧ γabξ ∧ h̃c ∧ h̃d

+ β7 ξ̄ ∧ γabξ ∧ V c ∧ V d + β8 ξ̄ ∧ γabξ ∧ V c ∧ h̃d

+ β9 ξ̄ ∧ γabξ ∧ h̃c ∧ h̃d
)

+ e2 εabcd

(
β10 V

a ∧ V b ∧ V c ∧ V d

+ β11 V
a ∧ V b ∧ V c ∧ h̃d + β12 V

a ∧ V b ∧ h̃c ∧ h̃d

+ β13 V
a ∧ h̃b ∧ h̃c ∧ h̃d + β14 h̃

a ∧ h̃b ∧ h̃c ∧ h̃d
)
,

(4.30)

where, in addition, we have consistently set the coefficient of the first term in
eq.(4.30) to 1. The αi’s and the βj ’s are constant dimensionless parameters to
be determined by studying the field equations.

We now compute the variation of the Lagrangian with respect to the different
fields. Along these calculations, we make use of the formulas given in Appendix
A.1. The variation of the Lagrangian with respect to the spin connection ωab
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reads

δωL = 2 εabcd δω
ab ∧

(
DωV

c ∧ V d +
1

2
α1

(
DωV

c ∧ h̃d +Dωh̃
c ∧ V d

)
+ α2 Dωh̃

c ∧ h̃d + α3 k̃
c
f ∧ V f ∧ V d + α4 k̃

c
f ∧ V f ∧ h̃d

+ α5 k̃
c
f ∧ h̃f ∧ h̃d + α6 k

c
f ∧ V f ∧ V d

+ α7 k
c
f ∧ V f ∧ h̃d + α8 k

c
f ∧ h̃f ∧ h̃d

− 1

8

(
α9 ψ̄ ∧ γcψ ∧ V d + α10 ψ̄ ∧ γcψ ∧ h̃d

+ (α11 + α13) ψ̄ ∧ γcξ ∧ V d + (α12 + α14) ψ̄ ∧ γcξ ∧ h̃d

+ α15 ξ̄ ∧ γcξ ∧ V d + α16 ξ̄ ∧ γcξ ∧ h̃d
))

.

(4.31)

One can then prove that, if

α1 = α4 = α7 = 2,

α2 = α3 = α5 = α6 = α8 = 1,

α9 = α10 = α11 = α12 = α13 = α14 = α15 = α16 = 4,

(4.32)

δωL = 0 yields the following field equation:

εabcd

(
Rc + H̃c

)
∧
(
V d + h̃d

)
= 0, (4.33)

generalizing to Rc+H̃c and V d+ h̃d the usual equation εabcd R
c∧V d = 0 for the

supertorsion. The variation of the Lagrangian with respect to k̃ab and kab gives
the same result, that is it does not imply any additional on-shell constraint.
Analogously, one can prove that, by setting

β1 = β3 = β7 = β9 = −1,

β2 = β4 = β6 = β8 = β10 = β14 = −2,

β5 = −4,

β11 = β13 = −8,

β12 = −12,

(4.34)

the variation of the Lagrangian with respect to the vielbein V a can be recast
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into the following form:

δV L = 4

(
1

2
εabcd

(
Rab ∧

(
V c + h̃c

)
+ F̃ ab ∧

(
V c + h̃c

)
+ F ab ∧

(
V c + h̃c

))

+ ψ̄ ∧ γdγ5Ψ + ψ̄ ∧ γdγ5Ξ + ξ̄ ∧ γdγ5Ψ + ξ̄ ∧ γdγ5Ξ

)
∧ δV d.

(4.35)

Then, δV L = 0 leads to the generalized equation

εabcd

(
Rab + F̃ ab + F ab

)
∧
(
V c + h̃c

)
+ 2

(
ψ̄ + ξ̄

)
∧ γdγ5 (Ψ + Ξ) = 0. (4.36)

The variation of the Lagrangian with respect to h̃a yields the same result.
Finally, from the variation of the Lagrangian with respect to the gravitino

field ψ, we find the generalized field equation

2
(
V a + h̃a

)
∧ γaγ5 (Ψ + Ξ) + γaγ5 (ψ + ξ ) ∧

(
Ra + H̃a

)
= 0. (4.37)

The variation with respect to ξ gives the same result.
We have thus completely determined the bulk Lagrangian of the theory,

fixing all the coefficients. Interestingly, one can easily prove that the aforemen-
tioned geometric bulk Lagrangian can be rewritten in terms of the Lorentz-type
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curvatures eq.(4.20a)-eq.(4.20g) as follows:

Lbulk = εabcd

(
Rab ∧ V c ∧ V d + 2 Rab ∧ V c ∧ h̃d +Rab ∧ h̃c ∧ h̃d

+ F̃ab ∧ V c ∧ V d + 2 F̃ab ∧ V c ∧ h̃d + F̃ab ∧ h̃c ∧ h̃d

+ Fab ∧ V c ∧ V d + 2 Fab ∧ V c ∧ h̃d + Fab ∧ h̃c ∧ h̃d
)

+ 4 ψ̄ ∧ V aγaγ5 ∧ ρ+ 4 ψ̄ ∧ h̃aγaγ5 ∧ ρ
+ 4 ψ̄ ∧ V aγaγ5 ∧ σ + 4 ψ̄ ∧ h̃aγaγ5 ∧ σ
+ 4 ξ̄ ∧ V aγaγ5 ∧ ρ+ 4 ξ̄ ∧ h̃aγaγ5 ∧ ρ
+ 4 ξ̄ ∧ V aγaγ5 ∧ σ + 4 ξ̄ ∧ h̃aγaγ5 ∧ σ

+ 2e εabcd

(
ψ̄ ∧ γabψ ∧ V c ∧ V d + 2 ψ̄ ∧ γabψ ∧ V c ∧ h̃d

+ ψ̄ ∧ γabψ ∧ h̃c ∧ h̃d + 2 ψ̄ ∧ γabξ ∧ V c ∧ V d

+ 4 ψ̄ ∧ γabξ ∧ V c ∧ h̃d + 2 ψ̄ ∧ γabξ ∧ h̃c ∧ h̃d

+ ξ̄ ∧ γabξ ∧ V c ∧ V d + 2 ξ̄ ∧ γabξ ∧ V c ∧ h̃d + ξ̄ ∧ γabξ ∧ h̃c ∧ h̃d
)

+ 2e2 εabcd

(
V a ∧ V b ∧ V c ∧ V d + 4 V a ∧ V b ∧ V c ∧ h̃d

+ 6 V a ∧ V b ∧ h̃c ∧ h̃d + 4 V a ∧ h̃b ∧ h̃c ∧ h̃d + h̃a ∧ h̃b ∧ h̃c ∧ h̃d
)
.

(4.38)

The equations of motion of the Lagrangian admit an AdS vacuum solution
with cosmological constant (proportional to e2). We also mention that the La-
grangian in eq.(4.38) has been written as a first-order Lagrangian, and the field
equation for the spin connection ωab implies (up to boundary terms) the van-
ishing, on-shell, of Ra + H̃a (defined in eq.(4.20b) and eq.(4.20c), respectively).
This is in agreement with the conditions Ra = 0 and H̃a = 0 we have pre-
viously imposed in order to find the on-shell supercurvature parametrizations
eq.(4.23a)-eq.(4.23g) by studying the various sectors of the Bianchi identities.

The spacetime Lagrangian eq.(4.38) results to be invariant under the super-
symmetry transformations eq.(4.27a)-eq.(4.27g) of the 1-form fields on space-
time, up to boundary terms. As we have already mentioned, if the spacetime
background has a non-trivial boundary, we have to check explicitly the condition
eq.(3.43).
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4.4 Supersymmetry invariance of the theory in
the presence of a non-trivial boundary of
spacetime

In the following, we analyze the supersymmetry invariance of the Lagrangian
in the presence of a non-trivial spacetime boundary and, in particular, we
present the explicit boundary terms required to recover the supersymmetry
invariance of the full Lagrangian (given by bulk plus boundary contributions),
on the same lines of [17, 18] (see also [19]). In the calculations presented in this
section, we make extensive use of the formulas given in Appendix A.1.

Thus, we consider the bulk Lagrangian of eq.(4.38). Since we use the on-
shell formalism, the bulk Lagrangian eq.(4.38) is invariant under supersymmetry
transformations once imposed the torsionless on-shell constraints. Nevertheless,
for this theory the boundary invariance of the Lagrangian under supersymmetry
is not trivially satisfied, and the condition eq.(3.43) has to be checked in an
explicit way in the presence of a non-trivial boundary of spacetime. In fact, we
find that, if the fields do not asymptotically vanish at the boundary, we have

ıεLbulk|∂M 6= 0. (4.39)

In order to restore the supersymmetry invariance of the theory, it is possible to
modify the bulk Lagrangian by adding boundary (i.e. topological) terms, which
do not alter the bulk Lagrangian, so that eq.(3.40) is still fulfilled. The only
possible boundary contributions (that are topological 4-forms) compatible with
parity and Lorentz-like invariance are:

εabcd d
(
ω̃ab ∧N cd + ω̃af ∧ ω̃fb ∧ ω̃cd

)
= εabcd N ab ∧N cd, (4.40a)

d
((
ψ̄ + ξ̄

)
∧ γ5 (ρ+ σ)

)
= ρ̄ ∧ γ5ρ+ σ̄ ∧ γ5σ + 2 ρ̄ ∧ γ5σ

+
1

8
εabcd

(
N ab ∧ ψ̄ ∧ γcdψ

+ 2 N ab ∧ ψ̄ ∧ γcdξ

+N ab ∧ ξ̄ ∧ γcdξ
)
, (4.40b)

where we have defined ω̃ab = ωab + k̃ab + kab and N ab = Rab + F̃ab + Fab.
Then, the boundary terms in eq.(4.40a) and eq.(4.40b) correspond to the
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following boundary Lagrangian:

Lbdy = d
(
H(3)

)
= α εabcd

(
Rab ∧Rcd + F̃ab ∧ F̃cd + Fab ∧ Fcd

+ 2 Rab ∧ F̃cd + 2 Rab ∧ Fcd + 2 F̃ab ∧ Fcd
)

+ β

(
ρ̄ ∧ γ5ρ+ σ̄ ∧ γ5σ + 2 ρ̄ ∧ γ5σ

+
1

8
εabcd

(
Rab ∧ ψ̄ ∧ γcdψ + F̃ab ∧ ψ̄ ∧ γcdψ + Fab ∧ ψ̄ ∧ γcdψ

+ 2 Rab ∧ ψ̄ ∧ γcdξ + 2 F̃ab ∧ ψ̄ ∧ γcdξ + 2 Fab ∧ ψ̄ ∧ γcdξ

+Rab ∧ ξ̄ ∧ γcdξ + F̃ab ∧ ξ̄ ∧ γcdξ + Fab ∧ ξ̄ ∧ γcdξ
))

,

(4.41)

where we have defined

H(3) = α εabcd
(
ω̃ab ∧N cd + ω̃af ∧ ω̃fb ∧ ω̃cd

)
+ β

(
ψ̄ ∧ γ5ρ+ ξ̄ ∧ γ5σ + ψ̄ ∧ γ5σ + ξ̄ ∧ γ5ρ

)
.

(4.42)

Here, α and β are constant parameters. We notice that the structure of a
supersymmetric Gauss-Bonnet like term appears in eq.(4.41). Then, we consider
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the following “full” Lagrangian (thought as bulk plus boundary):

Lfull = Lbulk + Lbdy =

= εabcd

(
Rab ∧ V c ∧ V d + 2 Rab ∧ V c ∧ h̃d +Rab ∧ h̃c ∧ h̃d

+ F̃ab ∧ V c ∧ V d + 2 F̃ab ∧ V c ∧ h̃d + F̃ab ∧ h̃c ∧ h̃d

+ Fab ∧ V c ∧ V d + 2 Fab ∧ V c ∧ h̃d + Fab ∧ h̃c ∧ h̃d
)

+ 4 ψ̄ ∧ V aγaγ5 ∧ ρ+ 4 ψ̄ ∧ h̃aγaγ5 ∧ ρ
+ 4 ψ̄ ∧ V aγaγ5 ∧ σ + 4 ψ̄ ∧ h̃aγaγ5 ∧ σ
+ 4 ξ̄ ∧ V aγaγ5 ∧ ρ+ 4 ξ̄ ∧ h̃aγaγ5 ∧ ρ
+ 4 ξ̄ ∧ V aγaγ5 ∧ σ + 4 ξ̄ ∧ h̃aγaγ5 ∧ σ

+ 2e εabcd

(
ψ̄ ∧ γabψ ∧ V c ∧ V d + 2 ψ̄ ∧ γabψ ∧ V c ∧ h̃d

+ ψ̄ ∧ γabψ ∧ h̃c ∧ h̃d + 2 ψ̄ ∧ γabξ ∧ V c ∧ V d

+ 4 ψ̄ ∧ γabξ ∧ V c ∧ h̃d + 2 ψ̄ ∧ γabξ ∧ h̃c ∧ h̃d

+ ξ̄ ∧ γabξ ∧ V c ∧ V d + 2 ξ̄ ∧ γabξ ∧ V c ∧ h̃d + ξ̄ ∧ γabξ ∧ h̃c ∧ h̃d
)

+ 2e2 εabcd

(
V a ∧ V b ∧ V c ∧ V d + 4 V a ∧ V b ∧ V c ∧ h̃d

+ 6 V a ∧ V b ∧ h̃c ∧ h̃d + 4 V a ∧ h̃b ∧ h̃c ∧ h̃d + h̃a ∧ h̃b ∧ h̃c ∧ h̃d
)

+ α εabcd

(
Rab ∧Rcd + F̃ab ∧ F̃cd + Fab ∧ Fcd

+ 2 Rab ∧ F̃cd + 2 Rab ∧ Fcd + 2 F̃ab ∧ Fcd
)

+ β

(
ρ̄ ∧ γ5ρ+ σ̄ ∧ γ5σ + 2 ρ̄ ∧ γ5σ

+
1

8
εabcd

(
Rab ∧ ψ̄ ∧ γcdψ + F̃ab ∧ ψ̄ ∧ γcdψ + Fab ∧ ψ̄ ∧ γcdψ

+ 2 Rab ∧ ψ̄ ∧ γcdξ + 2 F̃ab ∧ ψ̄ ∧ γcdξ + 2 Fab ∧ ψ̄ ∧ γcdξ

+Rab ∧ ξ̄ ∧ γcdξ + F̃ab ∧ ξ̄ ∧ γcdξ + Fab ∧ ξ̄ ∧ γcdξ
))

.

(4.43)

69



We observe that, due to the homogeneous scaling of the Lagrangian, the coeffi-
cients α and β must be proportional to e−2 and e−1 respectively.

Now, the supersymmetry invariance of the full Lagrangian Lfull in eq.(4.43),
in the geometric approach, requires

δεLfull = `εLfull = ıεdLfull + d(ıεLfull) = 0. (4.44)

Since the boundary terms eq.(4.40a) and eq.(4.40b) we have introduced so far
are total differentials, the condition for supersymmetry in the bulk, that is
ıεdLfull = 0, is trivially satisfied. Then, the supersymmetry invariance of the
full Lagrangian Lfull requires just to verify that, for suitable values of α and β,
the condition ıεLfull = 0 (modulo an exact differential) holds on the boundary,
that is to say ıεLfull|∂M = 0. Computing ıεLfull, we get

ıεLfull = εabcd ıε

(
Rab + F̃ab + Fab

)
∧
(
V c ∧ V d + 2 V c ∧ h̃d + h̃c ∧ h̃d

)
+ 4 ε̄

(
V a + h̃a

)
γaγ5 ∧ (ρ+ σ)

+ 4 ψ̄ ∧ V a ∧ γaγ5ıε (ρ) + 4 ψ̄ ∧ V a ∧ γaγ5ıε (σ) + 4 ψ̄ ∧ h̃a ∧ γaγ5ıε (ρ)

+ 4 ψ̄ ∧ h̃a ∧ γaγ5ıε (σ) + 4 ξ̄ ∧ V a ∧ γaγ5ıε (ρ) + 4 ξ̄ ∧ V a ∧ γaγ5ıε (σ)

+ 4 ξ̄ ∧ h̃a ∧ γaγ5ıε (ρ) + 4 ξ̄ ∧ h̃a ∧ γaγ5ıε (σ)

+ 4e εabcd ε̄
(
γabψ ∧ V c ∧ V d + 2 γabψ ∧ V c ∧ h̃d + γabψ ∧ h̃c ∧ h̃d

+ γabξ ∧ V c ∧ V d + 2 γabξ ∧ V c ∧ h̃d + γabξ ∧ h̃c ∧ h̃d
)

+ 2εabcd ıε

(
Rab + F̃ab + Fab

)
∧

(
α Rcd + α F̃cd + α Fcd

+
β

16
ψ̄ ∧ γcdψ +

β

8
ψ̄ ∧ γcdξ +

β

16
ξ̄ ∧ γcdξ

)

+
β

4
εabcd

(
Rab + F̃ab + Fab

)
∧
(
ε̄γcdψ + ε̄γcdξ

)
+ 2β ıε (ρ̄) ∧ γ5ρ+ 2β ıε (σ̄) ∧ γ5σ + 2β ıε (ρ̄) ∧ γ5σ + 2β ıε (σ̄) ∧ γ5ρ.

(4.45)

Now, in general, this is not zero, but its projection on the boundary should be.
Indeed, in the presence of a non-trivial boundary of spacetime, the field equa-
tions in Superspace for the Lagrangian in eq.(4.43) acquire non-trivial bound-
ary contributions, which lead to the following constraints that are valid on the
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boundary
(
Rab + F̃ab + Fab

)
|∂M = − 1

2α

(
V a ∧ V b + 2 V a ∧ h̃b + h̃a ∧ h̃b

)
− β

16α

(
ψ̄ ∧ γabψ + 2 ψ̄ ∧ γabξ + ξ̄ ∧ γabξ

)
,

(ρ+ σ) |∂M = − 2
β

(
V a ∧ γaψ + V a ∧ γaξ + h̃a ∧ γaψ + h̃a ∧ γaξ

)
.

(4.46)
We can see that the supercurvatures on the boundary are not dynamical, rather
being fixed to constant values. These are values in an enlarged anholonomic ba-
sis, meaning that the linear combinations of the supercurvatures on the bound-
ary are fixed in terms of not only the bosonic and fermionic vielbein (V a and
ψ, respectively) but also of the extra bosonic 1-form field h̃a and of the extra
fermionic one, ξ (that is in terms of 4-dimensional fields). Actually, this should
not surprise, since also the Lorentz-like supercurvatures taken as starting point
for our geometric construction of the Lagrangian are defined in an enlarged
Superspace. Nevertheless, their parametrization results to be well defined in
ordinary Superspace. Thus, in our framework the supersymmetry invariance
constrains the boundary values of the supercurvatures (Neumann boundary con-
ditions) without fixing the superfields themselves on the boundary.

Then, upon use of eq.(4.46) (and of Fierz identities and gamma matrices
formulas reported in Appendix A.1), after some algebraic manipulation, on the
boundary we are left with:

ıεLfull|∂M = εabcd

(
4e− β

8α
− 4

β

)
ε̄
(
γabψ + γabξ

)
∧
(
V c ∧ V d + 2 V c ∧ h̃d + h̃c ∧ h̃d

)
.

(4.47)

Thus, we find that ıεLfull|∂M = 0 if the following relation between α and β
holds:

β

4α
+

8

β
= 8e. (4.48)

Then, solving eq.(4.48) for β (with β 6= 0), we obtain

β = 16e α

(
1±

√
1− 1

8e2 α

)
. (4.49)

Now, we observe that, by setting the square root in eq.(4.49) to zero, which
implies

α =
1

8e2
⇒ β =

2

e
, (4.50)
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we recover the following 2-form supercurvatures:

Nab = Rab + F̃ab + Fab + 8e2 V a ∧ h̃b + e ψ̄ ∧ γabψ + e ξ̄ ∧ γabξ
+ 4e2 V a ∧ V b + 4e2 h̃a ∧ h̃b + 2e ψ̄ ∧ γabξ, (4.51a)

Ω = ρ+ σ + e V a ∧ γaξ + e h̃a ∧ γaψ + e V a ∧ γaψ + e h̃a ∧ γaξ, (4.51b)

Ra = DωV
a + kab ∧ V b + k̃ab ∧ h̃b −

1

2
ψ̄ ∧ γaψ − 1

2
ξ̄ ∧ γaξ, (4.51c)

H̃a = Dωh̃
a + k̃ab ∧ V b + kab ∧ h̃b − ψ̄ ∧ γaξ. (4.51d)

Moreover, eq.(4.51a)-eq.(4.51d) reproduce the generalized AdS-Lorentz super-
curvatures, since one can write:

Nab = Rab + F̃ ab + F ab, (4.52a)

Ω = Ψ + Ξ, (4.52b)

being Rab, F̃ ab, F ab, Ψ, and Ξ defined in eq.(4.14a)-eq.(4.14g).
The full Lagrangian of eq.(4.43), written in terms of the 2-form supercurva-

tures eq.(4.52a) and eq.(4.52b), can be finally recast as a MacDowell-Mansouri
like form [46], that is:

Lfull =
1

8e2
εabcd N

ab ∧N cd +
2

e
Ω̄ ∧ γ5Ω, (4.53)

whose boundary term, in particular, corresponds to the following supersymmet-
ric Gauss-Bonnet like term (in the sequel, SUSY GB-like term, that is eq.(4.41)
in which we have substituted eq.(4.50)):

SUSY GB-like term =
1

8e2
εabcd N ab ∧N cd +

2

e

(
ρ̄ ∧ γ5ρ+ σ̄ ∧ γ5σ + 2 ρ̄ ∧ γ5σ

+
1

8
εabcd N ab ∧

(
ψ̄ ∧ γcdψ + 2 ψ̄ ∧ γcdξ + ξ̄ ∧ γcdξ

))
.

(4.54)

We observe that considering the square root in eq.(4.49) as different from
zero would cause other boundary terms appearing in the MacDowell-Mansouri
like Lagrangian. Indeed, defining f2 = 1 − 1

8e2 α and considering f 6= 0 in
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eq.(4.49) (β 6= 0 ⇒ f 6= −1), we end up with the following extra contributions:

− f2

8e2(f2 − 1)
d
(
ω̃ab ∧N cd + ω̃ag ∧ ω̃gb ∧ ω̃cd

)
εabcd

+ 16e α f d
(
ψ̄ ∧ γ5ρ+ ξ̄ ∧ γ5σ + ψ̄ ∧ γ5σ + ξ̄ ∧ γ5ρ

)
. (4.55)

These terms break the off-shell generalized AdS-Lorentz structure of the theory.
However, the first term in eq.(4.55) is incompatible with the invariance of the
Lagrangian under diffeomorphisms in the bosonic directions of Superspace; on
the other hand, considering the second term in eq.(4.55) and using the value of
ρ + σ at the boundary, given in eq.(4.46), we can easily prove that this term
vanishes on-shell. Thus, in view of the fact that the closure of the generalized
minimal AdS-Lorentz superalgebra only holds on-shell for a superymmetric the-
ory (in the absence of auxiliary fields), this extra contribution does not play a
significant role as far as supersymmetry is concerned.

We have thus shown that the Gauss-Bonnet like term in eq.(4.54) allows to
recover the supersymmetry invariance of the on-shell generalized AdS-Lorentz
deformed supergravity theory in the presence of a non-trivial boundary. In terms
of the newly defined supercurvatures eq.(4.51a) and eq.(4.51b), the boundary
conditions on the super field-strengths eq.(4.46) take the following simple form:
Nab|∂M = 0 and Ω|∂M = 0. This means, in particular, that the linear combi-
nations Rab + F̃ ab + F ab and Ψ + Ξ vanish at the boundary.
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Chapter 5

Five-point MHV
amplitudes in N = 2
SCQCD

In this chapter, we deal with the second main topic of the thesis: We give
up supergravity theories studied through the geometric approach and we move
to rigid supersymmetric field theories. As we did in Chapter 4, we briefly
contextualize this topic underlining some recent developments; we will introduce
the most relevant concepts after this short presentation.

The study of scattering amplitudes in supersymmetric field theories has re-
cently unveiled the existence of hidden symmetries and unexpected mathemat-
ical properties; one of the richest theories which play a central role in such
studies is N = 4 SYM theory in D = 4. As we said in Chapter 2, it is a
maximally supersymmetric theory and it is also conformally invariant. Its field
content belongs to the same N = 4 supermultiplet, so we can see that, in order
to renormalize the theory, we find all the renormalization constants equal to
1: N = 4 SYM is a finite theory. Moreover, in the last 15 years unexpected
powerful connections between calculations in 4-dimensional N = 4 SYM and
integrability techniques typical of condensed matter systems, such as integrable
spin chains, has pushed forward the conjecture that N = 4 SYM in D = 4 might
be a solvable theory (some references of the main topics are in [26, 63, 64] and
references therein).

Some recent works mainly focus on mathematical properties evident in scat-
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tering amplitudes and in particular in MHV (maximally helicity violation) scat-
tering amplitudes, which are amplitudes that maximally violate the helicity
conservation at tree-level; in that perturbative order, they are easily computed
through the Parke-Taylor formula ([65] for a rigorous derivation). One of the
most surprising novelty is that planar MHV scattering amplitudes of N = 4
SYM theory enjoy an additional dynamical symmetry, which is not present in
the Lagrangian formulation and which constrains the form of the amplitudes
to be much simpler than a naive analysis might suggest [66, 67]. This hidden
symmetry, called dual conformal invariance, can be related to a duality between
planar MHV amplitudes and light–like polygonal Wilson loops and was first
suggested in the strong coupling string description [68]. The effects of dual con-
formal symmetry are the fact that the 4-gluons and 5-gluons MHV amplitudes
are completely fixed [69, 70] in a form that matches the exponential BDS ansatz
[71]. Starting from 6 external particles, dual conformal invariance constrains the
amplitudes only up to an undetermined function of the conformal cross ratios
which violates the BDS exponentiation [72, 73]; nevertheless the duality with
Wilson loops was shown to be preserved.

Another mathematical property studied is the trascendentality: For exam-
ple, in the dimensional regularization scheme of N = 4 SYM, assigning tran-
scendentality −1 to the dimensional regularization parameter, one obtains L-
loop corrections with uniform degree of transcendentality 2L. It is still unclear
whether this property has to be ascribed to the special diagrammatics [74] asso-
ciated to either dual conformal symmetry or supersymmetry, or if it is a unique
feature of the model. The investigation on the origin of such properties has led
to study theories with less amount of supersymmetry: In D = 4, one of these
theories isN = 2 SCQCD, our scenario in this chapter. In particular, this theory
was studied compared with N = 4 SYM, in order to individuate which features
of a maximally supersymmetric theory persist in a non-maximally supersym-
metric one. In [75] the authors computed all the 4-point scalar amplitudes at 1
loop and classified them into three sectors; moreover, they explored the behavior
of divergent terms up to 2 loops in a specific sector.

Some papers like [33] study the integrable properties of correlation functions
in that theory. For example, E. Pomoni with L. Rastelli and others have shown
that SCQCD arises as a limit of a N = 2 SU(Nc) × SU(Nc) elliptic quiver
gauge model that interpolates between a Z2 orbifold of N = 4 SYM and N = 2
SCQCD. Further qualitative explanations about this topic could be found in
[76].

The new objects of study are the 5-point scattering amplitudes in N = 2
SCQCD. In particular, we choose to consider 5-point MHV scattering ampli-
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tudes: We can easily find them in [77]. We choose to use the N = 1 Superspace
formalism of Feynman superdiagrams [10] since we can directly see some inter-
mediate cancellations between ultraviolet divergences. Actually a process of 5
particles is described by a number of Feynman diagrams which is greater than
the number of diagrams with 4 external legs; moreover, in general, each 5-point
diagram is more complicated than a 4-point one. Given these two reasons, we
do not show a final result of the main computation of this chapter; in fact, the
project of 5-point scattering amplitudes in N = 2 SCQCD is still open. We
focus on some necessary preliminaries of a chosen computation. In Appendix
A.2, some useful relations are summarized.
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5.1 Some properties of scattering amplitudes

In this section, we introduce two of the interesting features that we expect
to find in a 5-point scattering amplitude in N = 2 SCQCD: They are the BDS
ansatz and the dual conformal symmetry.

Infrared divergences and exponential BDS ansatz. In general, when we
deal with a L-loop amplitude, we can find two types of divergences from the
integrals, respectively the UV (ultraviolet) and IR (infrared) divergences. The
first ones could be reabsorbed by the renormalized parameters of the theory;
on the other hand, it is possible to regularize the IR divergences through a
chosen regularization scheme; we choose a smart scheme, called “dimensional
regularization” ([2] and references therein). Given a parameter ε, we set the
dimensions of the theory to D = 4−2ε and we introduce the IR energy scale µIR:
In that way, IR divergences take the form of poles in ε. On-shell loop amplitudes
in massless theories always contain IR divergences, due to exchange of soft
vectors or virtual collinear splittings. The general structure of IR divergences
is well understood, since it was discovered that soft and collinear divergences
have a universal form ([78] and references therein are some possible references).

A n-point (with n ≥ 3) 1-loop scattering amplitude A(1)
n ({pi}) (i = 1, . . . , n)

shows the following structure

A(1)
n ({pi}) = I(1) (ε, {pi})A(0)

n ({pi}) +A(1fin)
n ({pi}) , (5.1)

where A(0)
n ({pi}) is the corresponding tree-level amplitude, A(1fin)

n ({pi}) is
a 1-loop contibution finite for ε → 0 and all the divergence is collected in
I(1) (ε, {pi}). The expression of the IR divergence is universally determined and
its expansion in ε poles is

I(1) (ε, {pi}) = − 1

2ε2

n∑
i=1

ηi +O
(

1

ε

)
, (5.2)

where ηi =
N2
c−1

2Nc
if the i-th particle is a fermion and ηi = Nc if the i-th

particle is a vector. We can now consider some results of the well known N = 4
SYM theory in the planar limit; for simplicity, we can remove from eq.(5.2) the
indication of the dependence on momenta (just preserving the ε dependence)
and define the L-loop n-point reduced scattering amplitude as

M(L)
n =

A(L)
n

A(0)
n

. (5.3)
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Since a special property of MHV loop amplitudes is that all their leading singu-
larities are proportional to the MHV tree-level amplitude [79], the interesting

quantity is the reduced amplitude M(L)
n . The general structure of the 1-loop

n-point reduced amplitude in planar N = 4 SYM is

M(1)
n = λ I(1)

n (ε) +M(1fin)
n , (5.4)

where λ is the ’t Hooft coupling constant and M(1fin)
n is finite for ε→ 0. Once

more again, the IR divergences of M(1)
n are collected in

I(1)
n (ε) = − 1

ε2

n∑
i=1

(
µ2
IR

si,i+1

)ε
(5.5)

expressed in terms of Mandelstam variables si,i+1 = (pi + pi+1)
2
, where of

course sn,n+1 = sn,1. It is possible to write the general all-loop structure of

IR divergences of M(L)
n of N = 4 SYM in a very compact way, thanks to the

simple structure of amplitudes: It is found that the loop corrections exhibit an
iterative structure [79], which can be summarized in the following expression:

Mn|IR = e
∑∞
l=1 λ

lf(l)(ε)I(1)n (lε) (5.6)

with f (l)(ε) = Γ
(l)
cusp + l ε Γ

(l)
coll, where Γ

(l)
coll is the collinear anomalous dimension

and Γ
(l)
cusp is the cusp anomalous dimension. This infrared behavior is very

interesting because it throws light on a mathematical property of scattering
amplitudes, which is not manifest in the action of the theory. In fact, the cusp
anomalous dimension comes out as the UV divergence of a Wilson loop with
light-like cusps. We will define it in the next paragraph. In [80] and in further
works of the authors, it is possible to notice that a MHV reduced amplitude up
to 3 loops suggests an exponential structure for the complete amplitude: This
consideration leads to what is called the BDS (Bern, Dixon, Smirnov) ansatz.
It states that a generic MHV reduced amplitude in planar N = 4 SYM has the
form

MBDS(ε) = e
∑∞
l=1(λ

l−1f(l)(ε)M(1)(lε)+λlC(l)+O(ε)) (5.7)

with the scaling function f (l)(ε) = f
(l)
0 + f

(l)
1 ε+ f

(l)
2 ε2 and C(l) is a finite part.

We note that the coefficients do not depend on the number of external legs. A
fundamental element of the BDS ansatz is the dual conformal symmetry that
we will discuss soon. The way one would go about testing the BDS ansatz
is by direct calculation of the n-point L-loop amplitudes. It has been shown
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numerically that M(L)
n fulfils the BDS ansatz up to n = 5 and L = 2 (see [81]

and references therein). Something new happens when n ≥ 6: While the BDS
ansatz matches the IR divergent structure, it does not produce the correct finite
part. In those cases the BDS ansatz determines the finite part of the reduced
amplitude only up to a function, which is called “remainder function”, of dual
conformal cross-ratios of the external momenta: This function is defined as

r(L)
n =M(L)

n −MBDS
n , (5.8)

where MBDS
n is the O(λL) terms of eq.(5.7). Actually, it is known numerically

that r
(L)
n = 0 for n ≤ 5 and then r

(L)
n 6= 0 for n ≥ 6; in these cases, the

IR divergence is matched while the finite part is achieved up to r
(L)
n . It is

interesting to prove the BDS ansatz by diagrammatic computations of scattering
amplitudes (MHV or not) in a non-maximally supersymmetric theory such as
N = 2 SCQCD. A computation via Feynman superdiagrams could clearly show
some intemediate cancellations of UV divergent terms and in some cases it could
be a more direct way to operate. We choose the 4-dimensional theory N = 2
SCQCD also because we mentioned that a key ingredient of the BDS ansatz is a
symmetry called “dual conformal symmetry”; actually, works such as [75] show
that 4-point amplitudes in N = 2 SCQCD present such a inner symmetry.

Dual conformal invariance and duality with Wilson loops. We briefly
explain the main concepts of an interesting mathematical properties of the scat-
tering amplitudes we are dealing with; some references could be found in [81, 82]
and in some of their cited papers. We consider a generic n-point planar tree-level

amplitude A(0)
n in N = 4 SYM, even if the same discussion could be made for

N = 2 SCQCD. In our convention, we consider A(0)
n with n outgoing states. In

the momentum space, the invariance under translations corresponds to the mo-
mentum conservation. We can define a dual space with coordinates x̂αα̇i (with
i = 1, . . . , n), where the i-th momentum pαα̇i is translated into x̂αα̇i − x̂αα̇i+1. It
is easy to prove that the momentum conservation

∑n
i=1 p

αα̇
i = 0 in the momen-

tum space becomes the periodicity condition x̂αα̇n+1 = x̂αα̇1 in the dual space; as
a consequence, in the dual space, the dynamical parameters of the process form
a closed polygonal path Cn. If we further introduce dual fermionic coordinates
and we study the action of a generic superconformal transformation, we find

that A(0)
n does not change also in the dual space: This is what is called “dual

superconformal invariance” and it is valid for all the perturbative orders and
also for the reduced amplitude. Now we come back to the dual space we have
defined. Since the theory is conformal invariant, we have no mass scales and
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then we have massless particles. Given a MHV amplitude An, it is possible to
define proper dual coordinates for each of the n points and so join them in a
closed polygonal path Cn. Each point x̂i (with i = 1, . . . , n) is connected to the
next one x̂i+1 by a light-like line because of the fact that this line represents
a massless momentum in the momentum space. As a consequence, we have a
light-like polygon Cn; a mathematical object that can be naturally associated
with Cn in a gauge theory is a Wilson loop. Given a theory with gauge field
Aµ and g coupling constant and defined a polygon Cn, a Wilson loop Wn is a
gauge-invariant object which is equal to the trace of a path-ordered exponential
of Aµ transported along Cn:

Wn = tr
(
P eig

∮
Cn

dxµAµ
)
. (5.9)

If we compute the expectation value of Wn, we find UV divergences due to the
cusps in the points x̂i. These UV divergences have the same structure of the
IR divergences of An, so there is a relation of duality between MHV amplitudes
and light-like polygonal Wilson loops; this duality is valid in each perturbative
order for a generic number of points n for N = 4 SYM in D = 4. This is another
interesting feature that could be studied in a superconformal theory like N = 2
SCQCD.

We now show the preliminary results achieved in order to compute a 5-point
scattering amplitude in N = 2 SCQCD.
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5.2 N = 2 SCQCD in N = 1 Superspace

In this section, we give a synthetic introduction of N = 2 superconformal
quantum chromodynamics (SCQCD) in D = 4 spacetime dimensions ([75] and
references therein).

We consider a flat 4-dimensional Euclidean spacetime E4, which is a Wick
rotation of a Minkowskian spacetime M4; as explained in Chapter 2, we build
a N = 1 Superspace E4|4 and we define a set of coordinates {xαα̇, θα, θ̄α̇} (with
α = +,− and α̇ = +̇, −̇), where xαα̇ are spacetime coordinates and θα are Weyl
spinor coordinates (with θ̄α̇ = (θα)†); we use the bispinorial indices formalism
and the relations collected in Appendix A.2.
N = 2 SCQCD is a superconformal gauge theory with gauge group SU(Nc)

(with Nc color number) and coupling constant g; we can define the ’t Hooft

coupling λ = g2Nc
(4π)2 . Since our computations will be preparatory for further

comparisons with N = 4 SYM, it is necessary to consider the most symmetric
set for the theory: This could be achieved in the planar perturbative limit, where
g → 0, Nc → ∞ and λ is finite and fixed. The field content of N = 2 SCQCD
can be conveniently expressed in terms of N = 1 superfields. In particular, we
have a scalar superfield V = T aVa and a chiral superfield Φ = T aΦa (and the
antichiral one Φ̄ = T aΦ̄a) belonging to the adjoint representation of SU(Nc),
with T a (a = 1, . . . , N2

c − 1) generators of SU(Nc) which close the following
algebra [

T a, T b
]

= fabc T
c, (5.10)

with fabc structure constants. These superfields have the following θ-expansions

Φ = φ+ θαψα − θ2F,

Φ̄ = φ̄+ θ̄α̇ψ̄α̇ − θ̄2F̄ ,

V = θαθ̄α̇Aαα̇ − θ̄2θαλα − θ2θ̄α̇λ̄α̇ + θ2θ̄2D′,

(5.11)

where φ, φ̄, ψα, ψ̄α̇, λα, λ̄α̇, and Aαα̇ are physical massless component fields and
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where F , F̄ , and D′ are auxiliary fields. These component fields are so defined

φ = Φ|θ=θ̄=0, φ̄ = Φ̄|θ=θ̄=0,

ψα = iDαΦ|θ=θ̄=0, ψ̄α̇ = −iD̄α̇Φ̄|θ=θ̄=0,

F = D2Φ|θ=θ̄=0, F̄ = D̄2Φ̄|θ=θ̄=0,

Aαα̇ =
1

2

[
D̄α̇, Dα

]
V |θ=θ̄=0,

λα = iD̄2DαV |θ=θ̄=0,

λ̄α̇ = −iD2D̄α̇V |θ=θ̄=0,

D′ =
1

2
DαD̄2DαV |θ=θ̄=0.

(5.12)

The two N = 1 superfields V and Φ are combined into an N = 2 vector
supermultiplet. The theory is coupled to Nf hypermultiplets in the fundamental
representation of SU(Nc); since the theory is conformally invariant, its beta
function β(g) = µ ∂g∂µ (with µ energy scale) must be equal to zero and this is
possible if the number of hypermultiplets is fixed to Nf = 2Nc. We denote

with QI and Q̃I (with I = 1, . . . , Nf ) the chiral superfields respectively in the
fundamental and antifundamental representation of the gauge group; they have
the following θ-expansions (omitting the indices for convenience)

Q = q + θαξα − θ2G,

Q̃ = q̃ + θαξ̃α − θ2G̃,

Q̄ = q̄ + θ̄α̇ξ̄α̇ − θ̄2Ḡ,

¯̃Q = ¯̃q + θ̄α̇
¯̃
ξα̇ − θ̄2 ¯̃G,

(5.13)

where q, q̃, q̄, ¯̃q, ξα, ξ̃α, ξ̄α̇, and
¯̃
ξα̇ are physical massless component fields and

where G, G̃, Ḡ, and ¯̃G are auxiliary fields. Together, these superfields in the
fundamental representation form an N = 2 hypermultiplet. To avoid confusion,
in this chapter it is not useful for our purpose to consider the superalgebra of the
theory and the generators of supersymmetry: as a consequence, we can use the
character “Q” to label the fundamental superfields instead of the supercharges.
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The classical action of N = 2 SCQCD is

S =

∫
d4x d4θ

(
tr
(
e−gV Φ̄egV Φ

)
+ Q̄IegVQI + Q̃Ie−gV ¯̃QI

)
+

1

g2

∫
d4x d2θ tr (WαWα) + ig

∫
d4x d2θ Q̃IΦQI − ig

∫
d4x d2θ̄ Q̄IΦ̄ ¯̃QI ,

(5.14)

where Wα = iD̄2
(
e−gVDαe

gV
)

and we find a definition of the covariant spinor
derivatives Dα and D̄α̇ in Appendix A.2. The symmetries of this action are the
gauge group SU(Nc), the conformal group SO(6) and a global symmetry group
U(Nf )×SU(2)×U(1), where U(Nf ) is the flavor symmetry and SU(2)×U(1)
is the R-symmetry.

For computations of scattering amplitudes, we first need to quantize the
theory; the most common way to do that is the functional quantization. We
show a simple example present in [10] of ordinary non-supersymmetric quantum
field theory is order to highlight the main definitions. Given a generic theory
of a field φ described by a classical action S(φ), one can write the functional
generator

Z(J) =

∫
Dφ eS(φ)+

∫
d4x Jφ, (5.15)

which is a path integral, otherwise an integral over all the possible paths of the
field φ; J is a source with the same characteristics of φ. If φ is a gauge field, we
have to quantize it by introducing gauge-fixing terms and Faddeev-Popov ghosts
[1]. The functional generator could be conceptually seen as a partition function
of the theory; Z(J) is the generator of Green functions of the theory, which are
correlation functions between the fields. The following step is to consider only
the connected Green functions: They are generated by

W(J) = ln(Z(J)). (5.16)

We can compute the expectation value of the field φ by

〈φ〉(J) =
δW(J)

δJ
, (5.17)

where we have a functional derivative, and after we can invert the relation
in order to find J(〈φ〉). Finally, with a Legendre transformation, we get the
effective action

Γ(φ) =W(J(φ))−
∫
d4x J(φ)φ, (5.18)
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which is the functional generator of one-particle irreducible diagrams, the build-
ing blocks for the Feynman diagrams. Through the effective action, we can
derive the Feynman rules of the theory: They are the propagators of the fields
and the vertices of the interactions. This example could be extended to any
supersymmetric field theory.

We now come back to N = 2 SCQCD. After the quantization of the action
eq.(5.14), where the superghosts c, c′ and their conjugates are introduced, we
expand the quantum action as far as we need for our computation; we finally
get the Euclidean action

S =

∫
d4x d4θ

(
tr
(

Φ̄Φ + g
(
Φ̄V Φ− Φ̄ΦV

)
+
g2

2

(
Φ̄ΦV V + Φ̄V V Φ− 2 Φ̄V ΦV

)
+
g3

6

(
Φ̄V V V Φ− V V V Φ̄Φ + 3 V V Φ̄V Φ− 3 V Φ̄V V Φ

))
+ Q̄IQI + Q̃I ¯̃QI

+ g
(
Q̄IV QI − Q̃IV ¯̃QI

)
+
g2

2

(
Q̄IV V QI + Q̃IV V ¯̃QI

)
+
g3

6

(
Q̄IV V V QI − Q̃IV V V ¯̃QI

)
+ tr

(
−1

2
V�V +

g

2
V {DαV, D̄2DαV }

+
g2

8
[V,DαV ] D̄2 [V,DαV ] + c̄′c+ c′c̄+

g

2
(c′ + c̄′) [V, (c+ c̄)]

+
g2

12
(c′ + c̄′) [V, [V, (c− c̄)]]

)
+ . . .

)

+ ig

∫
d4x d2θ Q̃IΦQI − ig

∫
d4x d2θ̄ Q̄IΦ̄ ¯̃QI .

(5.19)

Since this action is Euclidean, there are no i =
√
−1 factors in the functional

derivatives used to extract the correlation functions from the action, so the
vertices of the theory can be immediately read from it (our convention consists
in reading the legs of a vertex counterclockwise); for convenience, we choose
to work in the momentum space. The Feynman rules for the propagators of
superfields propagating from a point 1 to a point 2 with momentum p are the
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following ones:

〈V aV b〉 = − 1

p2
δ (θ1 − θ2) δab,

〈ΦaΦ̄b〉 =
1

p2
δ (θ1 − θ2) δab,

〈QiIQ̄jJ〉 = 〈 ¯̃QiIQ̃
jJ〉 =

1

p2
δ (θ1 − θ2) δ j

i δ
J
I ,

〈c̄′acb〉 = −〈c′ac̄b〉 =
1

p2
δ (θ1 − θ2) δab.

(5.20)

In the formalism of Feynman superdiagrams, we assign a wavy line to each
propagator 〈V V 〉, a continuous line to each propagator 〈ΦΦ̄〉, a dashed line to

each propagator 〈QQ̄〉 or 〈 ¯̃QQ̃〉, and a dotted line to each superghost propagator.
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5.3 How to compute a scattering amplitude in
N = 2 SCQCD

In Section 5.2 we outlined the main features of N = 2 SCQCD in N = 1
Superspace and we derived the Feynman rules for vertices and propagators of
the theory: These tools are essential to perform a diagrammatic computation
of an amplitude. Here we summarize the key steps to follow for that purpose.

1. The first thing to do is to choose the amplitude to compute in terms of the
external component fields and the fixed color structure; in our convention,
we consider all the legs of the amplitude as external states. Then, we
assign to each external leg the respective superfield depending on a proper
outgoing momentum.

2. The amplitude must be computed in each L-loop perturbative levels, with
L = 0, . . . , L(ch) where L = 0 is the tree-level and L = L(ch) is the highest
loop level we are interested in. We consider the perturbative level L.

3. Following the Feynman rules, we construct all the possible planar L-loop
superdiagrams of the chosen fixed structure of step 1.

4. For each L-loop superdiagram we compute the overall factor given by the
Feynman rules and any combinatorial factors.

5. For each L-loop superdiagram, we perform the D-algebra following the
rules explained in [10]. This step consists in integration by parts of the
D and D̄ operators present in the internal lines of the superdiagram, in
order to bring them to the external legs, with the appropriate relations
and identities summarized in Appendix A.2. At the end of this step, the
D-algebra is closed and we translate each final diagrammatic term into
a proper algebraic string of terms, with its sign (which is fixed through
the rules explained in [10]) multiplied by the respective prefactor found
in step 4; each final string of terms is multiplied by a D = 4− 2ε dimen-
sional regularized integral on internal momenta if there are any in the final
diagrams.

6. Given the Superspace result of step 5, we have to make the projection∫
d4θ(. . . ) = D̄2D2(. . . )|θ=θ̄=0 on it by applying the covariant spinor

derivatives with the Leibniz rule and the relations collected in Appendix
A.2. In this step, we move from the superdiagram with closed D-algebra
to all the possible diagrams with component fields we find through the
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projection; at the end, we hold only the diagrams with the external com-
ponent fields we are interested in.

7. We sum all the contributions found in the previous steps: We end up with
a linear combination of standard bosonic integrals with numerators, which
can be simplified by completion of squares and using on-shell symmetries.

8. We express the final L-loop result, using the integration by part reduction
technique explained in [83], as a linear combination of master integrals.
This passage could be automated through the algorithm FIRE running on
Wolfram Mathematica [84, 85].

9. The master integrals found in step 8 are expanded in terms of ε and the
L-loop result is presented as a series in the IR divergences poles.

10. We repeat the procedure from step 2 to step 9 one time for each value of
L, from 0 to L(ch).

We can follow the first 6 steps with direct computations by hand and the steps
7, 8, 9 with appropriate algorithms in Wolfram Mathematica: If this stategy is
carefully planned, it can help to avoid mistakes due to the considerable length
of the preliminary results.
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5.4 Computation of 5-point amplitudes

In [75], the authors computed 1-loop and 2-loop 4-point scattering ampli-
tudes in planar N = 2 SCQCD and made a complete classification of the ampli-
tudes, which can be divided in three independent sectors according to the color
representation of the external particles. In particular, in the adjoint subsector,
where all the processes have only superfields belonging to the adjoint represen-
tation as external legs, after having fixed a color structure, they considered the
process tr

(
ΦΦΦ̄Φ̄

)
and its non-ciclic permutation tr

(
ΦΦ̄ΦΦ̄

)
(belonging to the

adjoint subsector) and they obtained exactly the same expressions of the corre-
sponding N = 4 SYM amplitudes up to 1-loop, demonstrating the presence of
dual conformal symmetry and maximal transcendentality.

According to [77], an amplitude with 4 scalar component fields is a MHV
amplitude; moreover, the first non-trivial 5-point MHV amplitude constructed
from the previous one has 4 scalar component fields and a gauge vector compo-
nent field with positive helicity as external legs. We thus consider the 5-point
process tr

(
ΦΦΦ̄Φ̄V

)
in Superspace and, in particular, we are interested in com-

puting the tree-level and 1-loop amplitude of the projection tr
(
φφφ̄φ̄Aαα̇

)
; the

final goal is to obtain the 1-loop reduced amplitude of the process. We choose
this particular color structure in order to minimize the number of superdia-
grams: As it is seen in [75], it is possible to show that the amplitude depends
on the order of the superfields, but the reduced amplitude is invariant under
such a change of order.

Definition of Mandelstam variables and some useful relations. We are
dealing with the process tr

(
φ(p1)φ(p2)φ̄(p3)φ̄(p4)Aαα̇(p5)

)
where we assign a

proper momentum pi to each external leg. Since in our convention all the final
legs of the diagrams are understood as outgoing states, the total momentum
conservation is written as

pαα̇1 + pαα̇2 + pαα̇3 + pαα̇4 + pαα̇5 = 0. (5.21)

These momenta belong to massless states, so we have the following on-shell
conditions

p2
1 = 0, p2

2 = 0, p2
3 = 0, p2

4 = 0, p2
5 = 0. (5.22)

Thinking about the gauge component field Aαα̇, it is known from ordinary
Quantum Field Theory that a gauge field of spin 1 has 4 degrees of freedom,
but only 2 of them are physical: In fact, the longitudinal degrees of freedom
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lead to states with negative norm, which are not physical states. In order to
consider only physical states, we have to allow only the 2 transversal degrees of
freedom of Aαα̇; this is possible if Aαα̇ is transversal to its momentum pαα̇5 , so
we impose

A · p5 = 0. (5.23)

We define the Mandelstam variables in order to describe the amplitude: The
generic definition of a Mandelstam variable is sij = (pi + pj)

2
, but if we inpose

the on-shell conditions of eq.(5.22), in our case we can simplify the definition
into

sij = 2pi · pj for i, j = 1, . . . , 5 and i 6= j. (5.24)

Since sij = sji, we have 10 non-vanishing Mandelstam variables; however, they
are linear dependent because of the total momentum conservation eq.(5.21)
and the on-shell conditions eq.(5.22). We can choose 5 linear independent
Mandelstam variables and write the remaining 5 as linear combinations of
the chosen 5. For computation convenience, we use the Mandelstam variables
{s12, s23, s34, s45, s15} and we write the remaining ones in the following way:

s13 = s45 − s12 − s23,

s14 = s23 − s15 − s45,

s24 = s15 − s23 − s34,

s25 = s34 − s12 − s15,

s35 = s12 − s34 − s45.

(5.25)

The process we are dealing with leads to a MHV amplitude, as we can see
in [77]; however, it is necessary to further constraint the amplitute in order
to get the expected Parke-Taylor formula. We can read from [86] that it is
sufficient to define Aαα̇ transversal to its momentum and also transversal to
another external momentum: The choice is arbitrary because it reflects gauge
invariance. We choose Aαα̇ to be transversal to pαα̇4 , so

A · p4 = 0. (5.26)

Some useful relations for the projection. As we mentioned before in Sec-
tion 5.3, after having closed the D-algebra of a given superdiagram, we have to
project it in the component fields: This operation corresponds to move from
N = 1 Superspace E4|4 to the Euclidean spacetime E4 by solving the integration
over spinorial degrees of freedom. We know that an integration over spinorial
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variables corresponds to a derivative over the same variables, so we perform∫
d4θ(. . . ) = D̄2D2(. . . )|θ=θ̄=0 on the algebraic string of terms of the superdia-

gram; we are interested only in the contributions of tr
(
φφφ̄φ̄Aαα̇

)
. In eq.(5.12)

we read that

φ = Φ|θ=θ̄=0,

φ̄ = Φ̄|θ=θ̄=0,

Aαα̇ =
1

2

[
D̄α̇, Dα

]
V |θ=θ̄=0 =

1

2

(
2 D̄α̇Dα − {D̄α̇, Dα}

)
V |θ=θ̄=0 =

=

(
D̄α̇Dα −

1

2
pαα̇

)
V |θ=θ̄=0 = D̄α̇DαV |θ=θ̄=0.

It is not necessary to write all the possible ways to distribute D̄2D2 on a
generic superdiagram: It is sufficient to find some universal rules in order to
get tr

(
φφφ̄φ̄Aαα̇

)
as a final result. The case of tr

(
ΦΦΦ̄Φ̄V

)
is the first one to

be considered. In order to obtain Aαα̇, only a D operator and a D̄ operator
must be both applied to V ; the remaining ones must be applied both in only
one leg, in order to generate a momentum and so keep the chiral legs free from
the operators. As a consequence, we have

D̄2D2
(

tr
(
ΦΦΦ̄Φ̄V

))∣∣∣
θ=θ̄=0

=

= D̄2
(

tr
(
DαΦΦΦ̄Φ̄DαV

)
+ tr

(
ΦDαΦΦ̄Φ̄DαV

))∣∣∣
θ=θ̄=0

=

= −
(

tr
(
D̄α̇DαΦΦΦ̄Φ̄D̄α̇DαV

)
+ tr

(
ΦD̄α̇DαΦΦ̄Φ̄D̄α̇DαV

))∣∣∣
θ=θ̄=0

=

= −
(
pαα̇1 + pαα̇2

)
tr
(
φφφ̄φ̄Aαα̇

)
,

where the sign − appears when a covariant spinor derivative jumps an odd num-
ber of covariant spinor derivatives. We can prove that the following characteris-
tics we enumerate do not allow a superdiagram to contribute to tr

(
φφφ̄φ̄Aαα̇

)
.

• A superdiagram with D2Φ or D̄2Φ̄ (or both) does not contribute because,
in order to remove these operators from the (anti)chiral legs, we generate
a p2 factor which is null on-shell.

• The superdiagram tr
(
DαΦDαΦD̄α̇Φ̄D̄α̇Φ̄V

)
does not contribute because

D̄2D2 is not sufficient both to remove all the 4 operators and to generate
D̄α̇DαV .

• The superdiagrams tr
(
ΦΦΦ̄Φ̄D̄2D2V

)
, tr

(
ΦΦΦ̄Φ̄D2D̄2V

)
(and the su-

perdiagram tr
(
ΦΦΦ̄Φ̄DαD̄2DαV

)
related to them through eq.(A.32)) do
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not contribute because it is impossible to generate D̄α̇DαV without a
p2 = 0 factor.

In general, a superdiagram which does not present anyone of the previous 3
characteristics could contribute to tr

(
φφφ̄φ̄Aαα̇

)
. Since it is difficult to project

a superdiagram with D̄2DαV or other allowed combinations of operators in
the V leg, we can exploit the intrinsic features of chiral and antichiral legs by
integrating by parts all the operators present in the V leg; we remind that,
besides assigning a − sign for a jumping of a covariant spinor derivative, we
have to include one more − sign for the integration by parts. After putting
together the integration by parts and the rules enumerated before, we find that
each superdiagram which contribute to our process can be written as a linear
combination of the following superdiagrams:

• tr
(
ΦΦΦ̄Φ̄V

)
,

• tr
(
DαΦΦD̄α̇Φ̄Φ̄V

)
,

• tr
(
DαΦΦΦ̄D̄α̇Φ̄V

)
,

• tr
(
ΦDαΦD̄α̇Φ̄Φ̄V

)
,

• tr
(
ΦDαΦΦ̄D̄α̇Φ̄V

)
.

For a smarter notation, in our computation we can define

t = tr
(
ΦΦΦ̄Φ̄V

)
,

t
(13)
αα̇ = tr

(
DαΦΦD̄α̇Φ̄Φ̄V

)
,

t
(14)
αα̇ = tr

(
DαΦΦΦ̄D̄α̇Φ̄V

)
,

t
(23)
αα̇ = tr

(
ΦDαΦD̄α̇Φ̄Φ̄V

)
,

t
(24)
αα̇ = tr

(
ΦDαΦΦ̄D̄α̇Φ̄V

)
,

(5.27)

and, after some trivial steps, we find these projections

D̄2D2 (t) |θ=θ̄=0 = −2 A · (p1 + p2),

D̄2D2
(
t
(13)
αα̇

)
|θ=θ̄=0 = p β̇

1α p β
3 α̇Aββ̇ ,

D̄2D2
(
t
(14)
αα̇

)
|θ=θ̄=0 = p β̇

1α p β
4 α̇Aββ̇ ,

D̄2D2
(
t
(23)
αα̇

)
|θ=θ̄=0 = p β̇

2α p β
3 α̇Aββ̇ ,

D̄2D2
(
t
(24)
αα̇

)
|θ=θ̄=0 = p β̇

2α p β
4 α̇Aββ̇ ,

(5.28)
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where we define shortly

Aαα̇ = tr
(
T aT bT cT dT e

)
φaφbφ̄cφ̄dAeαα̇. (5.29)

Since the amplitude we are dealing with is a tensorial amplitude, there is a
problem in defining the reduced amplitude: In fact, we can not define an object
which is a fraction of two tensors. To avoid that formal problem, we consider
the scalar amplitude, so we saturate the tensorial (spinor) indices by contracting
them with Aαα̇. Now all is ready for the computation of the MHV amplitude.

5.4.1 tr
(
φφφ̄φ̄Aαα̇

)
: tree-level MHV amplitude

Given the process tr
(
φ(p1)φ(p2)φ̄(p3)φ̄(p4)Aαα̇(p5)

)
, the tree-level diagrams

which contribute to the amplitude of it are collected in the following image.

We remind that, in our convention, we read the external legs of a diagram
counterclockwise. We use the sign “∗” to indicate a superdiagram which is
specular (right-left symmetric image) to another superdiagram with the same
name and without the sign “∗”. Following the first steps summarized in Section
5.3, we close the D-algebras of these superdiagrams finding

D
(0)
1 → g3

s23s45

(
−s12 t+ pαα̇1 t

(23)
αα̇ + pαα̇2 t

(13)
αα̇

)
,

D
(0)∗
1 → g3

s23s15

(
−s34 t− pαα̇3 t

(24)
αα̇ − p

αα̇
4 t

(23)
αα̇

)
,

D
(0)
2 → g3

s23
t.

(5.30)

We can project these terms with the help of eq.(5.28) and find

D
(0)
1 = −2g3 s12

s23s45
A · p4,

D
(0)∗
1 = 2g3 s34

s23s15
A · p1,

D
(0)
2 = −2g3 1

s23
A · (p1 + p2) .

(5.31)
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If we sum all the terms in eq.(5.31) and impose the MHV condition eq.(5.26),
we find the tree-level MHV amplitude

A(0)
MHV =

2g3

s23

(
s34

s15
A · p1 +A · p3

)
. (5.32)

This result is in agreement with the Parke-Taylor formula

A(0)
MHV = Cg3 〈12〉〈34〉

〈23〉〈45〉〈51〉
, (5.33)

written in the helicity formalism, where C contains the remaining overall factors.
In fact, as we can find summarized in [86], if we use the identities

sij = 〈ij〉 [ij] ,

A · p1 =
1√
2

〈41〉 [15]

〈45〉
,

A · p3 =
1√
2

〈43〉 [35]

〈45〉
,

(5.34)

with 〈ij〉 = −〈ji〉 and [ij] = − [ji] and the momentum conservation

5∑
i=1

〈qi〉 [ik] = 0 ∀k, q = 1, . . . , 5, (5.35)

we find that eq.(5.32) is equivalent to eq.(5.33).

5.4.2 tr
(
φφφ̄φ̄Aαα̇

)
: 1-loop MHV amplitude

We now analyze the 1-loop perturbative order of the process tr
(
φφφ̄φ̄Aαα̇

)
.

Starting from the tree-level superdiagrams, we have to draw all the possible 1-
loop internal insertions. It is possible to demonstrate (and this could be found in
[75]) that the 1-loop correction of each propagator in N = 2 SCQCD is null. As
a consequence, the 1-loop superdiagrams of our process are found from the tree-
level ones in two ways: By drawing vector propagators starting from an internal
line and ending in another internal line or by inserting 1-loop corrections to
the vertices. The 1-loop superdiagrams which contribute to our amplitude are
collected in the following image.
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The dots in bold stand for 1-loop vertex corrections, which we can compute
separately and express as effective 1-loop vertices. One 1-loop off-shell ver-
tex correction of tr

(
V (p1)Φ(p2)Φ̄(p3)

)
(where we make an abuse of notation
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in labelling momenta with the same previous names) can be expressed in the
following smart expression [75]

(5.36)

where an overall factor g3Nc is stripped out. The 1-loop off-shell vertex correc-
tion of tr

(
V (p1)Φ̄(p2)Φ(p3)

)
has the same expression, with the change D ↔ D̄

in the chiral and antichiral legs and with a sign + on the third term. We insert

these two effective 1-loop vertices in {D(1)
9 , D

(1)∗
9 , D

(1)
10 , D

(1)∗
10 , D

(1)
11 , D

(1)∗
11 , D

(1)
12 }

and properly close their D-algebras. More difficulties come out when we ap-

proach the superdiagram D
(1)
13 : In fact, it presents a 1-loop correction to the

4-leg vertex tr
(
ΦV Φ̄V

)
, which is not yet computed in works dealing with N = 2

SCQCD.
We start with the computation of the 1-loop amplitude; since the procedure

is well explained in Section 5.3, we do not present all the intermediate steps;
rather, we show the result of the projection of each superdiagram with its im-
plicit regularized loop integral over the internal momentum kαα̇, in D = 4− 2ε,
with energy scale µ. For a smarter notation, we define

k1 = k,

k2 = k − p2,

k3 = k − p2 − p3,

k4 = k − p2 − p3 − p4,

k5 = k + p1.

(5.37)
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We find the following preliminary results for the first 13 superdiagrams of the
previous image:

D
(1)
1 = −2g5Nc µ

2εs12s34

∫
dDk1

(2π)D
A · k5

k2
1 k

2
2 k

2
3 k

2
4 k

2
5

,

D
(1)
2 =

1

2
g5Nc µ

2ε

∫
dDk1

(2π)D
(s12 + s34)A · k5 + 2(k2

5 + k5 · p5)A · (p1 + p2)

k2
1 k

2
3 k

2
4 k

2
5

,

D
(1)
3 = 2g5Nc µ

2ε s
2
12

s45
A · p4

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3 k

2
5

,

D
(1)∗
3 = −2g5Nc µ

2ε s
2
34

s15
A · p1

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3 k

2
4

,

D
(1)
4 = 2g5Nc µ

2εs12A · (p1 + p2)

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3 k

2
5

,

D
(1)∗
4 = 2g5Nc µ

2εs34A · (p1 + p2)

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3 k

2
4

,

D
(1)
5 = −g5Nc µ

2ε s12

s45
A · p4

∫
dDk1

(2π)D
1

k2
1 k

2
3 k

2
5

,

D
(1)∗
5 = g5Nc µ

2ε s34

s15
A · p1

∫
dDk1

(2π)D
1

k2
1 k

2
3 k

2
4

,

D
(1)
6 = −g5Nc µ

2εA · (p1 + p2)

∫
dDk1

(2π)D
1

k2
1 k

2
3 k

2
5

,

D
(1)∗
6 = −g5Nc µ

2εA · (p1 + p2)

∫
dDk1

(2π)D
1

k2
1 k

2
3 k

2
4

,

D
(1)
7 = −g5Nc µ

2ε s12

s45
A · p4

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3

,

D
(1)∗
7 = g5Nc µ

2ε s34

s15
A · p1

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3

,

D
(1)
8 = −g5Nc µ

2εA · (p1 + p2)

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3

.

(5.38)

We notice that it is possible to define a “mirror duality” as a transformation
which assigns a − and exchanges the momenta in the following way:

p1 ↔ p4 p2 ↔ p3 k1 ↔ −k3 k2 ↔ −k2 k4 ↔ −k5 (5.39)
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This mirror duality maps

D
(1)
1 → D

(1)
1 , D

(1)
2 → D

(1)
2 , D

(1)
3 → D

(1)∗
3 , D

(1)
4 → D

(1)∗
4 ,

D
(1)
5 → D

(1)∗
5 , D

(1)
6 → D

(1)∗
6 , D

(1)
7 → D

(1)∗
7 , D

(1)
8 → D

(1)
8 .

(5.40)

The preliminary results of the superdiagrams with a 1-loop 3-leg vertex correc-
tion are collected below:

D
(1)
9 = −g5Nc µ

2ε s12

s23
A · p4

∫
dDk1

(2π)D
1

k2
3 k

2
4 k

2
5

,

D
(1)∗
9 = −g5Nc µ

2ε s34

s23
A · p1

∫
dDk1

(2π)D
1

k2
1 k

2
4 k

2
5

,

D
(1)
10 = g5Nc µ

2ε

(
s12

s23
+ 2

s12

s45

)
A · p4

∫
dDk1

(2π)D
1

k2
1 k

2
3 k

2
5

,

D
(1)∗
10 = g5Nc µ

2ε

(
s34

s23
− 2

s34

s15

)
A · p1

∫
dDk1

(2π)D
1

k2
1 k

2
3 k

2
4

,

D
(1)
11 = 2g5Nc µ

2ε s12

s45
A · p4

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3

,

D
(1)∗
11 = −2g5Nc µ

2ε s34

s15
A · p1

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3

,

D
(1)
12 = 2g5Nc µ

2εA · (p1 + p2)

∫
dDk1

(2π)D
1

k2
1 k

2
2 k

2
3

.

(5.41)

It is curious that some of the contributions in eq.(5.41) break partially or totally
the mirror duality by showing a different sign. We can think about this fact as
there are some diagrams with an intrinsic parity: The fact that in some cases
of eq.(5.41) there are not overall signs but internal signs is because these cases
are made by different diagrams bringing their respective parity.

Now we focus on the superdiagram D
(1)
13 . Its dot in bold hides a lot of

non-trivial contributions that we can collect in the following image.
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Since a complete derivation of the off-shell 1-loop correction to that 4-leg vertex
is not known in the literature, for our purposes it is sufficient to comute sepa-
rately each insertion of each contribution Ci of the image (with i = 1, . . . , 21);

98



as a consequence, we have to compute 21 superdiagrams in order to obtain the

value of D
(1)
13 . We easily find that the insertions of C1 and C2 lead to 0. An

important check to consider is the absence of UV divergences. An UV diver-

gence rises from an integral like
∫
d4k
ka with a ≤ 4, so we have to look at what

happens to all the loops with only two internal propagators. After closing all
the D-algebras, we can conclude that the expression

∑14
i=3 Ci + C21 cancels all

the UV divergences if we impose Nf = 2Nc, which is the conformal constraint.
After having projected each of the 19 non-vanishing diagrams which form

D
(1)
13 , we sum them to all the contributions of eq.(5.38) and eq.(5.41), in order

to obtain the integrand of the amplitude. In that phase of the computation,
it is necessary to develop an algorithmic method in order to avoid algebraic
errors: In fact, all the outputs consist in very long strings of mathematical
expressions. For convenience, we use Wolfram Mathematica; in particular, we
insert the closed D-algebras as input and we perform the projection by replacing
the projections of the main structures. We get a very long expression and we
further complete the squares of all the numerators in the integrals with the
on-shell relations

A · k1 =
1

2

(
(A+ k1)2 −A2 − k2

1

)
,

k1 · p1 =
1

2

(
k2

5 − k2
1

)
,

k1 · p2 =
1

2

(
k2

1 − k2
2

)
,

k1 · p3 =
1

2

(
k2

2 − k2
3 + s23

)
,

k1 · p4 =
1

2

(
k2

3 − k2
4 + s15 − s23

)
,

k1 · p5 = −k1 · p1 − k1 · p2 − k1 · p3 − k1 · p4,

(5.42)

where, for the moment, we can leave the explicit A2 term. For convenience, we
write the partial result with the help of the function

F (a1, a2, a3, a4, a5, a6) = µ2ε

∫
dDk1

(2π)D
1

k2a1
1 k2a2

2 k2a3
3 k2a4

4 k2a5
5 (A+ k1)2a6

.

(5.43)
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The 1-loop MHV amplitude to compute becomes

A(1)
MHV = g5Nc

(
2
s34

s23
A · p1 F (1, 0, 1, 1, 0, 0)− s34

s15
A · p1 F (1, 0, 1, 1, 0, 0)

− 2
s34s45

s23
A · p1 F (1, 0, 1, 1, 1, 0)− 2

s15s45

s23
A · p3 F (1, 0, 1, 1, 1, 0)

− s34

s15
A · p1 F (1, 1, 1, 0, 0, 0)− 2

s2
34

s15
A · p1 F (1, 1, 1, 1, 0, 0)

+ s12s34 F (0, 1, 1, 1, 1, 0)−A · p3 F (1, 1, 1, 0, 0, 0)

− 2s12 A · p3 F (1, 1, 1, 0, 1, 0)− 2s34 A · p3 F (1, 1, 1, 1, 0, 0)

− s12s34 F (1, 1, 1, 1, 1,−1) + s12s34 A
2 F (1, 1, 1, 1, 1, 0)

− 2s12s34 A · p1 F (1, 1, 1, 1, 1, 0)

)
.

(5.44)

The following step we have to perform is to compute all the scalar integrals in
eq.(5.44). We use an analytic method which reduces our integrals into a linear
combination of master integrals whose ε-expansion is known [83]. In particular,
we automate this method through the “FIRE” package of Wolfram Mathematica
[84, 85]. From [87], we know that the 1-loop massless pentagon integral in D = 4
could be expanded into a cyclic sum of box integrals with a massive external
leg, plus a O(ε) term that we can neglect. We find the 1-loop MHV amplitude
written in terms of the following master integrals:

B1 = F (0, 1, 1, 1, 1, 0),

B2 = F (1, 0, 1, 1, 1, 0),

B3 = F (1, 1, 0, 1, 1, 0),

B4 = F (1, 1, 1, 0, 1, 0),

B5 = F (1, 1, 1, 1, 0, 0),

G1 = F (1, 0, 1, 0, 0, 0),

G2 = F (1, 0, 0, 1, 0, 0),

(5.45)
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where we can identify them with their ε-expansion. The 1-loop MHV amplitude
we find is

A(1)
MHV = g5Nc

e−γε

(4π)2−ε

(
−s34s45(s34 A · p1 + s15 A · p3)

s15s23
B1(ε)

− s45(s34 A · p1 + s15 A · p3)

s23
B2(ε)− s12(s34 A · p1 + s15 A · p3)

s23
B3(ε)

− s12(s34 A · p1 + s15 A · p3)

s15
B4(ε)− s34(s34 A · p1 + s15 A · p3)

s15
B5(ε)

+
(3s15 − 2s23)s34 A · p1 + s15(s15 − s23)A · p3

s15(s15 − s23)s23

2ε− 1

ε
G1(ε)

− (2s15 − s23)s34A · p1

s15(s15 − s23)s23

2ε− 1

ε
G2(ε)

)
,

(5.46)

and we can directly compute the reduced amplitude by dividing eq.(5.46) with
the thee-level amplitude of eq.(5.32). The final result is

M(1)
MHV = λ

e−γε

(4π)−ε

(
−1

2

(
s34s45B1(ε) + s15s45B2(ε) + s12s15B3(ε)

+ s12s23B4(ε) + s23s34B5(ε)

)
+

(2s15 − s23)a+ 3s15s23 − 2s2
23

(s15 − s23)s23

2ε− 1

2ε
G1(ε)

− (2s15 − s23)(a+ s23)

(s15 − s23)s23

2ε− 1

2ε
G2(ε)

)
,

(5.47)

where we define a = −2 A·p3
A(0)

MHV

for a smarter notation.

In [88] we read that the analogous 5-point process in N = 4 SYM has its
reduced amplitude written as a cyclic combination of boxes with a massive leg,
our Bi (with i = 1, . . . , 5); since N = 2 SCQCD offers the same results of
N = 4 SYM at the perturbative orders L = 0 and L = 1, we can conclude
that the reduced amplitude of eq.(5.47) is not correct. As a consequence, this
computation is still an open work; it is easy to think that such a complicated
computation could require more suitable techniques and some more time to be
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finished. However, we can notice that the first terms

s34s45B1(ε) + s15s45B2(ε) + s12s15B3(ε) + s12s23B4(ε) + s23s34B5(ε)

appear in a symmetric cyclic form. As a consequence, we achieve the right IR
behavior of our process if we limit the result to the first 5 terms; a more accurate
computation of the amplitude could lead to a cancellation of the terms

(2s15 − s23)a+ 3s15s23 − 2s2
23

(s15 − s23)s23

2ε− 1

2ε
G1(ε)− (2s15 − s23)(a+ s23)

(s15 − s23)s23

2ε− 1

2ε
G2(ε),

which describe a different behavior which does not follow the BDS ansatz.
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Chapter 6

Conclusions

Here we collect some of the main concepts achieved in this thesis and some
final comments.

In Chapter 4, driven by the results of [17, 18], we have presented the ex-
plicit geometric construction of the D = 4 generalized (minimal) AdS-Lorentz
deformed supergravity bulk Lagragian (based on the generalized minimal AdS-
Lorentz superalgebra of [47]). In particular, we have studied the supersymmetry
invariance of the Lagrangian in the presence of a non-trivial boundary of space-
time, finding that the supersymmetric extension of a Gauss-Bonnet like term is
required in order to restore the supersymmetry invariance of the full Lagrangian.
In this way, we have also further investigated on the study performed in [47]
in the context of AdS-Lorentz superalgebras and generalized supersymmetric
cosmological constant terms in N = 1 supergravity.

The presence of the 1-form fields k̃ab, kab, and ξ in the boundary could be
useful in the context of the AdS/CFT correspondence. In particular, as it was
shown in [89], the introduction of a topological boundary in a 4-dimensional
bosonic action is equivalent to the holographic renormalization procedure in the
AdS/CFT context. Then, we conjecture that the presence of k̃ab, kab, and ξ in
the boundary of our theory, allowing to recover the supersymmetry invariance in
the geometric approach, could also allow to regularize the deformed supergravity
action in the holographic renormalization context.

In Chapter 4, we have also observed that both the AdS-Lorentz and the
generalized minimal AdS-Lorentz superalgebras can be viewed as peculiar tor-
sion deformations of osp(4|1). This is intriguing, since, on the other hand, the
same superalgebras can be obtained through S-expansion from osp(4|1) by using
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semigroups of the type S
(2n)
M , with n ≥ 1 (S

(2)
M and S

(4)
M , respectively, see [47]

for details). Then, our results could be useful to shed some light on the prop-
erties and physical role of these semigroups, also in higher-dimensional cases.
Moreover, the form of the MacDowell-Mansouri like action obtained in [47] by
considering the generalized minimal AdS-Lorentz superalgebra coincides with
the one in eq.(4.53), obtained by adopting a geometric approach. We argue
that all the superalgebras which can be obtained through S-expansion from

osp(4|1) by using semigroups of the type S
(2n)
M (n ≥ 1) can be viewed as partic-

ular torsion deformations of osp(4|1), in the sense intended, and that they can
consequently lead to MacDowell-Mansouri like actions involving supersymmet-
ric extension of Gauss-Bonnet like terms allowing the supersymmetry invariance
of the full Lagrangians in the presence of a non-trivial boundary of spacetime.

Another future analysis could consist in investigating the possible relations
among the extra 1-form fields appearing in the generalized minimal AdS-Lorentz
superalgebra and the extra 1-forms appearing in the hidden superalgebras un-
derlying supergravity theories in higher dimensions [50, 51, 52, 54].

Finally, one could also carry on a further analysis in order to shed some
light on the boundary theory produced in our geometric approach. In this
context, we stress that in our framework the supersymmetry invariance con-
strains the boundary values of the supercurvatures (Neumann boundary condi-
tions), without fixing, however, the superfields themselves on the boundary. The
boundary conditions obtained within our approach are still written in terms of
4-dimensional fields and give the values of the curvatures on the 3-dimensional
boundary, that is on the contour of the 4-dimensional space-time, while in order
to discuss the theory living on the boundary (in the spirit of the the AdS/CFT
correspondence, where the supergravity fields act as sources for the CFT oper-
ators) one should set the boundary at infinity (that is at r → ∞, being r the
radial coordinate) and study the asymptotic limit r → ∞ of the D = 3 equa-
tions on the boundary. The explicit 3-dimensional description of the equations
we have found in D = 4 would depend on the general symmetry properties of
the theory on the boundary, which can be obtained as an effective theory on
an asymptotic boundary placed at r → ∞. One should properly choose the
boundary behavior of the D = 4 fields which relates them to the D = 3 ones
and perform the asymptotic limit r → ∞. Since such a study goes beyond the
aim of Chapter 4 and would require a lot of work and further calculations, we
leave it as a future development.

Dealing with N = 2 SCQCD, we have explored the computation of a 5-
point MHV scattering amplitude at 1-loop; the final result is not yet achieved,
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so it is an open work to be completed. There are other analytic techniques to
perform it, but there are no reasons to give up the diagrammatic computation
or the reduction of integrals: They are two fundamental tools in order to find
the final result. Certainly, the problem is hidden inside the many steps of the
computation; in order to solve it, a good idea is to plan a different algorithm
to support the computation. Wolfram Mathematica could help even if it is
recommended to use the last version in order to avoid to fill in some shortcomings
by non-automatic steps. A good algorithm should improve the control over the
varius steps; the lack of explicit control has been a serious problem for our
computation.

Once found the way to compute exactly, a direct development of this work
would consist in comparing the amplitude in the adjoint sector with the corre-
sponding amplitude in the fundamental sector and in the mixed sector, following
the order of [75] in the classification.

105



Appendix A

Notation

In this thesis, each formula is expressed in natural units, with ~ = c = 1. We
split the natation in two sections; the first one is dedicated to the conventions
adopted in supergravity, while the second one collects all the useful relations
when we deal with supersymmetric gauge theories.

A.1 Notation in supergravity

We consider a generic (3 + 1)-dimensional spacetime and we define a space-
time index labeled with Greek letters from the center of the alphabet onwards
(µ, ν, . . . ), with possible values µ = 0, . . . , 3 (µ = 0 corresponds to a time index);
we adopt the Einstein convention of sum over contracted indices. In absence of
gravity, we have a Minkowskian spacetime with metric tensor

ηµν = diag(−1,+1,+1,+1). (A.1)

with metric signature (3, 1). Spacetime coordinates are denoted as xµ; spacetime
indices are raised and lowered with the respective relations

xµ = ηµνxν

xµ = ηµνx
ν .

(A.2)

In a curved spacetime, which is seen as a differential manifold M , the metric
tensor is gµν . We adopt the dual formulation of gravity, with the formalism of
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k-forms in the cotangent space T ∗(M). Given a basis of 1-forms {dxµ}, which
satisfy the relation

dxµ
(

d

dxν

)
= δµν (A.3)

being { d
dxµ } a vector basis and δµν the Kronecker delta, each 1-form is a linear

combination of 1-forms belonging to the basis {dxµ}. A generic k-form ω(k) is
completely antisymmetric and it is written as follows

ω(k) = aµ1...µkdx
µ1 ∧ · · · ∧ dxµk (A.4)

where ∧ is the wedge product and aµ1...µk is completely antisymmetric. Some-
times, where it is necessary, we explicitly antisymmetrize indices with square
brackets. Given a k-form ω(k) and a q-form ω(q), their wedge product follows
the relation

ω(k) ∧ ω(q) = (−1)kq ω(q) ∧ ω(k), (A.5)

∀k, q ∈ N; moreover, the basic properties of the wedge product are associativity
and distributivity. We denote T ∗(k)(M) the subsector of the cotangent space in
which are collected all the k-forms.

We study supergravity in N = 1 D = 4 Superspace through the geometric
approach; in Superspace, spacetime indices are denoted with latin letters. We
choose a new set of 1-forms {V a} (with a = 0, . . . , 3) called vielbeins, which are
related to the previous set {dxµ} through

V a = Vaµ dxµ (A.6)

where Vaµ ∈ GL(4,R) are real invertible matrices satisfying VaµV
µ
b = δab and

Vµa Vaν = δµν . In the vielbein basis, the metric tensor is written as

gµν = Vaµ Vbν ηab. (A.7)

N = 1 Superspace coordinates are a set of 1-forms {V a, ψα}, where V a is a
vielbein and ψα is a Majorana spinorial 1-form (with spinorial index α = 1, . . . , 4
that will be omitted for simplicity).

The gamma matrices are defined through

{γa, γb} = −2ηab,

[γa, γb] = 2γab,

γ5 = −γ0γ1γ2γ3,

(A.8)
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and they satisfy the algebraic relations

γ2
5 = −1,

{γ5, γa} = [γ5, γab] = 0,

γabγ5 = −1

2
εabcdγ

cd,

γaγb = γab − ηab,

γabγcd = εabcdγ5 − 4δ
[a
[cγ

b]
d] − 2δabcd ,

γabγc = 2γ[aδb]c − εabcdγ5γd,

γcγab = −2γ[aδb]c − εabcdγ5γd,

γmγ
abγm = 0,

γabγmγ
ab = 0,

γabγcdγ
ab = 4γcd,

γmγ
aγm = −2γa,

(A.9)

where εabcd is the Levi-Civita tensor and δabcd = 1
2

(
δacδ

b
d − δadδbc

)
. Furthermore,

we have

(Cγa)T = Cγa, (Cγab)
T = Cγab,

(Cγ5)T = −Cγ5, (Cγ5γa)T = −Cγ5γa,
(A.10)

where C is the charge conjugation matrix (CT = −C). We are dealing with
Majorana spinors, fulfilling ψ̄ = ψTC. The following identities hold

ψ̄(p) ∧ ξ(q) = (−1)pq ξ̄(q) ∧ ψ(p),

ψ̄(p) ∧ Sξ(q) = −(−1)pq ξ̄(q) ∧ Sψ(p),

ψ̄(p) ∧Aξ(q) = (−1)pq ξ̄(q) ∧Aψ(p)

(A.11)

for the p-form ψ(p) and q-form ξ(q), being S and A symmetric and antisymmetric
matrices, respectively. Finally, we can write the Fierz identities in D = 4 for
the 1-form spinor ψ:

ψ ∧ ψ̄ =
1

2
γaψ̄ ∧ γaψ −

1

8
γabψ̄ ∧ γabψ,

γaψ ∧ ψ̄ ∧ γaψ = 0,

γabψ ∧ ψ̄ ∧ γabψ = 0,

γabψ ∧ ψ̄ ∧ γaψ = ψ ∧ ψ̄ ∧ γbψ.

(A.12)
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Now, we collect the definitions of some operators we use in the work: the ex-
terior derivative, the contraction and the Lie derivative. The exterior derivative
d is a unique function

d : T ∗(k)(M)→ T ∗(k+1)(M) (A.13)

∀k ∈ N such that for any k-form we hawe

d(ω(k) + ω(q)) = dω(k) + dω(q),

d(ω(k) ∧ ω(q)) = dω(k) ∧ ω(q) + (−1)kω(k) ∧ dω(q),

d2 = 0.

(A.14)

With eq.(A.4), we can define the exterior derivative of a k-form such that

dω(k) =
∂aµ1...µk

∂xρ
dxρ ∧ dxµ1 ∧ · · · ∧ dxµk . (A.15)

Another useful tool is the operator of contraction ıv with parameter v, defined
as a function

ıv : T ∗(k)(M)→ T ∗(k−1)(M), (A.16)

which fulfills the following relations

ıvıu = −ıuıv,
ıαu+βv = αıu + βıv ∀α, β ∈ C,

ıv(ω
(k) ∧ ω(q)) = (ıvω

(k)) ∧ ω(q) + (−1)kω(k) ∧ (ıvω
(q)),

(A.17)

for all k-forms ω(k). In this thesis, we often compute the contraction of a k-
form in the fermionic direction of Superspace: operatively, ıεω

(k) stands for the
derivation of ω(k) with respect to the spinorial 1-form ψ and the replacement of
one ψ with the parameter ε. In particular, we have ıε(ψ) = ε and ıε(V

a) = 0.
Another example is ıε(ψ̄∧γaψ) = 2ε̄∧γaψ = −2ψ̄∧γaε. The last mathematical
tool is the Lie derivative `ε. In general, given a function, its Lie derivative
is its infinitesimal variation under diffeomorphism; for our specific case, we
use the Lie derivative when we compute the variation under supersymmetric
transformation, that coincides with the Lie derivative in the fermionic direction.
Operatively, the Lie derivative of a k-form ω(k) with parameter ε is defined as

`εω
(k) = ıε(dω

(k)) + d(ıεω
(k)), (A.18)
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and, as a consequence, it fulfills the following relations

`εd = d`ε,

`ε(ω
(k) ∧ ω(q)) = (`εω

(k)) ∧ ω(q) + ω(k) ∧ (`εω
(q)),

(A.19)

for all k-forms ω(k).

A.2 Notation in supersymmetric gauge theories

We consider a flat (3 + 1)-dimensional spacetime with metric tensor of
eq.(A.1) and we apply a Wick rotation: The result is a flat 4-dimensional Eu-
clidean spacetime having the 4× 4 identity matrix as metric tensor.

For computations in a rigid supersymmetric field theory like N = 2 SCQCD,
we give up the dual formalism of k-forms and adopt the vector formalism.

We work in a 4-dimensional Euclidean N = 1 Superspace described by real
commuting spacetime coordinates xµ (with µ = 0, 1, 2, 3), by complex anti-
commuting Weyl spinor coordinates θα (with α = +,−) and by their com-
plex conjugates θ̄α̇ = (θα)† (with α̇ = +̇, −̇). To avoid confusion, we indicate
µ, ν = 0, 1, 2, 3 as vector indices (corresponding to the vector representation of
the Lorentz group SO(4)), α, β = +,− and α̇, β̇ = +̇, −̇ as spinor indices (corre-
sponding to the irreducible representations (0, 1

2 ) and ( 1
2 , 0) of SU(2)× SU(2),

which is isomorphic to the covering group of the Lorentz group).
Given a generic Weyl spinor ψα and its complex conjugate ψ̄α̇, spinor indices

are raised and lowered through the following relations

ψα = Cαβψβ , ψα = ψβCβα,

ψ̄α̇ = Cα̇β̇ψ̄β̇ , ψ̄α̇ = ψ̄β̇Cβ̇α̇,
(A.20)

where we define

Cαβ = Cα̇β̇ = −Cαβ = −Cα̇β̇ =

(
0 i
−i 0

)
(A.21)

which verify the identities

CαβCγε = δαγδ
β
ε − δαεδβγ ,

Cα̇β̇Cγ̇ε̇ = δα̇γ̇δ
β̇
ε̇ − δ

α̇
ε̇δ
β̇
γ̇ .

(A.22)
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Spinors are contracted according to

ψξ = ψαξα = ξαψα = ξψ, ψ̄ξ̄ = ψ̄α̇ξ̄α̇ = ξ̄α̇ψ̄α̇ = ξ̄ψ̄,

ψ2 =
1

2
ψαψα, ψ̄2 =

1

2
ψ̄α̇ψ̄α̇,

(A.23)

where we write the raised spinor index before the lowered one.
We define

(σµ)αα̇ = (iI, σ1, σ2, σ3), (A.24)

with I a 2× 2 identity matrix and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are Pauli matrices.

It is possible to verify that

(σµ)αα̇(σν)αα̇ = 2δ ν
µ , (σµ)αα̇(σµ)ββ̇ = 2δαβδ

α̇
β̇
, (A.25)

and starting from eq.(A.25), we obtain all the following trace identities

tr(σµσν) = −2δµν , (A.26)

tr(σµσνσρστ ) =
1

2

(
tr(σµσν) tr(σρστ )

− tr(σµσρ) tr(σνστ )

+ tr(σµστ ) tr(σνσρ)
)
,

(A.27)

tr(σµσνσρστσεσω) =
1

2

(
tr(σµσν) tr(σρστσεσω)

− tr(σµσρ) tr(σνστσεσω)

+ tr(σµστ ) tr(σνσρσεσω)

− tr(σµσε) tr(σνσρστσω)

+ tr(σµσω) tr(σνσρστσε)
)
,

(A.28)

while the trace of a product of an odd number of Pauli matrices vanishes.
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Vector and bispinorial indices are exchanged as follows:

coordinates xµ = (σµ)αα̇x
αα̇, xαα̇ =

1

2
(σµ)αα̇xµ,

derivatives ∂µ =
1

2
(σµ)αα̇∂αα̇, ∂αα̇ = (σµ)αα̇∂µ,

fields Vµ =
1√
2

(σµ)αα̇Vαα̇, Vαα̇ =
1√
2

(σµ)αα̇Vµ,

(A.29)

where we use the short notation

∂µ =
∂

∂xµ
= (−i ∂

∂t
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3
).

The scalar product of two generic vectors pµ and qµ is rewritten as

p · q =
1

2
pαα̇qαα̇. (A.30)

In a N = 1 Superspace, covariant spinor derivatives are defined as

Dα = ∂α +
i

2
θ̄α̇∂αα̇, D̄α̇ = ∂̄α̇ +

i

2
θα∂αα̇,

D2 =
1

2
DαDα, D̄2 =

1

2
D̄α̇D̄α̇,

(A.31)

(with ∂α, ∂̄α̇ spinor derivatives that obey to ∂αθ
β = δ β

α and ∂̄α̇θ̄
β̇ = δ β̇

α̇ ).
Covariant spinor derivatives vanish at the third power: (D)3 = (D̄)3 = 0.

They satisfy the following anticommutators{
Dα, D̄α̇

}
= i∂αα̇,

{
Dα, D̄α̇

}
= i∂αα̇,

{Dα, Dβ} = 0,
{
D̄α̇, D̄β̇

}
= 0,{

D̄α̇, D
2
}

= −DαD̄α̇Dα,
{
Dα, D̄

2
}

= −D̄α̇DαD̄α̇,{
D2, D̄2

}
= � +DαD̄2Dα = � + D̄α̇D2D̄α̇,

(A.32)
(with � = 1

2∂
αα̇∂αα̇) and the following commutators[

Dα, D̄
2
]

= −i∂αα̇D̄α̇,
[
Dα, D̄2

]
= i∂αα̇D̄α̇,[

D̄α̇, D
2
]

= −i∂αα̇Dα,
[
D̄α̇, D2

]
= i∂αα̇Dα,[

�, D2
]

= 0,
[
�, D̄2

]
= 0.

(A.33)
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The following couple of identities

D2D̄2D2 = �D2, D̄2D2D̄2 = �D̄2, (A.34)

is useful to simplify the D-algebra of a Feynman superdiagram.
Integration over spinor coordinates follows Berezin rules (see [10]) which

define the integration over anticommuting parameters (sometimes called Grass-
mann variables). In short, integrations over θ and θ̄ are defined as∫

d2θ =
1

2
∂α∂α,∫

d2θ̄ =
1

2
∂̄α̇∂̄α̇,∫

d4θ =

∫
d2θ d2θ̄.

(A.35)

A more practical way to express the definitions of eq.(A.35) consists in the
following projections ∫

d4x d2θ =

∫
d4x D2|θ=θ̄=0,∫

d4x d2θ̄ =

∫
d4x D̄2|θ=θ̄=0,∫

d4x d4θ =

∫
d4x D̄2D2|θ=θ̄=0.

(A.36)

Since the space of momenta is well suited for a computation of a scattering
amplitude, we replace

i∂αα̇ → pαα̇, �→ −p2, (A.37)

where pµ = (iE, p1, p2, p3) is the momentum of a particle with energy E and
pαα̇ = (σµ)αα̇pµ.

The mass-shell relation for a generic particle with mass m and momentum
p is

p2 = −m2. (A.38)

All the particles considered are massless: so, we can fixm = 0. We arbitrarily
choose to represent the process of n particles as a 0 → n process, with only
outgoing particles; consequently, the conservation of total momentum is

n∑
j=1

pµj = 0. (A.39)
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Physical processes with more than 3 final states are described using Man-
delstam invariants: We denote a Mandelstam variable as sij = (pi + pj)

2 and
for massless particles it is simply sij = 2pi · pj .
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[56] D. M. Peñafiel and L. Ravera, Generalized cosmological term in D = 4
supergravity from a new AdS–Lorentz superalgebra, Eur. Phys. J. C78
(2018), no. 11 945 [1807.07673].

119



[57] F. Izaurieta, E. Rodriguez and P. Salgado, Expanding Lie (super)algebras
through Abelian semigroups, J. Math. Phys. 47 (2006) 123512
[hep-th/0606215].

[58] J. Diaz, O. Fierro, F. Izaurieta, N. Merino, E. Rodriguez, P. Salgado and
O. Valdivia, A generalized action for (2 + 1)-dimensional Chern-Simons
gravity, J. Phys. A45 (2012) 255207 [1311.2215].

[59] O. Fierro, F. Izaurieta, P. Salgado and O. Valdivia, (2+1)-dimensional
supergravity invariant under the AdS-Lorentz superalgebra, 1401.3697.

[60] P. K. Concha, R. Durka, N. Merino and E. K. Rodŕıguez, New family of
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