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Introduction

Any word can be used both in a very precise and technical sense and in a broader
colloquial sense; this is certainly true for the word resource. This word is becoming more
and more popular in quantum information science and we want to explain why it appears
in the title of this thesis.

Intuitively, if one can perform some particular task in a better way by having access
to something, we can call this thing a resource. In scientific terms, improving the perfor-
mance of a certain task is not only a qualitative concept, but it must be as quantitative
as possible: any improvement must be a measurable increase in some suitable figure of
merit. Therefore a resource for some task is something which can increase the relevant
figure of merit. However, even by introducing this quantitative aspect, the definition of a
resource is still vague and the word is still used with its colloquial meaning,.

If one wants to be more precise, there exists a very general mathematical framework
to talk about resources, the so-called resource theories. A resource theory can be built
whenever there is some restriction on the operations than can be implemented on a
system. This abstract construction becomes relevant in physics, where the system and
the operations are physical. This framework is very general and it has found countless
applications in quantum information science, mostly building on the pioneering work in
entanglement theory.

In this thesis we are mostly concerned with the first “colloquial” meaning and for the
most part we do not dwell on a precise mathematical definition of a resource. In particular,
a substantial part of this thesis deals with the application of quantum mechanics to high
precision measurements, the field of quantum metrology. In this context there are several
figures of merit to quantify the precision of a given measurement scheme and we are
interested in finding metrological resources, i.e. ways to achieve a better precision. On
the other hand, we will also deal with the more rigorous connotation of the concept:
in Chapter 8 we present a fully fledged resource theoretical framework for continuous
variable quantum systems.

While the underlying and unifying aspect of the whole thesis is exactly this focus on
resources, on a concrete level the presentation is divided into two parts. The first part
deals with the topic of continuous (in time) quantum measurements, and it explores how
and when they can be considered useful resources for quantum metrology.

xiii



xiv Introduction

On a very simple level, time-continuous measurements describe a situation where
an experimenter does not get information out of a quantum system instantaneously, but
continuously in time. In the standard “textbook” presentation of quantum mechanics,
measurements are assumed to be instantaneous and to induce a strong perturbation on
the system. On the contrary, continuous measurements can be seen as the continuous
repetition of very weak measurements. Roughly speaking, at every instant only an
infinitesimal amount of information is extracted from the system, which is thus only
infinitesimally perturbed.

There is also a complementary way to frame the same concepts. Any quantum system
interacts with an environment, usually modelled as a collection of external systems
assumed to be out of experimental reach. This interaction causes a “noisy” evolution
of the main system, which usually makes it lose its quantum properties. However, in
many situations the environment is not truly out of reach. In this context, continuous
measurements can be understood as a series of instantaneous “strong” measurements on
the environment. This means that, by strongly and repeatedly measuring the environment,
one implements weak (indirect) measurements on the main system.

Continuous measurements were historically introduced as an analogue to classical
filters, which are methods to refine the estimate on the state of a classical system, by using
a continuous stream of measurement data. Therefore it is not surprising that also in
the quantum case there is a strong and deep connection with quantum metrology. As a
matter of fact, we will show that this kind of evolution is a valuable metrological tool: it
allows one to gain information about the system and also to prepare valuable conditional
states. Moreover, in Chapter 4 we will show that it is possible to mitigate the negative
effect of noisy dynamics on the metrological precision when the environment causing
such dynamics can be measured. This fact can be intuitively understood by noting that
the actual noisy evolution of the system (the so called reduced dynamics) corresponds to
measuring the environment and discarding the results, keeping only the average state.

In order to rigorously study the metrological applications of continuous measurements
we employ quantum estimation theory. The most celebrated result in quantum estimation
theory is the quantum Cramér-Rao bound, which sets the limit on the achievable precision
in estimating parameters encoded in quantum states. In Chapter (2) we will see that
extending this bound to continuously monitored systems is not completely trivial and we
will identify the correct figures of merit to use in this situation.

The second part of this thesis deals with nonclassical states of continuous variable
systems and related topics. Continuous variable systems are infinite-dimensional and they
are in general harder to study than discrete systems, where a mathematical description
based only on linear algebra is sufficient. However, continuous variables systems are
ubiquitous, the prime example is the quantum description of light, which fundamentally
boils down to quantum harmonic oscillators.

The class of Hamiltonians given by quadratic polynomials of the canonical operators
(i.e. position and momentum operators of a harmonic oscillator) plays a very important
role. These Hamiltonians induce a genuinely quantum evolution, which however can
be described in purely classical terms, using a phase-space description. Moreover, also
ground and thermal states of quadratic Hamiltonians are very special. These are the
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so-called Gaussian states; they are compactly described by a finite number of parameters
and yet they display a great number of genuinely quantum features. For this reason they
are the foundation of continuous variable quantum technologies.

The last important word in the title of this thesis is the word nonclassicality. Clearly,
the challenge to precisely assess the demarcation line between a quantum and a classical
description of a physical system is an extremely broad problem, which has engaged
physicists for more than a century. In particular, in a quantum optical context, the
concept of nonclassicality emerged to pinpoint all those effects not ascribable to a classical
electromagnetic field. Since measurement results are described in statistical terms, we
have a nonclassical effect whenever a classical statistical model is not enough to explain
such results and we need the intrinsic statistical nature of quantum mechanics. The
probabilities predicted by quantum mechanics have two ingredients: quantum states
and quantum observables; nonetheless in the field of quantum optics, nonclassicality is
usually understood as a property of the states.

The idea of nonclassical states is used here in a broader sense. Most notions of
nonclassicality are connected to the impossibility of interpreting a quantum state as
a classical probability distribution over some suitable phase-space. Quantum optical
nonclassicality is based on the so called P-function, but we are also interested in a
different phase-space description, the celebrated Wigner function. In this setting a state is
nonclassical when the Wigner function takes negative values. Gaussian states are the most
famous example of states with a positive Wigner function (it is a Gaussian distribution).
From these definitions one many also introduce several non-equivalent ways to quantify
nonclassicality of a quantum state.

Before diving completely into the study of nonclassical properties, Chapter 5 serves as
connection between the two parts of this thesis. In this chapter we remain in the quantum
metrology playground, but we abandon the topic of continuous measurements. Instead,
we focus on a quartic Hamiltonian, the so-called self-Kerr interaction, which generates
non-Gaussian/nonclassical states and we show that it can be useful for a particular task in
metrology. Again, we can frame this finding by saying that such a nonlinear Hamiltonian'
is a resource for the considered estimation problem.

Afterwards, we study anharmonic mechanical oscillators in Chapter 6 and some
peculiar effects in the dynamics of a free massive particle in Chapter 7. Roughly speaking,
the goal of these studies is to quantitatively compare different nonclassical properties and
to assess what can be considered a resource for their generation. By studying anharmonic
potentials we more or less confirm the idea that the degree of anharmonicity is a resource
to generate nonclassical ground states.

Gaussian states can be highly nonclassical in the quantum optical sense; still, the gen-
eration of nonclassical Gaussian states in quantum optics is much easier than genuinely
quantum non-Gaussian ones. The price to pay for such convenience (both analytical and
experimental) is that many tasks in quantum technology cannot be implemented at all, or
their performance suffers from this restriction. In Chapter 8 we start from these consider-

1We are going to use the term nonlinear to mean that the transformation induced on the canonical operators
is nonlinear. Strictly speaking this implies that the Hamiltonian must be a polynomial of canonical operators of
order greater than 2.
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ations and we finally make use of the more rigorous meaning of the word resource, by
building a proper mathematical resource theory for non-Gaussian states. This resource
theory is truly quantum because we disregard “trivial” non-Gaussian states obtainable
by classical means. We also find a connection to previously introduced measures of
nonclassicality based on the negativity of the Wigner function. The work presented in this
last chapter contains a complete framework and some examples, but yet not many general
answers to fundamental questions. We hope that our work may set an appropriate stage
for many more future investigations.

Organization of the thesis

The present PhD thesis consists of two parts plus a preliminary chapter, for a total of
eight chapters. Part I is devoted to the topic of metrology with continuously monitored
quantum systems and it is divided into three chapters. Part II deals with nonclassical and
non-Gaussian continuous variable quantum states and it is composed by four chapters.
Some slight variations have been made in the presentation of previously published
results, to maintain consistency of style and to make the structure of the manuscript more
coherent.

o In Chapter 1 we collect the basic notions needed to understand the rest of the work.
We start by reviewing the mathematical description of quantum mechanics, with
particular emphasis on how to model measurements. We review the description of
Markovian open quantum systems and Markovian continuously monitored systems,
with a brief derivation of stochastic master equations. We present the fundamentals
of quantum estimation theory. We introduce continuous variable quantum systems,
with a particular focus on the Gaussian formalism. Finally, we briefly present three
different notions of nonclassicality, based on the P function, on the Wigner function
and on the non-Gaussianity of the state.

o In Chapter 2 we set the stage for the original work of the following two chapters.
We explain how to accommodate continuous measurements in the framework of
quantum estimation theory and the correct figures of merit to use. We also present
an efficient algorithm to compute said figures of merit, originally presented in [14].

e In Chapter 3 we apply quantum estimation theory to magnetometry with a large
ensemble of atoms, continuously and collectively probed by an external light mode.
These results are based on two published works [12, 13] and they show that, when
such collective interaction can be implemented, this metrological scheme is very
effective.

o In Chapter 4 we study the metrological problem of frequency estimation with qubits
undergoing a noisy dynamics and we show the beneficial effect of measuring the
environment. The results are mostly taken from [14], but we also present some new
material.

e In Chapter 5 we study the problem of estimating the loss rate of a bosonic channel,
modelled by a Markovian master equation. We show that the introduction of an
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additional nonlinear Hamiltonian, describing the so-called self-Kerr effect, can be
beneficial for the estimation. These results have been published in [243].

o In Chapter 6 we study the ground states of anharmonic potentials. We want to
investigate how the nonlinearity of the Hamiltonian is quantitatively connected
to the nonclassicality of the ground states, by considering different notions of
nonclassicality. These results have been published in [9].

e In Chapter 7 we study a peculiar dynamical effect arising for a free particle prepared
in a sufficiently nonclassical initial state, the so-called backflow effect. We compare
this backflow effect with the negativity of the Wigner function and we find that,
while negativity is a prerequisite, said effect is a more fragile phenomenon. These
results have been published in [11].

e In Chapter 8 we introduce a resource theory for non-Gaussian states, which also
applies to states with a negative Wigner function. The fundamental ingredient
of this resource theory is the set of available operations, which is very broad and
contains Gaussian unitaries, Gaussian measurements, classical randomness and
conditioning on measurement outcomes. After defining these operations we prove
that a logarithmic function of the volume of the negative part of the Wigner function
is a good monotone and we proceed to analyse some classes of states and a simple
protocol to concentrate negativity. This work has been presented in [10].






CHAPTER 1

Preliminaries

This chapter represents a brief overview of the fundamental concepts needed for the
following parts of this thesis. The aim is to introduce all the relevant notions and set the
notation, without giving an extensive presentation. We only show the derivations which
we believe are useful to better understand the following results and we always proceed
in a very intuitive manner, without dwelling on mathematical formalities.

We start with a review of the basic notions of quantum mechanics in Section 1.1. We
then review the dynamics of Markovian open quantum systems in Section 1.2, intro-
ducing both Lindblad master equations and stochastic master equations, used to model
continuously monitored quantum systems. In Section 1.3 we review quantum estimation
theory, one of the main theoretical tools of quantum metrology. Finally, section 1.4 is
devoted to the description of continuous variable quantum systems in the phase space
representation of quantum mechanics, with particular attention to Gaussian systems. We
also present some basic notions about nonclassicality of continuous variable systems.

1.1 Mathematical tools of quantum mechanics

In this section we review the fundamental mathematical tools of quantum mechanics
from a modern point of view. In this treatment we do not deal in details we the dynamical
aspects of quantum theory, meaning that we try to avoid time dependent descriptions
and we focus on the abstract mathematical objects. The presentation roughly follows the
structure of Ref. [127], but for obvious reasons it is much lighter; the reader is referred
to that book for a more exhaustive and rigorous treatment, see also [252] for a similar
approach. In particular, since part of this thesis is devoted to continuous variable systems,
we try to point out the most relevant differences between quantum mechanics with finite
dimensional and infinite dimensional systems; even though we are going to gloss over
many mathematical details.

1.1.1 States and observables

The fundamental mathematical object to describe any quantum system is a Hilbert space
H. A vector space on the complex field endowed with a scalar product (u|v) is called
a Hilbert space if it is also complete. Loosely speaking completeness means that every
sequence of vectors which ‘looks’” convergent (a Cauchy sequence using the distance
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induced by the scalar product) is indeed convergent. We recall that the scalar product
is a sesquilinear form, i.e. (au|fv) = a*B(ulv) VY|u),|v) € H, with o, € C. The
requirement of completeness is always satisfied in any finite dimensional vector space,
but it becomes a crucial requirement for infinite dimensional spaces. Moreover, for
quantum mechanics in infinite dimension we also require separability of the Hilbert
space, i.e. the existence of a numerable basis {|j),j € N}, so that every vector can be
expressed as an infinite sum [v) = Y ;).

For composite systems the global Hilbert space is obtained via tensor products of the
Hilbert spaces H; of the single components: H = ®; H;.

Operators on the Hilbert space

Quantum states and observables are represented by linear operators on 4. A particularly
important class is the set of bounded operators A : H — H which satisfy the condition
|(v|Alv)| < m(v|v) for some positive real number m € R*. For finite dimensional
Hilbert spaces every linear operator is also bounded and continuous, while for infinite
dimensional systems this is not the case. In infinite dimension we also say that an
operator is “trace class” if Tr[A] = Ylei |Ale;) < oo, where the sum is over the vectors of
a complete orthonormal basis (e;jle;) = J;;.

Another fundamental class of operators is that of self-adjoint operators. The adjoint of
an operator A is the unique operator A" which satisfies (v|Au) = (Atv|u) V|v), |u) € H.
An operator is said to be self-adjoint if A = A?; for finite dimensions this condition
corresponds to having an Hermitian matrix satisfying A;; = A;‘i. On the contrary, in

infinite dimensional spaces self-adjointness is a stronger the property than Hermiticity'
and it requires that A and A* also have the same domain: it is not enough that (v| Au) =
(Av|u) V|v),|u) € H. Even if this requirement is rather technical, it is crucial for the
validity of the spectral theorem which states that a self-adjoint operator can be written as
A =Y, ala)(a|, with a € R; note that in general the sum corresponds to an integral with a
given measure on 4. In finite dimension the vectors |a) are orthonormal (a|b) = §,;, while
in infinite dimension they can also correspond to improper vectors with infinite norm.

Finally, an operator is said to be positive if (v|A|v) > 0 V|v) € H. In finite dimension
this corresponds to a positive semidefinite matrix with non-negative eigenvalues and
thus implies Hermiticity.

Quantum states

Operationally, the state of a system is a way to express the knowledge about the preparation
of the system. In classical physics this corresponds to a probability distribution on some
suitable phase space; the distribution can collapse to a single point if the preparation is
deterministic. In quantum mechanics on the other hand the most general way to define
a quantum state is an operator on #, satisfying certain properties to guarantee a sound
statistical interpretation.

!Nonetheless in the following chapter we will often blur the terminology and refer to self-adjoint operators
simply as Hermitian.
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The convex set of quantum states is the set of normalized self-adjoint positive operators
on H?:
S(H) ={p € B(H)|p =0, Tr[p] =1}, 1.1

in the following we equivalently call p € S(#) a state, a density operator or a density
matrix. Any quantum state admits a spectral decomposition p = Y; Aj|e;)(e;|, where the
vectors |e;) form an orthonormal basis; the coefficients are positive A; > 0 thanks to the
positivity of p and form a normalized probability distribution }; A; = 1, thanks to the
condition Trp = 1. As usual, in the infinite dimensional case the sums might need to be
replaced by integrals.

Pure state corresponds to projectors on a normalized vector |)(¢|, or equivalently to
rank-1 density operators with only one non-zero eigenvalue Ay = 1. Pure states are the
extremal points of the convex set S(#), since every non-pure state can be expressed as a
convex combination (also called a mixture) of pure states p = Y, p;[v;)(vj|. We can see that
any ensemble of pure states {|v;)(v;|}, each appearing with probability p;, gives rise to
some density operator p. However, infinitely-many ensembles of pure states correspond
to the same density operator, the ensemble given by the spectral decomposition is only a
particular choice.

From this discussion it should be clear that pure states are deterministic preparations of
a quantum system, whilst when we deal with uncertain preparations we need to consider
mixed (non-projective) states® The main point is that, differently from classical mechanics,
a deterministic preparation is not a point on phase-space manifold, but it is, in its most
simple form, a vector* and this makes it possible that the outcome of an experiment are
uncertain even if the preparation is deterministic.

Given a bipartite system, a quantum state on the global Hilbert space pap € S(Ha ® Hp)
is mapped to local states on the two Hilbert spaces via the partial trace operation

pa = Trploag] =Y (il pas i) , (1.2)
i
where the sum is taken over an orthonormal basis {|i) } of Hp.

Observables

Having introduced quantum states as a way to describe the preparation of a system,
we now need the mathematical description of observables. The process of measuring a
quantum system is one of the most discussed fundamental aspects of the whole quantum
theory and it can be described at different levels of detail. The intrinsic randomness
of measurement outcomes is a key feature of the theory, which is a tool to predict the
probability of such outcomes, but not single occurrences. Here, with the word “observable”

2Even if operators are usually denoted by a hat sign, we omit the symbol on quantum states.

SHowever keep in mind that a mixed state can also be prepared without uncertainty, starting from a pure
global state and disregarding (tracing away) some subsystem. In this situation the randomness involved in the
mixture is not due to some uncertain preparation.

4 Actually, pure states correspond to an equivalence classes of vectors w.r.t. the multiplication with a phase
e (these equivalence classes are called “rays”). However, for the sake of simplicity we usually refer to pure
states as vectors.



4 1.1 Mathematical tools of quantum mechanics

we mean a mathematical object that captures the statistical description of the measurement
process, but it does not describe how the state changes because of the measurement. This
distinction is not present in classical physics and only quantum systems are perturbed by
measuring them. °

The most general observable on a quantum system is a positive valued operator
measure (POVM). Informally a POVM is a collection of positive operators {fr},} (also
called effects), which satisfy the fundamental property

Y Au=1, (1.3)

uemM

where M represents the outcome space and the label y corresponds to a single measure-
ment outcome. The outcomes y can be either discrete quantities or real valued vectors,
in such a case the sum is replaced by the appropriate integral. The recipe to obtain the
probability of an outcome is the celebrated Born rule

p(n) = Tr[oy] , (1.4)

when y assumes discrete values the real numbers 0 < p(u) < 1 represent probabilities.
On the other hand, when p is a continuous variable p(y) > 0 is a normalized probability
density: [, dup(u) = 1, thanks to (1.3). Later, we will see that this difference has
non-trivial consequences for continuous variable quantum systems. We also note that
sometimes we explicitly write p(p|p), since this probability obtained from the Born rule
can be thought as a conditional probability given the initial state p, which represents our
knowledge on the preparation of the system.

In the traditional formulation of quantum mechanics, observables correspond to self-
adjoint operators O = O' and the statistical moments of the observable are obtained
as (O) = Tr [O”p] in particular for n = 1 we have the expected (average) value of the
observable. Since O is Hermitian, thanks to the spectral decomposition O = ¥; 0;e; )e;] it
corresponds to a set of projections on its eigenstates Ole;) = o;|e;). These observables are
called sharp and correspond to projective POVMs since we have ) ; |e;)(e;| = 1.

Finally, we want to stress again that observables described as POVMs, as introduced
in this Section, are only a way to assign probabilities and there is no information about the
state of the system after the measurement has taken place. In many cases this description
is sufficient, because either there is no way to access the state of the quantum system
after the measurement or the measurement process itself destroys the quantum system.
Following the point of view of Ref. [127] we believe that it is conceptually clearer to
keep different levels of description separate. As a matter of fact, to describe the state
of a system after the measurement we need more information than the set of positive
operators {77, }. In the next Section, after introducing transformations between quantum
states, we will describe the most general way to perform this post-measurement update
of a quantum state and obtain the so-called conditional states.

5In statistical mechanics the state of a system is a probability distribution in phase space and such a
distribution is updated after a measurement according to Bayes’ theorem. However, this is only a change in our
ignorance about the system, while in quantum mechanics the state is perturbed even if there is no uncertainty
(a pure state).
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1.1.2 CP maps and quantum instruments

In the previous section we discussed the statistical interpretation of quantum states
and observables, but we did not address the question of how a quantum state can be
transformed into other states. Now we study this question in full generality, but abstractly,
without a proper dynamical description. In Sec. 1.2 we show more in detail how to relate
the abstract description with a more physical description which explicitly involves time
and Hamiltonians.

Let us now introduce the mathematical definition of quantum channels. A map &
between density operators must satisfy the following requirements

1. Linearity: E[ap + po] = a&lp] + BE[o] VYa,pe C Vp,0€ S(H)
2. Complete positivity: € @ Zanc ([ )X|) >0 V|¢) € H @ Hanc®
3. Trace preservation: Tr[E[p]] = Tr[p] = 1.

Maps satisfying requirements 1-3 are called quantum channels or CPT (completely posi-
tive trace-preserving) maps. The first and the third requirements are needed to preserve
the statistical interpretation of density operators, while the requirement of complete
positivity is more subtle and requires further explanation. As a matter of fact positivity
of the map &, ie. E[p] > 0 Vp € S(H), would be enough to preserve the statistical
interpretation of the density operator. Complete positivity is a stronger mathematical
condition, it obviously implies positivity of £, but it is strongly connected to entanglement.
Complete positivity ensures that if the system under scrutiny is entangled with some
other ancillary system living in the Hilbert space Hanc, applying the channel £ on the
system still produces a physical evolution of the global system. Moreover, this must hold
for all possible dimensions of the ancillary space. On slightly more practical grounds,
when the channels satisfies a semigroup property & s = & o &, the complete positivity
of &; is a necessary and sufficient condition for the positivity of the map & ® & [29].

Another crucial point is that complete positivity allows for a nice mathematical
characterization of quantum channels, whereas the set of positive maps is harder to
characterize. A particularly useful result is that every CP map can be written in the
so-called Kraus form

Ele] =Y K, oK}; (1.5)
M

the operators K, are usually called the Kraus operators (again, the sum might need to be
replaced by an integral in general); the Kraus representation of CP maps is not unique. If
£ is also trace preserving the Kraus operators must satisfy the identity )% K;;Ky =1
We are going to show that trace non-increasing maps play a fundamental role in
quantum theory, in this case the condition on the Kraus operators is }_,, K; Ky < 1and
they are usually denoted by a tilde, i.e. Tr[€[p]] < Tr[o]. Completely positive trace
non-increasing maps are sometimes called quantum operations to distinguish them from
trace-preserving quantum channels; we mostly call them only CP maps. Such CP maps

0T e represents the identity map on the ancillary Hilbert space: Zanc[panc] = Panc  VPanc € S(Hanc)
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still describe valid operations on quantum states, albeit non deterministic ones, i.e. the
renormalized output state p’ is obtained with probability p:

=== p=Te[€]o]], (1.6)

Even if the state p’ is obtained by a nonlinear map acting on p, it is usually simpler to work
with the unnormalized state o’ = £[p] and apply the normalization at the end.

A special class of quantum channels is given by unitary transformations acting on the
density operator, i.e. p — UpU*, with UU" = UtU = 1. Unitary channels correspond
to CPT maps with a single Kraus operator and they send pure states into pure states,
their action is most easily seen at the level of vectors and it is given by the mapping
) = Uly).

To end this section, we note that the description we have given so far is in the
Schrodinger picture, where quantum channels act on states and observables remain
unchanged. We can equivalently work in the Heisenberg picture, where channels are
applied to the observables instead. Mathematically, a linear mapping on the space of
states S(H ) defines a dual mapping on the dual space 7 of observables (effects) as follows

Tr(€[o]m] = Telo€* ] ; (17)

this map is well defined since Tr [A*B} defines a scalar product on the space of linear
operators on H, the Hilbert-Schmidt product. From an operational point of view this
means that the probability distributions given by the Born rule do not change, so the two
pictures are equivalent. In this thesis we almost always work in the Schrédinger picture.

Quantum instruments

Now that we have introduced CP maps, we can finally go back to the question of how
the state of a system is perturbed after a measurement. For simplicity we restrict our
statements to the case of countable outcome sets M, for more general statements see [127].

A quantum instrument is a collection of CP trace-nonincreasing maps {gy }y c v Such

that the sum of all the maps is trace preserving Tr {ZH em & [p]} = Tr|[p] for every positive

operator p. The probability of measuring the outcome y is then p(u|p) = Tr[E,[p]]. As
we already saw in (1.6) the normalized conditional states are given by

Pu = Lule] : (1.8)
Pu
A quantum instrument describes a conditional evolution, since the evolution is conditioned
on the observation of the outcome .
Each quantum instrument is also associated to a trace preserving channel yne =
YueM 5},, which gives the so-called unconditional evolution, i.e. the state obtained
on average by measuring the system and discarding the results; it is easy to see that

7We refer the reader to [127] for the precise statement about the duality between states and effects.



Preliminaries 7

Eunclo] = Lyuem p(y)py Furthermore, every CP map in the collection has Kraus de-
composition &, [e] = Z] % . K; , thus the unconditional channel has a Kraus decom-
position Eunc[e] = ¥, YKy @ Ky it Since the unconditional channel is deterministic

(trace-preserving) the sum of all the Kraus operators satisfies }_,, ; KP ]KH/J

This description is obviously consistent with the statistical description given in term of
POVMs. Given a POVM {7, }y o there are infinitely many quantum instrument which
reproduce its statistics. A particularly useful instrument is the Liiders instrument (also
called a bare instrument): & 44 .| # \/> \/> There is larger class often considered
in the literature: quantum 1nstruments in which all the CP maps have only one Kraus

operator. This means that every element of the POVM is written as
ft, = MM, (1.9)

and the (unnormalized) conditional states are obtained as g, = MHpM;. It is easy to
see that these instruments are given by the Liiders instrument followed by a unitary
transformation (in general a different one for every measurement outcome), this is nothing
more than the polar decomposition of the operators: M, = U, /7t- More generally, it
can be proven that the whole class of instruments leading to a POVM is given by the
Liiders instrument of the POVM, followed by a CPT map dependent on the measurement

outcome, i.e. conditional map is £, [e] = &, [\/ﬁy . \/%y} .

1.1.3 The church of the larger Hilbert space

Even though we formulated quantum mechanics in terms of density operators and
channels there is no contradiction with the older traditional formulation. Crucially, the
fundamental postulates remain the same [222]:

1. States: States of a quantum system corresponds to vectors (up to multiplication for
a global phase factor) in a suitable Hilbert space.

2. Measurements: Observables correspond to Hermitian operators on the Hilbert space
and the state of the system after the measurement is an eigenstate of the observable
corresponding to the observed eigenvalue.

3. Dynamics: The evolution of states is given by unitary operators.

The conciliation between the traditional and the modern approach has been called
“going to the church of the larger Hilbert space”. The idea is that by enlarging the Hilbert
space of the system under investigation it is always possible to go back to a description in
terms of vectors, unitaries and projective measurements; this procedure is often called a
“purification”. This point of view is backed up by a very important mathematical result,
Stinespring’s dilation theorem.

When applied to observables Stinespring’s dilation theorem is known as Naimark’s
theorem. Naimark’s theorem states that each observable can be built from the unitary
interaction of the system with a pure state of an ancillary system and a subsequent projec-
tive measurement of the ancillary system. Formally, for any POVM {7, },,c »¢ there is an
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ancillary Hilbert space Hanc, an ancillary fixed pure state |w) € Hanc, a fixed unitary in-
teraction U : Hsyst @ Hane — Hsyst ® Hanc and a projective measurement {ISP[ = |u)u| }y
with P, P, = 6, such that Treys [07] = TrsystTranc{ U(p @ |w)w|)UT (1 ® P,)} Vu €
M, Vp € S(Hsyst). As expected the extension of a given POVM is not unique.

The other important consequence of Stinespring’s theorem is that each quantum
channel can be obtained as the unitary interaction with an ancillary system in a pure
state, which is then discarded. Formally, the action of a CPT map £ on any state p can be
expressed as

Elp] = Tranc {lAl(p ® |w>(w|)lfr}, (1.10)

for a certain ancillary Hilbert space Hanc, pure state |w) € Hanc and unitary interaction
a: Hsyst @ Hane — Hsyst ® Hane; again, this construction is not unique. This result is
due to Kraus and it is equivalent to specifying the Kraus form of the channel (1.5); if we
write the CPT map in Kraus form as E[e] = ), M, e M;, the Kraus operators are written
as

My = (u|Ulw) ; (1.11)
this is a partial scalar product of U with vectors in S(Hanc), so that the result is an
operator on Hsyst. This channel also corresponds to the unconditional channel given by
the instrument with CP maps E[e] = M,, . M;, which in turn generates the POVM (1.9).

1.2 Markovian conditional and unconditional quantum dynamics

In this section we introduce the relevant dynamical equations which are employed in the
rest of this thesis. These equations are to the celebrated Gorini-Kossakowski-Sudarshan-
Lindblad master equation (which we mostly call only Lindblad equation, for semantical
convenience) and Markovian stochastical master equations, both diffusive and jump-like.
We do not give rigorous proofs, but we try to sketch the main ideas behind the derivations
of the equations, following the presentation in [100, , , ]. Some other standard
references on these subjects are [144, , 1, we also refer to the introductory section
of [116] for a brief but self-contained presentation, which clearly highlights all the relevant
assumptions in this approach. We stress that we only deal with Markovian dynamics.

Hamiltonian dynamics

Let us briefly recall how the unitary dynamics we described in the previous section is
physically generated by the Hamiltonian of the system, which is a self-adjoint operator
with a spectrum bounded from below 8. The differential equation which dictates the
dynamic of a pure state is the Schrédinger equation

dy(t A
W) — iy g ; 112
this is equivalent to an equation for an observable O in the Heisenberg picture:
d%t) — im[A(), 0] . (113)

8We remark that in some cases we will work with effective Hamiltonians that are not bounded from below.
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Eq. (1.12) in the Schrodinger picture can equivalently be rewritten as a Liouville-Von
Neumann equation for the density operator

O — (A, p(0)], (114

this equation has the same form as (1.13), but with the opposite sign. The unitary operator
expressing the solution to equations (1.14) and (1.12) can formally be written as

it
U(t,to) = T exp [hl t dt’I:I(t’)] , (1.15)
0

the time-ordering operator 7 has the effect of putting non-commuting operators in the
correct chronological order. Formally we have

~ ~ . H(tl)H(tz) if t <t
T(H(t)H(R)) = {H(tz)H(tl) E bt (1.16)

and analogously for more than two operators; this definition is applied to exponen-
tial (1.15) by Taylor expansion. When the Hamiltonian is time independent, we do not
need time ordering and the evolution is homogeneous in time (it is only described by the
elapsed time f):

U(t) = exp[—itI:I} ; (1.17)
note that from now on we always rescale units appropriately such that # = 1. Unitary
evolutions are due only to the Hamiltonian of the system, therefore they describe closed
quantum systems. As we already pointed out, more general evolutions arise when the
system interacts with an external ancillary system. In many cases instead of an “ancillary
system” the interaction is with an external environment; the environment itself is treated
as a quantum mechanical system. Usually the dimension of the Hilbert space of the
environment is much larger than the dimension of the principal system. When the
dynamics of a quantum system is also caused by the interaction with an environment we
usually talk of open quantum systems.

The topic of this section is precisely open quantum systems dynamics, both when
we do not have any access to the degrees of freedom of the environment (unconditional
evolution) and when we can actually access and measure them (conditional evolution).

1.2.1 Lindblad master equation

This derivation is obtained using input-output theory, in a way that is going to make
the transition to stochastic master equations (SME) transparent. The intuition behind
this Markovian input-output theory is that the environment can be thought as an infinite
collection of uncorrelated quantum systems, all in the same state and that the principal
system interacts at each time with a different system from this collection. More formally:
the global Hilbert space of the environment is partitioned in an (uncountable) infinity of
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subspaces labelled by the time variable t and the global state is a factorized state with the
same reduced state on every subspace.’

The input modes are a collection of bosonic modes'® {b;,(t)}+, labelled by the time
variable t, that satisfy the following commutation relations

[bin(8), b ()] = 3t = 1), (118)

these operators are also called “white noise” operators, as their commutation relations
implies that they are delta-correlated in time, exactly like classical white noise. In a quan-
tum optical setting the input operators by, (t) represent travelling light fields, while the
system (usually an optical cavity) is fixed and localized and interacts with the travelling
light impinging on it. For this reason we often refer to the excitations of this bosonic field
as photons.

In this section and in the next we always assume that the state of each mode is the
vacuum |0),, satisfying bi,(t) |0), = 0 and by, ()t |0), = |1), (a single photon state) at
each t. This choice implies that the expectation value of the anti-commutator is again a
Dirac delta

({Bin(0), Bin(t)*}) = 8t 1) (1.19)
This last condition and the one in (1.18) encode our Markovianity assumptions. The
physical meaning is that the environment subsystems interacting at different times are
completely uncorrelated and the interaction itself is instantaneous. This is clearly an
idealisation which relies on a separation of timescales between the dynamics of the system
and the environment. Roughly speaking we are assuming that the correlation time of the
environment is much shorter than the timescales governing the evolution of the system!!.

The interaction Hamiltonian between the input modes and the system is the following

() = iv7 (6@ bin(t) — & @ bin(t)), (1.20)
where ¢ represent a generic (Hermitian or non-Hermitian) operator on the Hilbert space
of the system and <y quantifies the strength of the coupling. Notice that in the context
of quantum optical cavities the rotating wave approximation usually brings to a non-
Hermitian operator ¢, but there are methods to obtain the coupling with an Hermitian
operator, see [71]. Nonetheless, in other physical setups Hermitian collapse operators
appear more naturally.

We can see that the commutator (1.18) at equal times is not a well defined quantity, so
we heuristically go around this problem by integrating the input operators as [256]

. ot
Sbin(t) = /t bin (#)dt! (1.21)

9For the sake of the derivations we work with a continuous time variable f and infinitesimal time increments
dt, a more rigorous approach is to discretize time first and then take the limit for At — 0 at the end, see e.g. [55,

]

10 Bosonic continuous variable systems are introduced in more detail in Section 1.4, here we assume a basic

knowledge on the subject.

11 Alternatively, we could say that in this approximation dt is mathematically an infinitesimal quantity, but
physically corresponds to the smallest timescale of the system and anything happening on shorter timescales
can be disregarded.
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which implies
[%in(t),éfa;(t)} — 16t . (1.22)

For an infinitesimal 6t we have that by, (t) = by, (t)dt; this leads to the following identity
[Ein(t),fafn(t)}dtz = 1dt . (1.23)

We now define a new set of bosonic operators b/ (t) satisfying the relation bi, (t)dt =
E{n(t) \/dt 12, these operators are proper creation and annihilation operator at each time,
ie.

[ (8), Bin(5)] = 1. (1.24)

We can thus write the unitary evolution corresponding to the Hamiltonian (1.20), which
evolves the system from a time ¢ to a time 4 dt, as a function of the operators b’y (t) as
follows

Ut t +dt) = e~ Fim() = exp [ﬁdt(é bt () -t Ein(t)ﬂ
= exp |V dt(e@ B (t) — ' @ Fin(1))] 5

The key feature of the form (1.25) is that it is an exponential of the dimensionless variable
\/ vdt. Thus, to obtain terms up to first order in dt, we need to expand the exponential up
to second order as follows

(1.25)

At t+dt) A1 @ 1+ (2@ B () - & @B, (1)) Vdt+

1/, 2 R 12 . ~top ata ot ot
+5 (c+2 DU () +E @i (1) — et @ 0B, () — e b{nb’in(t)) ydt ;
(1.26)

we note here that sometimes we are going to include the parameter -y in the definition of
the operator ¢ by rescaling itas ¢ — /7¢.

Now we bring into the calculation the assumption that at each time the state is
factorized as p(t) ® |0),(0] and we compute the evolution of the density matrix of the
system as

o(t+dt) = Try [a(t,t+ dt) (p(t) @ [0), (0| U (¢, t + dt)* } ) (1.27)

where with Tr; we mean that we are tracing over the Hilbert space labelled by ¢, the one
where the operator by, (t) acts. By inserting the expansion (1.26) and explicitly computing
the trace we get to

p(t+dt) = p(t) + yepet — %{a*é,p} , (1.28)
which we can rewrite as a proper differential equation:
dp(t .
% = 7D[elp(t) , (1.29)

12[n more mathematical literature the operator dby, = B!, (t)V/dt is called a quantum Wiener increment.
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where we introduced the dissipation superoperator D, defined as
A A A 1( At
_ t_ = t
D[Ale = Ae A 2{A A,.}. (1.30)

More in general, we can also insert an Hamiltonian acting on the system into the master
equation (1.29), albeit we should make sure that the evolution due to the system Hamil-
tonian is slow enough not to break the derivation. The Markovianity assumption of
considering the system “frozen” while interacting with each environmental mode could
break down.

Furthermore, the case with a single ¢ can be generalized to a collection {¢;}, often
called collapse operators. The general form of a Markovian Lindblad master equation is

then
d’;*(f) = Lo(t) = —i[A,p()] + L 1iDIeo(t), (1.31)

with 7; > 0 Vi. To obtain this general form, we have to consider n independent input

modes 131(1]1) (t), one for each noise operator c;, that satisfy Bosonic commutation relations

(60 (), 65 (1] = ao(t 1), (1.32)

m

In Eq. (1.31) we also introduced the time independent Lindbladian superoperator £. This
is a linear operator on S(H ) and from this point of view it is easy to see that the CPT map
generated by Eq. (1.31) are obtained by exponentiation of £ as

& =t (1.33)
These solutions satisfy a semi-group property
Ero& =&yt VEseER; (1.34)

the fact that this is a semi-group and there is no inverse, at variance with the purely
unitary case, makes clear that this kind of evolution is irreversible. More in general, if
a collection of CPT maps & satisfies the semi-group property (1.34), the generator £
must have the form given by the master equation (1.31); this is the original result of
Lindblad [166] and Gorini et al. [114].

1.2.2 Stochastic master equation

Here we will show that a stochastic dynamical equation arises when we are able to
measure the environmental degrees of freedom at each time ¢ instead of tracing them out.
In particular we consider only two kinds of measurements: the so called homodyne mea-

surements, which corresponds to a Hermitian observable £y = (eb] + e~ p/ :rn) /V2 =
o8 0%in — sin0pin = [ |xg)(xg| dxg and on-off photo-detection which corresponds to the
binary POVM, with elements 7ty = |[0)(0| and /7 = 1 — |0)(0|. Note that, by dealing
with states with at most one photon, the projection on the subspace orthogonal to |0) is
restricted to a projection on single photon subspace 71; = |1)(1].

We derive stochastic differential equations, but do not explain in details the theory of
stochastic processes and we only introduce the bits of information needed in this context.
We refer to [143] for a comprehensive, yet straight-forward, treatment.
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Photo detection

We start again from the expansion of the interaction unitary up to order dt in (1.26) and
we compute the Kraus operator as prescribed by (1.11)

Ko(t) = ¢ (0| U(t,t +dt)|0), = 1 — ——¢'¢ (1.35)
Ri(t) =+ (1| U(t, t +dt) |0), = /dte; (1.36)
we have the POVM elements (keeping terms up to order dt)
fto(t) = Ko(t)TKo(t) = 1 — ydtete (1.37)
() = Ka() K () = ydte’c; (1.38)

this is a well defined POVM, since 7 (t)o + 7t(t); = 1.
The state at t + df can assume two different values:

(c) Ro(Hp ) (Rt pl(t) — Fat(e el (1) + p (1)ée)
fo b+ = OOy T I dm[Eee (1) (%)

Tr[K1<t>p<c><t>Kl<t>+] Te[ 67600 (1)]

where the superscript (c) signals a conditional state. This evolution is discontinuous in
time and the evolution due to the Kraus operator K; in (1.36), which corresponds to the
detection of a photon, is often called a “quantum jump”.

If we expand the denominator of (1.39) up to order dt we get to

ol (¢ +dt) = plO) () — %dt(é*ap@(t) + O (t)ete) + ’ydtTr[ cpt )(t)}p(c)(t) +O(dt).
(1.41)
We now introduce a Poisson increment'® dN; with mean
E(dN;) = o.Tr[ﬁo(t)p@(t)} +1 .Tr[ﬁl(t)p<f>(t)} = oTr [p@(t)@*a} i, (1.42)

being a two-outcome distribution, it is completely described by its mean value. Therefore
one can combine the two possible outcomes into a single equation

dp' () = pl) (t +dt) — ' (t) =
— dN; (p@ (t+dt) — p(c)(t)) +(1—dNy) (pff) (t+dt) — p'© (t)) :

This equation can be simplified by noting that the term dtdN; can be discarded, since it
gives contributions of order greater than dt. This can be understood intuitively from (1.42)
and it can be proven rigorously in the theory of stochastic processes [143].

(1.43)

13 A Poisson increment dN; with rate -y (t) is a stochastic process with two outcomes: 0 and 1. The probability
that dN; assumes the value 1 in the time interval dt is A(t)dt, and the probability that it takes the value 0 is
1— A(t)dt. Informally, the probability that dN; is 1 in any infinitesimal time interval is vamshmgly small and thus
dN is zero most of the time. However, sometimes dN; takes the value 1, and the value of N(T jo dN; “jumps”
by 1; N(t) is called a Poisson process. A fundamental property of Poisson increments is that (dN¢)? = dNj.
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If we also add an Hamiltonian term we get to the more general equation

an(c)at
© — —i[a 0©@] — X(eteo© 1 p@¢te eteo(©) | plo) _e
o\ = z{H,p } > (c o\ +p\e C)dt+'yTr[C ép }p dt + <Tr[€p(c)€+] [y )dNt
2 (c) At
— ilf 0@ — Yyretero© B N O]
z{H,p } 2H[c Elp'“dt + (Tr[ép(c)é’f} o )dNt , (1.44)
where in the last line we introduced the superoperator H defined as
H[A]O:AoJroAijTr[o(AJrAJr)} .. (1.45)

The unconditional state is obtained by taking averaging over the Poisson process: p(t) =
E {p(‘:) (t)} . In order to see it explicitly it is useful to introduce the following stochastic
calculus rule [298]

E{dNt f(p(c))} = ydtE {Tr {CJrcp(C)} f(p(c))} , (1.46)

for any function of the density matrix; this is consistent with (1.42) when f = 1. By making
use of (1.46) one can average over the Poisson increment and get from the stochastic
master equation (1.44) for the conditional state to the Lindblad master equation (1.29) for
the unconditional state.

If instead of considering a generic initial state pg, the system starts in a pure state |iy),
the stochastic evolution maintains the state pure at all times and can be rewritten as an
equation for a conditional state vector |, (t)):

d|yl(t)) = [—int + 2 ((e'e) —ete)dr+ ( <Cé+€> - 1) dNt] (),  (147)
this equation is called a stochastic Schrodinger equation (SSE); for compactness we
introduced the expectation value on the conditional state: ((¢)(t)| o [p()(t)) = (e).
Historically, solutions to stochastic Schrodinger equations are called quantum trajectories;
however we also use the term more freely also for solutions of stochastic master equations.

By writing the infinitesimal increment for the projector representing the pure state

40 = (@ [9')) B+ [9) (@ @O ]) + (@)@ D)), 148)

one can check the consistence between (1.47) and (1.44), taking into account the property
of Poisson increments (dN;)? = dN;. Note that it is necessary to retain also the second
order term in Eq. (1.48).

The stochastic variable Ny = fOT dN; represents how many jumps have occurred
up to time T, i.e. how many photons have been detected. However, the ‘measurement
record’ corresponding to an experiment contains more information than just Nr, the
complete information is a list of times 0 < t;, < - -+ < ty,; < T corresponding to each
photo-detection.

Every master equation in Lindblad form can be rewritten in terms of stochastic
Schrodinger equations and the solution of the master equation is obtained by averaging
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over the stochastic process. This procedure is called “unravelling” the master equation
and Eq. (1.47) is a specific unravelling based on a discontinuous jump-like evolution. As
we have seen, a stochastic Schrodinger equation has a physical meaning, however it is
also useful as a tool to numerically solve Lindblad master equations [63]. The advantage
is that only state vectors are needed instead of density matrices, the price to pay is that one
has to accumulate enough statistics to reduce fluctuations by generating many trajectories.

Homodyne detection

For homodyne detection we use a slightly different approach to derive a stochastic master
equation. Starting from the expansion of the interaction unitary up to order dt (1.26),
instead of computing the Kraus operators, we can directly compute the unnormalized
conditional state

5O (t +dt) = Tr, [Cl(t,t+ dt)(p(t) @ [0), (ONU(t t +dt) (1 @ |xg) (xe\)] -

A A (1.49)
= 1 {xo| U(t, t +dt) (p(t) ® |0), (O U(t,t +dt)" |xp);

and the corresponding probability

pt+dt(xe) = Tr[ﬁ(t + dt)} ; (150)
the normalized state is then
5() (t + dt)

@t +dry = T2 151
pelE+al) P+ar(Xp) (50

Differently from the previous case, we only need an expansion of the numerator and
the denominator in (1.51) up to order \/7dt, since all the relevant terms of order ~ydt
come out as a result. Due to vacuum fluctuations the probability distribution for x
at time t, before the interaction, is a Gaussian with variance % and mean value 0, i.e.

42
pi(x0) = 1{x0l0)¢|* = e .
The expansion of the conditional state yields

Ut + dt) =1 (x5|0): >0 (1) +
+ (5P(C) (t)e(xa|1)¢(0[xg)t + P(C)(f)5+t<xe|0>t<1|xe>t) Voydt +O(y/vdt) =

=p(xg) {p(c)(t) + (ép(c) (t)ei‘9 + p(c)(t)€+e_i9) x9\/2'ydt} + O(y/ydt)
(1.52)

where to get the second expression we used the identity ¢ (xg|1)¢ = v/2xge'®¢ (x4|0);. The
expansion of the probability distribution yields

prsar(xe) = Te ) (4 db) | = pe(xa) (14 V/2dbx (¢ + o) ) + O(/yd)

‘ . 2 (1.53)
—(xg— ryzﬂ<€ele+€+e’9>t> ] ,

1
~ ﬁexp
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up to order v/ dt it is equivalent to a Gaussian distribution with variance % and mean value

v/ A’Tdt (¢e!? + ¢Te~1);. We can introduce a new stochastic increment dy; and a stochastic
process I; such that

dy; = Lidt = V2dtxg = /y(¢e”® + ¢Te™)dt 4 dwy , (1.54)

where here dw; a Gaussian random variable with variance dt and zero mean E[dw;] = 0.
The stochastic variable y7 = fOT dy; represents the so-called integrated photo-current.
The continuous stream of outcomes is usually understood in terms of the so-called
photocurrent I; = %. The photocurrent I; is equal to the expectation value of the
operator ¢e? + ¢te~ at time t, plus a white noise term:

I(t) = (e + et ) + & (1.55)

where §; = % represents white noise.

In the theory of stochastic processes dwy is called a Wiener increment. The defining
and remarkable property of a Wiener increment is that its square (in principle a random
variable) is actually not random, but satisfies dw? = dt. This identity is formally known
as Itd’s lemma and it is the basis of It stochastic calculus. The assumption leading to a
It6 stochastic differential equation is that integral (1.21), needed to define the “physical”
operators ISi/n(t), does not involve modes at times preceding ¢.

By inserting expressions (1.52) and (1.53) into (1.51) and expanding the denominator
we can finally get to

o) () = —i [H,p<c> (t)} dt + yD[e]p) (t)dt + M) (t)dw; = (1.56)
_ _i[H, p<c>(t)]dt + D[l (£)dt + AH[E)p (1) (dyt — e+ a*>tdt)
(1.57)

where we also added the usual Hamiltonian term and in the second line we wrote the
equation in term of the observed photocurrent. In the following we suppress the explicit
dependence on 6 which comes from measuring a different quadrature, since it is simply
equivalent to the substitution ¢ — ¢e'?; also note that the dissipative part does not depend
onf: D[¢] =D [&zie] . This stochastic master equation is called a diffusive unravelling,
since the stochastic part is represented by a diffusive stochastic process'*.

Similarly to the discontinuous jump-like case we can alternatively write a stochastic

Schrodinger equation if the initial state is pure:

N At 2
—if+ 2 (a*a— (e+e)e+ <C+C>>]dt

4

(1.58)

4 Diffusive means that something initially localized spreads out in time. This can be seen by considering the
Wiener process W(t) = [ dw;, which is a Gaussian random variable with variance ¢ (linearly increasing in time).
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to check the equivalence with the previous equation for the density matrix we need
to use again Eq. (1.48) and to apply It6’s rule. Due to the fact that dw; has zero mean
E[dw;] = 0, it is straight forward to check that the average of (1.56) gives back the
Lindblad equation (1.29), which corresponds to the particular case H = 0.

Inefficient detection

The previous equations were derived assuming that the measurement on the output
modes was a perfect projective measurement (actually a sharp observable, since we
are only interested in the statistics). However this assumption is not fulfilled in many
practical and interesting scenarios. The simplest way to model inefficient detection
is to assume that the measurement happens with probability # € [0,1] and fails with
probability 1 — 7. This is equivalent to placing a beam-splitter with trasmissivity # before
the measurement device, which accounts for the lost photons. Another equivalent way to
model this inefficiency is to rewrite the master equation for the unconditional dynamics
as

deT(tﬂ = n7Delp(t) + (1 =) DeJp(t) (1.59)

and then unravel only the term proportional to # [298].

The steps presented in the previous sections can be reproduced and we get to a
stochastic master equation for photo-detection

Ap(c) ot

dpl©) = —i[H,p@}dt—q%ma%]p(f)dH ( - p<f>> dN; + (1—15)yD[e)pdt ,

Tr[epl)et
(1.60)

where now the Poisson increment has expectation value E[dN;| = 9Tr [p(c)} dt. Anal-

ogously, we have a diffusive stochastic master equation for homodyne detection with
finite efficiency

dp©) (1) = —i [H p<6>(t)} dt + yD[e)p') (¢)dt + /7H[ee®] ) () dw; . (1.61)

As expected, both equations give back the unconditional Lindblad master equation for
n— 0.

In Sec. 2.3 we will generalize these stochastic master equations to the case of more
than one collapse operator. This is done by considering not only one input field, i.e.
one “environment”, but a collection of input field, one for each collapse operator: the
stochastic master equation has as many independent stochastic increments as collapse
operators. In this way it is possible to unravel a generic master equation in Lindblad
form.1>

15Master equations with more than one collapse operator can also arise by considering mixed states (usually
thermal states) of the environment instead of the vacuum. In such cases the corresponding SME contains less
independent stochastic increments than collapse operators.
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1.3 Quantum estimation theory

In Section 1.1.1 we described the measurement process in quantum mechanics. We have
shown that even when every aspect of an experiment is under control and the resulting
state is prepared deterministically the outcomes of a measurement on the quantum system
are in general random variables. From this intuitive understanding, we immediately
sense that statistical analysis of measurement data is fundamental in quantum physics.
Some quantum mechanical observables corresponding to self-adjoint operators, such
as energy and angular momentum, have a very clear physical interpretation. However,
many other quantities of interest in physics do not naturally correspond to Hermitian
operators, two notable examples being optical phases and temperatures. To assign a value
to such quantities, one has to measure proper quantum mechanical observables and then
infer their value.

Even classically, the general problem of characterizing a probability distribution
from empirical data is exceedingly hard. However, very often one is able to restrict the
problem to a class of probability distributions parametrized by a certain finite number of
real parameters. Estimation theory is the branch of statistics that deals with estimating
the true values of such parameters from empirical data. The parametrized probability
distribution is also called a statistical model. In Subsection 1.3.1 we introduce the most
relevant concepts in estimation theory and review some important results.

In the quantum case, the parameters to be estimated appear in a quantum state rather
than in a classical probability distribution. This is the starting point of quantum estimation
theory, which is presented in 1.3.2. There is a deep connection between classical and
quantum estimation theory, as one would expected from the Born rule.

Within the the scope of this thesis, we are interested in single parameter estimation
only, i.e. statistical models, classical or quantum, parametrized by a single real variable.
Actually, many results in estimation theory can be generalized to the multidimensional
case without too many conceptual difficulties. The same is not true for the quantum case,
where multi-parameter estimation introduces a new set of challenges.

1.3.1 Classical parameter estimation

A standard reference on classical estimation theory is [165], where proofs for most of
these statements can be found; we only present a brief overview. We approach parameter
estimation in the framework of frequentist statistics, rather than Bayesian, therefore it is
always assumed that the parameter to be estimated has a true value and correspondingly
the statistics of the observed data obeys the true probability distribution.

The statistical model is denoted as p(x|A) and it simply represents a collection of
probability distributions for the random variable x'¢ , labelled by a real parameter A.
The true value of the parameter is Ay and the corresponding probability is p(x|Ag). The
starting point of the statistical analysis is a set of M independent empirical observations
Q = {x1,...,xp}; in practical terms the M data points are usually obtained from M rep-

16Here we leave x generic, it can correspond either to a discrete variable or to a vector of continuous variables.
With a modern measure theoretical approach to probability both cases can be treated equivalently.
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etitions of an experiment with identical initial preparations. We now define an estimator'”,
which is, roughly speaking, a function from the set of measurement outcomes to the space
of parameters

AMQ) = Alxy,..., xm) ; (1.62)

being a function of random variables, the estimator itself is a random variable.
We can then introduce several figures of merit to quantify the error in the estimation,
the most common choice is the mean square error, defined as:

MSE(A) = B[ (1 - A)°] = /(A(Q) — 20)’p(Q)dQ, (1.63)

where the probability distribution of the outcomes is p(Q)dQ = [T, p(x;|A¢)dx;, since
the variables are independent and identically distributed (i.i.d.). The variance of the
estimator is defined as

var(d) = E[(A - E[A])*] ; (1.64)

it does not quantify the error in the estimation, but only the spread around the expected
value. An estimator is unbiased if the expected value is equal to the true value: E [)At] = Ap.
For unbiased estimators the variance and the mean square error clearly coincide. A lower
variance corresponds to less uncertainty in the estimation of the true value A from the
observed data.

One of the fundamental results in estimation theory is that it is possible to give a
lower bound to the variance of any unbiased estimator for the parameter A in terms of
local properties of the statistical model p(x|A) around Ag. This result is the celebrated
Cramér-Rao bound

A 1
Var|A| > ——F—, 1.65
M 2 M) (169
given in terms of the Fisher information (FI)
[0
Flp(x| /dxp x|A)[0; log p(x|1)]2 /d “”xM ; (1.66)

the FI can be interpreted as a measure of statistical distinguishability between neighbour-
ing probability distributions. Under a reparametrization of the statistical model 0(/\), the
FI changes as

2
Fip(ale)) = (T2 ) Flpiire). (167

Only relative increments of p(x|A) are relevant for the FI and thus proper normalisation is
not important: any function «(x) - p(x|A), with d,x(x) = 0 can be used to compute the
Fisher information.

The Cramér-Rao bound (1.65) can be proven under some regularity conditions on the
function p(x|A), see [165]. In particular, the sample space of the probability distribution
p(x|A) must not depend on A.

17Confusingly enough, in statistical literature estimators are usually denoted with a hat, which clashes with
the notation we used for operators on Hilbert space. We hope that the difference between the two should be
clear from the context.



20 1.3 Quantum estimation theory

When the variance of an estimator is equal to the r.h.s of the Cramér-Rao inequal-
ity (1.65), the estimator is said to be efficient. The existence of an efficient estimator is
guaranteed only for some statistical models and for particular choices of parametriza-
tion. However, much more is known for the asymptotic limit of a very large number of
observations M — co. An estimator is said to be asymptotically unbiased if it becomes
unbiased in the asymptotic limit. Two asymptotically unbiased and asymptotically effi-
cient estimators for every (well behaved) statistical model are the maximum likelihood
estimator and the Bayesian estimator, that is presented at the end of this section and
employed in Chapter 3.

Finally, we want to point out the deep connection between statistics and geometry,
which goes under the name of information geometry. The basic idea is that the statistical
model p(x|A) has the structure of a manifold with coordinates A, to each point on the
manifold corresponds a probability distribution. In this geometrical picture the Fisher
information plays an important role: it defines a Riemannian metric on the manifold. The
reparametrization of the statistical model thus corresponds to a change of coordinates
on the manifold and the behaviour of the FI (1.67) obeys the transformation rules for the
components of a tensor. We only considered the singe-parameter case, where the metric
tensor is simply a scalar.

Bayesian estimator

Here we introduce an estimator commonly used in practical scenarios, the Bayesian
estimator. In the Bayesian approach, one starts with some prior information about
the value of the parameter, which is treated like a random variable with some initial
probability distribution. This initial probability is then conditioned by the observed data
and the updated probability is used to get an estimate of the true value.

Bayes'’s rule is a recipe to compute the conditioned probability distribution of some
random variable x, given some observed value of some other random variable y:

pylx)p(x)
TR (1.68)

This is due to the relationship between the joint probability and the conditional prob-
abilities p(x,y) = p(x|y)p(y) = p(y|x)p(x) (the joint probability is symmetrical in its
arguments).

In the case of parameter estimation the ruled is applied as follows. We consider a
dataset () = {xi}lM with M empirical observations of a certain random variable X. The
probability of obtaining the outcomes in () given that the value of the parameter is A is
p(QA).'8 From Bayes rule we get that

p(xly) =

@
PRI = T @) p(nan (1.69)

where the integral is carried out over the whole parameter space A. The probability
distribution p(A) is called the prior distribution and it has to be chosen to reflect previous

18This object is also called the likelihood function of the statistical model given the observed data.
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information about the true value of the parameter Ag. p(A|Q)) is the posterior distribution
and it represents the information we have a posteriori, after observing the data Q).

The most common Bayesian estimator is the expected value of the posterior distribu-
tion:
Ap(Q) = /AAp(MQ)dA, (1.70)
this is also called the minimum mean square error estimator and it can be shown that it
minimizes the average mean square error

MSE[A] = [[ (A~ A)*p(x )d2dr, (171)

where the expected value is taken w.r.t. to the joint distribution of the data and the
parameter. Since p(x,A) = p(Q|A)p(A), this is equivalent to averaging the mean square
error (1.63) over the prior distribution on the parameter.

For the estimator given by (1.70) the average mean square error is equal to the variance
of the posterior distribution, i.e.

Var[Ag] :/AAZP(MQ)M— Ap()]?; (1.72)

this quantity is taken as the figure of merit to asses the precision of the estimator Ap.
It can be shown that, under some regularity assumptions, in the limit M — oo the
prior becomes unimportant and the estimator becomes asymptotically unbiased and
efficient (Bernstein—-von Mises theorem). In this limit the variance (1.64) and the Bayesian
variance (1.72) both tend to (MF[p(x|Ag)]). Moreover, in the asymptotic limit only local
properties of the statistical model p(x|A) in a neighbourhood of the true value A are
important.

Please note that in this analysis the prior distribution is used only for the estimation,
but it does not enter in the Cramér-Rao bound. If one wants to seriously consider the
prior as part of the statistical model a more general bound is needed, known as Bayesian
Cramér-Rao bound or Van Trees inequality [112, 283]. The two approaches become
equivalent only in the asymptotic limit [147, 165].

1.3.2 Quantum Cramér-Rao bound

Quantum estimation theory (QET) was pioneered by Helstrom [125] and Holevo [130], but
the field became more relevant for metrological applications when Braunstein and Caves
explicitly showed the connection with classical estimation theory [37]. This presentation
is mainly based on a more recent review [221], but see also [68].

A quantum statistical model is represented by a manifold of density operators p, €
S(H). The goal of QET is to find the best POVM to precisely estimate the true value Ay of
a parameter. We can distinguish two approaches to QET; global QET aims at minimising a
suitable cost functional, averaged over all possible values of the parameter to be estimated.
The result is thus a POVM independent of the true value of the parameter to be estimated.
On the contrary, in local QET one looks for the POVM maximizing the resulting classical
Fisher information, thus minimizing the variance of the estimator, at a fixed value of the
parameter.
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Intuitively, we expect that local QET should provide better performances, since the
optimization is tailored to a specific value of the parameter. We are going to see that this
approach yields an optimal POVM that depends on the true value Ag. This conundrum is
resolved in the asymptotic limit by implementing adaptive measurement strategies [26,

] which asymptotically yield the same precision of the true optimal POVM.

Given a quantum state p) € S(H) and a POVM {7, } . , from the Born rule we have

the (conditional) probability p(x|A) = Tr[7txp,]. The classical FI (1.66) is thus

(07 Tr| nxp,\])
/ e (1.73)

Let us introduce the symmetric logarithmic derivative (SLD), an operator implicitly
defined as L L

o = —ALATRAZA JZFPA A (1.74)
more precisely, this equation defines the operator L, only on the support of the operator
px (the subspace spanned by its non-zero eigenvectors). The part of the operator L, acting
on the null space of p is left undetermined; there is a unique solution if and only if the
state p is full-rank. Using the SLD we can express the derivative in (1.73) as

) Tr[7xpa] = Tr[Axd) 2] = Re(Tr[Lrpa7tx]) (1.75)
and rewrite the FI as
2
/d {Re(0,Tr[Lypa7tx])} . (1.76)
Tr[7txpa]

This FI quantifies the precision that can be obtained by implementing a suitable estimator
on the outcomes of the POVM {7, }.

This last expression for the FI can be analytically maximized [37] over all possible
POVMs ¥ and the result is the celebrated quantum Fisher information (QFI), which thus
provides an upper bound the classical FI for every POVM:

Qlpr) = max{ Flp(x|A))} = Tr|oa 13| = Flp(xlA)] (1.77)

This inequality implies that there is a bound imposed by quantum mechanics to the
precision in the estimation of a parameter A with true value Ay, this is the quantum

Cramér-Rao bound: .

MQ[p)\o]

The single-parameter quantum Cramér-Rao bound is tight: one can show that a
projection on the eigenstates of L, saturates the inequality (1.77) [221]. This bound
depends solely on the quantum statistical model p,, analogously to the classical Cramér-
Rao bound that depends only on the classical statistical model.

Var[A] > (1.78)

19We remark that there are some pathological cases where this optimization fails due to the fact that the
POVMs depend non-trivially on the parameter to be estimated. In some instances this fact can actually be
exploited to achieve better precision [259, 260].
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To obtain an explicit expression for the QFI we note that Eq (1.74) is a Lyapunov
equation for the operator L, which can be formally solved as*’

L, _2/ 0N (9p 00 )e PN dt | (1.79)

A more explicit solution can be obtained in terms of the spectral decomposition of the

density matrix py = Y., Pn|¥n)(¢n:

m| 0 n
Ly = ) Lol ), (1.0

this sum is over all terms for which p, + p # 0. By applying the definition (1.77) we get
to an explicit expression for the QFI

] n,Zr;n Pm + Pn ' (1.81)

We point out a subtlety here: even though the SLD is defined only on the support of
0, it is very important to consider also orthonormal vectors belonging to the null-space
of p). As a matter of fact in Egs. (1.80) and (2.3.2) the condition is not p, # 0 and p,, # 0,
but py, + pm # 0, therefore terms for which p,, = 0 but p, # 0 have to be included in
the sum. It is possible to derive expressions for the QFI where summations run only
on non-zero eigenvalues [167], thereby explicitly showing that only the support of p, is
relevant.

We now state some general properties of the QFI. The first is monotonicity under CPT
maps:

Qlpal = Q[€[pall (1.82)

for every CPT map £ which does not depend on A [231], this holds also for CPT maps
between operators on Hilbert spaces of different dimensions. The second is invariance
under (parameter-independent) unitary transformations Q[p,] = Q[Up,U']. The third
property is the so-called extended convexity [15, 206]. For every mixture of quantum
states py = Y, p(x|A)py) the QFIis upper bounded as follows

Qlpa] < Flp(xIN] + L p(x1A)Qpapr| (1.83)

the quantity on the r.h.s. is the Fisher information of the classical probability distribution
plus the average QFI of the states in the mixture; this quantity is going to be important in
the following chapters. When the mixing probability is independent from the parameter,
ie. 9 p(x|A) = 0and F[p(x|A)] = 0, this property reduces to the ordinary convexity of
the functional Q.

For pure states one can easily derive a simple expression for the QFI [221]

Qllpn)] = 4[@a9alawa) + (@agaln))?] (1.84)
= 4[(@a¢al0xga) — (Im@aalga) ], (1.85)

20When the state is not full-rank this expression must be handled with care, see [240] for an explicit account.
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where the last equality is due to the fact that the overlap between a normalized com-
plex vector and its derivative has to be a purely imaginary number: Re(0,9,|p,) =
(Oagalr) + (Yaloapa) = oa{galr) = 0.

The geometrical interpretation remains valid in the quantum domain. A quantum
statistical model corresponds to a differentiable manifold with coordinates A and the QFI
is connected to a Riemaniann metric on the manifold. In particular, the QFI corresponds to
the metric tensor (here a scalar, for a single parameter) obtained from the Bures distance,
which is defined as

Dglp1,02] = 1/2(1 — Flo1,p2]) , (1.86)

where we also introduced the fidelity:

Flov ] =T \/VBiea v (1.87)

which quantifies similarity between states. The metric coming from the Bures distance is
obtained by an infinitesimal expansion and it can be shown that it is proportional to the

QFL:
dsy = Dgloa, parar] = 4Q[paJdA* . (1.88)

More explicitly, we can write the QFI in terms of the infinitesimal change in the fidelity

Qlpy] = lim 8= Flonpasel) (1.89)

e—0 €?

For pure states the fidelity reduces to the overlap, i.e. F[|¢1), [¢2)] = |(¢1]92)|, so we can
write a compact expression for the QFI of pure states [121] in terms of the overlap:

Q[[a,)] = 409, (logl(¥alpar) D r—n—n, - (1.90)

To end this section, we want to quickly mention some recent developments about non-
asymptotic QET, even though we always will employ the standard asymptotic analysis
based on the QFL The restriction to unbiased estimators is a strong constraint, especially
for a small number of observations, in fact it has been shown that biased estimators
can actually reduce the mean square error [168]. Furthermore, in the non-asymptotic
case a fully Bayesian analysis is believed to be more appropriate, for a discussion and a
comparison with the asymptotic “orthodox” approach see [246] and references therein.

1.4 Continuous variable quantum systems

Historically, quantum mechanics was employed to study the motional degrees of freedom
of non-relativistic particles. The standard approach is to define n pairs of position
and momentum self-adjoint operators, satisfying the so-called canonical commutation
relations

(%, p;] = ihd;1, (1.91)
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from now on we work in natural units so that i = 1. In analogy with classical Hamiltonian
mechanics £ and p are called canonical operators. It is customary to introduce the non-
Hermitian creation and destruction operators
. X +ip;
4 = i Pi
V2

for which the commutation relations become

af = 1P (1.92)

[ai, aﬂ = 61 (1.93)

These operators have the effect to annihilate or create a quantum of energy in the quan-
tum description of harmonic oscillators. In the framework of quantum field theory they
represent the creation and destruction of particles. As a matter of fact, in second quan-
tization each pair of canonical operators represents field operators of a bosonic field,
instead of position and momentum; therefore, systems described by canonical operators
are also called “bosonic” systems. The best known example of a bosonic field is the
electromagnetic field, where the canonical operators represents the quantum description
of the magnetic and electric fields (in one polarization direction). Each canonical degree
of freedom is also referred to as a single ‘mode’, a terminology stemming from quantum
optics. We are interested in systems with a finite number of degrees of freedom?'.

These commutation relations define an algebra of operators, which however do not
allow any finite dimensional representation, i.e. they cannot be represented as finite-
dimensional matrices. However, it is possible to find infinite-dimensional representations,
considering the space of square integrable functions L?>(RN), so that

2 |f) = xif(x) (1.94)
i) = =5 i) = ) e 2) (1.95)

We can also define a vector of canonical operators # = (£1, p1, ..., s, Pn). For later
convenience, we also introduce the corresponding vector of classical phase space variables
r = (X1, p1,---, Xn, Pn) € RR?". The canonical bosonic commutation relations can be
rewritten as [256]

[?, ?T} —i0, (1.96)
where the canonical symplectic form () is a matrix in block-diagonal form:
X 0 1
Q:i@ﬂl, 0 = <_1 0>. (1.97)

The external product notation of Eq. (1.96) is defined by components as [7;,7;] = i€Y;.
Even if the eigenstate of the canonical operators are not functions in L?(IR") they are
expressed in Dirac notation as |x;) and |p;). Formally, this notation denotes linear forms

2l Actually in our treatment of input operators in Section 1.2, we already used a series of modes labeled
by a continuous value ¢ (time), i.e. a bosonic system with an infinite number of degrees of freedom. For that
particular purpose a full treatment in terms of quantum field theory is not necessary.
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acting on L%(R"), so that (x|f) = f(x) V|f) = f(x) € L*(R"), where |x) = Q}_; |x;).
The operators £; and p; admit a spectral decomposition in terms of projectors on these
improper eigenvectors, e.g. £ = [ _dx x|x)(x|. Since their eigenvalues cover the whole
real line, it is customary to refer to systems described by pairs of canonical operators as
“quantum continuous variables”. Moreover, for a trace-class operator O, the trace can be
expressed as
[e9)
T[0] = [ (x|Ox) dx. (1.98)
—o0
From these properties we can see that the continuous set |x) can be used as a “continuous”
basis of the Hilbert space.

1.4.1 Phase space representation

The Weyl operators (or displacement operators) are the bridge to connect quantum states
on the Hilbert space to a description in terms of phase space; they are defined as follows

D, = et OF (1.99)
They can equivalently be defined in terms of complex space variables, i.e. the n-dimensional
complex vector a with components «; = xi;%p I, as follows

n

D, = ®e“fﬁ
j

' _p_,. (1.100)

We remark that the Weyl operators are in tensor product form, therefore they act locally on
each subsystem. By applying them on a vacuum state, i.e. the state satisfying a; [0) = 0 Vj,
we have the so called coherent states

N
o) = ) laj) = Dy [0) (1.101)

j
For bounded operators O the following important relation holds [45, 256]

0=/ Tr[D_O0]D, (1.102)
R2n

Roughly speaking displacement operators can be thought as a basis on the space of
bounded operators, where the scalar product is the Hilbert-Schmidt product; they also
satisfy an orthogonality condition:

Tt [D,D_s] = (27)"6*" (r —s) . (1.103)
Let us define the characteristic function of an operator O as
xo(r) =Te[OD_,], (1.104)

from the previous discussion we can see that this is an equivalent representation of a
bounded operator.
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There is another important mapping between Hilbert space operators and functions
on the phase space, known as Wigner transform [46, 62]. The Wigner transform of a
generic bounded operator on the infinite dimensional Hilbert space is simply the Fourier
transform of the characteristic function:

A 1 T A _iTOp
WIO](r) = FRE /RZN do e T [0, (1.105)

which is of course a basis-independent definition??. The Wigner transform is also called
the Wigner function of the operator (a term that we mostly use to refer to Wigner functions
of quantum states) and contains all the information about the operator, just like the char-
acteristic function. Crucially, the Wigner function of a self-adjoin operators correspond
to a real valued function on the phase space. If we evaluate the trace in position basis
£|s)y = s|s)x?® we get the equivalent expression

A 1 ~ .
WIOI(xp) = 5 [ WA +Y|Ox = y) e AP, (1.106)

which is most often encountered in the literature.
A fundamental property of the Wigner transform is that the trace of two operators
can be expressed as an integral in phase space

Tr[0,04] = (270)N /]RZN dW[O1] (F)W[0s) (r), (1.107)
in particular this can be used to express the Born rule

plalo) = @)™ [ dWlp)(n)WITL] (), (1.108)

where [ du(a)Il, = 1 is a generic POVM. The integral measure y(a) on the outcome
space () is generic, e.g. the the Lebesgue measure for general-dyne measurements or
the counting measure for photon-counting measurements (for which [ du(a) — Y_;) The
Wigner functions of the effects of the POVM satisfy

' 1
[ @WIL () = 5, (1.109)

where we used the linearity of the Wigner transform and the fact that W[1](r) = 1/ (2m)N
(we implicitly assume that all the conditions to exchange the integration order hold true).
When the Wigner transform of the POVM effects W(I1,](r) is a Gaussian function we
refer to these as Gaussian measurements. It is also important to consider the limiting case
of projection on position or momentum eigenstates (or rotations thereof); in this case the
corresponding Wigner transform is proportional to a Dirac delta function and the Born

22This mapping is one to one only for bounded operators, however we use it also for some unbounded
operators, in particular projectors over position/momentum eigenstates. In these particular cases everything
remains consistent with the definitions given here.

23In some situations, to avoid confusion, we explicitly denote the eigenvectors of a quadrature operator by a
subscript, so that arbitrary letters can be used to label the eigenvalues.
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rule is equivalent to an integration over all the other phase-space variables, e.g. for a
single mode

p(x) = [ dpWiel(x.p) (1.110)

In this formalism the trace rule (1.107) can be generalized also to the partial trace,
which is just the marginal Wigner function [214]:

WITrglpag]l(ra) = /deW[pAB](rA,rB) . (1.111)

Consequently, the rule for the unnormalized conditional states after a measurement on
one subsystem can be written as

WITtsloal @ all(ra) = )™ [ draWlpas)(ra, ) WiLal(ra).  (1112)

To get a normalized Wigner function the previous expression should be divided by the
probability density p(a) given by the Born rule (1.108). Moreover, the tensor product
operation is simply given by multiplication of Wigner functions

w [01 & 02] (1"1,}’2) = W[Ol] (Tl)W [Oz} (1"2). (1.113)

The Wigner transform is not the only mapping between operators and phase space.
However, it is the only one with the following properties [30, 81]: it is real for any quantum
state, it is a linear functional over density operators, its marginals are the probability
distributions of canonical observables and the trace rule (1.107) holds.

Another particularly relevant class of phase-space mappings is obtained by consider-
ing the s-ordered characteristic functions; we only give a very brief introduction, for more
details see [27]. For a single mode the s-ordered displacement operator is defined as

xs(@) = Tr[Dgp]esle” (1.114)

clearly for s = 0 we get the previously introduced characteristic function. By taking the
Fourier transform of yx; it is possible to define the s-ordered quasiprobability distribu-
tions?*. In particular, for s = 1, we have the so called Glauber P-function, which allows
to write a density operator as an integral over coherent state projectors:

0= /@ dacP(a)|a)al . (1.115)

Note that in general this is not a mixture of coherent states, since the function P does not
need to be positive and actually it might be a very singular object, not even a tempered
distribution. Nonetheless it is always possible to formally write the integral (1.115) for
any continuous variable quantum state [155].

24 In Section 7.3 we explain more in detail how the quasiprobability distributions for different s are connected
by Gaussian convolutions.
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1.4.2 Gaussian systems

Gaussian states of bosonic systems have played a fundamental role for continuous-
variable (CV) quantum technologies and quantum information. The theoretical analysis
of Gaussian states is made simpler by the fact that they can be compactly described by
first and second statistical moments, yet they can manifest many genuinely quantum
properties. A number of books and reviews deals with this subject extensively [2, 39,
, 129,256, 291]. Experimentally, the generation and manipulation of Gaussian states
has been made possible by the availability of second order non-linearities (Gaussian-
preserving operations) in various physical platforms, including optical, atomic, and
opto-mechanical systems.
Let us consider a Hamiltonian that is a quadratic polynomial in the canonical operators
(the constant factors are irrelevant)

A

1
HAg = E?TH? +#Th, (1.116)

where H is a symmetric 2N x 2N matrix and h is a 2N real vector. Such Hamiltonian
corresponds to a linear transformation in the Heisenberg picture (the so-called Gaussian
unitaries)

Ulelic =S¢+ 4, (1.117)

where U = exp[—itHg] and S is a symplectic matrix satisfying STQS = Q, which
implies detS = 1 (on a classical level this means that the phase space volume element
is conserved). The symplectic matrix S and the vector d are obtained in terms of the
Hamiltonian as follows:

S=eM  d=_H'n. (1.118)

More formally, the matrix S belongs to the symplectic group Sp(2n, R), while the whole
transformation belongs to the affine symplectic group ISp(2n, R). A crucial property is
that every Wigner function is covariant with respect to Gaussian unitary evolutions:

W(UcpUE)(r) = Wp] (S tr — 571d) . (1.119)

This identity shows that a quadratic Hamiltonian induces an evolution in the quasiproba-

bility distribution which is exactly the classical Liouville evolution of a classical probability

distribution in phase-space. We are going to comment more about this point in Chapter 7.
Gaussian states are defined as thermal states of Hamiltonians of the form (1.116):

efﬁHC

W, (1.120)

PG =

where pure states correspond to ground states and are obtained in the limit § — oo.
A Gaussian state has a complete parametrization in term of first and second statistical
moments (the covariance matrix o)

F=Tijog?] o=Tr [pc{(f —7), (- 7)TH (1.121)
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and its Wigner function is a Gaussian function of the form
Wipa)(r) = ———e =0T ), (1.122)

For clarity, we remark that according to definition (1.121) the variance of a canonical
observable #; is equal to half the respective diagonal element of the covariance matrix:

Tr {pfﬂ — Tr [p?] 2 = 0jj/2 (e.g. the covariance matrix of the vacuum state is the identity).
For Gaussian states the evolution due to quadratic Hamiltonians in Eq. (1.119) entails a
simple expression in terms of covariance matrix and first moments:

o' =S0ST ¥ =SF+d. (1.123)

As previously mentioned, we can also define Gaussian measurements; in the ideal
case they correspond to projections on pure Gaussian states with the same covariance
matrix but labeled by different values of the first moments. These measurement can be
obtained by Gaussian unitaries followed by projective measurements of the canonical
operators # which in optics correspond to homodyne measurements. An ideal Gaussian
measurement is not a projective measurement in general, e.g. for a projection on coherent
states we have the usual heterodyne detection of quantum optics. More in general, some
noise can be present in the detector. As long as the noise obeys a Gaussian description
(such as loss, or thermal noise) a convenient parametrization for Gaussian POVMs is the
following [100, 256]

D_ D
i 7rr = / gy 2=tmPmm g (1.124)
RN

RN (2m)N

where pn, is a generic Gaussian state with zero first moments, thus completely character-
ized by its covariance matrix om.
Acting with such POVMs on a Gaussian state, the Born rule (1.108) gives a Gaussian

distribution
e 3 (rm—7)T (0+0m) ! (rm—7)

p(rm) = O CE N (1.125)

Let us consider a bipartite Gaussian state with global covariance matrix and first moments
A UAB = =
o= rapAp = (1 rg) . 1.126
<‘T h5 OB ) (Fa 78) ( :
If we measure the subsystem B with a Gaussian POVM, Eq. (1.112) gives the following
mapping for the conditional state on subsystem A%
oa+— 04— 0ap(op+ U'm)_lo'IB (1.127)

Pa = Fa+ 0ap(0p+ 0m) (rm — 7p) - (1.128)

21f in the rule for the covariance matrix we put oy, = 0 we get the Schur complement of the matrix ¢ w.r.t.
the submatrix o g, which would give the classical Gaussian conditional probability after observing r. Notice
how in the quantum case there is an additional uncertainty o, due to the POVM.
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Entropy of a Gaussian state

Any covariance matrix can be diagonalized by symplectic matrices so each eigenvalue
has multiplicity two. The N different values v; are usually called symplectic eigenvalues.
The von Neumann entropy of a Gaussian state is a function of the symplectic eigenvalues
only [104, 1531, 256] and one does not need the eigenvalues of the infinite dimensional
density operator to compute it. For a generic N-mode Gaussian state we have

N
S(pc) = Y h(v), (1.129)
]

where {vj,j € [1,...,N]} are the symplectic eigenvalues and we defined the following

function
h(x)—(x—gl)log(x;—l)—<x51)10g<x;1). (1.130)

In particular, for single mode systems the only symplectic eigenvalue is the square root of
the determinant of the covariance matrix and we have

S(pg) = h(Vdeto) . (1.131)

Examples of Gaussian unitary operations

As an example, let us consider a couple of Gaussian unitary operations that are going to
be useful in the following chapters. First we consider single mode squeezing:

S(&) = exp E <ﬁ+)2 - C;ﬁz} = exp {;r sint,b(ﬁ2 - ﬁ2> - %r cos Y (4p + ﬁﬁ)} (1.132)

where ¢ = re'¥, the corresponding symplectic matrix is thus

(1.133)

coshr + cos ¢ sinhr siny sinhr
strp) = ( v v )

siny sinhr coshr — cos ¢ sinhr

For ¢ = 0 we get a squeezing of the momentum fluctuations; since S(r,0)(p, £)S(r,0) =
(e"%,e77p) the variance in momentum Ap = (p?) — (p)? is transformed as Ap — e~ 2" Ap,
while the variance of the position operator increases as A — ¢?"A%. Another important
Gaussian unitary is the one for the beam splitter

Uy (¢, 8) = 9" 1102002 — explig cos 6(pr %2 — £1p2) + i sin O(£122 + p172)] -
(1.134)
We can parametrize the beam splitter with the trasmissivity T = cos? ¢ and choose a
particular # = 77; the corresponding symplectic matrix is then

VT 0 VI=T 0
5uo(T) = 0 VT 0 1—T
s —VI-T 0 VT

0 (1.135)
0 —V1=T 0 VT
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1.4.3 Conditional and unconditional Gaussian dynamics

Let us apply our treatment of Markovian dynamics in Sec. (1.2) to the class of continuous
variable systems we have just introduced. In doing so, we mostly follow Refs. [96,
, 256]; as usual we favour physical intuition over mathematical rigour. Alternative
parametrizations for the same dynamics are found in [297, ]. We also mention that
there is also a more formal way of dealing with this very topic, which is closer in spirit to
how classical linear systems are handled; see for example [209].
Let us introduce a vector of input modes, described in terms of the canonical operators:

Pin (), Pin ()T | = iQé(t — 1) (1.136)
{ )
({Pin()) 2a()T}) = rind(t 1), (1.137)

in terms of the previously used input operators (1.32) this corresponds to #,(t)T =
(92(1) ;5(1) gl A(n)) with 921(111) = (b].(I]l) + bi(r]\)Jr) /+/2 and analogously for the other canon-

R 7SS N 7)
ic.’:1rl1 oplenrators.mAt \lzr;riance with Sec. (1.2), where we only considered input modes in
the vacuum state, now we allow them to be in a generic Gaussian state with covariance
matrix ojp.

We can also collect the canonical operators of the system and those of the input at
a certain time ¢ in a single vector ’A’;I:in = (?T,i'in(t)T). The instantaneous interaction
between the system and the input modes is then assumed to be a generic quadratic one,

so that the interaction Hamiltonian reads

, AT 1, R 1, 0 C\,
Hiot = #TC#in(t) = frT» H#gin = 57sin (CT 0>rs,in , (1.138)
where H¢ is symmetric, but C is an arbitrary real matrix.

Then we define the so-called quantum Wiener increment, as previously done

diin (t) = #in ()dt = 7L, () Vdt, (1.139)
so that the operators 7/, at time t obey canonical commutation relations:

[Pin (1), Fin(t)] = iQ2. (1.140)

The symplectic matrix corresponding to the unitary interaction must be written in terms

of the operators 7/ using (1.118) and it has to be expanded up order dt, as previously

done in (1.25):

(QHc)?
2

This symplectic transformation can then be used to obtain the covariance matrix at ¢ + dt

eQHVA oy 1 L OHVAE + dt . (1.141)

eQHCm(U @ (Th)e(QHC)T‘/E ~ (o ®op)+ (AO’ +oAT + D) ® Tin + Us,in\/(?ﬁ , (1.142)

where

acacT

5 D =QCoy,CTOQT (1.143)

A =QH; +
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are the so called drift*® and diffusion matrices and the other matrices appearing in the

expression are defined as follows

o 0 OCoin + cCQT
Tsin (vinCTQT +QCTe 0 (1.144)
T . T
o = € OCTin ; TinC QCA | o TeToca . (1.145)

In a similar fashion we can obtain the first moments at t + dt:

2
QHeVAE ([ 1) (QHc) N Tt Ardt
e (Tm) (11 + QHVdt + et o OCTr/di ) (1.146)

where we assume ri, = 0, i.e. the input modes have no displacement.
Tracing away the input mode, we can straight-forwardly obtain the unconditional
dynamics for the first moments and the covariance matrix

dft

= Artu (1.147)
% —Aci+ AT 4D, (1.148)

We also added a linear drive term u, so that the dynamics given by this equations with A
and D in (1.143) can now accommodate a generic system Hamiltonian with quadratic and
linear terms s = %?TH s# + u' Qf. At the Hilbert space level this dynamics is expressed
as a Lindblad equation with collapse operators linear in #, so that the action in the master
equation is at most quadratic.

If instead of tracing away the modes 7/, we perform a generic Gaussian (general-dyne)
measurement, we get the Gaussian probability density (1.125) for the outcome r,,, which
is centred around a value proportional to the first moments of the state 7,, = QCTr/dt
and has a covariance matrix which is independent from the state of the system: X =
(om+0oin)/2.

Since 1y, is a Gaussianly distributed random variable it is possible to introduce another
random variable

dw = V2 (r, — #) Vit (1.149)

which corresponds to a vector of Wiener increments with the following properties
E[dw] = 0and {dw, dw’ } /2 = 1dt (for the components this means dw;dw; = 4;;dt). The
measurement output is usually expressed in term of the vector of currents (corresponding
to (1.54) in the case of a single input operator):

dy, = V2571 2p,Vdt = V257V 25,0/t + dw =
=V2(oin + om) ?QCT 1Vl + dw . (1.150)

26 To keep the derivation cleaner, we did not include any Hamiltonian operator for the system alone. However,
the drift matrix presented also contains the contribution of a quadratic term in the system Hamiltonian
A, = 1#THgp
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By applying the formula for conditional Gaussian states, the following equations for
the first and second statistical moments can be derived [100, 256]:

O'tB-I—N)

dry = Aridt +udt + | ———— |dw 1.151
= An (221 (1151)
% = Aoy + AT +D — (0y + N) (4B + N)T (1.152)

where we introduced two matrices B = CQTE "2 and N = QCoi, 12

A very remarkable feature of the conditional Gaussian dynamics is that the equation
for the covariance matrix is deterministic and it has the form of a continuous-time Riccati
differential equation. The stochasticty coming from the random output of measurements
is reflected only on the first moments of the conditional state.

1.4.4 Nonclassicality of continuous variable states

In the most general terms, a quantum state is said to be nonclassical if the methods of
classical statistics fail to describe its properties and phenomenology. This definition is
usually made precise by using quasiprobability distributions in phase space, but several
different flavours of the concept of nonclassicality exist; for our purposes it is sufficient to
present two of the most common ones.

In the context of quantum optics, the concept of nonclassicality is tied to genuine
quantum traits of optical systems [152] and it is usually based on the Glauber P-function
of a quantum state; we dub this concept P-nonclassicality. On the other hand, we
refer to nonclassicality based on the negativity Wigner function as W-nonclassicality.
In the following we present some suitable quantifiers of nonclassicality, but we do not
discuss witnesses of nonclassicality. In any case we only cover a small part of the possible
approaches to the subject, see the introduction of Ref. [195] for a concise overview.

Finally, we also present a way to quantify the non-Gaussianity of a quantum state.
This notion is connected to the other notions of nonclassicality, but gives a very distinct
characterization when mixed states are considered.

P-nonclassicality

According to Glauber, Titulauer and Mandel [113, , ], a quantum state of light is
nonclassical when its P function fails to be interpreted as a probability distribution in
the phase space. This definition is very meaningful for states of the electromagnetic field,
since the P function is the only quasiprobability distribution which can give a description
that can be completely modelled using classical electrodynamics, see for example [152]
for a recent account of this point of view. Intuitively, this definition means that the state
can be properly represented as a mixture of coherent states, therefore it has no coherences
on the (overcomplete) basis of coherent states. This argument has recently been made
rigorous in the context of quantum resource theories, see [274, 300].

The best known way to quantify P-nonclassicality is the nonclassical depth [164].
Operationally, it quantifies the amount of thermal noise that is needed to render the P
function of a given state a well-behaved probability distribution and the corresponding
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state classical. Nonetheless we do not present this measure in detail, because it gives a
very coarse quantification for pure states, as a matter of fact any pure non-Gaussian state
saturates this measure to its maximal value [174]. For this reason we introduce a different
quantifier, which is particularly easy to compute for pure states of a single bosonic mode.

It has long been known that coherent states are the only pure states that produce
uncorrelated outputs when mixed by a passive linear-optics device [4]. Specifically, P-
nonclassicality has been identified as a necessary condition for having entangled states at
the output of a beam splitter [156, 299]. The idea is thus to quantify nonclassicality of a
single mode state as the two mode entanglement at the output of a linear optic device, as
introduced by Asbéth et al. [22]. In particular, it was shown that the optimal entangler
is simply a beam splitter with vacuum as an auxiliary state. By restricting to this setup,
nonclassicality of the input state becomes a necessary and sufficient condition for output
entanglement. As a consequence, entanglement at the output of a linear mixer may be
used as a faithful quantitative measure of P-nonclassicality. This measure is usually
referred to as entanglement potential and it is defined as

Elo] = E[B(o ®0)(0])B*], (1.153)

where p is the density matrix of the state under scrutiny, |0) is the vacuum state at
the ancillary port of the beam splitter, B = Hbs(n, Z) is the balanced beam splitter
operator (1.134), and E[p] is a suitable measure of entanglement. If we restrict to pure
input states, E[p] can be chosen, with no ambiguity, as the the entanglement entropy, i.e.
the von-Neuman entropy of the reduced state.

W-nonclassicality

While the P function can be a singular object, the Wigner function is always well behaved,
even if it can attain negative values. W-nonclassicality is only a sufficient condition for
P-nonclassicality and there are W-classical states which are P-nonclassical, for example
squeezed states.

The notion of W-nonclassicality has gained an operational meaning as follows: the
evolution of a system which is in a W-nonclassical state cannot be efficiently simulated
with classical resources [185, 287]; we are going to comment more about this point in
Chapter 8. The most common way to quantify W-nonclassicality is the volume of the
negative part of the Wigner function [151], defined as

alp) = 5 ( [ I = [ ar wioln)) = 5 ([ dr Vel =1) (L

however many slight variations on this definition can be employed. First, we can intro-
duce a normalized version of this measure

_ _2A[p]
vip] = m,

which gives v € [0,1] and that we use in Chapter 6. On the other hand in Chapter 8 we
employ both the Wigner negativity N [p] = 2A[p] and the so-called CV mana M[p] =
log(Np] +1).

(1.155)
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Let us stress that the W and P-nonclassicality single out different quantum features.
In particular, the Hudson theorem [136, 263] guarantees that the sole pure states with
a positive Wigner function are Gaussian ones, i.e. squeezed coherent states for a single
mode. Hence, there exist pure states that have zero W-nonclassicality (e.g. squeezed
states) but non-zero P-nonclassicality. In this sense the entanglement potential can
reveal more detailed features of quantumness. Note that alternative measures of W-
nonclassicality based on the geometric distance between quantum states have also been
introduced [186].

Non-Gaussianity

Gaussian states are not P-classical, as they include squeezed states. They have a positive
Wigner function and yet they do not represents the whole class of W-classical states.
Nonetheless, quadratic Hamiltonians can be truly considered classical, since they generate
a classical evolution in phase space. Being thermal states of such Hamiltonians, Gaussian
state thus embody yet another notion of classical quantum states; these observations are
expanded in Chapter 8. It is thus interesting to study a quantitative characterization of the
non-Gaussian character of a continuous variable state. Several different ways to quantify
non-Gaussianity [104, 105, , ] have been introduced and also exploited to assess
the properties of experimentally generated non-Gaussian states of optical systems [15, 19,
]. In this Thesis we focus on the entropic approach proposed in [106, 187].

To quantify the non-Gaussianity of a generic state p, we introduce a reference Gaussian
state T having the same covariance matrix and displacement vector as p, computed
via (1.121). A quantitative measure of non-Gaussianity can then be given by some
suitable distance functional between p and 7. A particularly useful choice is the quantum
relative entropy

S(p||t) = Trjp(Inp —InT)] . (1.156)

Even if S(p||t) = 0iff p = 7, the relative entropy is not symmetric in its arguments,

therefore it is not a proper distance. Nonetheless it has a clear operational meaning and

quantifies the distinguishability of two states in the asymptotic regime of many copies.
This leads to the definition of the entropic measure of non-Gaussianity

5lp] = S(pllv) = TrlpInp] — TrlpIn] = S(v) - S(p), (1.157)

where S denotes the von Neumann entropy and, because of how 7 is defined, we have
that —Tr[pInt] = —Tr[tIn7] = S(7). This term is the entropy of a Gaussian state and
can be easily computed by finding the symplectic eigenvalues via (1.129).

This measure satisfies a series of quite useful properties [104]: it is additive under
the tensor product operation, and invariant under symplectic transformations. We alter-
natively call this measure relative entropy of non-Gaussianity, because it can equivalently
be defined as the relative entropy between the state under scrutiny and the whole set of
Gaussian states [187], which means

S[p] = H,}(i;n[s(pllpc)] , (1.158)



Preliminaries 37

where pg is a generic Gaussian state. We are going to comment more about this point of
view in Chapter 8, after introducing resource theories.

Summary

e Quantum states are described by density operators acting on a Hilbert space. Ob-
servables are described by positive operator valued measures, a collection of posi-
tive operators summing to the identity. Deterministic evolutions are described by
completely-positive trace preserving maps, while probabilistic (conditional) evo-
lutions by completely positive trace non-increasing maps; a collection of such CP
maps summing to a CPT map represents a quantum instrument, which gives both a
POVM and the rule to update the quantum state after observing a certain outcome.
Everything is consistent with the standard postulates of quantum mechanics by
enlarging the Hilbert space and considering purifications.

e Under a Markovian approximation, the evolution of a quantum system in contact
with an environment obeys a Lindblad master equation. This can be achieved
by modelling the environment as a set of independent modes instantaneously
interacting with the system and being discarded immediately afterwards. When
the modes are measured instead of discarded the evolution of the principal system
is described by a stochastic master equation. For photo-detection the evolution is
governed by a jump-like Poisson process, for homodyne-detection by a diffusive
Wiener process.

e When dealing with a probability distribution with a smooth dependence on a
parameter, the classical Cramér-Rao bound gives the best precision of any unbiased
estimator for the true value of the parameter. The figure of merit quantifying such
precision is the Fisher information. By optimizing the FI of the probability coming
from the Born rule over all possible POVMs we have the quantum Cramér-Rao
bound, defined in terms of the quantum Fisher information, which depends only on
the quantum state. In the asymptotic limit of a large number of experiments, both
the classical and the quantum bounds can usually be saturated. An estimator which
saturates them is the Bayesian estimator, i.e. the mean of the posterior distribution,
given the observed data.

¢ Continuous variable quantum systems obey the canonical Heisenberg commutation
relations and live in a infinite dimensional Hilbert space. They can be equivalently
described as functions on the phase space, rather than operators. The class of
Gaussian states and Gaussian operations is special because everything can be
described in terms of finite-dimensional first-moments vectors and covariance
matrices. Markovian conditional and unconditional dynamics can be recast in a
simple form for Gaussian systems. Quantum continuous variable states can be
nonclassical in different ways, the most important criteria are: not being mixtures
of coherent states (P-nonclassicality) and having a negative Wigner function (W-
nonclassicality); both notions can be numerically quantified. It also possible to
quantify the non-Gaussianity of quantum states.
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CHAPTER 2

Quantum estimation with continously monitored systems

This chapter illustrates the conceptual framework needed to rigorously analyse the
precision of quantum estimation with continuous measurements. We introduce and
explain all the theoretical and numerical tools needed for Chapters 3 and 4, which are
devoted to particular applications.

The content of the chapter is a mixture of existent results taken from the literature and
new results, originally presented together with their applications in [12, 14]. The idea is
to lay down a coherent and unified framework, clarifying the relationship between older
and newer concepts.

2.1 Cramér-Rao bound for conditional quantum evolution

We believe it is more instructive to first introduce the relevant QET concepts more ab-
stractly in terms of quantum channels and instruments. We leave the dynamical details
about a proper continuous measurement scenario, described by stochastic master equa-
tions, at the end of the presentation.

Classical Fisher information in terms of conditional probabilities

We start by considering a classical estimation problem of a parameter A described by a
conditional probability over two random variables p(z, y|A). The corresponding Fisher
information can be evaluated as

Flpyl0) = [ dydzp(z,y|A) 01 log p(z, yIA)?
= /dydzr’@ly,?\);?(yl?\) (22 log p(zly, A)*+ 21

+2(dxlog p(zly, A)) (9nlog p(y|A)) + (9 log P(ylx\))z}

where the second expression has been obtained by the identity p(z,y|A) = p(z|y, A)p(y|A) .
In the following, we omit the dependence on the parameter A and we denote by E,, [-]
the average over a probability distribution p(x). By considering each term inside the

41
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integral separately one obtains

Ey(zy) |01 log p(z\y))z} = By [F[p(ly)]] (22)
E,(z,y)[01 log p(z]y) ox log p(y / dy (Oap(y / dz (0rp(zly)) =0  (2.3)
Ey(zy) | (01 10g p(y)) } = Flry)] 24)

where we have used the property [dzd,p(z|y) = 9, [dzp(zly) = 0, (1) = 0. Asa
consequence, for any unbiased estimator A built on M observations { (y;,z) }1,, we can
write the Cramér-Rao bound as follows:

1
M(FIp(yIA)] + By [FIp(ly, A)]))

Var[A] > ; (2.5)

the first term at the denominator F[p(y|A)] is the Fisher information corresponding to
a measurement with outcomes y, while the second term is the average of the Fisher
information F[p(z|y, A)] for measurement of x conditioned upon the observation of y.

The bound in Eq. (2.5) is rather general and formally identical to the Bayesian Cramér-
Rao bound [283] (Van Trees inequality). The Bayesian inequality is obtained via the
substitutions p(y|A) — p(A) and p(z]y,A) — p(z|A), i.e. there is only one observed
variable x, but the parameter to be estimated A is also a random variable. This situation
is conceptually very different, because in our case we are able to observe the variable y,
while in the Bayesian approach the distribution p(A) cannot be sampled directly (for this
reason its fundamental meaning is very debated).

For the following discussion it is useful to think about the conditioning of probabilities
in temporal terms. We consider a scenario where the random variable vy is the result of
some initial measurement, while the variable z represents a final measurement, which is
thus conditioned by the previously observed outcome y.

2.1.1 Effective quantum Fisher information

We can now connect the classical result of the previous section to a quantum measurement
model. In what follows we consider a selective quantum evolution, which is formally
expressed by a quantum instrument, introduced in Section 1.1.2.

Let us consider a quantum state pp which undergoes a selective evolution, represented

by a quantum instrument, i.e. a collection of CP trace non-increasing maps {E () } labeled

by the variable y, with the associated unconditional trace-preserving map Eunc Zy
The superscript indicates that the maps depend on the parameter A.

We can think about this evolution as a non-destructive measurement, such that we
have access both to the measurement outcomes y and to the post-measurement states,
which we define as in Section 1.1.2:

oy PWIA) =y = £V lpo] with  p(yIA) = Tr [y, (2.6)
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We call the states p,,|, the conditional states, while we denote the unconditonal state
obtained by discarding the measurement outcomes, i.e. the average state, as

Punc,A = unc PO ZS = Zﬁy\/\ = ZP(VM)PMA . (2.7)
y y

We want to perform another measurement on the conditional states p|,, but for this last
measurement we only need a description in terms of POVMs, since we are not interested
the evolution of the system after measuring it. In many cases this final measurement
can correspond to a destructive measurement which actually destroys the system under
investigation.

In general one may choose a different POVM {ﬁz‘y} 2 for each outcome y of the
ze

first instrument. However, we assume that the set of outcomes Z is the same for each
of these POVMs. As customary, we also assume that the POVM operators 7|, do not
depend on the parameter A.

After performing the final measurement the joint distribution of (y, z) and the condi-
tional distribution can be easily obtained as

ly

P(Z|y/ A) = Tr[py\/\ﬁz\y} ’
p(zyIA) = plzly, A) p(yIA) = TIE [pol 7y, 2.8)

It should be clear that we are exactly in the situation considered in the previous section
and thus the Cramér-Rao bound can written as in (2.5).

Now we consider the maps gy()\) as fixed, but we suppose to be able to optimize over
each one of the final measurements {7, }. We can then apply the quantum Cramér-Rao
bound (1.65) to the conditional states p, |, stating that F[p(z|y, )] < Q[p,|,]. The result
is a more fundamental quantum Cramér-Rao bound for estimation strategies where the

parameter is encoded by this kind of evolutions:
1
M(FIpyIN]+Epya) [ Qloyial])

Two important remarks are in order. First, by optimizing the FI of each conditional
state independently, we are assuming that such states can only be accessed one at a time.
We call this a sequential evolution and we have in mind a temporal description where the
conditional states are generated sequentially one after the other. In some other situations
it could be possible to retain the global state ®, p, |, (or part of it) and perform a joint
measurement on it.

Second, while in the classical case the expression is at least formally identical to
the Van-Trees inequality, in the quantum case the situation is quite different. As a
matter of fact, the optimal measurement on each conditional state in general depends on
the observed outcome y, this amounts to knowing what is the conditional state before
measuring it. From a Bayesian perspective it is not possible to know in advance the state
that is going to be measured and therefore the optimization problem is much harder,
see [188] for a recent discussion.

Var(A) > (2.9)
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In the following we refer to the precision achievable by the bound in Eq. (2.9) with a
figure of merit that we dub effective QFI [12], denoted by a tilde

Qlpo] = ZP(W)Q[@M + FlpylA)]; (2.10)
y

we repeat again that this figure of merit is optimized on all the possible final POVMs, but
is obtained for a fixed initial state pg as well as a fixed quantum instrument encoding the
parameter. This quantity has been considered a number of times, in different contexts [45,
, 261].
In particular, the effective QFI (2.10) is equal to the ordinary QFI of the following
state [261]:

p =Y pyIM)oyn @ ly)yl, (2.11)
Y

where we introduced an ancillary Hilbert space with a set of orthonormal vectors labelled
by the outcomes y, so that each conditional state lives in an orthogonal subspace.

The unconditional state given by (2.7) is a mixture of all the conditional states with
weights p(y|A). Hence, the extended convexity [16, 206] of the QFI (1.83) implies that
the QFI of the unconditional state is never greater than the effective QFI given by these
sequential strategy: Q[punc.1] < O[po]. This result is both important and intuitive: having
access to the measurement outcomes is never worse than discarding them and considering
only the average conditional state.

This last inequality can be understood also from the monotonicity of the QFI [231]; the
argument goes as follows. The unconditional state (2.7) is obtained from the state (2.11)
by partial tracing over the ancillary Hilbert space. Since the partial trace is a CPT map
(from operators acting in a Hilbert space to operators acting on a reduced Hilbert space),
the monotonicity of the QFI under CPT maps guarantees the result.

2.1.2 Application to continuous measurements

The estimation strategy we described so far is of particular interest when we deal with
continuously monitored quantum systems.

It is possible to apply what we presented in the previous section, by considering
that the evolution is not conditioned on the value of some random variable y, but on
the realization of some stochastic process. Roughly speaking, the photocurrent I(t) for
homodyne detection represents the outcome of a measurement, even if this outcome is
not instantaneous but continuous in time. The same is true for photo-detection, where
the outcome is represented by the list of times at which all the photo-detections occurred,
i.e. the times of the jumps in the stochastic process N(t). In Sec. 2.2.1 we are going to
see that to each nonlinear stochastic master equation corresponds a linear SME for the
unnormalized conditional state, which plays the role of the CP trace non-increasing maps
in the definition of quantum instrument.

We can more easily see the comparison if we subdivide the time interval [0, T] of the
conditional evolution into discrete time intervals At. The output photocurrent I(t)dt
becomes a finite vector of random variables y;, where the index j = 0,..., N corresponds
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to the time t; = jAt, so that T = ty = NAL. In the case of homodyne measurements y;
are real random variables, while for photo-detection they are binary random variables.
We can collect the whole sequence of random variables in a vector y, which corresponds
to the realization of the stochastic process in the limit At — 0.

The evolution is sequential and we can associate each measurement outcome yj to a CP
trace non-increasing map Syk The total evolution is given by the sequential application
of those CP maps: SyT =&y o0&y, -0 &y, 0 &, For the system initially prepared in
a state py, after obtaining the stream of outcomes y the conditional state reads

(C) fyT [po] (212)

Pyr = [oo]]

where the probability of obtaining the outcomes y is p(y7|A) = Tr[&€;, [o0]]. The strong
(destructive) measurement at the end of the evolution is described by POVM operators
{7;} on the conditional state, and the whole measurement strategy is described by the
conditional probabilities

p(lyr, A) = Trloy, 2],
p(zyrlA) = p(zlyr, A) p(yrlA) = Tr[Ey, [00] 7] (2.13)
Obviously, this is identical to the previous case and the Cramér-Rao bound (2.9) holds. In
this case it can be written as
1

M(Flp(yr)] + By [Qloy]])

Clearly, this bound can be readily applied to the time-continuous case in the limit At — 0,
when y; becomes a continuous stochastic process. Intuitively, we can write the effective
QFI for continuous measurements as

@unr = F[ptraj} + Z Ptraj Q[P(C)] ’ (2-15)

traj

Varj (A) >

(2.14)

where we also stress out this quantity depends on the choice of the unravelling, i.e.
how the environmental modes are measured. In what follows we only consider photo-
detection and homodyne detection, but more general strategies can be employed.

In Section 2.2 we explain a clever method to compute the classical Fisher information
of the probability distribution of the trajectories. Building up on those ideas, in Section 2.3
we are going to present a stable numerical method to efficiently compute not only the
classical FI, but the whole effective QFI for continuously monitored systems.

2.2 Fisher information for continuous measurements

In Section 2.2.1 we show that to any nonlinear stochastic master equation for the density
operator we can associate a class of linear stochastic equations for the unnormalized state.
The trace of the unnormalized state is proportional to the probability of obtaining the
trajectory. Solutions of the linear SME are often called linear quantum trajectories.
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The idea to use this method of linear trajectories for statistical inference on the pa-
rameters governing the dynamics has been very fruitful and dates back at least to [177].
More recently, Gammelmark and Melmer [92] have shown how to derive an additional
stochastic equation to handily compute the the Fisher information J [pir]. This result is
going to be fundamental for the following chapters and it is presented in Section 2.2.2.

2.21 Linear quantum trajectories

We have seen that the evolution of a quantum system conditioned on a certain measure-
ment outcome is given by a trace non-increasing linear CP map. On the other hand, the
map which gives the normalized conditional state is non-linear, because of the renormal-
ization. Analogously, it is possible to derive linear stochastic master equations describing
the evolution of the unnormalized conditional state [296].

In the stochastic master equations (1.44) for photo-detection the nonlinear terms are

due to the scalar coefficient Tr [é*ép(c)} , which is related to the Poisson process rep-

resenting the measurement outcomes as E[dN;| = «Tr [6*0]0@} dt. If we perform the

substitution Tr [@Jrép(ﬂ — B for any B > 0 we get the following linear equation

eploet

- p@) dNy,  (2.16)

where now the Poisson process dN; satisfies [Ep, [dN;] = Bdt (the meaning of the
probability post will be explained in a few lines). It is straight-forward to see that (2.16)
generates the correct unconditional Lindblad master equation for any value of .

In order to have both a linear equation and to reproduce the correct Lindblad dynamics
when averaged, the probability of the Poisson increments must be independent from the
norm of the state. Therefore the resulting Poisson process dN(t) does not represents the
true observed record of photo-detections, but it is distributed according to a reference
probability distribution post.! The true probability of a photo-detection, obtained by
solving the normalized SME, is proportional to the trace of the unnormalized state and
the proportionality constant is exactly the reference probability pest [92]:

Pirue(AN}) = post(dN}) T [ﬁ(c)(t)] . (2.17)

Everything is consistent: when we choose p = Tr {CA*cAp(C)} the trace has value 1 and
Post = Ptrue- Usually it is convenient to simply set § = 1 to solve the equation.
The situation is analogous for homodyne detection, where we can apply the substitu-

tion Tr [(é + c”r)p(c)} — y and get the linear equation

dpe) = (—i[H,p(c)} + D[c]p”(c))dt + (6;3@ + et — yﬁ(c)) (dys — pdt),  (2.18)

1The superscript “ost” stands for ostensible probability, the name introduced by Wiseman [296, 298], we find
more clear to call it a reference probability, in accordance to [92].
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where dy; now must be considered as a stochastic increment with mean value y and
variance dt, i.e. dy; = udt 4+ dw;. Again, it is straight-forward to see that the averaged
equation reproduces the Lindblad master equation for any ¢ € R. Similarly to the
previous case, the probability density of the true observed increment is proportional to
the trace of 5(°):

Pirue (dy2) = post(dy) Te [0 (1), (2.19)
where now post is the Gaussian distribution of a stochastic increment with variance dt
and mean udt. By setting 4 = Tr [(ﬁ +¢t) p(c)} we get back the nonlinear equation and
the stochastic process has the correct statistics, i.e. again we have post = pirue. Usually, it
is convenient to choose i = 0, so that dy; corresponds to a standard Wiener increment
when solving the linear equation.

From this discussion we can conclude that the probability of observing a trajectory
is not equal to the trace of the corresponding unnormalized operator 5(°)(t) obtained by

solving the linear SME, but only proportional to it. The important thing to remember
is that all the dependence on parameters characterizing the dynamics is contained in

Tr {p”(c) (t)} . It follows that for all statistical inference applications, such as estimation or

hypothesis testing, the quantity Tr {ﬁ(c) (t)} still represents a valid likelihood function.
If one is interested only in relative changes when a parameter A is varied, then the
proportionality factor, which is dependent on the outcomes but not on the parameter, is
not important.

For the FI this invariance property is clear because any multiplicative constant not
depending on the parameter A is killed by the partial derivative d, in the definition.
Since we are only interested in the unnormalized state to obtain the FI, from now on we
forget about the reference probability and by abusing the notation we simply consider

.

2.2.2 Stochastic equation for the Fisher information

In order to obtain the FI pertaining to a continuous measurement one has to compute the
following quantity

=) —, (2.20)
traj Ptraj

) (aAptraj)Z] (a/\ptraj)2

where again pi,j informally represents the probability distribution of the trajectories.

In some situations it is possible to obtain analytical expressions both for py,; and
the conditional states [145], but in general it is a hard task. However, by simulating
numerically the nonlinear SME one can generate trajectories distributed according to
Piraj- A straight-forward approach to compute this kind of expectation values is a crude
Monte-Carlo: the quantity of interest is evaluated for a randomly generated trajectory and
this step is repeated a sufficiently high number of times, then all the values are summed
up and the is total divided by the number of generated trajectories. We will show that it
is possible to obtain the FI by employing this Monte-Carlo approach.
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The starting point to make the computation more manageable it to define an operator
T as follows [92]

=

- T[p)]’

(2.21)

then the FI can be written as the expectation value over the trajectories of this operator
Flpwa] = B[R] , (2.22)

since we explained that piaj = Tr [ﬁ(c)} .

Interestingly, it is possible to write down a stochastic equation for the operator T which
involves only the operator T itself and the normalized operator p(¢). From a numerical
point of view this is very convenient, because those matrices are well-behaved and do
not become vanishingly small as it happens with §(¢).

Concretely, let us write the equation for 7 in the case of photo-detection:

dt = <—i[H,T] - %{é*é,l’} +Tr {CA*ép(C)}T - i[(aAH),p(C)} - ;{%(é*é),ﬂ”})dt—%

+ (aré* +(9,6)01) + p1)(3,h) — r) dAN; ;
(2.23)

this expression can be obtained directly from Eq. (2.16). This equation needs to be solved
together with the nonlinear SMEs (1.44) for p(¢) and the sampled valued of dN; must
coincide in both equations to obtain meaningful results.

The same thing can be done for the diffusive SME, starting from Eq. (2.18); eventually
we get to the following dynamical equation for t:

at ={~i[A,7] + Dle]r +i[(@,H), 019 | + (02 D)[e]p) Jat+

(2.24)
+ {MeJr + @ M)[Ep' — Te [ Me]p | by ,
where some additional superoperators have been introduced, defined as follows
P A + ~ AT 1 ant
(0,D)[c]e = dpcect + o (96 — E{aA(cc ), .} (2.25)
Mele =ce+eoct (I M)[c]e = (0,8) @ + 0 (9,¢T) . (2.26)

Also in this case, one needs to solve (2.24) together with the respective SME (1.56), being
careful to use the same generated increments dy; for both.

In Section 2.3 we present an alternative and more convenient way to compute the
evolution of T numerically. Before discussing the numerical algorithm we show how to
adapt this scheme to the realm of Gaussian states and linear dynamics, where it is easier
to obtain analytical results.
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2.2.3 Gaussian case

The classical Fisher information obtained by a Gaussian measurement continuous in
time can be computed in a more efficient way; this result has been presented in [96].
The stochastic dynamics for Gaussian systems is described in Subsection 1.4.3 and it is
particularly simple, since the evolution of the covariance matrix is always deterministic.

Let us consider the Gaussian distribution (1.125) describing the outcomes r;, of a
general-dyne measurement on the environment at time ¢ 4- dt. This distribution is a
Gaussian with covariance matrix & = 0y, + 03, and first moments 7, = QC ' r;1/dt, where
r¢ is the vector of first moments of the system. The FI of a parameter encoded in the first
moments of Gaussian distribution has the following expression

Flprm|\)] = (937m) "= 0rFm) , (2.27)

which is easy to check by directly applying the definition of FIL
By applying this formula for the FI to the distribution of the outcomes (1.125) we get
the infinitesimal FI for a single trajectory

AFT = 2(0yr) T CQT (0 + in) " QCT (D11t . (2.28)

The dependence of this quantity on the particular trajectory is contained in the vector
0,1+ which has a stochastic evolution. The evolution of the vector 0,7 can be computed
by partial derivation of Egs. (1.151) and (1.152), the final result is given by

d(0ar1) =(O\A)redt + A(@yri) dt + (9yu) dt + (o + N)BT (9rri)dt (2.29)
(9r01)B
+ NG dw
d(a{;\tgt) :(a/\A)U-t + U’t(a)\A)T + A(aAUt) + (aAUt)AT (2.30)

— (9201)B(0tB+N)T —[(9r04)B]"

In computing the above equations it is important to keep in mind that, even though
the vector of Wiener increments dw represents the stochastic part of the evolution, the
actual measurement outcome is r,, and therefore d,r,;; = 0 because the outcomes must be
considered as fixed quantities given by the experiment. On the other hand the derivative
of the Wiener increment is not zero [97]; from the definition (1.149) we get dydw =
\/EBT (a/\rt)dt.

The FI at time t + dt can then be found by averaging over all possible outcomes

AF: = By ) |47 - (231)

Since all the observations at every infinitesimal time step are independent, we can exploit
the additive property of the FI and the total FI for the whole measurement current is

obtained by integration
t
Flpwil = [, dFe. (2.32)

=
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2.3 Efficient numerical implementation

In this section we present the ideas behind the numerical implementation of an algorithm
to compute the effective QFI. This method was introduced in [14] where it is also applied
to a particular problem, presented in Chapter 4. In this presentation we consider a single
a parameter appearing only in the Hamiltonian and not in the collapse operators.

At variance to what we have done in Section 1.2, we now consider SME with N
collapse operators; conceptually it is not very different from the simple case N = 1. One

i(r];) (t), one for each noise operator ¢;, that

satisfy the commutation relations (1.32), i.e. [f?i(i) (1), Ei(rlfﬁ(t’)] = 0pd(t—t).
The stochastic master equation corresponds to the physical situation in which each
output mode is measured by a separate photodetector, with efficiency 7;:

has to consider N independent input modes b

dp'©) = —i[H, p9))dt + Z((l —1;)D[¢j]0' — %(@}ajp@ +pefe)) + anr[p<C>aTa]p<C>> dt

instead of a single Poisson process there are N processes, the average value of each
process is E[dN;] = iijr[é;féjp(C)] dt.

Likewise, for time-continuous homodyne detection on each output, the stochastic
master equation reads

dp'©) = —i[H,p )] dt + ZD[éj]p(c) dt+) Vi H[E ] dw, (2.34)
] ]

where dw; = dy; — \/ﬁjTr[g(C) (éj +¢ )] represent independent Wiener increments (satis-

fying dw]dwk = jkdt).

2.3.1 Completely positive infinitesimal evolution

The most natural approach for solving SMEs is to write down a system of coupled
stochastic differential equations for the matrix elements of the density operator and then
use existing numerical methods. It might also be useful to consider the Bloch form of the
equation, obtained by expanding the density matrix on a basis of Hermitian operators,
instead of the matrix elements in the canonical basis, so that all the coefficients are real.
Unfortunately, due to the stochastic nature of the problem there is no guarantee that the
evolved state is always perfectly positive, even when using rather advanced numerical
methods. In particular, such instabilities appear to seriously undermine the computation
of the effective QFI [98].

For these reasons it is very useful to employ a numerical method that completely
preserves the positivity of the conditional state. In this way it is also possible to get
sensible results without the need of advanced numerical solvers. The approach that we
present was introduced by Rouchon and Ralph [245]; their aim was to achieve stability
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and speed, in order to enable real-time tracking of monitored systems during actual
experiments.

The main insight of this method is to notice that the evolution of the conditional state
in an infinitesimal time step dt can always be written as the action of a CP map. This
point of view comes naturally from the perspective of quantum instruments and we have
already shown that we can model each infinitesimal evolution with Kraus operators for
photo-detection, see Egs. (1.39) and (1.40).

In the case of a diffusive evolution the situation is less straight forward, however it
turns out that we can write the infinitesimal evolution in this form

p(c) B Mdypg Y y T EN (1- ’Yj)CAjPEC)@}L dt
tHdt ~ (0~ ’

Tr[Mdypi > by IV (1= et at]
where we have explicitly put the time dependence of the density operators and we have
defined the following Kraus operator

(2.35)

Mgy = 1—iH) dt - ZA’“dHZ\fcjdy], (2.36)

with dy = {dy; } being a vector of measurement results, corresponding to each output
channel,
\/7]Tr (¢ +¢; ) dt + dw;. (2.37)

Equation (2.35) can be used for numerlcal purposes by replacing the infinitesimal
increment df with a finite time step At, the Wiener increments dw; are then replaced by
Gaussian random variables Aw; centered in zero and with variance equal to Af. Moreover
one can also implement the second order Euler-Milstein corrections. The (numerical)
Kraus operators in this case read

May =1 —iH, At — — 2 cles A+ 2 V156 By + Z Citk(Ayidy — 0jkAt), (2.38)

with
Ayj = ﬁTr c +¢))] At + Awy, (2.39)

denoting the (finite) increments of the measurement records.

One can appreciate that in the case of unit efficiency 7; = 1 the evolution is given by a
single rank one Kraus operator, but when we have finite efficiency the map applied to
pgc) is a CP map. As a matter of fact the numerator of (2.35) is in Kraus form, i.e. itis a
sum of operators acting on the left with their conjugates acting on the right. Therefore,
even for finite At the evolved state at f + At is always positive.

For photodetection the Kraus operators in (1.35) and (1.36) are generalized as follows

Mo_]lszdtffZA’“ (2.40)

M, = \/17,-Cj t, (2.41)
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where now we have one operator My corresponding to the “no detector click” eventand N
different operators each corresponding to a click on a different detector. At each time step,

each M; j has to be applied with probabilities pg D = =1;Tr [pg et ] dt and, correspondmgly,

the Kraus operator M, has to be applied with probabﬂlty po=1-%; pl . From a
physical point of view, this update rule means that we are disregarding the possibility of
two independent detections in the same infinitesimal time dt [295].

Even in this case the numerical algorithm is obtained by simply replacing dt with a
finite At and the evolution applied at each step is a CP map preserving the positivity of
the state.

2.3.2 Algorithm for the effective quantum Fisher information

In the following we are going to show how this approach can be applied to get an efficient
and numerically stable calculation of both F[py,,;] and Q[o()]. We are going to prove
everything in terms of the “infinitesimal” Kraus operators, that have to be replaced by
Eq. (2.38) when implementing the numerical algorithm. We start by showing the results
for the most general case of SME and inefficient detection; we then describe the more
efficient algorithm that can be implemented in the case of perfect detection (17; = 1), i.e.
when the dynamics can be described by a stochastic Schrédinger equation.

Non-unit efficiency detection (stochastic master equation)

We start by observing that the evolution of the unnormalized conditional state and of its
derivative can be written in terms of the Kraus operators (we omit the superscript (c)
used to denote conditional states):

Predr = Mdypthy+2 — )l d (2.42)

Pttt = Mdy (a/\pt)Mdy (a/\Mdy)ﬁtM;y + Mdyﬁt (a)\Mt;y) + Z(l - 17])6/ (a/\pt)ﬁ;r at,
]

where 9, M dy = —i(d, H,) dt, since we are considering an Hamiltonian parameter.

The trace of the unnormalized state reads

Tr[ﬁt+dt] Tr[Mdypthy +Z 77] ]ptc dt]

(2.43)
—Tr[pt]Tr[Mdypthy+Z —17j)¢pe€] dt],

where we have used the relation p; = g;/Tr[g¢]. We can now use these formulas to obtain
the evolution for the operator 7;, 4 just in terms of the operators p; and 7; at the previous
time step:
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1 o VAt St o A (. ot A (5 A At
Tt = [, l(aAMdy)pthy + My (9r01) M, + Mg, 0t (01 Mg, ) + ) (1 — 17;)¢;(0201)¢] dt

]
_ (aAMdy)PtM:riy + MdyTthiy + Mdypt(a/\Mjiy) +5(1- Uj)éjftf}r dt (2.44)
Tr {MdyptM;y + X551 — 77)¢ e dt}

One can thus evaluate the trace of this operator at each time ¢, and evaluate accordingly
the classical Fisher information J [pi] as in Eq. (2.22).
Notice that the evolution for the derivative operator d,p; can now be written in terms
of the renormalized operators p; and T;:
_ Opt  Tr[0,pt]

Pt = o] Tl pr = 1 — Tr[t]or - (2.45)

The QFI Q|p;] can then be evaluated at each time ¢ by numerically diagonalising the state
and applying the generic formula for the QFI .

Let us review again the key features of this numerical method. The relevant figures of
merit could naively be derived from the evolution of the unnormalized conditional state
pgc), described in Eq. (2.42). However, Tr[g¢] becomes very small during the evolution,
leading to numerical instabilities in the evaluation of JF|[py,j]. Thanks to Egs. (2.44)
and (2.45) we can express all the quantities in terms of the numerically stable operators o;
and ;. Besides, the formulation in terms of Kraus operators, following [244, ], ensures
that the density operator remains positive, as opposed to standard numerical integration
of the SME.

Unit efficiency detection (stochastic Schrédinger equation)

The above calculations are greatly simplified when the dynamics starts with a pure initial
state and the efficiency parameters are equal to one, #7; = 1. In this instance, the quantum
conditional state |¢¢) remains pure during the whole evolution and the dynamics is
described by a stochastic Schrodinger equation. We can thus work with state vectors,
instead of density matrices, with a consequent reduction of complexity of the numerical
simulation, that allows to reach higher values of N with a given amount of memory.

In terms of Kraus operators, the unnormalized and normalized conditional states are
obtained respectively as:

|Prar) = Mdy|1;l’vt> , (2.46)
Mg, ) Mg, |9)

|Yrar) = df : = — df v (2.47)

VMM ) (MY, My, )

The operator 7; in this case can be written as

_ 0a(Pe)(@e]) _ [oape) (el + |1 )(0n ]
T G .
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and its trace is equal to

(@|8A~1ﬁt>~+ h.c.
($tlypr)

In the last equation we have introduced the vector

Tr[t] = = (Pelpr) + (Pe|yr) - (2.49)

|pr) = 7|ailptz - (2.50)
(el

At time f + dt, the vector |¢;, 4;) can be obtained as
(OAM4y ) 1§+ Mgy |02)  (OuMg) 90) + Mg )
NGRS (el L, B L)

where we have exploited the identity <¢t\M,;dey|¢t> = <lﬁt|1ﬁt><lpt\]\7[;y1\7ldy|¢t>.

We notice that as in Eq. (2.44), the evolution equation for the vector |¢;, 4;) depends
only on the vectors |;) and |¢:) and not on the unnormalized state |¢f;), and one can
readily evaluate the classical Fisher information in terms of these two vectors via Egs.
(2.49) and (2.22).

Concerning the QFI of the conditional state, we first observe that

o\, AN Ot | )|
D) = |<1A;”t%t> _ (Wl A’,l;z%%t;ityﬁlm — o) — (Welgr) ; (el pr) ). (252)

Pt rar) = , (2.51)

As we are dealing with pure states, the QFI of the conditional state does not require a di-
agonalization and only boils down to computing the overlaps (99|90, ¢¢) and (0 9¢|9)
as presribed by Eq. (1.84)

The algorithms above have been derived for the case of time-continuous homodyne
detection, but they can readily be adapted to photo-detection replacing M dy at each time
step with on of Kraus operators (2.40) and (2.41).

2.4 The fundamental quantum limit for continuous measurements

The estimation scheme we outlined in the previous section involves a conditional evo-
lution of the system of interest and then a final measurement on it. The conditional
evolution can be understood abstractly in terms of CP maps or dynamically in the case of
continuous measurements, where the conditional state undergoes an evolution governed
by some stochastic process. As we explained in Section 1.1.3 any quantum instrument can
always be understood as the result of a unitary interaction of the main system with an
ancillary one in a fixed pure state, which is then measured. For continuous measurements
there is an infinite number of independent ancillary systems, each interacting with the
main system for a vanishingly small time.

It is easy to understand that, by having access to a purification of the conditional
evolution, more information can be retrieved. This condition can be hard to satisfy in
practice, but from a theoretical perspective it allows us to derive a fundamental bound.
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Another problem is that in the realistic case of continuous measurements the global
state of system and environment after the interaction is a multipartite entangled state
living in a exceedingly big Hilbert space, thus rendering a direct calculation quite hard.
However, it is quite remarkable that, in the Markovian case we are considering, it is
possible to have access to some properties of the global state by working in the reduced
Hilbert space of the system and knowing only the unconditional dynamics of the system.

As far as an estimation problem is concerned, we are interested to obtain the QFI
of the global state after the interaction. This quantity is optimized over all possible
measurements on the global state, including non-separable measurements (i.e. projections
on entangled states) over the system and all the output modes at different times. Even
though in principle it could be possible to implement such measurements, e.g. by using
delay lines or some kind of quantum memory, in general it is very hard to saturate the
corresponding Cramér-Rao inequality. Nonetheless, we are going to show in Chapters 3
and 4 that, at least in some interesting cases, this ultimate bound can be saturated by a
sequential estimation scheme, for which the precision is quantified by the effective QFI
just introduced.

2.4.1 Ultimate quantum Fisher information

Let us see how to compute the QFI of the global state, as shown in [93, 178], see also [121].
The derivation of a computable formula is based on the assumption that the initial state
of the system is pure. This assumption makes the result less general, but it is justified by
the fact that the optimal state for estimation is pure, due to the convexity of the QFL

Let us start from the Lindblad master equation governing the unconditional evolution,
which was introduced in Section 1.2.1:

U~ Lap = iy, 0] + LDl 253)
1

now we hilight the fact that both the system Hamiltonian and the collapse operators
(which include also multiplicative numerical constants) can depend on a parameter A.

For clarity we discretize time as done in the previous section and we consider the
unitary evolution for an infinitesimal step dt (1.26) as acting for a finite time At. The
unitary acting for each time step At is denoted ad I:It]. = fl(tj, t; + At). If the pure initial
state of the system is |¢y), the global state of system and environment at the final time T
can be written as

¥A(T)) = Uiy - Uiy ([0) @10y @ -+ @ [0),,, ) - (2.54)

In the limit At — 0, the partial trace over the environment of this global state gives the den-
sity matrix of system obtained by solving the master equation, i.e. Treny [|[¥A(T) (¥ A(T)|] =
e [yo)(wol.

In order to compute the QFI of the global state, the object we really need is the
overlap for different values of the parameter A, as per Eq. (1.90). We can in general
always compute this overlap from an effective operator living in the system Hilbert space,
because of the following identity

<‘Y/\1 (T)|‘i[’/\2(T)> = Trsystenv [|TA1 (T)><TA2(T)” = Trsyst [PM,AZ(T)] ’ (2.55)
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where g is an operator on Hsyst, which is neither normalized nor positive, since the
overlap is a complex number.

Now the non-trivial fact: it is possible to write down an evolution equation for this
operator p, in terms of the operators entering in the Lindblad equation (2.53). This
equation governing the evolution is still linear in g, but different operators act on the left
and on the right, we call it a generalized Lindblad master equation?:

dp, 2 s
dlt = E)Ll')\zp/\]r)\z =

) ) o1, ) (2.56)
= —iH),p+ipH), + Zéi//\lpéi,/\z 5 (51‘,/\1 Cia P+ péi,/\zéi,/\z) /
1

for readability we suppressed the dependence on time of the operator p and also on
the parameters A; and A, in the second line. In the following applications we restrict
ourselves to the estimation of a parameter in the Hamiltonian, so that Eq. (2.56) takes a
simpler form:

d i 1 m
d—f = —i(Ayp—pHy,) +)_DIEp; (2.57)
i
however the results of this Chapter are valid in the more general setting.
The modified Lindbladian £,, ), is still a linear time-independent superoperator, thus
the formal solution can be given by exponentiation as

TL
(¥, (T)[¥2,(T)) = Trsyae [e" 547 o) ol | (258)
the map eT£02 s linear but neither trace-preserving nor positive.
Recalling the formula for the QFI (1.90) it is now trivial to write down the QFI of the
global state. In the context of continuous measurements we call this quantity the ultimate
QFI and it is denoted by a bar:

Qp, = 49),0,, log|Tr[p]| N (2.59)
we make the dependence on the Lindbladian explicit, to stress the difference from the
effective QFI which depends also on the specific Markovian unravelling.

We thus can write the following chain of inequalities for the QFI of the unconditional
state Q[punc|, the effective QFI Ounr (depending on the particular sequential measurement
strategy) and the ultimate QFI O :

Q[Punc] < Qunr < @ﬁ,\; (2.60)

the first inequality is due to the extended convexity and the second is due to the very
definition of the QFI as an optimization over all possible measurements.

The effective QFI also depends on the efficiency of the monitoring, indeed for 77; =
0 Vjin Egs. (2.33) and (2.34), we get back to the unconditional dynamics and thus

2Generalized master equations similar to (2.56) appear also in other contexts, such non-Markovian open
quantum systems and full-counting statistics, see [139] and references therein.
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@unrﬂ:o = Q|punc|- We conjecture that, for a fixed unravelling, and for fixed efficiency
on all the output channels (i.e. for 77; = 17 Vj), the effective QFI is monotonic with respect
to the efficiency parameter, that is:

Qunr,iy < éunrlv/ — <y (conjecture) . (2.61)

We are going to see that this conjecture is satisfied in all the examples we consider. Even
though it is a rather intuitive statement, we are still lacking a general proof.

Simple derivation

The generalized master equation (2.56) can be derived in different ways, see [93, ]
However, we want to present the more intuitive argument given in [198], where the
overlap (2.55) is used for hypothesis testing.

Let us consider an additionally ancillary qubit so that the full Hamiltonian of system,
environment and ancilla reads

Aase = (10)(0]) 5 ® Ak () + (11)(1]) o ® F2(E) (2.62)

where the interaction Hamiltonian is the one considered in (1.20). We stress that the
ancillary qubit is introduced as a theoretical construction to conveniently represent alter-
native values of the parameter. The initial pure state of ancilla, system and environment
is (|0)5 +]1)A)/V2 ® [¥(t = 0)), where the joint system-environment state is given
by (2.54); it is initially factorized for t = 0 and independent from A.

The evolution according the total Hamiltonian Hagg gives the pure state

_ L
V2
i.e. the ancillary qubit makes it possible to evolve in parallel the global system for

two different values of the parameter. The raising operator on the ancillary system
o4 = (]1){0]) o can be used to obtain the overlap that we are looking for:

(t)) [10) o @ [Fa, (1) + 1) o © [¥2,(£))] (2.63)

(Fa, ()[¥n, (1)) = 2Trasp[oy ® s - (2.64)

Now one can make the Born-Markov approximation for the system environment
interaction and reproduce the steps to obtain a Lindblad master equation, as explained in
Section 1.2.1 and trace out the degrees of freedom of the environment. The reduced state
of ancilla plus system can be represented in block form as

As 1 (poo(t) por(t)
D=3 (Plo(t) P11(t)) ' (269

where each operator p;; is an operator on the Hilbert space of the system. At the beginning
there are no correlations between the two subspaces and the initial reduced operators are
equal to the pure initial state of the system |¢)

Asiy L (190Xt 0
250 =3 (5" il (266)
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The evolution of pas(t) has a Lindblad form, i.e.

dPAS = g {HAS AS:| + ZD [é\AS AS (2 67)
d - 0 p k |P ’ .
and both the collapse operators and the Hamiltonian have a direct sum structure
A Hy, 0 ¢ 0
HAS _ A R d AAS —_ k,\q ) 2.
( 0 HAZ) and ¢ 0 é, (2.68)

The overlap (2.64) that we are seeking can now be written as the trace of the off-
diagonal operator po;, i.e. (¥, (t)|¥,(t)) = Trs[oo1]. From the direct sum structure of
the operators appearing in the Lindblad equation, it easy to obtain the evolution equation
only for the off-diagonal operator pg;, where operators pertaining to A1 (A7) act only the
left (right). The result is exactly the generalized master equation (2.56); the only difference
is in notation and it is fixed by recognizing that pg; corresponds to p, 1,-

This derivation also shows that it is possible to solve the generalized master equa-
tion (2.56) by enlarging the Hilbert space to include the ancillary qubit and then solve
a standard Lindblad master equation for the composite system. This method has been
further generalized in [139].

Summary

e When a quantum systems is subjected to a Markovian continuous measurement
the correct figure of merit to quantify the achievable precision in the estimation of
some parameter is given by the effective quantum Fisher information. This quantity
is the classical Fisher information pertaining to the distribution of the (continuous
in time) measurement outcomes plus the average quantum Fisher information of
the possible conditional states.

o The classical Fisher information for a continuous measurement can be obtained by
sampling trajectories from the stochastic master equation, via an auxiliary operator
encoding the likelihood, which is also dependent on the sampled trajectories. For
Gaussian systems the problem can be simplified and recast in terms of density
matrices and first moment vectors.

o The effective quantum Fisher information for time-continuous measurements can
be efficiently computed numerically. This is achieved by writing the evolution at
each discrete time step as a CP map, which guarantees the positivity of the density
operator.

e An ultimate bound to the estimation precision achievable by continuous measure-
ments can be obtained by assuming to have access to all the environmental degrees
of freedom after they interacted with the system. Such a bound is given by the
QFI of the joint state of system and environment, we dub this quantity ultimate
QFI. One can compute such a quantity by solving a generalized master equation
for an operator (which is not a density matrix) acting the system Hilbert space only,
without the need of a full description of the joint state.



CHAPTER 3

Magnetometry with large ensembles of two-level atoms

It is now time to apply the tools we have introduced in the previous Chapter to a concrete
problem. In this Chapter we study the estimation of the intensity of a magnetic field by
continuous measurement of the collective spin of a large ensemble of two-level atoms.
The results presented in this chapter have been published in [12, 13].

Magnetometry is a paradigmatic example of quantum metrology and under some
conditions it can be mapped to the problem of estimating a frequency. Even though the
two problems are intimately connected, we keep the two topics separated. Frequency
estimation is going to be the subject of the next chapter.

When the initial state of an atomic ensemble of N atoms is an uncorrelated spin
coherent state, the mean-squared error in the estimation of the magnetic field scales,
in terms of the total spin number | = N/2, as 1/], which is usually referred to as the
standard quantum limit (SQL) to precision. If quantum resources, such as spin squeezing
or entanglement between the atoms, are exploited, it is possible to achieve a quadratic
enhancement, the so-called Heisenberg scaling, i.e. 1/ J2 31, ]. We will see in the next
Chapter that when the evolution is not unitary, it gets very difficult to achieve Heisenberg
scaling.

In this Chapter we consider an alternative approach. We start with a classical initial
state that is continuously monitored via the interaction with an external travelling field.
In this case we think of the input modes as a “probe” rather than an environment; there is
no difference in the mathematical description, which is the one presented in Section 1.2
and 1.4.2.

The crucial assumption behind these results is that the atoms are collectively coupled
with the input field. By properly engineering this interaction one can then exploit the
back action of the measurement to drive the system into more sensitive and entangled
conditional states. At the same time one can also take advantage of the information
acquired through the continuous weak measurement; for this reason our approach is not
merely a state preparation protocol.

A similar setup for magnetometry has been considered in previous literature [23,

, , , , ]. Our contribution is to rigorously address the performance of
these protocols using the quantum estimation methods introduced in Chapter 2. In this
way, we can coherently take into account both the information obtained via the time-
continuous non-demolition measurement, as well as the information obtained by a strong
measurement on the conditional state of the system.

59
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@—%—} g8 g d -e%— VA

probe detector

unobserved
environment

Figure 3.1: Pictorial representation of the metrological scheme. An atomic ensemble, prepared
in a spin coherent state aligned to the x-direction and placed in a constant magnetic field B in
the y-direction. In the upper figure the spin coherent state is represented as a circle in the Bloch
sphere; the circle represents the fact that its fluctuations are equal in all directions. The ensemble is
coupled to train of probing fields that are continuously monitored via homodyne detection after
the interaction with the sample (bottom figure).

We study this problem in the limit of large spin, so that the system behaves as a
continuous variable one. In this approximation we can derive an analytical formula for the
ultimate bound on the mean-squared error of any unbiased estimator, and conclusively
show that, for experimentally relevant values of the dynamical parameters, one can
observe a Heisenberg-like scaling.

We can also analytically prove that the ultimate quantum limit is in fact saturated by the
sequential strategy and one does not need to implement more involved measurements.

3.1 Physical model

We address the estimation of the intensity of a static and constant magnetic field B acting
on a ensemble of N two-level atoms that are continuously monitored [23, , , ],
as depicted in Fig. 3.1. The atomic ensemble can be described as a system with total spin
J = N /2 with collective spin operators defined as

1§, 0
]lX = E Zaa 7 o= x/]//Z/ (31)

and a,ii) denotes Pauli matrices acting on the i-th spin. More explicitly, the total Hilbert

space of the system is Hy = @, C; and has dimension 2"; the single atom operators
are obtained by tensor products with identities on all the other subsystems

—

gai):]1®...®1®(f,x®]l®“-®l. (3.2)
—_———— —_——
i—1 N—i
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The collective operators obey the usual su(2) angular momentum commutation rules
[fi, f]] = iei]-kfk, where ¢;j is the Levi-Civita symbol. We remark again that we choose
units such that 77 = 1.

We assume that the atomic sample is coupled to a train of electromagnetic modes
bin(t). There are mainly two physical scenarios where this description can be used. In the
first case the ensemble of atoms is placed inside a strongly driven and heavily damped
cavity, and the input mode can be used to represent the cavity mode, this approach is
described in [277]. The mode bin (t) can also represent a far-detuned travelling light field
passing through the ensemble and interacting via Faraday effect [199].

In either case we can consider an interaction Hamiltonian of the form Hine = /%[ (bin (£) +
Efn(t)) If these environmental light modes are left unmeasured, the evolution of the system
is expressed by a master equation with a single Hermitian collapse operator, which in
this case corresponds to a collective transverse noise on the atomic sample,

% = Leoi p = —ivB[Jy, p] +«D[[2]p, (3:3)
where the parameter 7 represents the strength of the coupling with the magnetic field
that is directed along the y-axis and thus perpendicular to the noise generator.

Att = 0 we consider the system prepared in a spin coherent state, i.e. a tensor product
of single spin states (qubits) directed in the positive x direction,

N
[9(0)) = Q) +)k = 1) (3.4)
k=0

where |+) is the eigenstate of oy with eigenvalue +1. We thus have that the spin com-
ponent on the x direction attains the macroscopic value (J;(0)) = J. The unconditional
dynamics of (J) is given by the following equation describing damped oscillations

W) — apir. ) - 500, ©5)

where we observe how the the dissipative and unitary parts of the dynamics are respec-
tively shrinking the spin vector (f) and causing its Larmor precession around the y-axis.
In the following we assume to measure small magnetic fields, such that yBt < 1 and we
can approximate the solution of the previous equation as

(Je(£)) = (Jx(0))e /2 = Je~*1/2. (3.6)

If the light modes are continuously monitored via homodyne measurements at the
appropriate phase, one can perform a continuous measurement of |, !; the corresponding
stochastic master equation for finite monitoring efficiency # reads

do©) = —iyB[f,, p9]dt + xD[J.]pdt + /irH [f] o' duwy , (3.7)

IWe also call this a weak or non-demolition measurement of fz, because the instantaneous disturbance on the
system is small. Note that these terms are somtimes used with other more specific meanings.
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while the measurement result at time ¢ corresponds to an infinitesimal photocurrent

dys = 2,/5K Tr[0) [ )dt + dwy ; (3.8)

these equations correspond to Egs. (1.56) and (1.54) with the choice? ¢ = J,.

We remark that this kind of collective noise in the master equation (3.3) describes the
dynamics also in experimental situations where the coupling to the atomic ensemble is
not explicitly engineered for continuous monitoring [64, 72, ]. In this respect, assuming
a non-unit efficiency # corresponds to considering both homodyne detectors that are not
able to capture all the photons that have interacted with the spin, and environmental
degrees of freedom, causing the same kind of noisy dynamics, that cannot be measured
during the experiment.

3.1.1 Gaussian approximation for large spin

Let us now consider the limit of large spin | > 1. In this case, the dynamics may be
effectively described with the Gaussian formalism as long as (fy(t)) ~ ], i.e. kt < 1. We
define the effective quadrature operators of the atomic sample, satisfying the canonical
commutation relation [X, 15} =i,as[179, ]

X=Jy/\I P=L/NI, 3.9)

where J; = [(Jx(t))| Notice that in the limit of large spin ] we are assuming that we
can safely consider the unconditional average value (J(t)) only, since the stochastic
correction obtained via (3.7) would be negligible.

In the Gaussian description the initial state |1(0)) corresponds to the vacuum state
(X +iP)|0) = |0), which is Gaussian. With this approach, the stochastic master equa-
tion (3.7) becomes quadratic in the canonical operators (and thus preserves the Gaussian
character of states)

dp©) = —iyB L[X,p@} dt + kJ;D[P] p©)dt + [ Teyx H[P] pt) dwy . (3.10)

Let us briefly comment this equation. Crucially, the effect of the magnetic field becomes
a displacement of the P quadrature. Moreover, strictly speaking this equation is not in
Lindblad form (1.31), since the coefficients are time dependent. This time dependence
could be avoided by choosing J; ~ ], i.e. neglecting the decay of the spin, which is still
a good approximation for | > 1 and yBt < 1. However, such a crude approximation
does not completely capture the dynamics of the system and we prefer to work in the
more general case. Since all the coefficients in (3.10) are positive, we are still allowed to
apply all the quantum trajectories approach, see also [108, 179]. The dynamics is still
Markovian, but it is not time homogeneous, i.e. we lose the semigroup property of the
unconditional dynamics.

Being quadratic, the whole dynamics can be equivalently rewritten in terms of first
and second moments, i.e. the first moments vector r and the covariance matrix o of the

2Note also that 7 in Egs. (1.56) and (1.54) corresponds here to x and has nothing to do with the y of Eq. (3.3).
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quantum state p(¢). As explained in Section 1.4.2, one can derive the following equations:

oM dw

dry = up dt + % (3.11)

d

% — D — oMM oy, (3.12)

where
D 2iJe /2 M 0 0 0
e ( 0 0 )' " \2nxge iz o) TN\ —yByJe w2 )

(3.13)

and dw is a vector of Wiener increments such that dw; dwy = dydt, related to the pho-
tocurrent via the equation

dy, = —V2M[ r dt + dw, (3.14)

but since we are considering homodyne measurements of a single mode the current is
clearly not a vector (this is due to the singular matrix M;):

dys = —\/2nx]e % (B(0))edt + duy = 2yBJe ™2 /R dt +dw.  (3.15)

As it will be clear in the following, for the estimation of B, we only need to retain the
evolution of the mean and the variance of the atomic momentum quadrature P calculated
on the conditional state p(¢). Remembering that with our definitions o5y = 2Var.[P(t)]
the equations we are seeking are the following

d(P(t))e = — By\/Je~ 2 dt + 2Var [P(t)]\/nxJe % dwy, (3.16)
dVar.[P(t)]
dt
The differential equation for the conditional second moment is deterministic and can be
solved analytically. For an initial coherent spin state, in this CV description a vacuum
state with Var[P(0)] = 1, we obtain the following solution

1
8q](1—e—%)+2'

This expression shows that the conditional state of the atomic sample is deterministically
driven by the dynamics into a spin-squeezed state. For our discussion spin-squeezing sim-
ply means that Var[];] /|(f)|* = Var[P(t)] < 1/23, which in turn implies that quantum
correlations between the individual atoms are formed, see [175, 290] for more details.

The value of the squeezing depends on the efficiency 7, as expected the state is not
squeezed at all when it is not monitored (for # = 0), and it is inversely proportional to the
total spin J. We can also appreciate that, due to the decay of the spin amplitude (] (t))
, the variance does not tend to zero for long times, but tends to the asymptotic value
1/2-(1+4y))~ L.

3We recall that the uncertainty relation coming from the su(2) commutation rules is Var [fz]Var [ fy] <

|(Jx) [ /4.

— —4yxfe 3 (Var[P(1)])%. (3.17)

Var[P(t)] = (3.18)
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3.2 Analytical results

Here we present our main results: the derivation of ultimate quantum limits on noisy
magnetometry via time-continuous measurements of the atomic sample. We first evaluate
the classical Fisher information F[y;] corresponding to the information obtainable from
the photocurrent. Then evaluate the second term appearing in the bound, corresponding
to the information obtainable via a strong measurement on the conditional state of the
atomic sample. This allow us to discuss the ultimate limit on the estimation strategy
via the effective quantum Fisher information: we focus on the scaling with the relevant
parameters of the experiment, i.e. with the total spin number | and the monitoring time
characterizing each experimental run t, and we address the role of the detector efficiency
1. Finally, we discuss the optimality of our measurement scheme, evaluating the ultimate
limits on the precision given the noisy dynamics we are considering, using the tools
presented in Section 2.4.

3.2.1 Effective quantum Cramér-Rao bound
Fisher information for the time-continuous photocurrent

As discussed before, the measured photocurrent y; obtained via continuous homodyne
detection can be used to extract information about the system and to estimate parameters
which appear in the dynamics. The ultimate limit on the precision of this estimate is
quantified by the FI F[p(y;)]. Given the Gaussian nature and the simple dynamics of the
problem we can compute it analytically in closed form, by applying the results described
in2.2.3.

In this case the parameter is encoded only in the first moments of the conditional state,
therefore one has to evaluate only this formula

Flp(y0] = Epiyy |2005r0) T MMT (@5r1) | (319)

By noticing that the only non-zero entry of the vector dpr; is the one corresponding to
(P(t))., we thus obtain the formula

Flpo) =212 By, [ 08(P(1))e)’] (3.20)

By considering (3.16) and remembering Eq. (3.15), the time evolution of the derivative of
the conditional first moment (P(t)). w.r.t. the parameter B can be written as

1O PON) oy fle2 sV [P ete 2 0u(B(E)e). (G20

where Var [P(t)] is given by Eq. (3.18). The evolution of this quantity is deterministic
and the equation can easily be solved. It follows that the average over the trajectories in
Eq. (3.20) is not needed and we readily obtain the following closed expression for the FI

K 3 K K K
6477 2 (e — 1) [—an] —12Je¥ +3(4n] +3)e¥ + (4] +3)e |
9x2 [(4;7]+ 1)e% — 417]} '

Flp(y)] =

(3.22)
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In Section 3.3 we show that a Bayesian estimator can indeed easily saturate the lower
bound given by this Fisher information.

Average quantum Fisher information

In order to evaluate the effective quantum Cramér-Rao bound defined in Eq. (2.14) we
now consider the second term E,,, {Q[p(c)]} , that represents the information obtained

via strong quantum measurement on the conditional states.

The conditional state p(¢) is Gaussian and carries a dependence on the parameter B
only in the first moments. As shown e.g. in [232, ], the QFI of a parameter in the
first moments of a Gaussian state is equal to the FI of a classical Gaussian probability
distribution:

Q[p(c)] =2 (aBrt)T o (9pre); (3.23)

which in the present case can be expressed as

o @(P(1)c)°
Qlp ]—7%&[13(0] : (3.24)

Since, as we proved before, the evolution of both dg (P(t)), and Var.[P(t)] is determin-
istic, the average over all possible trajectories is trivial and we have E,, [Q[p(c)ﬂ =

Q[p'%)]. By exploiting the analytical solution for both quantities, the QFI reads

Kt Kt 2
3272](12;7] —dyJe= % + (—8y] —3)et + 3)
B 9x2 (4] +1)e¥ — 4y]] '

Qo] (3.25)

As expected, when the monitoring of the environment is switched off ( = 0), one
gets a SQL scaling Q[p(?)] ~ ], since no entanglement is created by the back-action of
the measurement and the initial state is classical. We also remark that the QFI is equal
to the classical FI for a measurement of the quadrature P, thus showing that a strong
measurement of the operator J, on the conditional state of the atomic sample is the
optimal measurement saturating the corresponding quantum Cramér-Rao bound.

Effective quantum Fisher information

By combining Egs. (3.22) and (3.25), we can now finally compute the effective quantum
Fisher information (2.15), which in this case reads

3 = Flpyn)] + By [ Qo] = Flp(y)] + QLo (3.26)

we recall that this quantity represents the inverse of the best achievable variance of an
unbiased estimator, according to the quantum Cramér-Rao bound (2.14). The resulting
expression can be simplified to get to a remarkably simple analytical formula

9y = KiJ + Ko J? (3.27)
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where the two coefficents are

8

’72 t/4\2 ’72 t/4 -
K:Z—(l— —x ) Ky = 640 (1= e rt/4 { ppxt/2 _ Zp=rt ) 2
1=3 p e » =6 KZ( 36 + 2e 3e ) (3.28)
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Figure 3.2: J scaling - effective QFI Q as a function of J for different vales of «t, for unit efficiency #
and effective coupling strength v/« =1 G 1; axes are in logarithmic scale. The solid curves are for
increasing values of xt (shown in the legend) from top to bottom. The two regimes appearing in the
plots are ~ J? (steeper slope) for higher values of xt and higher values of ] and ~ ] (gentler slope)
for the opposite parameters’ regions. For visual comparison we show a dashed line at the top o J>
and a dotted line at the bottom « ].

We start by studying how this quantity scales with the total spin: in Fig. 3.2 we plot Q
as a function of | in the appropriate regions of parameters. We remark that the plots are
presented choosing 1/« as the time unit so that the strength of the interaction becomes
v/x and is always fixed to 1 G~! in the following. We observe that, within the validity
of our approximation (xt < 1), it is possible to obtain the Heisenberg scaling J? for the
effective QFI. There is a transition between SQL-like scaling and Heisenberg scaling
depending on the relationship between | and x¢, showing how the quantum enhancement
is observed for | > 1/«t.

The same conclusions are drawn if we look at the behaviour of Q as a function of
the interrogation time t, plotted in Fig. 3.3: a transition from a #>-scaling to a quantum-
enhanced t3—scaling is observed for | > 1/xt.

The previous results were both shown by considering the case of perfect monitoring of
the environment, i.e. for homodyne detectors with unit efficiency 7. In Fig. 3.4 we plot the
behaviours of O as a function of | and ¢, varying the detector efficiency 1; we observe that
the quantum enhancements can be obtained for all non-zero values of 1. With a non-unit
monitoring efficiency the transition from SQL to Heisenberg-scaling is obtained for larger
values of J. Clearly, the effective QFI (3.26) satisfies our previous conjecture (2.61): it is
monotonically increasing (linearly) in .

We finally remark that if we consider only the classical FI F[p(y;)], the Heisenberg
scaling in terms of ] and #>-scaling are always obtained for xt < 1 and for every 7.
However, when the contribution of the term quadratic in | is too small then the QFI of the
unconditional state, i.e. (3.25) with 7 = 0, dominates and we observe SQL scaling for Q.
This idea can be used to pinpoint more clearly the transition between the two regimes.
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Figure 3.3: Time scaling - effective QFI Q as a function of «t for different values of J, for unit
efficiency 7 and effective coupling strength /x = 1G~1; axes are in logarithmic scale. The solid
curves are for increasing values of | (shown in the legend) from top to bottom. The two regimes
appearing in the plots are ~ (kt)3 (steeper slope) for higher values of xt and higher values of |
and ~ (xt)? (gentler slope) for the opposite parameters’ regions. For visual comparison we show a
dashed line at the top « (xt)? and a dotted line at the bottom o (xt)2.
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Figure 3.4: Effect of non unit efficiency - effective QFI 0 as a function of J (top panel) and «t
(bottom panel) for different values of 77 and effective coupling strength v/x = 1G~!. The two
regimes appearing in the plots are ~ J? (top panel) and ~ (kt)3 (bottom panel) for higher values
of xt and higher values of ] while ~ J? (top panel) and ~ (xt)? (bottom panel) for the opposite
parameters’ regions. For visual comparison we show a dashed line at the top « J? (top panel) and
o (xt)3 (bottom panel) and also a dotted line at the bottom o | (top panel) and (kt)? (bottom
panel).

Threshold on the number of atoms to observe Heisenberg scaling

The formula reported in Eq. (3.27) is particularly illuminating, specifically it allows us to
discuss in more detail the role played by the two parameters describing the protocol: the
(dimensionless) monitoring time xt and the monitoring efficiency 7.

We start by observing that the effective QFI is the sum of two terms, one linear in |
(SQL scaling) and one quadratic (Heisenberg scaling). The latter one depends linearly on
the monitoring efficiency # and correctly goes to zero for # — 0, i.e. when no monitoring
is performed and the SQL-scaling is the expected result for an initial spin-coherent state.
The observation that Heisenberg scaling can be obtained when | >> 1/t can be rigorously
studied by looking more carefully at Eqs.(3.27) and (3.28). We define the condition to
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Figure 3.5: The minimum number Ny, of atoms in the ensemble needed to to observe Heisenberg
scaling for the effective QFI Q. In the upper panel we plot Ny, as a function of # for different values
of kt (increasing going from top to bottom), there is an inverse proportionality relationship. In the
right panel we plot the same quantity as a function of ¢t for different values of # (increasing going
from top to bottom), in this case the relationship is only approximately inversely proportional.

observe Heisenberg scaling as
Heisenberg scaling <= 1K, ] > K; (3.29)

i.e. when the quadratic contribution is greater than the linear one. This implies that we
have a threshold value for the total spin,

Ky

—_—, 3.30
Kz ( )

Jin =
and obviously, in terms of the total number of atoms, Ny, = 2Jy,. If we plug in the
coefficients from (3.28), we get this simple expression

1
U(l _ %e—m‘/Z _ %e—Kt/4) !

Ny, = (3.31)

which can be approximated as Ny, ~ % when xt < 1. The expected inverse relation-
ship between the threshold number of atoms and both the monitoring time xt and the
efficiency #, can be explicitly observed in Fig. 3.5, where we plot Ny, as a function of both
experimental parameters characterizing the protocol.
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3.2.2 Optimality of the sequential strategy

The ultimate limit for quantum magnetometry, in the presence of Markovian collective
transversal noise as the one described by the master equation (3.3), is given by the QFI
@l:coll’ previosuly introduced in Eq. (2.59). In this section we show that the effective FI Q
actually corresponds to the ultimate bound given by Q,_ , thus proving that homodyne
monitoring of the light interacting with the system is the optimal strategy to extract
information about the magnetic field.

The generalized master equation (2.57) in this case (considering the large-spin approx-
imation) reads

Z—’Z = —iy\/J1(B1Xp — BopX) + xiD[P]p. (3.32)

This equation can readily be solved in a phase space picture, since the terms in X and
P are at most quadratic the Gaussian character of the operator  is preserved. Let us
explicitly show how to solve Eq. (3.32).

The characteristic function can be defined for a generic operator O as x[0](s) =
Tr [D_ SO] , in accordance with (1.104). In particular we work in the phase space of a single
mode system, so that #' = (X, P) is the vector of quadrature operators and s’ = (x, p)
is the vector of phase space coordinates. Crucially, the action of operators in the Hilbert
space corresponds to differential operators acting on the characteristic function via the
following mapping [27, 100]

R0 o (—iap - g) x(s) (3.33)
pR (—iap n g)x(s) (3.34)
Pp < (i0x = £)x(s) (335)
b & (iax + g) x(s) (3.36)

We can now introduce the characteristic function associated to the operator p appear-
ing in Eq. (2.57)

x(s,t) = x[pl(s)- (337)

The only quantity of interest in order to compute the QFI is the the trace of this operator,
which corresponds to the characteristic function evaluated in the origin of the phase space,
i.e. Trp = x(0,t). This can readily be checked from the definition (1.104); for normalized
quantum states this quantity is always one.

By applying the phase space mapping, from the generalized master equation (3.32)
we get to the following partial differential equation for the characteristic function

9x(s, t . /7B +B J - _
XE; ) _ [wﬁ 1; Zx—%hPZ—Y ]t(Bl—BZ)ap}X(S't)' (3.38)

This equation can be solved by performing a Gaussian ansatz; we assume that at every
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time the characteristic function can be written in the following form*
Xx(s,t) = C(t)exp —}LSTQTU'(t)Q s+is Qs (t)]. (3.39)

The dependence on time and on the parameters By, is completely contained in the
covariance matrix ¢ (t), in the first moment vector s, ()" = (x4 (t), pm(t)) and in the
function C(t) = x(0,t), which is exactly the final result we are seeking.

By plugging (3.39) into (3.38) and equating the coefficients for different powers of x
and p, one obtains a system of differential equations. The relevant equations come from
the coefficients of order one, and the coefficients of terms in p and p?:

doyi(t) —g
dx’” —z— Je= % (By — By) o1 (1) (3.41)
di—ﬁ” — —ipy/Je % (By — Ba)xm(H)C() (642)

These equations are solved analytically with the initial conditions ¢41(0) =1, x,,(0) =0
and C(0) = 1. These conditions express the fact that for t = 0 the operator ¢ is exactly to
the initial state of the system |0) (0|. The solution has the following form

2 t Kt
C(t) = exp —‘;%](B1 — By)%e " (e’% - 1)2(—4]e% + (6] +3)e? — 2])] . (343)

Now, the ultimate QFI is given by Eq. (2.59), which in this case reads

Qr. = 405,95, 10g|C ()| [ _p,_p - (3.44)
It is a matter of simple algebra to get to the following final result
> ] 3220 (¥ —1) (—4Je + (6] +3)e¥ ~2)
Qe = Dy=1 = ; (3.45)

3x2

remarkably it coincides with the effective QFI Q in (3.26) for unit efficiency 7 = 1.

This result proves that our strategy, not only allows to obtain the Heisenberg limit,
but also corresponds to the optimal one, given the unconditional master equation (3.3)
with collective transversal noise and for perfectly efficient detectors. Indeed, any other
more experimentally complicated strategy, based on entangled and non-local in time
measurements of the output modes and the system, would not give better results in the
estimation of the magnetic field B.

3.3 Bayesian estimator

In this section we concretely show that it is possible to achieve the classical Cramér-Rao
bound from the time-continuous measurement outcomes by explicitly building a Bayesian

* This approach to solve a generalized master equation in phase space with a Gaussian ansatz is analogous
to the one used in [119] in the context of full-counting statistics.
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estimator, implementing what we explained in Section 1.3.1. We also point out that a
Bayesian approach has already proven to be very useful for parameter estimation with
continuously monitored quantum systems [51, 61, 92, , ].

The goal is to reconstruct the posterior distribution of B given the observed current y;,
by Bayes rule:

p(Blyt) = M, (3.46)
p(yt)
where p(B) is the prior distribution, p(y¢|B) is the likelihood and p(y:) serves as a
normalization factor. As a Bayesian estimator we choose the mean of the posterior
distribution B(y) = E, |y, [B]; the corresponding variance Varg(B) = E,(pj,,) [B?] —
(Ep(Bly,) [B])? is asymptotically optimal and tends to saturate the Cramér-Rao bound
when the length of the vector yr is large.

The simulated experimental run is obtained by numerically integrating the stochastic
differential equation (3.16) with the Euler-Maruyama method for the “true” value of
the parameter Bire. Time is discretized with steps of length At, i.e. to get from time
0 to time T we perform nt = T/At steps. Experimental data is represented by the
observed measurement current yr = (Ayy,, ..., Ayt )T, which corresponds to an nr-
dimensional vector. The outcome at every time step Ay;, is sampled from a Gaussian

distribution with variance At and mean Ay, (B) = 1/25jk Je~ % (P(t;))cAt. Notice that
Ayt (B) depends explicitly on the parameter B via the quantum expectation value (P(;)).
on the conditional state.

Since we are estimating only one parameter the posterior can be obtained on a grid on
the parameter space; for more complicated problems Markov chain Monte Carlo methods
might be needed to sample from the posterior [92]. In practical terms we need to solve
Egs. (3.16) and (3.17) for every value of the parameter B on the grid, assuming to perfectly
know all the other parameters; then we need to calculate the likelihood for each value via

‘ (Ayl‘i Ayti(B))2]
B) exp|— ’
pllB) ] 1 p[ s

(3.47)

by considering the outcomes as independent random variables, i.e. multiplying the
corresponding probabilities. We then apply Bayes rule, Eq. (3.46), assuming a flat prior
distribution p(B) on a finite interval. The same analysis is trivially applied to more
than one experiment by simply multiplying the likelihood obtained for every different
observed measurement current.

In Figure 3.6 we indeed show the posterior distribution as a function of time for a single
experimental run, obtained after a Bayesian analysis. We observe how the distribution
gets narrower in time around the true value and we also explicitly show that its standard

deviation oest = |/ Vary(B) converges to the one predicted by the Cramér-Rao bound
ocr(t) = Flp(y)] /2

Notice that in the initial part of the dynamics the values of oest are smaller than the
corresponding ocr. This behaviour is due to the choice of the prior distribution, which is
narrower than the likelihood and thus implies some initial knowledge on the parameter.
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Figure 3.6: Bayesian estimation of B from a single simulated experiment - the data shown in the
plots are obtained as a function of xt, for y/x =1 G 1, J=10%and 1 = 1; the prior distribution of
the parameter B is uniform in the interval [—0.01,0.01] G, and the true value is Beye = 0G. In the
top panel we show the ratio between the standard deviation of the posterior distribution and the
standard deviation predicted by the Cramér-Rao bound. In the bottom panel we show the posterior
distribution as a function of time, the constant white dashed line marks the value Byre.

This knowledge coming from the prior is larger than the information obtainable for small
monitoring times and thus the variance is below the value obtained from the Cramér-Rao
bound. It is important to remember that the FI F[p(y;)] is monotonically increasing with
time ¢, so the information gained by the currents increases with time, as one could expect.

Summary

e An ensemble of two-level atoms can be used to estimate the strength of a constant
magnetic field. A travelling field interacting collectively with all the atoms is
measured with homodyne-detection after the interaction with the sample. The
evolution is described by a stochastic master equation. In the limit of a large
number of atoms (equivalently large total spin of the system) an effective Gaussian
description is sufficient. The back-action of the measurement due to the continuous
monitoring induces spin-squeezing on the state of the atomic ensemble.

e The metrological scheme consists in using the information from the continuous
measurement and a final measurement on the conditional state. The precision is
quantified by the effective quantum Fisher information, which can be computed
analytically. The effective QFI is Heisenberg limited, i.e. it shows a quadratic scaling
in the number of atoms, even when the initial state is completely uncorrelated.
Inefficient homodyne detection does not destroy the scaling, but only increases the
number of atoms required to witness it.

o The scheme based on sequential continuous measurements is optimal for perfect
detection efficiency. In this case the ultimate quantum Fisher information (optimized
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over all possible measurement on the joint system-environment state) is equal to
the effective Fisher information for the considered strategy.

o We explicitly show that a Bayesian estimator rapidly saturates the classical Cramér-
Rao bound given by the Fisher information of the continuous measurement.

e In conclusion, time continuous measurement of a collective spin observable is a pre-
cious resource for magnetometry, since it allows both to directly extract information
about the parameter and to prepare very sensitive conditional states.






CHAPTER 4

Restoring Heisenberg scaling in frequency estimation

In the previous Chapter we studied the effect of the continuous measurement of a collective
observable of a system of two-level atoms. We have shown that the spin-squeezing (and
thus the entanglement) generated by the continuous monitoring is sufficient to achieve
Heisenberg scaling even with a factorized initial state, i.e. with completely uncorrelated
atoms. In this situation the continuous nondemolition measurement of the collective spin
observable is the resource for quantum metrology. The external light field coupled to the
system has to be considered as a useful probe rather than an unwanted environment.

In this chapter we flip the point of view and we consider a complementary scenario,
where the metrological resource is an initially entangled state. In general, when noisy open
quantum dynamics is added on top of the encoding Hamiltonian, the advantage given by
the initial quantum correlations is easily lost. In this situation, we show that, by having
full or partial access to the environment causing the noisy dynamics, it is possible to
restore the advantage.

Even if the Hamiltonian encoding the parameter is basically the same as in the previous
section!, we look at the problem with a slightly different point of view and we now talk
about frequency estimation, rather then magnetometry. As we explain in Sec. 4.1 the
main difference is that it is customary to consider the total time of an experiment as a
valuable resource and not only the number of probes. This leads to consider a figure of
merit which is optimized over the interaction time of a single run.

In this Chapter we start from an unconditional evolution described by a Markovian
master equation, see Section 1.2. In particular, we focus on independent noise acting on
each different two-level system, either parallel or transverse to the generator of the phase
rotation to be estimated. In the former case, which corresponds to the so-called pure
dephasing, the unconditional Lindblad dynamics leads to a standard quantum limited
precision, even for an infinitesimal amount of noise [69]. In the case of transverse noise, it
was shown that, by optimizing over the evolution time, it is possible to restore a super-
classical scaling between SQL and HL [35, 53]; see also [123] for a recent review about
quantum metrology with open quantum systems.

Our goal is to study whether time-continuous monitoring allows one to restore the
HL, and to analyze in detail the effect of the monitoring efficiency on the performance

! In order to adhere to the standards used in previous literature on the topic, we change the axis of the
Hamiltonian from y to z; this change is inconsequential for the physics of the problem.

75
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of the estimation schemes. We derive both the ultimate limit on estimation precision
(introduced in Section 2.4) and the effective bound for sequential strategies (introduced in
Section 2.1). At variance with the previous chapter, we consider not only time-continuous
homodyne-detection, but also photo-detection.

It is important to remark that the use of continuous measurements and feedback
techniques has long been recognized as a useful tool for fighting decoherence [6-5, 94,

, 107, 271]. Our metrological scheme follows this line of thought, but with the great
advantage that it is based on continuous monitoring only, without error correction steps
(or feedback), differently from other recent approaches in noisy quantum metrology [95,

1.

We stress that a great deal of effort has been also devoted to study the asymptotic
properties of estimation via repeated/continuous measurements [43, 47, 122]. In this
approach one is usually interested in performing a single run of the experiment and thus
the system is observed for a long time. Our point of view is radically different and rooted
in previous works on quantum frequency estimation. We are interested in the initial part
of the dynamics, long before reaching the steady state. For this reason the asymptotic
regime of the statistical model is reached by running the experiment many times, instead
of observing the system for a long time.

Moreover, while most of the literature on parameter estimation with continuous
measurements only deals with the information gained from the continuous signal only,
the crucial part that makes our protocol able to recover Heisenberg scaling is the final
strong measurement on the conditional state.

Finally, we point out a couple of works connected to the one presented in this chapter.
An estimation problem closely related to the present one is studied in [48]; the setup
is similar and the authors consider the same figure of merit, but the analysis is not
performed in the context of continuous measurements. Very recently, after the appearance
of our manuscript [14], another group independently obtained similar results [176]. In
this work the authors only consider ideal jump-like evolution and they mainly focus on
a single qubit probe; on the other hand they are able to generalize results to different
interactions, initial states and parameters to be estimated.

4.1 Noisy frequency estimation

We consider a system of N qubits, described by an Hamiltonian A, = wf, = (w/2) Z] 1 O'Z ,
where w is the unknown frequency to be estimated, and U'Z(] ) is the Pauli-z operator acting
on the j-th qubit, as explicitly reported in (3.2).

The system is interacting also with a Markovian environment, so that the evolution is
described by the master equation

4 Cop=ilr] 5 S0l o= i T[] 5Ll ).

] 1
4.1)
We consider two possible geometries for the noise: we refer to « = z as parallel noise,
while a = z is transverse noise, since the collapse operators are respectively parallel or
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transverse to the Hamiltonian. The form of the Lindblad master equation is particularly

simple due to the fact that the operators ¢, are both hermitian o} = o, and unitary
040, = 1. The master equation (4.1) is in Lindblad form, given by (1.31). The equivalence

with the results of Chapter 2 can be seen by considering the noise operators?
¢ =720 . 42)

In quantum frequency estimation strategies, one considers the number of qubits N
and the total time of the experiment T as the resources of the protocol. The quantum
Cramér-Rao bound is usually rewritten as

1 1
) T > > 4.3
VT 2 VQ/t T /max/[Q/t] (4.3)

where t = T/ M corresponds to the duration of each round, over which one can perform
a further optimization, and where Q corresponds here to the QFI charaterizing the
particular estimation strategy considered. The error on the estimate is the standard
deviation of the estimator dw = /Var|[®@].

A particularly important class of states for this estimation problem is represented by
the N-qubits GHZ states

[penz) = (|0)“N + [1)*N)/vV2; (4.4)

in most of the following we consider a GHZ initial state. This is a strong assumption,
since GHZ states are very fragile and difficult to prepare, however this choice simplifies
calculations and leads to analytical results.

It is well known (and easy to check) that in the noiseless case, i.e. for x = 0, an
initial GHZ state is optimal and the QFI is Heisenberg limited, Oy = N??. This leads
to a quadratic enhancement w.r.t. the “standard quantum limited” QFI, Osq. = N £2,
which is obtained in the case of an initial factorized spin coherent state |iPcon) = [(]0) +
11))/v/2]®N. Let us remark that both the > scaling in time and the N? scaling in the
number of qubits are called “Heisenberg” scaling in the literature; we reserve the phrase
for the scaling in N exclusively. In what follows, we are going to consider the noisy case
(x > 0); the generic QFI Q in Eq. (4.3) corresponds to either: i) the QFI of the unconditional
state Q[punc] corresponding to the master equation (4.1); ii) the ultimate QFI Q ., obtained
optimizing over all the possible measurements on system and environmental outputs;
iii) the effective QFI @unr,f? corresponding to a specific time-continuous (sequential)
measurement of the output modes and a final strong measurement on the conditional
state of the system.

In particular we are going to focus on time-continuous photo-detection and homodyne
detection; the respective SMEs are given by (2.33) and (2.34), by applying the substitu-
tion (4.2) and considering a single measurement efficiency 17; = 7 for every output
channel. The two effective QFIs are respectively labeled as deﬂ and @hom,q/ where we
also keep the dependence on the efficiency explicit.

2 Again, we use the parameter « for the coupling with the environment, instead of y used in Chapter 2.
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Figure 4.1: Schematic representation of the metrological scheme. A N-qubit input state )
interacts with N independent environments which are monitored by N detectors, either by photo-
detection (PD) or homodyne detection (HD). In the former case each output is a binary valued
detection record N;(t), in the latter a real valued photo-current y;(t). The map & g; (t) represents
the corresponding conditional dynamics acting on the j-th qubit only, and it depends on the
measurement output N;(t) or y;(t). The N-qubit quantum state 0 (#), conditioned on all the
measurement outcomes acquired during the evolution, is collectively measured at the end of the

conditional dynamics.

The metrological scheme corresponding to the effective QFI is schematically shown in
Fig. 4.1, where we graphically stress that the evolution of every qubit is independent from
the others: we assume that N different (homodyne or photo-) detectors are monitoring
each environment. However there are instances where these assumptions may be relaxed,
due to the symmetry of the initial state.

In the next sections we address separately the two different cases of parallel and
transverse noise. For each case we start by reviewing known results for the QFI of the
unconditional states. Then we present original results, regarding the ultimate QFI O
and the effective QFIs @pd,,? and @hom,n' For parallel noise we can compute everything
analytically, while for the transverse case only the ultimate QFI for a GHZ state can be
computed analytically and we make use of the algorithm presented in Section 2.3 for the
effective QFL

4.2 Parallel noise

Parallel noise, corresponding to the master equation (4.1) with O'Q(Cj ) = az(j ), is typically
considered the most detrimental noise for frequency estimation since the evolution
induces dephasing in the same eigenbasis of the Hamiltonian H,,. For an initial GHZ
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state, the QFI of the unconditional state can be evaluated analytically [15, ], obtaining
o) [p“nc} — N2f2e 2Nt (4.5)

By optimizing over the single-shot duration ¢, one obtains that the optimal QFI is standard
quantum limited,

Q| plnc|

- . 4.
max t 2ex’ (4.6)

this result is exactly the same obtained with a factorized initial state |cop). If one can
optimize over the initial entangled states a better precision can be achieved, but only a
constant enhancement can in fact be gained [137]. Some general bounds on the precision
of parameter estimation with noisy dynamics have been derived [69, 75] and the result is
that as soon as some parallel noise is present in the dynamics, the ultimate precision is
standard quantum limited.

4.2.1 Analytical results

We present result about frequency estimation with parallel noise; part of these results are
valid more in general. We discuss more explicitly the case frequency estimation with an
initial GHZ state at the end of the section.

Ultimate QFI for noise commuting with the Hamiltonian

In this section we show that, whenever the collapse operators ¢; commute with the free
Hamiltonian H,,, the ultimate QFI O  is always equal to the QFI of the state evolving
under the unitary dynamics generated by H,,.

The master equation and the stochastic master equations are obtained by considering
the following interaction Hamiltonian between the system and the input modes: Hint (t) =

Z]N:l (@ji)i({]*(t) + é;r El(r]l) (t)) . We remind that t enters the Hamiltonian as a parameter that
labels which mode interacts with the system at time ¢ and for each ¢ we have a different
operator acting on a different Hilbert space, see Section 1.2 for more details. The total time-
dependent Hamiltonian for the system and environment is thus Hsg (t) = Hy, + Hint (t)
and each input mode interacts with the main system for an infinitesimal time dt.

For the sake of clarity, we consider a discretization with a finite interaction time d¢, so
that the evolution over a total time T = M/t involves a finite number M of input modes.
As we did in Section 1.2.1 we assume that the state of the input modes is the vacuum
|0) and that the initial state of the system |¢) is pure. The result holds also in the limit
ot — 0.

Under these assumptions the joint state of system and environment evolves as

e (@) = Uiy, .. U,y (Jp0) @ J0) M), 47)
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where t; = j - 5t and l:lt], = exp[—i0t(Hy + Hine(tj))]. The object we need to evaluate the
QFI is the overlap for two different values of the parameter, i.e.

(se(w1)|Pse(w2)) = Tr[p], (4.8)

where the operator p is the one appearing in Eq. (2.57), as explained in Section 2.4.
When all the collapse operators éj commute with the free Hamiltonian Hw, the inter-
action Hamiltonian H;,; also commutes and we have

Uy, = exp[—idtHine(t;)] - exp[—idtHe). 4.9)

Therefore, in the computation of the overlap (4.8) the terms due to the interaction cancel
out and we have

(Pse(w1)[Pse(w2)) = (Yol exp[—iT(Hw, — Hey)]|t0),

so that Eq. (2.59) gives the QFI of the unitary case. This result is valid for any Hamiltonian
parameter [215] and any commuting collapse operator.
In particular, this is true for the Hamiltonian A, = w], with parallel noise ¢ =

k7269 for any pure initial state of the system ) we have

Qr,, = Qfe " o) yole | = 4] (yol Blyo) — (woll:l90)?] . (410)

This result shows that, by measuring the output modes, it is in principle possible to
recover not only a Heisenberg scaling for the error éw, but also the whole information on
the parameter.

Effective quantum Fisher information for Hermitian and unitary collapse operators

In this section we show that the effective QFI Qum,q for 7 = 1 can be equal to the QFI of
the noiseless unitary dynamics, thus saturating the ultimate bound Q_; on the other
hand for 7 < 1 the result is the same as for the unconditional dynamics, but with a
rescaled coupling constant k(1 — 77). In general, when the collapse operators ¢; commute
with the Hamiltonian and are also unitary and Hermitian (in this case the Pauli matrices
o) it is always possible to recast the evolution due to the SME as a random unitary
transformation followed by the unconditional CPT cap.

For photo-detection we have the following SME, starting from the general one in
Eq. (2.33):

dor = —iw ]z, pe]dt + (1 — 7 ZD{UZ :|Ptdt+2(0'z ptay) pt)dN]-; (4.11)

now, due to the unitarity of o, the statistics of the Poisson processes is independent from
the state of the system E[dN;] = 5dt. This means that the measurement records N;(t)
contain “only noise” and no information on the state of the system and thus they give
zero information about the parameter, i.e. F [pysj] = 0.
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We can now exploit the following identity for Poisson processes [144]:
1+ AdN = 1080+ AN — (4 4 1)IN | (4.12)

which stems from the fact that iN?> = dN. This identity holds not only for scalars
but also when A is an operator or a superoperator, the only crucial property is that
the exponential is defined as a power series (and in this case 1 represents the identity
operator /superoperator).

In Eq. (4.11) all the terms multiplying the Poisson increments are given by a super-
operator with the action @ — ¢, ® 0, minus the identity superoperator. By using this
observation in conjunction with the identity (4.12) and by exploiting the properties of
independent Poisson increments, dtdN; = 0 and dN;d Ny = J;xdN;, we can finally write
the infinitesimal evolution of the density operator as

Orvat = edt(kr])gz,'z)[az(ﬂ] KHUZ(]')W) (efiwfzdt zaJ]zdt> (H” )] . (@13)
j

This identity is true up to order dt and we see that the Hamiltonian part is followed by

random “spin-flips” and by the dissipative part with a rescaled coupling (1 — 7).
Since everything commutes, the solution is trivial and iterating the infinitesimal

evolution amounts to integrating the various exponents separately, therefore we get to

o = 171k 5y p[e] [(]—[Uz ><eiwfztpoeiwfzt> <HU N(tﬂ

e(lfn)z ;D [vz(”]t{eig Zjaz N]-(t) (e—iwfz tpo eiwfzt)eig z]-az N]-(t):|

(4.14)

where the random variable N;( fo dN; counts the number of detections at the j-th
detector. Now, since the spm—fllps dependmg on the random Poisson processes are
unitary operations they leave the QFI invariant. From this argument, it follows that the
QFI of each conditional state is exactly equal to the QFI of the unconditional but with a
rescaled coupling k¥ — x(1 — 7). For 7 = 1 the QFI of each conditional state (and thus
also the average QFI) is equal to the noiseless case and saturates the ultimate bound Q.
This last result was only proven numerically in [14].

For homodyne detection the “trick” is to choose the appropriate quadrature to mea-
sure, which amounts to changing the angle & which decides which collapse operators 6jei9
enter into the SME. By choosing 6 = 71/2 we have the expectation value Tr[p(i¢ — ié*)} ,
which clearly is zero for Hermitian ¢, e.g. Pauli matrices. This means that the observed
photocurrent is again only noise and no signal, i.e. dy; = dw; and again the corresponding
FI vanishes. The corresponding SME has the following form

dpt—<—iw[fz,pt]+§ZD[a )dmf Lo ow. @1
]

For 7 = 12 it is not difficult to write the final state as (for more details see Section 3.2

3In order to take into consideration finite efficiency for the homodyne case a more complicated approach is
needed, see for example [54]. We leave this general case for future studies.
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of [144]):
or = ei\/gzjwj(t)az(ﬂ (e—z’wfz oo eiwfzt)efi\/ngwj(t)gz(/) ’ (4.16)

where the random variables W;(t) = fot dw; are Gaussianly distributed with mean 0 and
variance t. We can see again that each conditional state differs from a purely Hamiltonian
evolution only by a random unitary transformation. The QFI of each conditional state (and
thus also the average QFI) is equal to the noiseless case and therefore we can saturate the
ultimate bound even with homodyne monitoring. If one monitors a different quadrature,
i.e. 8 = 0, the classical FI is not zero, but the effective QFI does not saturate the ultimate
bound, as numerically observed [14].

Interestingly, this way of monitoring the environment, where only noise is measured
and no information about the state of the system is gained, can be used to reduce de-
coherence by a factor (1 — #) by implementing a Markovian feedback [271]. We stress
that our approach is different because it is not necessary to apply any feedback to take
advantage of the improved metrological power of the conditional states, even though
this strategy works only for parallel noise, while the feedback scheme works for any
Hermitian collapse operator.

Initial GHZ state

Applying the results of the previous sections, for an initial GHZ state we have

0y, =0}, = Qu = N*2. (4.17)

Therefore we verify that the strategies based on time-continuous photo-detection and
homodyne detection (for 8 = 71/2) with perfect efficiency 7 = 1 are indeed optimal,
showing that the noiseless Heisenberg-limited result can be recovered, without the
need to perform complicated (non-local in time) measurement strategies on system and
environment.

For both time-continuous homodyne and photo-detection, the evolution of an initial
GHZ state, under parallel noise and conditioned on the measurement results, is restricted
to a two-dimensional Hilbert space. As a consequence, the results obtained for N = 1
qubit can be readily used to infer the results for generic N qubits, by simply rescaling
the evolution time ¢t — Nt and considering the random processes dM = } ;dN; and

dW = Yy dw;. The reason is that every operator O'Z(] ) has the same action on the GHZ
state, because of its special symmetric form.

Therefore, starting from (4.14) with = 1, it is easy to see that, for an initial GHZ
state, after a time t the conditional state for photo-detection reads (up to an irrelevant
global phase):

1 ,
) = — (|0>®N +ez(Nwt+M(t)7r)|1>®N)
V2

where the Poissonian random variable M(t) = }_; Nj(t) counts the total number of photo-
detections on all the detectors up to time f. Thanks to the permutational symmetry of the

, (4.18)
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GHZ state, and given that only one jump may occur at each time*, it is not necessary to
know exactly from which qubit channel the photon has been detected. One may obtain
the same result by using a single perfect photo-detector monitoring jointly all the N
output modes and thus having only the result M(t) instead of all the N;(t). Once the
number of detected photons M(t) is known, and the corresponding “GHZ-equivalent”
conditional state is prepared, it is possible estimate the frequency w at the Heisenberg
limit.

As we explained, as soon as the photo-detection monitoring is not perfectly effi-

cient, Heisenberg scaling is immediately lost and the effective QFI is equal to O

pdy —
N22e=2<(1=1mNt; optimizing over time we have:
ol
max pd | _ N . (4.19)
t t 2ex(1 —17)

However, thanks to the permutational symmetry the overall efficiency parameter %
corresponds to the product between the factual efficiency of the detectors and the fraction
of qubits that are actually monitored.

We have already noticed that, for every value of w, all the information is contained
in the conditional quantum states and the classical Fisher information F[py,;] is in fact
identically equal to zero. Nevertheless, we remark that the output from the photo-
detection measurement is essential to know the corresponding conditional state, and thus
to extract the whole information on w via the final strong measurement.

4.3 Transverse noise
Transverse noise, corresponding to a,ﬁj ) = U;Ej ) is much harder to handle than parallel
noise, due to the noncommutativity. However, thanks to the particular symmetry of the
GHZ state, the QFI for the unconditional dynamics with arbitrary collapse operators
can be obtained without the need to diagonalize the full density matrix [53]. The cor-
responding optimized QFI can be then numerically obtained and the scaling is found
to be intermediate between SQL and Heisenberg: max; [Q [pic| /] &~ N%/3, for N > 1.
The optimal time decreases to zero as the number of qubit increases: limy ;o fopt = 0.
However, for w — 0 we show in Subsection 4.3.3 that the unconditional QFI can be
computed analytically and it scales quadratically in N.

In the following sections we first present analytical results on the ultimate QFI, ob-
tained by solving the generalized master equation (2.56) and then numerical results on
the effective QFI, obtained by using the numerical methods introduced in Section 2.3.

4This can be justified on physical grounds: the probability of a photon-detection in an infinitesimal time is
vanishingly small (being proportional to dt), therefore the probability of two or more detections at the same
time can be disregarded [298]. Mathematically this is equivalent to working with independent Poission processes,
satistying the rule dN;dNy = JjdN;.
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4.3.1 Analytical results on the ultimate bound

When the noise and the Hamiltonian parameter do not commute it is harder to obtain
general analytical results; for this reason we restrict only to an initial GHZ state, which
makes it possible to get a closed formula for the effective QFI.

Ultimate quantum Fisher information for GHZ state

The choice of an identical and independent noise acting on each qubit is very important
to work out an expression for the ultimate QFIL. The modified master equation Eq. (2.57) is
linear in the operator p and the coefficients are time-independent, therefore it is possible
write the solution as a linear map, formally £y, w, (f) = exp(tLw, w,)- This map is only
guaranteed to be linear and in general it is not even positive.

Since the map acts independently on each qubit, we can still write the global action
on the N-qubit state as the tensor product £ ,,, () = €y, ()N, where €y, w, () is the
single-qubit solution. The ultimate bound is thus obtained as

O, [110)] = 40,0, 10g TE[E) 1, (£) 0] (4.20)

7
w1=wyr=w

where py is the initial pure state. Given our choice pg = |PgHz (PcHz|, the computation
can be greatly simplified. We find that

EN o, (1) [Wanz)(Wanz| Z% (Ewpwn (1) |0><0|)®N + (Ewpawn (t) ’1><1|)®N
4.21)

+ (Eanon () 10X N + (Euoyon (1) |1><0|)®N]

and now we need to find the expression for the single qubit map.
For transverse noise and for a single qubit, the equation to be solved in order to
compute Q is the following
dp

5 _ i _ ~ K, _
FTi Lis b = *E(wlazp — wyp0oy) + E(UXP‘TX —p)-

The solution to this equation can be obtained by choosing a basis of operators and using
a matrix representation of superoperators [20] (see also the Supplementary Material
of [93]). This is a standard technique also for canonical master equations. We choose to
use the normalized Pauli operators &; = 0;/ V2 (where 0y = 1), so that Tr [(Nfiﬁj] = 6;; The
matrix associated to the single qubit map in this basis can then be obtained by matrix
exponentiation.

We can write the generalized density operator g in Bloch form as

1

0 = —=(agbp+a- -0 4.22
g \/E( 0v0 ) ( )
such that its trace is simply Tr[p] = 4, since the basis operators are traceless. In this
notation, the initial states [0)(0| and |1)(1| correspond to the vectors egy = %(1, 0,0,1)7

and ey = % (1,0,0, —1)T, while the off-diagonal elements are ey /19 = % (0,1,44, O)T.
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For our purposes we need the coefficient a¢, therefore we only need the first row of
the matrix representation of gal,l w, (), which turns out to be

K sinh(% K2—(wy —wz)z)

2
COSh<£ K= (=) ) * 2/ k2 — (w1 —wy)?

= _xt 0
[sim(t)]o* =% . . (423)

i(wy—wy) sinh( £/ KZ—(wl—wz)Z)
V2 —(w—w,)?

From the two zeros in this vector we can see that the off-diagonal terms do not contribute
to the trace and we can further simplify the calculation as

T Oln)onzl] = 3 (Te [ 0I000] "+ 1[5, 0] ) w2

= \2{ ([gci_],wz(t)]o,* '600>N + ([g_ujf_pwz(t)]O,* '611)N}-

After some algebra we can plug the result into (4.20) and finally obtain:

N2(1— )2 4 N 2xt +1 - (2— e )]

7, = g (4.25)
K
We immediately observe that @Jiw depends on the noise parameter x and is always smaller
than the noiseless QFI Q. = N?t2, as expected because of the chained inequalities (2.60).
Furthermore this results shows that, as opposed to the parallel noise case, part of the
information leaking into the environment is irretrievably lost, and cannot be recovered
even if one has at disposal all the environmental degrees of freedom. On the other hand
this expression does explicitly show Heisenberg scaling, and can be further optimized
over the evolution time ¢. The optimal time topt (N) does not go to zero for N — oo, as it
happens for the unconditional dynamics, instead it tends to a constant: limy_,e0 fopt (N) =
c¢/x, where ¢ ~ 1.26.
Curiously, the very same result is obtained by computing the unconditional QFI in
the limit w — 0, i.e.

=L 1 1
O, = lim Q|pync] (426)
the explicit proof of this fact is given in Section 4.3.3.

4.3.2 Numerical results on the effective bound

Having an analytical expression for the ultimate QFI, we want to check the performance
of the realistic sequential scheme previously described, as quantified by the effective QFL
We compute this figure of merit both for photo-detection and homodyne detection via
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Figure 4.2: Contributions of the classical FI F [py,j] and the QFI of the final strong measurement
Q[p'9)] to the effective QFI th| =1 for homodyne with N =7 and w = 1, in the transverse noise
case.

the numerical methods presented in Sec. 2.3. Remarkably, from our results we observe
that for unit efficiency 7 = 1 the effective QFI saturates the ultimate bound in both cases

~ ~ —1
Qg1 = Opd =1 = 9L, (4.27)

This has been checked up to N = 14, but we conjecture that this equality holds in general.

The two terms that contribute to @hld =1 always sum up to @iﬂ but with w-dependent
behaviors. This is shown for a particular set of parameters in Fig. 4.2. On the other hand,
as explained before for the parallel case, Qéd,ry:l is only equal to the average QFI of the
conditional states. The classical FI F [py,j] is always identical to zero because the collapse
operator O',EJ ) are unitary.

If we turn to the case of imperfect detection 7 < 1, we observe that the effective QFI
lies between the unconditional QFI and the ultimate QFI, for both detection measurement
strategies. This is expected because of the chained inequalities (2.60) and also confirms
the conjecture (2.61) regarding the monotonicity with the efficiency 7.

As an example, in Fig. 4.3 we plot the effective QFI over time for photo-detection
and homodyne detection at different efficiencies, for three different values of N. We can
see that at lower efficiencies the curves tend to the unconditional QFI Q[p¢;,.], while for
perfect efficiency they coincide with Q. Notice that in general one cannot define a
hierarchy between the two strategies, and that in particular, in the case of homodyne, the
curves become constant at large t, due to the non-vanishing contribution of the classical
Fisher information J [py,j] that is linear in ¢.

Since the numerical method for non-unit efficiency requires using the full Hilbert
space, the complexity of the algorithm is exponential in N and we have been able to obtain
results only up to N = 7. Consequently, we cannot explicitly witness a different scaling

.. . —1
from the unconditional case. As a matter of fact the difference between max; [Q Lo / t}

and max;[Q[pgnc] /] is not very significant for N < 7. This is shown in Fig. 4.4 for
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Figure 4.3: The figure shows the effective QFI for photo-detection @éd 17/ t (top row) and for
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1 and for different values of N. The effective QFI is compared with the ultimate bound @ig (black
dashed line), and the QFI for the unconditional evolution Q[o;.] (black dot-dashed line). Here we
take w = «. The colored curves are obtained numerically as explained in Sec. 2.3, by simulating a
large number > 10 k trajectories.
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for 7 = 0.99 is out of scale.

0.25
0.50
0.75
0.90
0.99
1.00

" Qc,
! Q[Qunc]

n

0.25
0.50
0.75
0.90
0.99

9,
Q[Qunc]



88 4.3 Transverse noise

photo-detection, in the case w = k. As we can see, the two quantities have a similar
scaling in this range of N, with the effective QFI lying between them with optimal values
that are monotonous with 7. The optimal measurement time decreases with N, and it
increases with increasing 7.

4.3.3 Unconditional quantum Fisher information for vanishing frequency

We are now going to present an explicit proof of the fact that the ultimate QFI for
transverse noise is equal to the unconditional QFI for w — 0. This fact is not fundamental
for our previous results, but as far as we know this result is not present elsewhere in
the literature. Since the way to obtain the final formula is not completely trivial, for
completeness we decided to include the proof in this Thesis. The result is only mentioned,
but not included in the paper [14]. We remark that frequency estimation with transverse
noise and a vanishing parameter was considered in Appendix D of [35], where the authors
highlight Heisenberg scaling can be recovered for N — co. On the other hand, we are
able to obtain the general result for any value of N.

Unconditional evolution of a GHZ state in transverse noise

A GHZ state evolving in time according to Eq. (4.1) becomes a mixture of states of the
form |s) & |5), where s is a binary string and 3 is its bitwise negation, e.g |s) = |00101) and
|5) = 11010). In the computational basis the density matrix maintains a cross-diagonal
form.

It is clever to parametrise the matrix elements with an index m € [0, N] (as usual
N is the number of qubits), which counts how many 1s appear in the binary string s,
i.e. the sum of the binary elements of s. Since we have N qubits there are 2V different
possible strings, and there are (51\1] ) different binary strings that sum to the value m, so
that YN (fn] ) = 2N_ Tt turns out that the matrix elements of an evolved GHZ state only
depend the value m.

With this parametrization we have the following matrix elements [53]

Omm = %[dmaN—m +dN—mam:|
(4.28)

s = 5 [f1O =i Ny,

where we can further notice the symmetry of the diagonal terms under the exchange
m — N — m. The coefficients appearing in the expression are given by

a= %(1 +e ) d= %(1 —e ™) b=e % cosh(;\/ K2 — 4w2> (4.29)
Kt Kt
e~ 2 sinh( £v/x2 — 40?2 e 2 sinh( £v/%2 — 402
f=x <2 ) c=2w <2 )

K2 — 4w? VK2 — 4w?

All these coefficients are real as long as w < %, which is the case we are interested in,
since we want to take the limit w — 0.
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Piecewise QFI for a qubit

The QFI for qubit states can be very conveniently written via Bloch representation [310];
by writing the state in Bloch form

o= %(]l—l—v-a), (4.30)
the QFI reads
orof? + 22l o <1
Ailpl = ) v o (4.31)
[0r9] lv| =1;

we note that this piecewise definition can give rise to discontinuities in the QFI. This is
not an accident of this formula, but it is a general behaviour of the QFI when the density
matrix changes its rank by varying the value of the estimated parameter [247]°

In particular, for a qubit the only possible change of rank is that for Ay the state
becomes pure, i.e. [v| = 1 and so the lim, _,,, gives rise to a 8 indeterminate form; we
can then use L'Hopital’s rule and get

/\li_)n}o Oirlp] = —v- af\vhz/\o. (4.32)

It is easy to see that this example is relevant for frequency estimation with transversal
noise. If we choose an autostate of o, as the initial state and then evolve it with the
dynamics given by (4.1) for « = x and N = 1, when w = 0 the evolved state remains
pure, since the initial state is an eigenstate of the Liouvillian. A similar argument can be
applied when dealing with an initial GHZ state, as we now proceed to show.

Final result

It is important to notice the QFI of a GHZ state evolving with the dynamics given by the
master equation (4.1) for « = x can be computed by summing up with the appropriate
weights the QFIs of [ N/2 + 1] qubits.

Given the cross structure of the evolved density matrix and the symmetry of the
elements (4.28), we can reshuffle (swapping columns and rows) the 2 x 2N matrix and
write it as the direct sum of 2 x 2 matrices defined as follows

6n = ( prm P’“'N"“>, (433)

*
pm,N—m Pm,m

where now we need only half the values of the index m = 0,..., [ N/2]. In the reshuffled
total state each of these ¢, is repeated (Im\] ) times, except the last matrix for m = [N /2|
that appears %(Im\l) times if N is even and (2\1’) times if N is odd. We remark that this
reshuffling is a unitary operation and it does not change the QFI.

5 It is not widely known in the quantum metrology community that this behaviour is not peculiar of
quantum mechanics. The classical statistical model corresponding to the optimal measurement is not regular
around the critical value of the parameter. Since the support of the random variable changes by changing the
parameter the classical Cramér-Rao bound is not well defined. This issue will we addressed in a forthcoming
communication [258].
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Each matrix ¢, is defined by three distinct real numbers, while their partial derivative,
has only two non-zero real elements

0 BN~ )
9 — , wbmN=m) 4.34

wen ((awpm,N—m) 0 (439
To compute the QFI it is not necessary to diagonalize the whole density matrix but we
can do it block by block and we get to

N
Qloi] = % Z:;O (f\n]) Qlgm), (4.35)

where we have extended the sum to N again since we have that ¢, = gn_j, for the
simmetry of the coefficients. Even if the matrices ¢, are not properly normalized density
matrices, the function Q is the same function used to computed the QFI on a normalized
state. If we renormalize the matrices as follows

Om,N—m awpm N—m

1 1 “omm 1 0 - e—
~ = . m,m a o . Om,m 4.36
Cm 2 <P,;;’1:]mm 1 > w&m 2 (awppn;,ll\rfn—m) 0 ’ ( )

the corresponding term in the total QFI is then the rescaled QFI of the normalized matrix:

Q[Qm] = me,mQ[gm]- (4-37)

For w — 0 we have that |0,; N—m| = Pm,m, therefore the normalized qubit states are
pure and to get the limiting QFI we need to use the previously introduced formula (4.32).
The global N qubit state does not become pure for w — 0, but the density matrix goes
from full rank, i.e. 2 nonzero eigenvalues, to having rank 2V~ half the eigenvalues go
to zero for w — 0. In this case it is possible to compute the sum (4.35) explicitly

: N _ Pm,N-—m * 9%PmN-m
hm0 Q[pGHZ/ Lo, t} =5 E ( ) ( )

, 4.38
m=0 \ Om,m ( )

w=0

the formula for the qubit QFI is simplified because the off-diagonal terms are real for
w = 0. The final result is the following

N? (1- e_"t)2 +N [ZKt +1-(2- e"“)ﬂ

K2

=0,  (439)

3}{% Q {ngZf L, t} =

and it is equal to the ultimate QFI as previously anticipated. This means that for w — 0
the hierarchy of inequalities (2.60) collapses and the three QFIs (unconditional, effective
and ultimate) have the same value. It is not clear if there is a deeper physical meaning
behind this result.

Summary

e A system of N qubits is used to estimate the frequency of rotation around a certain
axis. When the evolution is only given by the Hamiltonian and the system is
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prepared in the optimal GHZ state the QFI scales as N? (Heisenberg limit). When
the same noise acts independently on each qubit this scaling is lost. For noise
parallel to the Hamiltonian imprinting the rotation, the scaling gets linear in N
(standard quantum limit). When the noise is transverse there is an intermediate
asymptotic scaling.

e We consider an initial GHZ state, which is optimal in the noiseless case. For both
geometries, by continuously monitoring the noise channel of each qubit, Heisenberg
scaling can be restored when detection is perfectly efficient, without the need of any
feedback operation.

e For parallel noise the ultimate achievable precision is equal to that obtainable
in the purely Hamiltonian case. This precision can be achieved both by photo-
detection and homodyne detection in the limit of perfect efficiency, thus all the
original information can be retrieved. When the efficiency is not one, the scaling is
standard quantum limited, but the constant is rescaled by a factor dependent on the
efficiency. Moreover, for an initial GHZ state it is not necessary to monitor all the
qubits separately; due to the symmetry of the state, a single efficient photo-detector
monitoring all the output fields is enough.

e For transverse noise the non-commutative nature of the dynamics makes the ulti-
mate quantum Fisher information smaller than the purely Hamiltonian case. This
ultimate bound can be saturated both by photo-detection and homodyne detection,
as numerically shown. There are no conclusive result on the scaling for inefficient
monitoring.

e When the true value of the frequency is zero (more precisely it tends to zero) the
unconditional, effective and ultimate quantum Fisher informations are all equal,
and thus continuous monitoring is not necessary.
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CHAPTER 5

Kerr nonlinearity for enhanced loss estimation

This chapter is the first one dealing with continuous variable states and their nonclassical
properties, but the topic is still closely related to the first part of this thesis. Previously, we
have shown how continuous measurements are useful to obtain an improved metrological
precision. Here, we explore the effect of a nonlinear Hamiltonian acting on a continuous
variable system and we show that, in the estimation problem under consideration, such a
nonlinearity can again be considered a metrological resource.

In the following analysis, the quantum estimation framework is more straight-forward
and we now concentrate only on the unconditional Lindblad dynamics of the system; the
relevant figure of merit is the QFI of the unconditional state. However, the metrological
problem is quite different; we are not interested in the estimation of a Hamiltonian
parameter, but of the strength of the coupling with the external environment, which
represents the loss rate.

Characterizing lossy channels in continuous variable systems is crucial to quantify
decoherence [257], to assess quantum illumination protocols [40, , , ] and to
realize quantum reading of classical memories [233]. In some specific cases, the task
is simply to discriminate between the presence or the absence of losses [140, 220, 253],
whereas, in general, a strategy to estimate the exact value of the loss is needed.

In the last decades, much attention has been devoted to the estimation of loss with
different initial preparations of the probes. Optimization over Gaussian input states has
been performed [200], showing that ultimate precision may be achieved using photon
counting and Gaussian operations at the output. Fock states have also been shown to
saturate the ultimate bound on precision [1, 252] and also the performance of thermal
states was addressed [91]. Very recently, the more general problem of estimating multiple
loss parameters under energy constraints has been solved in full generality [204].

All these works are focused on Gaussian lossy channels, where dissipation is due to
linear coupling of a radiation mode to the environment, modeled as a bath of external
oscillators in the vacuum state. On the other hand, optical media where light propagates,
such as gasses, biological samples or optical fibers, may be characterized also by a (usually
small) non-linear response to the electromagnetic field. This motivates us to consider
systems where, besides the dissipation due to linear coupling to the environment, a
nonlinear Hamiltonian is present.

For this analysis, we focus on self-Kerr interaction [32], naturally occurring during
propagation of radiation in a nonlinear medium with non negligible cubic nonlinearity.

95
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The dissipative evolution in the presence of self-Kerr effect has been widely studied
in quantum optics, either at zero [193] or at finite temperature [267]. This effect can
be used to generate Schrodinger cat-like states [145, , , , ]. Even though
cubic nonlinearities of optical media are too small to witness these states, they have been
observed with an artificial Kerr medium in circuit quantum electrodynamics [157]. The
appeareance of nonclassical states is a general feature of nonlinear Hamiltonians; we are
going to explore this topic with a different kind of systems in Chapter 6.

In quantum metrology, the presence of non-linear effects has been already recognized
as a resource. Intuitively, it allows one to achieve high precision by using robust classical
probe states, instead of fragile nonclassical states [170, 171, ], because the nonclassical-
ity is dynamically generated during the encoding of the parameter. This is in some way
similar to what we saw in Chapter 3, in that case the nonclassicality was represented by
the conditional spin squeezing. In particular, a Kerr-type nonlinearity has been studied
for estimation of squeezing and displacement of a Gaussian state [99] and to improve
Michaelson interferometry [172].

We analyse in detail the estimation of loss in the presence of Kerr nonlinearity. We
mostly focus on estimation strategies based on Gaussian probes (coherent and squeezed
vacuum states), while also briefly examining the use of few-photon probes, the simplest
nontrivial ones being optical qutrits. Overall, our results indicate that the presence of
Kerr nonlinearity always enhances estimation, improving precision compared to the pure
linear case. This kind of nonlinearity is present in optical fibers, but it can have a negative
impact on other tasks beyond estimation, for example it degrades the capacity of the
channel [76].

The work we present here has a slightly different approach than most of the previous
works on loss estimation in the linear case. Nearly all of the literatures is focused on
the estimation of the overall loss, which includes also the interaction time and not only
the loss rate. On the other hand, we focus on the loss rate parameter itself, thus making
the time dependence explicit. This point is relevant in our analysis, because dissipation
and nonlinearity set two different time scales in the evolution of the probe state. We
address the estimation precision in two regimes of “short” and “long” interaction times.
We show that in principle nonlinearity always improves estimation, even though the
optimal measurement might be complicated. However, for a short interaction time, i.e.
for media of moderate size, the enhancement of precision may be substantial and it can
also be relevant for conventional detection schemes, such as homodyning.

5.1 The interaction model

In this work we consider a lossy bosonic channel with a loss rate parameter -y, which is
the quantity that we want to estimate, where non-linear Kerr effect with coupling A is
present. In the absence of any non-linear effect and working in the interaction picture, the
density operator p for a single bosonic mode in the channel satisfies a Lindblad master
equation of the form

P _ Ypiale — v(aoat — Latae — Loata
o = 7 Plalp = v(apa” — Sa%4p — 5pd"a), (5.1)
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where 4 is the annihilation operator in the Fock space of the bosonic mode and D is
the usual Lindblad dissipation superoperator. This equation can be obtained from the
methods of Section 1.2, by specifying an interaction Hamiltonian between the input modes
of the form athy, (t) + abi, (1)t and by choosing the vacuum as initial state of the input
modes. This equation can also be recast in terms of covariance matrix and first-moments,
as shown in Section 1.4.3; we do not make use of that description, because it is not very
helpful when adding a nonlinear Hamiltonian term.

The Kerr interaction is described by a term in the Hamiltonian of the system, which is
more than quadratic in the creation and destruction operators, namely

Ay = A(a*a)% (5.2)

To take into account this effect, the master equation in Eq. (5.1) now becomes

do A Y s
i —i[Hk, p] + iD[a}p. (5.3)
Upon rescaling the quantities with respect to the loss parameter v

T =91, A=A/, (5.4)

we arrive at

—_

dp 4.2 st Loy, At a
o iA[(a"a)%, p] + dpd AT (5.5)

which corresponds to the following system of equations for the matrix elements p, ; =
(plp|q) in the Fock basis:

dpp, : 1
e - {IA(PZ —*)+5(p+ q)} Ppa+ A+ DA+ Dopi1g0.  66)

The solution for the p,, 4 has a nice form when the initial state is a coherent state, pg =
la)a| [219]. Tt reads

aPat
Pp,q(T) = W

where A =14 2iA(p —q).
We also consider the case of a squeezed vacuum initial state pg = |r)(r|; for con-
venience, but without loss of generality we restrict to a real squeezing parameter #, so

_ AT
eXP{_;(P-FQ)AT— |a|? {1—12} }, (5.7)

that the squeezing operator reads 5(r) = exp (%rZ(ﬁ’L2 - ﬁ2)>. The explicit analytical
expression of the matrix elements of the solution with this initial state can be found in
Refs. [192, ]. The matrix elements are known also for arbitrary initial states [52, ].
Notice that for the lossy channel (i.e. a thermal bath at zero temperature) these analytical
expressions of the matrix elements are suitable for a numerical computation of the values
of the relevant observables. As a matter of fact it is possible to work in a truncated Hilbert
space in the Fock basis, since the loss only drives the system into smaller subspaces;
this would not be possible if we considered both loss and noise (i.e. a bath with finite
temperature). Notice also that p(7) is in general a mixed state and cannot be diagonalized
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explicitly, such that an analytic expression for the quantum Fisher information is not
available.

We start our analysis by reviewing the analytic solutions when the Kerr effect is not
present (i.e. A = 0), and then discuss approximate and numerical solutions for the general
case of A # 0. Before proceeding, a quick remark about the notation. In order to conform
with the notation of the original paper [243], we employ the following notation for the
QFI of the evolved state:

Hy (1) = Qlpy(7)] (5.8)

and we denote the same quantity obtained for different initial states with superscripts.

5.2 Solution in the absence of non-linear effects

Figure 5.1: Plot of the QFI in the absence of non-linearity as a function of the rescaled time 7 for
different probe states at the fixed mean input energy # = 1. The solid blue line represents the
optimal Fock state |1), the dashed orange line represent a coherent state, while the dot-dashed
green line represent the squeezed vacuum. The graph reflects the general fact that a Fock state is
always optimal and for T — 0 the optimal Gaussian state is the squeezed vacuum, while for greater
values a coherent state allows for a better estimation.

When A = 0, i.e. the non-linear effects are absent, the channel is Gaussian and an
initial coherent state remains coherent and decreases its amplitude during the evolution:

_1
[ (7)) = lawe™27). (5.9)
An analytic expression for the QFI is easily obtained using the formula for pure states (1.84):
HS(1) = z'rze_T (5.10)
v ,),2 4 ’

while for the squeezed vacuum the solution is [200]:

(—2¢" + " +2) 727
Y2 (eT —1)(2e7in — 271 + €27)’

HY (t) = (5.11)
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where 71 = Tr[pga'4] is the mean photon-number of the initial state; we have 71 = |a|? for
the coherent state and 7 = sinh? r for the squeezed vacuum. We also report the QFI for
Fock probe states |1), which is optimal when the mean energy is an integer (7 = n):

Aat?

7Her 1)

In Figure 5.1 we represent the plots of the QFI for the three probe states; this also sums
up previous results [1, 200] by showing that for small losses the optimal Gaussian state
is the squeezed vacuum, for higher losses a coherent state is better, while a Fock state is
optimal for every 7. Moreover, we observe that in general H,(7) vanishes for T > 1 and
has a global maximum at a certain time 7. This means that if one is able to control the
interaction time in an experiment, setting it to T allows for optimal estimation of v. In
particular for the coherent state the optimal time is T = 2, with the following optimal
value (we use a bar to denote quantities optimized over the interaction time 7):

Hi(T) = (5.12)

¢ _ Al
7T 2y

(5.13)

Furthermore, for coherent states the QFI is saturated by photon-number and a quadrature
measurement; more complicated measurements are needed to saturate the QFI of the
squeezed vacuum.

5.3 Solution in the presence of Kerr effect

As stated in Section 5.1, with A # 0 the state p(7) is a mixed state and not explicitly
diagonalizable. In the following, we present an approximate solution for the coherent
probe state, valid in the regime of small A and 7, in which the state of the system remains
pure and it is thus possible to get an analytical expression for the QFIL. Then we show
numerical results obtained from a truncation of the Fock space for both coherent and
squeezed vacuum probe states. The results are presented both for the optimal time and
small time cases; at optimal time only the coherent input is considered since the optimal
value of the QFI is always greater than the optimal value of the squeezed vacuum QFL
This fact can be seen in Fig. 5.2, where we show the behaviour of the QFI with and without
Kerr interaction for both the Gaussian probes we are considering. From the particular
choice of parameters in Fig. 5.2 we see that the QFI with nonlinear interaction always has
a greater value: we are going to show that this is true in general.

5.3.1 Pure state approximation

When we work with a coherent input state and the non-linear effect is small compared
to the loss parameter, i.e. when A < 1, the state of the system can still be approximated
with a pure state for small 7. Expansion of the exponent of ¢ in Eq. (5.7) to the first order
in A and then expansion to the second order of 7 yields
abad 1 T2 (2 2 12 2
Ppa(1) = —==exp|—5(p+ Q)T —e "faf” —iA(p” — g )T —iMa[*(p —q)T7|. (5.14)

VP!



100 5.3 Solution in the presence of Kerr effect

03

02F 1

P
o1

~.
——
n

T

2 4 6 8
Figure 5.2: Plot of the QFI as a function of the rescaled time 7 for different probe states at the fixed
mean input energy 7 = 1. The solid curves are obtained in the absence of nonlinearity, while the
dashed curves are obtained in the presence of Kerr nonlinearity (with A = 0.5). The solid blue and
dashed oranges curves which lie on top in the region T ~ 2 refer to the coherent state probe, while
the solid green and dashed orange curves which lie on top in the region T = 0 refer to the squeezed
vacuum probe. In the inset panel we represent the relative gain G(7) = H) ,(7)/H,(7) — 1 of the
QFI in the presence of non-linearity over the QFI without Kerr effect, shown in percentage. The
solid blue line represents the coherent probe, while the dashed green line represents the squeezed
vacuum. In both cases there is a peak in gain at T < 1, much more pronounced for the squeezed
vacuum state. The gain vanishes for increasing 7, but a second, smaller peak can be observed for
the coherent state.

This is the lowest order of expansion for which we obtain a correction to the QFI of Eq.
(5.10).
The QFI computed for p,4(7) of Eq. (5.14) is
2
o _
HS, (1) = 7|272e T (1 + 4/\2T2\a\4) +0O(A3). (5.15)

We notice that H/C\,v(t) adds a correction of second order in A and in T to H5(7) of
Eq. (5.10). We define a new figure of merit: the relative gain in the estimation of v, as
follows

Ga(7) = Hy (1) /Hy (1) — 1, (5.16)

then using the pure state approximation it reads:
GS (1) = 47272l + O(A3). (5.17)
The optimal time, up to the second order in A, is
T(A) =2+ 32A%|a* 4 O(A3) (5.18)
and the corresponding optimal QFI is

4)af?

22 (1+1622Ja|*) + O(A%); (5.19)

H,(A) =
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Figure 5.3: Fidelity between the pure state of Eq. (5.14) and the exact state (truncation at 10 photons),
for & = 0.5 (orange), « = 0.75 (blue) and « = 1 (green). The fidelity decreases with increasing A and
«. It temporarily decreases with time, but it tends asymptotically to one as the system reaches the
state |0). For small values of & and A the pure state approximation has fidelity above 0.99, which
then decreases as the energy of the state increases.

so the optimal relative gain Gy = H) ,,/H, —1is
Gy = 16A%[a)* + O(A%). (5.20)

Equations (5.17) and (5.20) show that the correction to the QFI due to the presence of a
small non-linear effect is positive and increases with A2. This means that the nonlinearity
of the dispersive medium can be a resource in the estimation of the loss parameter.

The fidelity of the approximate state of Eq. (5.14) to the exact state (after a truncation
of the density matrix) is shown in Fig. 5.3 as a function of T and A, for two values of |«|.
The pure state approximation is good for a wide range of parameters only if the energy of
the initial state is not too big, so that fidelity is close to one. This means that the analytical
expression of the optimal relative gain (5.20) is good only for small energies, while at a
fixed small time T < 1 the relative gain (5.17) is a good approximation even for higher
input energies.

In Subsection 5.3.2 we calculate the QFI numerically for general values of A and &, in
order to verify the increase of the QFI also for regions where the pure-state approximation
does not hold.

5.3.2 Numerical results

As the density matrix cannot be diagonalized in general and the Fock space is infinite-
dimensional, in order to evaluate the QFI we resort to numerical diagonalization of the
density matrix in a truncated Fock space. The truncation size, which depends on the
input energy, is chosen in such a way that the difference between the analytical and the
numerical QFI for A = 0 must be less than 0.001%.

Optimal QFI

The behaviour of the QFI as a function of time for fixed A and « is shown in Fig. 5.2. The
QFI starts from zero and reaches a maximum, then vanishes as 7 increases and the system
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Figure 5.4: Optimal relative gain G = H, ,/H, — 1 of the optimal QFI in presence of non-linearity
over the optimal QFI without Kerr effect for different regions of « and A, shown in percentage. On
the left, a 3D plot, on the right the corresponding contour plot. We can see that the gain is always
greater than zero, vanishing for large A and a. We can identify two regimes: the first regime, visible
in the upper panels when a < 2 is characterized by the presence of local maxima of the gain, which
reaches values of about 2%. For large A the improvement reaches a non-vanishing asymptotic value.
In the second regime, visible in the lower panels, at fixed « the gain has a single maximum with
respect to A. As « increases, the maximum moves to smaller values of A, but G increases.

reaches the zero-photon state |0). Assuming that we are able to control the interaction
time of the probe with the channel, we can consider as a figure of merit the optimal QFI,
i.e. the maximum of H, . (t) over time.

In Fig. 5.4 we show the optimal relative gain in the estimation of <. The first notable
result is the confirmation of the results obtained in the pure state approximation: the
optimal QFI in presence of non-linearity is always greater than without Kerr effect, i.e.
the optimal relative gain is always greater than zero. It vanishes for increasing « and A
and for a« — 0.

By looking at the panels of Fig. 5.4, we can identify two regimes. The first regime, for
a < 2,is characterized by the presence of local maxima of the gain. At fixed «, the maxima
occur periodically, with G reaching an asymptotic value for A — oo. In the second regime,
for @ 2 2, there is a single local maximum for the gain at fixed «. For increasing «, the
optimal A decreases, but G increases. It is not clear if there is a local maximum for «
greater than the values under investigation or if this behaviour will persist for & — oo,
and, in the latter case, if G increases indefinitely or saturates with «.
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Figure 5.5: Relative gain G(7) = H, ,(7)/H(7) — 1 of the QFI in presence of non-linearity over
the QFI without Kerr effect at fixed time for a coherent probe state (top) and for a squeezed vacuum
probe state (bottom), shown in percentage. From left to right we have the results for T = 0.5, 0.1,
0.01. For coherent states we can see a structure similar to that of Fig. 5.4: the relative gain increases
with « and A until it reaches a maximal value, but at small T the relative gain is much higher than at
the optimal time. For the squeezed vacuum state the gain is smaller as T gets smaller (cfr. Fig. 5.2).

Small time QFI

Now instead of studying the QFI maximized over time we look at the behaviour at a
fixed time, in particular we focus on times smaller than the characteristic time of the loss,
i.e. T <1, as an example we study three cases T = 0.5,0.1,0.01. This regime is of interest
for media of moderate size, such as biological samples.

In this setting the improvement brought by the nonlinear interaction can be substantial.
In Fig. 5.5 we show the results for a coherent probe state (top row) and for a squeezed
vacuum probe state (bottom row). For the squeezed probe we restricted the computation
to a smaller range of mean input energies, as the dimension of the truncated Hilbert space
needed to obtain a good approximation grows much more rapidly.

By looking at the top-left panel in Fig. 5.5, the one for T = 0.5, we notice a similar
structure to the one in Fig. 5.4, albeit rescaled. We found that fixing the time parameter T
changes the scaling in the @« — A (or 77 — A) plane; however, it was not possible to explicitly
see this scaling from the analytical expressions of the states.

The improvement due to the Kerr nonlinearity is much more relevant at times which
do not correspond to the optimal time, indeed in Fig. 5.2 we see that the maxima of the
graph in the inset panel do not correspond to the ones in the main graph. Moreover,
even if the behaviour of different input states is slightly different, the most relevant
improvement is always obtained for T < 1, this is due to the fact that the value of the QFI
at those times is smaller, so that a slight improvement in the absolute value brings a great
relative gain.
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Figure 5.6: In the left panel we show the ratio R = Fy(T)/ HCAY (A) between the FI of the quadrature at
the time T, Fy(T), after an optimization over the quadrature phase and the optimal QFI H, (A), for
various values of A and «. The quadrature measurement is optimal only for A = 0 and for vanishing
energy of the probe (¢ — 0). For a < 2 the ratio oscillates with A. For large a and A the ratio
reaches asymptotically the value of 1/3. In the right panel we show the ratio R = Fy(t)/H5(7) for
fixed small T = 0.1; the quantity HY, is the QFI without nonlinearities (Eq. (5.10)). The quadrature
measurement in presence on Kerr effect achieves increasingly better performances for increasing
values of A and &, even if the ratio has a slightly oscillating behaviour and there are some regions in
which R < 1, i.e. the Kerr effect is slightly detrimental.

FI for quadrature measurements with a coherent state probe

Although the optimal QFI is improved by the Kerr effect, we need to find the actual
measurement that reaches the quantum bound. We mentioned that for a coherent probe
both photon counting and quadrature measurement are optimal when A = 0, however
they are not optimal if the nonlinear term is present. Indeed, photon counting is not
affected at all by the Kerr effect, as the diagonal elements of the density matrix are
independent of A. For this reason we study numerically the effect of nonlinearity on a
quadrature measurement. We present the results only for a coherent probe state. In this
section we denote the classical Fisher information of a homodyne measurement of the
quadrature £p, maximized over the quadrature phase 6 as F(7) = maxg F[(xg|0(T)[xg)];
the optimal quadrature phase depends on « and A.

We found that in general the quadrature measurement is not optimal, i.e. the Fisher
information is always lower than the QFI. This fact is presented in the left panel of Fig. 5.6,
for measurements at the optimal time, where we plot the ratio R = Fx(T)/H,(A). Here
H,(A) is the maximal QFI computed at the optimal time T and Fy(7) is the FI (optimized
over the quadrature phase) at the same time. The ratio is close to one only for A close to
zero or & < 1. For increasing « and A the ratio appears to tend asymptotically to 1/3.

In the small time regime a quadrature measurement is still sub-optimal in presence
of nonlinearity, however in some cases such a measurement can perform better than the
best possible measurement in the linear case, because the relative improvement of the
QFI in this regime is substantial.

In particular, this behaviour seems to increase with increasing nonlinearity A and
increasing input energy &, however we can see from the right panel of Fig. 5.6 that
oscillations are present and there are small regions where a quadrature measurement
does not give an improvement, i.e. R < 1.
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5.3.3 Results with optical qutrit states

One may wonder what happens if the optimal Fock states are used as probes, instead
of Gaussian states. The Kerr nonlinear term (4%2)? clearly does not affect single Fock
states, but also a simple superpositions of a Fock state with the vacuum A|0) + B|n) is
not affected. The most simple superposition affected by the nonlinear evolution is the
optical qutrit state

cos 0]0) + ¢ sin fsin @|1) 4 ¢ sin 6 cos ¢|2), (5.21)

where 0 is fixed by choosing the mean energy 7 as the relevant parameter, so that 8 =
arcsin /27 /(3 4 cos 2¢). In the linear lossy evolution, these qutrit states approximate the
optimal non-Gaussian states when the mean energy 7 is not an integer; this is particularly
important for the low energy regime 71 < 1 [1].

In general, the maximum value of the QFI obtainable with the state (5.21) is the same
regardless of the Kerr term in the evolution, but the maximum happens for different
values of the initial parameters and at a different time. This is due to the fact that during
the evolution the system is constrained to remain in the subspace of dimension three;
so if we optimize on every possible parameter there is no room for improvement left.
However, in order to achieve the maximal QFI one should be able to tune the value of the
initial parameters for every mean energy 7, and in the nonlinear case also for every value
of A. In particular in the linear case the result must be optimized only over the parameter
@, since the relative phases y and v give an optimal result for the value 7.

Instead, we consider a setting similar to the one previously used for the coherent states:
given a fixed initial state we check if the nonlinear evolution brings an improvement.
In particular we fix g = v = 7 and we check the behaviour of the quantum Fisher
information for different values of ¢, while optimizing over time ¢. The results are in
Fig. 5.7: we find that on average the nonlinear terms brings an improvement for values of
A = 1, i.e. when the nonlinear parameter is approximately equal to the loss parameter
to estimate. For higher values of A we have an oscillatory behaviour and on average the
nonlinearity can also be detrimental. Furthermore we found that at fixed small times
the nonlinear Kerr term does not always bring an improvement on average when using
qutrit states.

Discussion on the role of non-Gaussianity

The nonlinear Kerr interaction makes an initial Gaussian probe non-Gaussian during
the evolution and a question arises on whether the observed increase of the QFI may be
quantitatively linked to some quantifier of non-Gaussianity or nonclassicality. It would
be desirable to identify the underlying characteristic of the state which guarantees the
improvement in the estimation, since this would represent a guideline to engineer optimal
estimation schemes.

In previous works it has been conjectured [1] that a family of optimal non-Gaussian
states exists for any fixed energy, but that non-Gaussianity in itself cannot be a resource.
As a matter of fact, some non-Gaussian states are less efficient probes than the optimal
Gaussian ones. Hereby we confirm that result. In fact, during its evolution a Gaussian
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Figure 5.7: Average relative gain of the optimal QFI in presence of non-linearity over the optimal
QFI without Kerr effect for qutrit states, shown in percentage. The range of the parameters are
0<f<land0 < A < 7. On the left, a 3D plot, on the right the corresponding contour plot. Every
point in the plot is the average improvement obtained by generating 1000 random values of the
parameter ¢ of the state (5.21) in the range (0, 5 ), while the phases are fixed = v = 7w and 6 is
fixed by the choice of the mean energy 7.

input state first becomes non-Gaussian and then it evolves towards the Gaussian state
|0), which is the stationary state. This qualitative behaviour is also shown by the relative
gain in the estimation of  in Fig. 5.2. These two quantities, however, do not have a
quantitative relation in general, e.g. states leading to the largest improvement at optimal
time are not the most non-Gaussian.

Overall, our results show that while the evolution drives the Gaussian input into a set
of non-Gaussian states that are more sensitive to loss detection, non-Gaussianity is not a
resource in itself. This idea is confirmed by looking at the behaviour of qutrit probe states,
which are already highly non-Gaussian: there we find evidences that the Kerr interaction
may be detrimental in some regimes, whereas when an improvement is present, the states
are non necessarily more non-Gaussian.

Summary

o The estimation of the loss rate of a single-mode bosonic loss channel is an important
problem, mostly studied in the linear (Gaussian) case without any Hamiltonian
term. Adding a self-Kerr Hamiltonian to the dynamics can be useful for improving
the precision of the estimation with an initial Gaussian state.

e The dynamics has two time scales, one given by the loss rate and one given by the
strength of the nonlinear interaction. For this reason we estimate the loss rate rather
then the total loss (which also includes the evolution time).

e The QFI of coherent or squeezed vacuum states evolving in the nonlinear lossy
channel is always higher than the corresponding linear case, in particular this
improvement is very relevant at small times. The QFI is computed both via an
analytical approximation and with an extensive numerical study.

e The precision quantified by the QFI is not achievable by photon counting and
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quadrature measurements. On the other hand, for short interaction times even a
suboptimal quadrature measurement offers an improvement in precision compared
to the linear case.

o It appears that the improvement in the QFI has no clear quantitative link the non-
Gaussianity of the evolved state.






CHAPTER 6

Nonclassicality of anharmonic oscillators ground states

In this chapter we abandon the topic of quantum metrology and we focus on the non-
classical properties of CV quantum states, in particular ground states of anharmonic
oscillators. Here, we want to investigate the general idea that nonlinearity is a resource
to generate nonclassicality in single-mode bosonic systems of anharmonic oscillators. In
particular, we present a quantitative assessment of the phenomenon and we consider
specific quantifiers of both nonclassicality and nonlinearity.

The starting point of this analysis lies in Ref. [223], where the authors show that the
non-Gaussianity of a ground state can be used to capture and quantify the nonlinearity
of an anharmonic potential. Using this quantitative definition, the problem reduces to
comparing the behavior of non-Gaussianity and nonclassicality measures of the ground
states. A quantitative connection between nonclassicality and non-Gaussianity of pure
states is in itself an interesting topic and we are going to comment more on this in
Chapter 8.

The present investigation is motivated by the fact that new experimental platforms
offer the unique opportunity to implement nonlinear (or anharmonic) models. The pos-
sibility to host non-linearities is within reach of current technologies, in particular for
trapped ions [132] and optomechanical systems [251]. It was shown that including non-
linearities in the oscillator opens new possibilities to generate nonclassical states, see
eg. [159, , ].

The quantitative connection between the nonlinear behavior of an oscillatory system
and the appearance of nonclassicality, has been tested with similar methods for the
Duffing oscillator model [275], in the context of nano-mechanical resonators. The work
presented in this chapter, based on [7], is an extension of such observations to more
general scenarios: three families of exactly solvable non-linear oscillators and a generic
sixth order potential.

Nonlinearity of a potential via non-Gaussianity of the ground state

The first idea to quantify the nonlinearity (intended as the anharmonicity character) of a
potential would be defining a distance between potential functions and the reference
harmonic potential. In general this is not feasible, since potentials do not need to be
integrable functions. A different approach follows from the fact that ground states and
equilibrium states of anharmonic potentials are not Gaussian, as opposed to those of a
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quantum harmonic oscillator. We can thus quantify nonlinearity by the non-Gaussianity
of the ground state of a given Hamiltonian model, as proposed in [223]. For this goal we
use the relative entropy of non-Gaussianity introduced in Section 1.4.4.

We consider a generic potential V(x) and denote with |¢y) the ground state of the
corresponding Hamiltonian operator #%/2 + V(%). By using the non-Gaussianity measure
0 in (1.157), the nonlinearity of V(x) is defined as

nalV] = 8(lgv) (v ) = h(Vaete), (6.1)

where ¢ is the covariance matrix of the ground state |¢y). This identity holds because
the ground state is pure and the only symplectic invariant of a single-mode state is the
determinant of the covariance matrix'.

An alternative idea to quantify nonlinearity is to use some geometrical distance
between the ground states of the potential and the ground state of a reference harmonic
state [223]. However, this approach has a downside, because one has to choose a value
for the reference frequency w of the harmonic oscillator, usually by expanding around the
minimum, which could be ambiguous for potentials exhibiting more than one minimum.

This entropic measure is more appealing than a geometric one because it does not
require to find a reference potential for V(x), but only the covariance matrix of the ground
state. This makes #ng independent of the specific features of the potential, since we
do not need to know the behavior of V(x) near its minimum to compute the reference
frequency.

Moreover, 77nG inherits the property of the non-Gaussianity measure and is invariant
under symplectic transformations. This means that 77 assigns the same nonlinearity to
oscillators which are displaced, rotated in phase space or squeezed, which is a reasonable
property for a measure of nonlinearity.

6.1 Exactly solvable anharmonic oscillators

We now analyze quantitatively the relation between the non-linearity of the potential
NG and two different figures of merit for the non-classicality of the ground-state. For
P-nonclassicality we study the entanglement potential £[p], defined in (1.153) as the en-
tanglement entropy of the state after the interaction with the vacuum through a balanced
beam splitter. The entanglement potential is evaluated by expanding the wave function
on the Fock space of a harmonic oscillator of unitary frequency and mass, truncating
the expansion by ensuring the approximate normalization of the state before and after
the beam-splitter. For W-nonclassicality, we compute the renormalized volumed of the
negative part of the Wigner function, i.e. v defined in (1.155). In particular, in this Section
we focus on three exactly solvable anharmonic oscillators.
We denote the Wigner function of the ground state as follows

W(g,p) = Wlgv)ovli(a,p), (62)

! In this chapter we compute the non-Gaussianity in nats (natural units of information), meaning that the
logarithms appearing in the definition of (x) in Eq. (1.130) are natural logarithms; in Chapter 8 we use bits
(logarithm in base 2).
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specifying different potentials with subscripts on W(g, p). In order to maintain consistency
with [9] we label the position phase-space coordinate g rather than x.

6.1.1 Modified Harmonic Oscillator

The Modified Harmonic Oscillator (MHO) potential is defined as [42] (throughout this
manuscript we choose units such that 1 = m = 1)

UCZXZ
VMHO(x) = S xBx tanh(ﬁx). (6.3)

Here « is a parameter corresponding to the frequency of the unmodified harmonic
oscillator, while 8 determines the deformation of the harmonic potential. The effects of
this parameter on the shape of the potential is appreciated from Fig. 6.1, where Vo (x) is
plotted at a set value of « for different choices of B, showing that an increasing deformation
parameter transforms a harmonic potential into a double-well one whose well-depth
and separation both increase with . For small j this potential has a similar behavior
to the Duffing oscillator routinely used to model nanomechanical resonators [56, ],
therefore we can think of the MHO as an extension to the Duffing model in the case of
strong nonlinearity.

Figure 6.1: The MHO potential with 8 = 3 (solid blue), 2 (dotted yellow), 1 (dashed green) and the
harmonic potential with unitary frequency and mass (dot-dashed orange); with our choice of units
x is measured in units of a~1/2, V in units of & and B in units of a2 The inset represent the same
graph at a larger scale, where we see the resemblance to the harmonic potential.

The normalized wave-function of the ground-state of this potential reads [47]
V2e20x cosh(ﬁx)
\f\/l + exp [32/04

The associated energy is Eg = (a« — 8?)/2. The covariance matrix of such least-energy
state can be computed straightforwardly to be

¢muO (¥ (6.4)

1 B _eoplp/a] 0
MHO _ 20( a2 T+exp[B2/a] ) ) . (6.5)
0 2 7 Trexplp?/a]
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Its determinant is
72 <2T26T2 e + 1)
(erz +1)2

1
det oMHO — 5 (6.6)

with the dimensionless parameter T = /2 /. Such dependence on 7, rather than « and
B independently, is common to 1y = hi(det o) and the measure of nonlinearity based on
the Bures distance (for the latter, we should choose the unmodified harmonic oscillator
with frequency « as a reference). Both measures of nonlinearity increase monotonically
with 7.

The Wigner function associated with ¢\po can be written in terms of the suitably
rescaled phase-space variables g = Bx and p = gy as [42]

242 cosh(2q) + ™ cos(2p)
(14 e?)

Wwmno(q,p) =e (6.7)

which shows again the key role played by T and, in turn, that the non-classicality measure
based on the volume of the negative part of Wypo (g, p) is determined by such parameter.

In order to understand how W-nonclassicality and nonlinearity are related to each
other, we have studied both quantities against 7. In Fig. 6.2 we report the resulting
parametric plot, showing that v monotonically increases with #ng, thus supporting
the idea that a growing degree of anharmonicity of the potential results in increased
nonclassicality of the corresponding ground state.

v(T)
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0.3
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0.1

Mg (T)
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Figure 6.2: Parametric plot of the W-nonclassicality measure v(7) versus the degree of nonlinearity
for the MHO potential and for T € [0.1,6].

The picture changes significantly as soon as we consider P-nonclassicality quantified
by the entanglement potential which can single out more detailed features of quantum-
ness, such as squeezing. Indeed, at variance with what has been found above, such a
figure of merit turns out to depend on « and  independently. The reason for such a
difference in behavior should be ascribed to the fact that entanglement at the output of a
beam splitter can be originated either by a non-Gaussian input state or by Gaussian single-
mode squeezing. In other words, nonlinearity is needed to generate W-nonclassicality,
while P-nonclassicality may be obtained using just squeezing.



Nonclassicality of anharmonic oscillators ground states 113

In order to illustrate this clearly, in Fig. 6.3 we show the entanglement potential and
squeezing for the MHO both as a function of § for fixed values of 7, and as a function of
T at set values of a. The squeezing in Fig. 6.3 is shown in terms of the ratios

o MHO %0 MHO
ry=—G5—=2071 , Ttp=—"55— =20 (6.8)
11 022

with 0, = 09, = 1/2 the variances of position and momentum calculated over the
vacuum state of the harmonic potential. Squeezing is found in the ground state of the
MHO for either 7y < 1orr, < 1. Asitis apparent from Fig. 6.3, the behavior of £ is rather
different from v, and its features may be understood looking at squeezing. In particular,
we see that £ grows when the ground state exhibits squeezing.

(@) (b)
2.0 2.0
15 \ 15
1.0 1.0
05 ~ 05
05 1.0 15 20 25 30° T2 3 4 56 7 P
(c) (d)
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051.01520253035 ' ' 05 1.0 1.5 2.0 25 3.0 35

Figure 6.3: Entanglement potential and squeezing for the MHO. In panels (a) and (b) [(c) and (d)] we
plot 7y (dashed blue curve), r, (dotted orange curve), the entanglement potential (P-nonclassicality)
& (black dots), and W-nonclassicality v (red dots) against § [t] for T = 1and T = 3 [« = 3 and
« = 5]. Squeezing is observed for either 7y < 1 orr, <1 (i.e. variances of the perturbed ground
state below the values of the vacuum state of a harmonic oscillator).

6.1.2 Morse potential

The Morse potential has been introduced as an approximation to the potential energy of
diatomic molecules as it provides a better description of the vibrational structure than the
(quantum) harmonic oscillator [201]. The form of the potential is

Vap = D(ﬂ“ - 2e*M), 6.9)

where x is the distance from the minimum of the potential, the parameter D > 0 deter-
mines the depth of the well, while « controls its width. Expanding the two exponentials
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Vi (X) Vin (%)
15
1.5
10
1.0 5
X
0.5 -2 -1 1 2 3

Figure 6.4: The Morse potential Vj;(x) for « = 1 (solid blue), 2 (dashed orange), 3 (dotted green),
where V is measured in units of D, x in units of D~1/2 and « in units of D!/2. The inset shows the
potential for D = 1 (solid blue), 2 (dashed orange), 3 (dotted green), with x in units of aland V
and D in units of a2

for &« — 0 at fixed D we get the harmonic limit, which is an oscillator with frequency
wy = v2Da. The potential is plotted in Fig. 6.4 for different values of the parameters.
The Schrodinger equation associated with this potential can be solved analytically,
the energy eigenvectors being labelled by two quantum numbers, which we label here
N and v. The first is related to the parameters of the potentialas N = —1/2 + V2D/a.
The second, which can take values v = 0,1, 2, .., | N], counts the number of anharmonic
excitations of the system. Since we want at least one bound state, we require N > 0, so
we have the constraint « < 2v/2D. The limiting case where we have just one bound state
(the ground state) is achieved for & — 2v/2D. The wave-function of the ground state is

om(x) = 2N+ 1)V ﬁe—“N—W%V“ (6.10)
with associated energy E = —aN?/2. The behavior of the nonlinearity of the Morse
potential can be understood by looking at the form of the potential in Fig. 6.4, as opposed
to the harmonic one [223]. For any fixed value of D («) we expect an increase (decrease)
of nonlinearity for increasing a (D).

The covariance matrix associated with the ground state in Eq. (6.10) is

29 (2N)
M= T2 0 6.11)
0 a’N

where (") (z) is the polygamma function (") (z) = %:1 logI'(z), I'(Z) being the Euler
Gamma function. The determinant of this correlation matrix depends only on N or, equiv-
alently, on the combination v/2D /a. In this the measure of nonlinearity is a monotonically
decreasing functions of N.

The Wigner function for the ground state of the Morse potential reads as follows [89]

2(2N 4 1)2N

Waa(x,p) = 7T(2N)

e *NYK yi/a (2N +1)e™), (6.12)
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where K, (z) is the Macdonald function of (non-integer) order <. In order to calculate the
measure of nonclassicality v, we rescale the phase-space variables to g = ax and p = £,
and evaluate

—2Ngq

/ dxdy W (x, )| = / dg dp’i;(ZN)(zN + 1)K g, (2N +1)e0)|,  (6.13)
which shows that the only relevant parameter is N. The numerical integration of Eq. (6.13)
is challenging and was carried out with the aid of the CUBA libraries [124]. The degree of
W-nonclassicality v is found to monotonically decreases with N. The parametric plot of
nonclassicality versus nonlinearity in Fig. 6.5 reveals a monotonic behavior, strengthening
the link between such features and reinforcing the idea that nonlinearity might play the
role of a catalyst for nonclassicality.
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Figure 6.5: Parametric plot of the W-nonclassicality v versus the degree of nonlinearity # for a
Morse potential with D = 1and « € [0.15,2.7],i.e. N € [0.0238,8.928].

The situation regarding the entanglement potential is completely analogous to what
we found for the MHO, as it depends on both parameters. In Fig. 6.6 we report the same
kind of graphs, both with N fixed and « fixed, which show that the behavior of £ is
explained by the squeezing of the state.

6.1.3 Poschl-Teller potential

The Poschl-Teller potential (PT) potential has been studied since the early days of quantum
mechanics [88], it has been applied in the context of semiconductor quantum wells [238,
, 280] and it can also be used to model nonlinear optical properties [304, 305].
In particular we use the modified PT potential, defined as

VPT (X) = —APTCOSh_Z(ﬂcx), (6.14)

where Apt > 0is the depth of the potential and « is connected to its range. The harmonic
limit is obtained at fixed Apr for « — 0 and the frequency of the reference harmonic
oscillator is wpy = y/2Apra. As for the Morse potential, we have a quantum number s that
labels the energy eigenstates and counts the anharmonic excitations. It is related to the
parameters of the potential through the relation Apt = %txzs(s +1). Therefore, the request



116 6.1 Exactly solvable anharmonic oscillators

for the existence of at least one bound state translates into s = % (—1 + /14 8Apr/ 042) >
0. Fig. 6.7 shows the dependence of the PT potential on the position coordinate.
The ground state of the system reads

1
1 al’ (S + j)
x) = —\| —=——%cosh *(ax), 6.15
¢PT( ) 7‘[% F(s) ( ) ( )
with associated energy E = —a?s?/2.

The covariance matrix of the ground state is rather involved and is not be reported
here, it can however be easily obtained by directly applying x and p operators in the
position representation on the wave function (6.15).

In line with the case of the previous two anharmonic potentials studied here, its
determinant depends only on s (or, equivalently, on Apy/a?). Again the nonlinearity 7nG
is a monotonically decreasing function of s only.

The Wigner function of the ground state ¢pr(x) in Eq. (6.15) is known analytically for
the case of Apt = a2 [47]. In this case, the measure v is an s-dependent constant, as it can
be seen by rescaling the relevant variables as p’ = £, x' = ax, y’ = ay and evaluating the
integral

Wpr(x, p) = %/dwp}iT (x — %)(])m (x + %)eiiw’, (6.16)

which embodies the definition of Wigner function.
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Figure 6.6: Entanglement potential and squeezing for the Morse oscillator. In panels (a) and (b)
[(c) and (d)] we plot 7y (dashed blue curve), r, (dotted orange curve), the entanglement potential
(P-nonclassicality) £ (black dots), and W-nonclassicality v (red dots) against « [1/N] for N = 1 and
N =5[a = 1and a = 3]. Squeezing is observed for either ry < 1 orr, < 1 (i.e. variances of the
perturbed ground state below the values of the vacuum state of a harmonic oscillator).
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-1.

Figure 6.7: The Posh-Teller potential with and &« = 1/2 (solid blue), 1 (dotted orange) and 3 (dashed

green), x in units of A;Tl/ 2 in units of All,éz and Vpr in units of Aprt.

The entanglement potential again depends on both « and s. Plots similar to those valid
for the MHO and Morse potential are presented in Fig. 6.8 (without the W-nonclassicality
v).

6.2 Harmonic oscillators with polynomial perturbations

So far we have studied exactly solvable potentials dependent on two parameters and
revealed a common behavior: the nonlinearity and the W-nonclassicality v have the
same behavior and depend just on a single effective parameter. On the other hand, the
entanglement potential carries a dependence on both the parameters and its different
behavior may be understood in terms of the squeezing of the state.

Now we want to address the case of a generic two-parameter perturbation, so we study
a physical system composed of a one-dimensional harmonic oscillator with perturbations
proportional to x* and x° respectively. The Hamiltonian of this system thus reads

A= %(pz + w?%?) + e4%* + €42°. (6.17)
As the model is not exactly solvable, the properties of the system are studied using
perturbation theory. We notice that Eq. (6.17) may also serve as an approximation for
any symmetric (even) potential. In particular also this Hamiltonian can be intuitively
considered as a generalization of the static Duffing oscillator.

We do not consider odd powers of £, nor negative coefficients for the even powers of
%, even when the potential is still bounded from below. We make this choice in order to
avoid any ambiguity, which could arise when the potential has more than one minimum.
In fact, for such case, the state obtained with the perturbative expansion is not necessarily
an approximation to the true ground state, but could be a state associated with a local
minimum of energy. Terms proportional to £ and to £2 could in principle be treated in a
perturbative way as well. However, they do not give rise to truly anharmonic behavior,
and are not considered in this context.
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Figure 6.8: Entanglement potential and squeezing for the PT oscillator. Panels (a) and (b) [(c) and
(d)] show 7y (dashed blue curve), r, (dotted orange curves), and the entanglement potential £
(black dots)against & [1/s] fors =1lands =5[a =1and o = 3].

In order to get insight into the ground states for these Hamiltonians we use first-order
time-independent perturbation theory [250]. The formula for the perturbed ground state
is the following

9) = 10) +e ) k)= (618)
k70
where |k) denotes a Fock number state of the unperturbed harmonic oscillator and
Vyur = (n|V|k) are Fock-basis matrix elements of the perturbation V = e &* 4 €62
Such state is normalized only up to first order in €4 and €5, however we work with the
normalized version |) = ) /(P|P).

Since the potential is an even function, the normalized state takes the form

3
[p) =Y yanl2n), (6.19)
n=0
where the coefficients -y are
o 1 o Yo 4566 36’4 o \/§ 156’6 €4 o
N=z 1= ﬁ(4w3 + 2 4= =70\ 5\ 5.3 + w2 6T V570€6,

(6.20)
and the normalization constant C is

V@ (9600 +117€3) + 945weseq +2055€7
N 4/64 ’

2For simplicity we assume that € and €4 are both proportional to a single parameter € in (6.18), and we
check the validity of this approximation afterwards.

C

(6.21)
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The Wigner function of this superposition of Fock state reads

Z '7’1'7] i)jll(q, p) =

i,j=0
(6.22)

= Z [vilPWiy (4, p) + 2Re

ZZ%% i)ill(g,p)|

j=1i=0

where Wiy (q,p) = (=1)"/me” (@+p )Ln( (4% + p?)) are the Wigner functions of Fock
states and L, (x) are Laguerre polynomials. The Wigner transform of the off-diagonal
operators |n)(m| are given by [27, 62, 227]:

S [Vaq+ip]" L @R+ pD) i
1

w = men '
il { S e O [Valip - )" L ) i s
(6.23)

where L,gk) (x) are the associated Laguerre polynomials.

First-order perturbation theory gives the ground as a finite superposition of Fock
states, which makes the Wigner function and the nonlinearity easy to compute. In order to
assess the validity of the first order approximation, we have compared such ground state
to the state obtained by numerically diagonalizing the Hamiltonian of the system within
a truncated Fock space of suitable size. Convergence of the results of such numerical
calculations appear to be ensured by using 61 harmonic levels. The corresponding ground
state |¢y) is then compared to i) using the state fidelity |(¢y|y)|?. For values of €4 up
to 0.1 and €4 up to 0.03 the fidelity is at least ~ 0.976.

6.2.1 Nonclassicality and nonlinearity

From the perturbed ground state in Eq. (6.19) we compute the nonlinearity of the per-
turbing potential. The covariance matrix associated with |¢) can be thus written as

' (1+2(a%)+2(a"a) —4(2)?) 0
ool = w , (6.24)
0 w(1+2(a%ta) —2(a%))

with 4 and 4* the annihilation and creation operators of the oscillator and

(@) =(@)=0  (a%a) = 2|72 + 4|74 + 6|76/,

(6.25)
(@) = V27270" +2V37472" + V3076747,

An explicit calculation shows that the determinant of ¢P°!, and in turn the nonlinear-
ity h(v/deto), depends on both the perturbative parameters and on the frequency w.
No single-parameter rescaling can be identified in this case, thus entailing the double-
dependence highlighted above, which is passed to the W-nonclassicality v.

Our goal is to highlight the role played by the perturbative parameters, therefore we
set w = 1 and generate random pairs of values (€4, €5) (within the appropriate range of
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Figure 6.9: Random scatter plot of the W-nonclassicality v versus the nonlinearity #yg for the
perturbed harmonic oscillator when parameters €4 and €4 are are varied in the range €4 € [0,0.1],
€6 € [0,0.03]; 10* random points are generated. The dark blue curve below the points represents
€6 = 0, while the one above the points is the curve for €5 = 0.03. The light red curve below the
points is the one for €4 = 0.1, while the one above the points is for ¢, = 0. In the inset: zoom on
the region nng < 0.6 to better appreciate the different curves. For higher values of 1ng the region
containing the points become more narrow and all the curves graphically coincide.

8(64166)

0.20
0.15
0.10

0.05

005 010 015 020 025 oso Melco)

Figure 6.10: Random scatter plot of the entanglement potential (P-nonclassicality) £ versus the
nonlinearity 7y for the perturbed harmonic oscillator when both parameters €4 and €¢ are varied
in the range; 10* random points were generated. The dark blue curve above the points represents
€6 = 0, while the one below the points is the curve for €5 = 0.03. The light red curve above the
points is the one for ¢4 = 0.1, while the one below the points is for €, = 0. The green curves in
the middle are obtained by choosing €5 = ke, from top to bottom they correspond to the values
k=2,1,05,03,0.1.

validity of the first-order perturbative approach discussed above) that are then used to
compute both the nonclassicality and nonlinearity indicators.

The results shown in Figs. 6.9 and 6.10 showcase a non-monotonic relation between
nonlinearity and nonclassicality: the points corresponding to the randomly taken pairs of
values for the parameters are distributed within a (narrow) region comprised within four
curves, each associated with an extremal value of €44. Nonclassicality and nonlinearity
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are thus dependent on the details of the system under consideration and are, strictly
speaking, non equivalent notions.

However, the region containing the randomly generated points in Fig. 6.9 is very
narrow and suggests that the link between W-nonclassicality and the nonlinearity of the
potential is indeed correct, since by fixing the value of one quantity the other is almost
fixed.

On the contrary, for P-nonclassicality the random points in Fig. 6.10 are scattered across
a wider region. In Fig. 6.10 we also show that if one varies only a single effective parameter,
by fixing the value of either €4 or € or by keeping their ratio fixed (i.e. €5 = key), the
behavior of P-nonclassicality measures becomes monotonic with nonlinearity®.

By inspecting more closely our results, it appears that W-nonclassicality is favoured
by the x°-like nonlinearity, while P-nonclassicality, appears to benefit from a x*-type of
nonlinear effects. As a matter of fact, in Fig. 6.10 the roles of the dark blue and light red
curves are inverted with respect to Fig. 6.9. This means that, after choosing the parameters
€4 and € in such a way that the entropic nonlinearity is fixed, the ground state obtained
with the maximum value of €4 generates more entanglement than any other one.

We can thus conclude that the anharmonic character of the potential can be linked to
P-nonclassicality of the ground state, but this connection is less stringent than the one
between nonlinearity and W-nonclassicality. This result is in perfect agreement with the
exactly solvable models, we previously studied.

Summary

e There is an intuitive expectation that the anharmonic charcter of a potential can be
regarded as a resource to generate nonclassical ground states. The strict validity
of such an expectation, is, however, strongly linked to the specific details of the
Hamiltonian model being addressed and to the considered notion of nonclassicality.

o In this quantitive study, the nonlinearity of an anharmonic potential can be quanti-
fied via the non-Gaussianity of the ground state of the corresponding Hamiltonian.

e Nonlinearity of the anharmonic oscillator plays a crucial role in the generation
of W-nonclassicality (quantified by the negativity of the Wigner funcion), while
P-nonclassicality (quantified by the entanglement potential) may be also obtained if
the anharmonicity induces just squeezing.

e The solvable anharmonic potentials can be reduced to a single-parameter de-
pendence and give rise to a monotonic relation between nonlinearity and W-
nonclassicality.

e For multi-parameter anharmonic potentials (studied perturbatively) a given value
of nonlinearity bounds the possible degrees of nonclassicality of the ground state,
without determining it unambiguously. Even for W-nonclassicality a perfect corre-
spondence with nonlinearity breaks down, but the induced bound is tighter.

3The same behavior is shared by the W-noclassicality, but the curves for different value of k are not shown,
as the region between the extremal curves in Fig. 6.9 is very narrow.






CHAPTER 7

Backflow of probability and Wigner negativity

The present chapter is dedicated to a peculiar and little-known quantum mechanical
effect, the so-called quantum backflow effect [302]. This is a counterintuitive behaviour of
the quantum mechanical probability current (here studied for a quantum free particle in
one dimension): the current may assume negative values even for wave-packets without
negative momentum components. Intuitively, this means that a particle with positive
momentum can have an increased probability of “going back” for a small fraction of time.

This effect was discovered in connection with the arrival-time problem in quantum
mechanics [17], but it was studied in details only several years later in Ref. [33], where a
bound for the maximal fraction of the probability that can flow backwards during a finite
time interval was found. This bound turns out to be an adimensional constant ¢}, = 0.04,
independent from the mass of the particle and from the duration of the effect itself;
remarkably, this value is also independent from the Planck constant 7.

More recently, the backflow effect has attracted some more attention: improvements in
the numerical estimation of ¢, have been addressed [79, 228] and additional bounds, an-
alytical examples, and connections with realistic measurements have been provided [125,

, 303]. An explicit scheme to experimentally detect backflow in a Bose-Einstein con-
densate has been proposed [217]. The same behaviour was found also for a particle in
a linear potential [189] and for a Dirac particle [190] and an analogue effect for angular
momentum has been studied [269].

At variance with the subject of the previous chapter, the backflow effect is a dynamical
effect, being connected to the free propagation of a particle. However, despite being a
dynamical effect, the occurrence of backflow is entirely determined by the properties of
the initial quantum state, because the dynamics in the phase space is essentially classical,
as we have explained in Sec. 1.4 and as we are going explain in more in details.

Clearly, this backflow effect is an intrinsically quantum phenomenon and we will
show that it is intimately connected with negative values of quasiprobability distributions
in the phase space, in particular the Wigner function. In some sense, this effects provides
a direct and tangible consequence of such negative values; this is consistent with a school
of thought which assigns practical and philosophical meaning to negative probabilities in
quantum mechanics [83, 254].

Starting from these considerations, the main goal of the work we present here is to
investigate how the backflow of probability (negativity of the probability current), is

123
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connected to the negativity of the Wigner function. Our results indicate that quantum
backflow captures a different and more restrictive notion of nonclassicality, with the
negativity of the Wigner function being only a necessary prerequisite for its occurrence.
This idea is confirmed by looking at the robustness to noise of this effect: the negativity of
the probability current is more easily destroyed than the negativity of the Wigner function
itself.

7.1 Phase-space dynamics and quantum backflow effect

7.1.1 Quantum and classical phase-space dynamics

A pure quantum state of a particle moving along a line (coordinate denoted by x) is a
continuous variable quantum system and it may be described either by its wave function
in the position representation ;(x) = (x|i;) or by a phase-space description using
the Wigner function. In this chapter we denote the Wigner function of the evolving
time-dependent state as:

Wlo(t)](x,p) = W(x, p,t). 7.1)
For systems subject to a potential depending only on the coordinates, i.e. governed by
the Hamiltonian

NP2
H=__+V(), (7.2)

the Wigner function obeys the continuity equation

%W(x, p;t) +div] =0, (7.3)

- (5) 7

is the Wigner function flow of the system in the phase space [28, 150, 262, 266]. This Wigner
flow can be decomposed as the product J] = Wv, where v = J/W may be interpreted as
the velocity of the phase space flow. Remarkably, for potentials at most quadratic in x,
the velocity field v coincides with its classical analogue

-(3)-(%)

For this class of potentials the flow is thus Liouvillian, which means divv = 0, and the
Wigner function flows in the phase space as an incompressible fluid. This is equivalent
to the “covariant” evolution of the Wigner function under quadratic Hamiltonians in
Eq. (1.119).

Some typical quantum effects arise as a consequence of the fact that the Wigner
function can take negative values. We can see that in regions where W is negative the
Wigner flow J = W takes place in the direction opposite to the velocity v, which, in turn,
gives the direction of the classical phase space flow.

where
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7.1.2 The quantum backflow effect

The properties illustrated in the previous section may bear some unexpected results, such
as the so-called quantum probability backflow effect. Let us consider a initial wave packet
containing only components of positive momentum; the wave function at time t = 0 is
given by
v(x,0) = —— [ e’ g(p0(p) 76
’ V27h J—co

where O(p) is the Heaviside step function, vanishin for negative values of p. In this
situation the Wigner function of the particle is entirely localised in the positive momentum
half plane of the phase space.

As we have seen the Wigner flow for a free particle coincides with the classical phase
space flow, that is the one given by the velocity

P
v—( " ) 77)

In the positive momentum region, where our particle is localised, the velocity is therefore
always in the positive x direction. However, in points where the Wigner function takes
negative values, the Wigner flow points in the negative x direction. The volume of the
Wigner function in the x > 0 half plane in phase space coincides with the probability of
finding the particle in the positive position semi-axis at a given time:

+o00 +00 +00 5
P(t) = l dp [ dxW(xpi) :/0 dx | ()2 (7.8)
By the continuity equation (7.3), the time derivative of this volume is given by the Wigner
flow through the x = 0 line in phase space:

. d T p
0= 5P = [ dp L wio,pie). 7.9)

The expression in Eq.(7.9) coincides with the quantum mechanical probability current in
the origin, i.e.
H *
0 = 5 (#OFE0 -G 0). .10
According to classical intuition, one would expect the wave packet described above
to move in the positive spatial direction with a constant average velocity and hence
the probability P(t) to increase monotonically with time, as the particle moves into the
positive position semi-axis. However, this is the case only for states with a sufficiently
classical behaviour. If the Wigner function takes negative values, its phase space flow can
be in the negative direction even in the positive momentum region. If the negative flow
occurs in a sufficiently large section of the x = 0 line, the derivative (7.9) can indeed take
negative values.
As a consequence, for a generic quantum state, even if in the limit t — +oo the
probability P(t) globally and monotonically increases, approaching the limiting value
P(t) = 1, there may exist time intervals in which it is a locally decreasing function of
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time. The particle thus appears to “go back” towards the negative semi-axis. In order to
quantify the backflow effect, one may consider the maximal amount of such temporary
decrease of the probability density:

Blyl =

inf [P(i’z) P(tl)]‘ . (711)
<t
The increase in probability over a time interval (t1, ;) (the most negative values of which

we must find to compute backflow) can be expressed in terms of the phase space flow in
Eq. (7.9) as follows

F(ty,tp) := P(tz) — P(t1) = tt(zitj(t) . (7.12)

Upon considering the incompressible fluid nature of the Wigner flow, one may define a
natural motion of phase space points so that this motion has velocity given by the field v:
a point initially in (x, p), after a time interval ¢ is mapped to

pr(x,p) = < x;’ﬁt ) (7.13)

Because of the incompressible nature of the flow, the Wigner density remains constant
along this motion, that is

W(x,p;t) = W(p—t(x,p);0), (7.14)

as can be seen also from (1.119) upon considering the matrix diag|[0, 1/m] in the quadratic
Hamiltonian. Using this result we can express function (7.12) as

F(t1,t) = /Rdxdp W(x, p; t2) —/Rdxdp W(x, p;t1)

_ dxdp W(x, p;0 —/ dxdp W(x, p; 0 7.15
e pW(x,p;0) i () p W(x, p;0) (7.15)

= /de dpWi(x, p;0),

where R is the x > 0 half-plane and the region O = ¢_, (R) \ ¢_,;,(R) is an angular
sector in the phase space. In polar coordinates () is defined by

t t
g + arctan(}%) <¢ < g + arctan(é) , (7.16)

and no constraint on the radial coordinate. The increase in probability over the time
interval (1, t) may be thus seen as the flow of the Wigner volume initially (at = 0) in
the region () into the x > 0 half-plane. If there exists at time t = 0 a sector (2 in which
the Wigner function has negative integral, then there is also a time interval in which this
probability increase is actually negative and the state shows the backflow effect. We refer
the reader to [293] for a more detailed analysis of integrals of the Wigner function on
angular sectors in phase spaces in the context of quantum harmonic analysis.
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7.1.3 Quantum backflow and nonclassicality

The backflow effect cannot be observed for a particle moving according to the classical
laws of motion. In this sense its occurrence is a manifestation of the genuine quantum
nature of the state under investigation. In the previous Section, we have seen how
negativity of the Wigner function is a prerequisite to observe negativity of the probability
current, and a question arises about the general connection between the two notions of
nonclassicality. In particular we focus on W-nonclassicality; at variance with the previous
section we use the actual volume of the negative part of the Wigner function, i.e. A defined
in (8.2.1) (we omit the dependence on the state) and not the normalized nonclassicality
measure v.

If we choose t; and t; as the time interval corresponding to the minimum in Eq.(7.11),
then —F(ty,tp) is equal to the backflow measure of the state f[y]. In this way we may
identify the Wigner negativity volume A of the initial state as an upper bound to the
backflow: if we denote by V7 (V) the volume of the positive (negative) part of the
initial Wigner function on the sector () then, recalling equation (7.15), we may write the
following inequality

Blyl = — (V4 — V) <V, <A. (7.17)

This confirms that W-nonclassicality quantified by the volume A is a necessary condition
for backflow. Moreover, a question arises on whether a more precise quantitative relation
exists between 8 and A. In order to concretely check whether this is the case, we consider
an explicit example and analyze in some details the two quantities for superpositions of
Gaussian wavepackets.

7.2 Superpositions of Gaussian states

7.2.1 Quantum backflow for superpositions of Gaussian states

The quantum backflow effect is not observed in states with a positive Wigner function.
For this analysis, we are going to consider the superposition of two Gaussian momen-
tum wave-packets of width o centered on different positive momenta. An overview of
quantum backflow for such states may be found in [303]. For ¢ — oo one recovers a
superposition of two plane waves with different momenta, which is the simplest example
of a state presenting backflow [33, 302], though it does not correspond to a physical state.
In the following, we analyze the backflow for a general normalized superposition with
complex coefficients of two Gaussian wave packets. These state are an example of the
Gaussian cat states [207], introduced as a generalization of the so-called cat states often
studied in quantum optics [70, 307].

We are not intersted to systematically study the effect in the whole range of physical
parameters. Rather, our main goal is to compare backflow and nonclassicality in some
particularly relevant conditions. To this aim, we are interested in finding a state which
gives a local (in the parameter space) maximum of the backflow and to study the states in
the neighbouring region of the parameter space.
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As usual we work in natural units such that 77 = 1 and we choose a particle with unit
mass, m = 1. We consider following initial state, written in momentum representation

(Po(p) — N[ef(pip(]i&)zaz + aeieei(p7p0)202:| , (718)

where all the parameters are real numbers. The normalization condition fixes the value of
N in terms of the other parameters as follows

1
2

1
2 2\ 1
N(c, po,5,a,0) = (Z) (1+a2+2e—%52“2acose) . (7.19)

The time evolved wave function, its expression in position representation and the time
dependent probability current in the origin can be calculated analytically, but we do not
report their explicit expressions here. One can see, however, that these quantities can be
more conveniently expressed in terms of the following rescaled adimensional parameters:

o =0 P! b=06 (7.20)

Po = 0Po =2 =00. :
With this choice, the current j(f) can be expressed as the product of a dimensional factor
% with an adimensional oscillating function of the remaining parameters f (f; Po, 5 a, 0).
Upon applying a change of variables to the integral in Eq.(7.12) we obtain:

fz -
Fltt2) = [ dFj(D) 7.21)

with f, = 02, k = 1,2, from which it is apparent that the width ¢ only changes the
size of the time interval in which backflow is observed, while the value of the backflow
itself only depends on the adimensional parameters fo, 6, « and 0. This is in agreement
with Ref. [33], where it is emphasized that the duration of the backflow effect can be
changed arbitrarily. However, this extra degree of freedom may be useful if we want to
consider states at fixed energy. Indeed, if we want to maximize the backflow at fixed
energy E, we can minimize the flux (7.21) as a function of f, 5, a and 0, and then choose
the appropriate value of ¢ to obtain a state with a given value of energy E.

Clearly, these states are not strictly confined to the positive momentum region.
Nonetheless, the total volume of the wave function localized on the negative semi-axis
in momentum representation can be arbitrarily reduced by taking a Gaussian centered
on a positive momentum sufficiently larger than its width. Indeed, by considering only
values of fiy larger than 3 (after fixing ¢ = 1), the negative volume is of the order of 10~7,
a value corresponding to irrelevant effect on the backflow (we also performed an explicit
numerical check).

In Fig. 7.1 we show the probability P(f) and current j(f) for a given superposition of
two Gaussian wavepackets. We can appreciate that the time intervals where probability
decreases coincide with the negative regions of the current. According to Eq. (7.12) and
since the probability P(f) is known analytically, the backflow may be easily computed
if we know the time interval which contains the most negative peak of the current.
Unfortunately, finding the zeros of the current has to be done numerically. Alternatively,
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the backflow may be also computed through a numerical integration of the negative part
of the current 1 (|j(F)| — j(F)) over an interval containing the most negative peak. This
method does not require the exact knowledge of the zeros, though it requires to check
that only the right peak is contained within the integration interval.

Figure 7.1: The probability P(f) (solid blue curve) and the current j(f) (dashed red curve) for a
superposition of Gaussian wavepackets with « = 2, 5=11, Po=3,0= %, and o = 10. See Eq.
(7.18) for details. The value of the current j(¥) is multiplied by 10 in the figure in order to appreciate
its behaviour.

Let us analyze the behaviour of the backflow as a function of the different parameters.
At first, we notice that the B[¢] is a decreasing function of fy, at any fixed set of values
of the other parameters, see the left panel of Fig. 7.2. Maximum backflow is therefore
attained by fixing fi to its lowest allowed value; as mentioned above we choose fip = 3 to
ensure a vanishing negative momentum component. The effect of the parameter  is that
of shifting the position of negative peaks of the current along the time axis, as it may be
seen in Fig. 7.3. Intuition suggests that maximum backflow is obtained for a current with
a minimum located in f = 0, i.e. 6 = 7. Actually, the central peak is not always the one
corresponding to the greatest backflow; nonetheless, in order to simplify our analysis, we
focus on a parameter range for which the central peak is indeed the most negative one.

Unless otherwise specified, from now on we fix the values fjp = 3 and 6 = 7 and
investigate the dependence of backflow on the parameters a and 4. In particular, we
explore the first-quadrant region of the («,J) plane bounded by the lines « = 1 and
& = 14 6/po (which is obtained by imposing j(0) < 0). For different values of 8 other
regions may be found where backflow is present, but no analytic expression can be found.
The backflow B[¢] as a function of & and § is shown in Fig. 7.4. We can see that B[]
shows a maximum, from which it decreases going towards the boundaries of the region.
The maximum is obtained for « ~ 1.9, § ~ 11, corresponding to B[¢] =~ 0.0063 (a value
slightly larger than the one found in Ref. [303]). The region closer to the value « = 11is
not shown in the plot as the backflow is not given by the central peak.
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Figure 7.2: Backflow f as a function of 6 and f, the different curves represent a different choice of
the couple of parameters « and 5: o = 2,8 = 11(solid blue); &« = 3, 5 = 15 (dashed orange); « = 1.8,
5 = 5 (dotted green); o = 2.5, 5 = 8 (dot-dashed red). Left panel: B as a function of fiy, with 6 = 7.
Right panel: the difference between f as a function of 6 and § obtained for 6 = 7, with fp = 3; the
values on the ordinate axis are in units of 104
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Figure 7.3: The probability current j(f) as a function of f for different values of 6 at fixed values
of the other parameters (x = 2, § = 11 and fip = 3). The horizontal line highlights that the global
minimum corresponds to the central negative peak.

7.2.2 Quantum backflow and Wigner nonclassicality for Gaussian superpositions

The Wigner function of the superposition state in Eq. (7.18) is given by

< 2
e %/2 [aze_z(ﬁ_’%)z 4o 2P0 | 9y cos (%0 — 9)672(’77”07%) ]

WO(fr ﬁ) = 2 ’
T (1 + a2 4+ 2xe” 7 cos 9)

(7.22)
where, consistently with Eq. (7.20), we used the rescaled variables

L _ X _
¥=_ p=op. (7.23)
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Figure 7.4: The backflow 8 computed numerically as a function of parameters a« and J in the range
a € [1.5,3],5 € [5,25).

Notice that the rescaling is not altering the volume element and that Wy(%, ) does not
explicitly depend on ¢. This means that also the Wigner negativity A, as it happens for
the backflow B, does not depend on ¢

The Wigner function in Eq. (7.22) is characterized by two Gaussian peaks correspond-
ing to the two momenta py and pg + J and by an interference region located halfway
between the two peaks. In Fig. 7.5 we show a contour plot of the Wigner function, which
provides an intuitive explanation to the behaviour of the backflow. On the one hand, the
interference effects (and thus the negative regions of the Wigner function) are more pro-
nounced if the the amplitude of the two Gaussians is the same (i.e. for « = 1). However,
this is not leading to maximum backflow, since the Gaussian peaked at pg + J prevails
in the integration region. These intuitive argument suggests that no monotonic relation
between Wigner nonclassicality and quantum backflow shold be found. As a matter of
fact, since the positive parts of the Wigner function in the region () may compensate
for the negative ones, it is possible to find states not showing backflow despite having
negative Wigner function. Moreover, we may also find pairs of states with increasing
backflow but decreasing negativity. This non monotonic behaviour of the backflow is
illustrated in Fig. 7.6, where parametric plots of the backflow as a function of the Wigner
negativity are shown for varying a or 4.

Finally, we point out that quantum backflow exhibits sudden death for some values
of the parameters. As for example, if & is bigger than the threshold value a = 1+ 3/ fig
there is no backflow. Analogue threshold values for § at fixed « may be found. On the
contrary, Wigner negativity due to the interference fringes dies only asymptotically, i.e.
when a single Gaussian state is recovered. This remarkable difference may be observed
in both panels of Fig. 7.6, where we have regions with no backflow but nonzero Wigner
negativity.

7.3 Backflow and phase space smoothing

We now study the robustness of the backflow effect against the addition of thermal noise,
which corresponds to a Gaussian smoothing in the phase space. We start by quickly
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Figure 7.5: Density plot of the Wigner function of the superposition of Gaussian states with the
maximum backflow, the integration region () is the shadowed region between the two dashed lines
corresponding to p = —flxand p = — £ x.
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Figure 7.6: Left panel: parametric plot of the backflow B as a function of the nonclassicality A for
§ =11 and varying & € [1.5,10]. Right panel: parametric plot of the backflow f as a function of the
nonclassicality A for « = 2 and varying é € [1,20].

recalling some notions about s-ordered quasiprobabilities, in order to emphasize the
similarity of our analysis to the notion of nonclassical depth.

7.3.1 s-ordered quasiprobability distributions

The Wigner function can be generalized to the family of s-ordered quasiprobability
distributions [27, 44], which are routinely used in quantum statistical optics to obtain
expectation values by averaging over the phase space. A quasiprobability distribution
W(x, p,s) is labeled by the index —1 < s < 1, which reflects a particular choice of
the ordering of the canonical operators in the expectation value to be computed. For
the specific values s = 1,0, —1 we have the Glauber P function (normal ordering), the
Wigner function (symmetrical ordering) and the Husimi Q function (antinormal ordering),
respectively. For s < s, two quasiprobabilities of different ordering are connected through
a Gaussian convolution

W(x,p,s) =W(x,p,s)*G(x,p,s —s) = /dx’dp’W(x’, p,s)G(x—x,p—p,s —s);
(7.24)
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where x denotes convolution and the function G is a Gaussian defined as
x2 4 p2
. .

1

G(x,p,x) = p exp [— (7.25)
From Eq. (7.24) one sees that going from s = 1 to s = —1 the distributions gradually
become well-behaved and positive definite functions, thanks to the Gaussian smoothing.
This is the idea leading to the definition of the nonclassical depth [164]. This quantity is
the value of s closer to s = 1 corresponding to a positive and non-singular distribution
for a given state. In other words, the nonclassical depth represents the minimum amount
of convolution needed

7.3.2 s-dependent current

Here, in order to assess the robustness of backflow against noise, we are going to consider
a generalized definition of the probability current based on the s-ordered quasiprobability
distributions. Notice that in principle only the Wigner function may be used to compute
the current via Eq. (7.9) since the Wigner function is the only s-ordered quasiprobability
distribution that has position and momentum probability distributions as marginals.

On the other hand, introducing generalized s-dependent currents is meaningful if we
note that the convolution of a Wigner function with a Gaussian represents the Wigner
function of the quantum state after the interaction with a thermal environment. Let us
consider the master equation of a system interacting with a bosonic bath, expressed in
terms of the creation and destruction operators

d
dit) = (1 +1)Dlalp + D |a*|p (7.26)
where 7 is the loss rate and 7 is the average photon number of the thermal environment.
In terms of the Wigner function, the solution of the above equation may be written as

e*TWt(e*T/zx,e*T/zp) = Wo(x, p) * G(x, p, —s7), (7.27)

where T = ytand s; = —(27i +1)(e" — 1), see e.g. [27, 215, ] for details. W(x, p, s) is
thus the Wigner function of the state obtained from the initial one after the interaction with
a noisy environment. Notice that the rescaling due to dissipation, i.e. the exponentials
of T appearing on the Lh.s. of (7.27), plays no role in determining the negativity of the
Wigner function and the backflow.

If the initial state has the Wigner function Wy (x, p), the state after the noisy interaction
has a Wigner function given by

Wo(x,p,s) = Wo(x, p) * G(x, p, —s), (7.28)

where s is a function of the temperature, of the damping coefficient and of the interaction
time. At this point, we consider Wy (x, p, s) as the initial Wigner function of a mixed state
evolving according to the free particle Hamiltonian, and we get an s-dependent and time
dependent Wigner function

— _r
Wt(x/ PIS) - WO (.X mt/ p, S)/ (729)
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which can in turn be used to compute the s-dependent current

—+o0
it,s) = /oo dp%Wt(O, p,s). (7.30)
We only consider —1 <'s < 0, in order to have a smoothing of the initial Wigner function;
in terms of ordering this means going from the Wigner towards the Q function.

We stress that this way of proceeding is completely different from considering the
backflow of a truly open quantum system, where in general the expression for the
probability current is not the same [301].

7.3.3 s-dependent backflow and negative current depth

Having defined an s-dependent current we can straightforwardly apply the definition
of backflow (7.12) and obtain an s-dependent backflow. As we can see in Fig. 7.7 the
backflow vanishes for a certain s > —1, therefore it is less robust than the negativity
of the Wigner function. Having more backflow initially (for s = 0) usually means that
the backflow of the state survives longer (i.e. it disappears for a value of s closer to —1).
However, as it may be seen from Fig. 7.7, this is not necessarily the case for any choice of
the parameters.

r
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Figure 7.7: Plots of the s-dependent backflow as a function of the Gaussian smoothing parameter s.
From top to bottom in the region s ~~ 0 we have the states with « = 2 and § = 7 (solid blue), & = 2
and § = 6 (dashed orange), & = 3 and § = 10 (dot-dashed green).

In order to better analyze this behaviour we introduce, in analogy with the nonclassical
depth, the negative current depth, which is defined as follows. Upon denoting by C the
subinterval of s € [—1,0] leading to a positive s-dependent current in (7.30), then the
negative current depth s, is defined as

sm = inf(—s), (7.31)
seC

which is a positive quantity bounded between 0 and 1. This quantity provide an alterna-
tive quantification of backflow; instead of quantifying how much probability is flowing
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Figure 7.8: The negative current depth (solid blue) and the backflow (dashed orange). Left panel:
the quantities are shown as a function of « for § = 11. Right panel: as a function of § for & = 2.

backwards we quantify the amount of Gaussian convolution, i.e. noise, needed to destroy
the backflow effect of a given initial state.

Fig. 7.8 shows that the negative current depth and the backflow of a quantum state
have similar behaviour, but regions where they are not monotonic exist, as it can be seen
in the right panel. Upon looking at the values of s, in Fig. 7.8, and since for all these
states the negativities of the Wigner function completely disappear only for s = —1, we
conclude that the backflow is a very fragile form of nonclassicality. Notice that other
criteria for nonclassicality exist and their behaviour for superpositions of Gaussian states
in the presence of a thermal environment has been studied [215]. Results have shown that
almost all these indicators vanish for a finite Gaussian smoothing, except the visibility of
the interference fringes which vanish only asymptotically.

Summary

o The quantum backflow effect is a counterintuitive behaviour observed in the proba-
bility current of a one-dimensional free particle, which may be negative even for
states with vanishing negative momentum component. As a result, for a particle
moving in the positive x direction, the probability of finding it in the region x < 0
can increase for finite amounts of time during the evolution.

o This effect can be quantified by the maximal amount of probability that can flow in
the x < 0 region during any time interval.

e Quantum backflow may be described in the phase space, showing that its occurrence
is connected to the classical phase space dynamics of a nonclassical initial state.

e The quantitative measure of backflow has a different behaviour than negative
volume of the Wigner function in terms of the defining parameters of the state, in
particular it vanishes for some threshold values.

e The negativity of the probability current is a feature which is more easily destroyed
by a thermal environment than the negativity of the Wigner function itself.

e Overall, these results suggest that backflow represents a more restrictive and more
fragile notion of nonclassicality, and the negativity of the Wigner function is just a
necessary condition for its occurrence.






CHAPTER 8

Resource theory of non-Gaussianity and Wigner negativity

This is the last chapter of this Thesis and we can finally use the word resource in a a more
precise manner, by presenting a (convex) resource theory of non-Gaussianity and Wigner
negativity. We have briefly introduced Gaussian states of bosonic systems in Sec. 1.4.2,
where we already pointed out that the Gaussian formalism has been the cornerstone of
continuous-variable (CV) quantum technology, due to its relative simplicity and to the
many physical platforms which can be accurately described by it.

Notwithstanding the vast phenomenology of truly quantum features displayed by
Gaussian systems, there are several no-go theorems showing that some protocols cannot
be realized in the Gaussian domain. The prime example of such restrictions is found in the
task of entanglement distillation [74, 56, ], a result which has recently been generalized
to a large class of quantum resources beyond entanglement [162]. Other similar no-go
theorems include: error correction [208], universal quantum computation [169, 191], and
more [142, 180]. Furthermore, several CV quantum information protocols can improve
their performances when they are implemented with relevant non-Gaussian states and
operations. We have seen an example of this for quantum estimation in Chapter 5, but
the same is true for teleportation [58, , ] and cloning [38, 57] and many others.

From this discussion it should be clear that non-Gaussian states and operations can be
considered crucial elements for the development of CV quantum information technologies.
As a matter of fact there have been major research efforts to understand and characterize
them and towards their experimental generation. In particular, quantum optical schemes
as photon-subtraction and photon-addition have been extensively studied [155, 205, 210,

, 249].

Roughly speaking, a resource theory would answer questions like “Is it possible to
transform a given non-Gaussian state to another one with Gaussian transformations,
and how hard is to do so?”. However, for reasons that will be explained, no satisfactory
resource theory of non-Gaussianity has been developed yet. This fact represents a major
obstacle to our understanding of non-Gaussian resources and the development of applica-
tions thereof. The work we present in this Chapter has the goal to overcome this obstacle
by introducing a general theoretical framework for non-Gaussian resources.

These questions about the manipulation of non-Gaussian states with Gaussian opera-
tions is timely, for several reasons. First of all these these operations are becoming a reality
in quantum optical experiments [197] and they have proved to be useful, for example, to
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counteract the effect of decoherence of non-Gaussian states [34, ]. Moreover, different
protocols that require a non-Gaussian element can be often improved with Gaussian
operations. This is the case for entanglement distillation based on photon subtraction,
whose performances can be enhanced by implementing local Gaussian operations [49, 87,

1.

Resource theories [59] are a powerful framework to study manipulation of quantum
states under some operational restriction on the allowed operations. Entanglement
theory is the prototypical example but many others have been recently developed. In
particular, general results have been obtained for a vast class of resource theories both
in the asymptotic [34] and single-shot regime [116]. In general, a resource theory stems
from two interlinked starting points. First, the identification of a set of operations that
are regarded, for reasons that depend on the setting at hand, as readily available (free
operations). For example, these are local operations and classical communication in the
resource theory of entanglement. Second, the classification of all possible states in two
categories: free states, that are considered freely available (typically via free operations)
and non-resourceful, and resource states. Separable and entangled states are an example of
this classifications. The quantification and manipulation of resources via free operations
are the central concerns of resource theories.

There are at least two major difficulties towards such a theory in the case of non-
Gaussian resources. First, it is natural to identify the set of Gaussian states as free states.
However, this set is not convex and therefore non-Gaussianity per se cannot be considered
a quantum resource of practical relevance in general: in fact, non-Gaussianity can be
generated by classical randomness, which is a readily available in most contexts and
therefore, from an operational view-point, free. Second, the intrinsic infinite-dimensional
character of CV systems implies that some operations (conditioning on the continuous real
outcomes of measurements, see below) that are ideally free in various resource theories
are, in this context, unfeasible. These two roadblocks have hindered the development of a
satisfactory resource theory, namely a theory that is both general and of practical relevance
in realistic settings. We try to overcome these roadblocks by adopting a pragmatic
approach and incorporating them in our definitions of free operations and states.

Our analysis is based on tools developed to describe quantum systems via their
phase-space representation, as reviewed in Sec. 1.4.1. In this formalism, quasiprobability
distributions play a central role and their non-positivity is considered as a characteristic
trait of quantumness. We have briefly commented about this point, when we introduced
nonclassicality in Sec. 1.4.4; however, negativity of quasiprobabilities is a very general
feature of quantum theory [06, 51, 82], directly linked to its contextual character [67, ,

]. For CV systems, the connection between negativity of the Wigner function and
Gaussian states is strong: pure states with a positive Wigner function are only Gaussian,
as stated by the Hudson theorem [136, 263]. The situation is more complicated when
dealing with mixed states, since there is no equivalent to the Hudson theorem [41, ,

]. In particular there exist mixed states that are not mixtures of Gaussian states, yet
have a positive Wigner function [55, , , , , ]. Despite this, we are going to
introduce a computable resource quantifier based on the negativity of the Wigner function
and we are going to show that it is a proper monotone for the resource theory at hand.
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The framework presented in this Chapter is based on an analogous one for finite-
dimensional systems (discrete variables, DVs), where the challenge to identifying the
resource responsible for quantum advantage in quantum computation has led to the
formulation of various resource theories [5, ’ , ]. In this context, stabilizer states
and Clifford unitaries play the role of Gaussian states and unitaries, respectively. On
the other hand, so-called magic states play the role of non-Gaussian states. For finite
dimensional systems it is natural to define Wigner functions on a finite dimensional state
space [110, 194] (opposed to the CV phase space) and in particular for odd-dimensional
systems a DV version of the Hudson theorem was proven [117]. For such systems, it has
been shown that the negativity of the discrete Wigner function is necessary to obtain a
circuit which is both universal and cannot be efficiently simulated with known classical
algorithms [185, , 239, ]. Based on this, a computable monotone —dubbed mana—
has been identified [286]. The monotone that we introduce here can be considered as a
CV counterpart of the DV mana.

In the context of CV quantum computation, non-Gaussian operations are known to be
necessary to attain universality [169]. Non-Gaussian operations can in turn be enabled
by non-Gaussian states via gate teleportation, the Gaussian protocol at the basis of CV
measurement-based quantum computation. However, it is not clear in general which
non-Gaussian states can play this crucial enabling role [21, 77, , , , , ]
and at which cost in terms of circuit synthesis [255]. In addition, some sub-universal CV
circuits have been rigorously proven hard to simulate classically. In particular, recent
proposals based on non-Gaussian inputs and Gaussian operations and measurements [50,

, 173] fall clearly in the framework presented here — which then provides quantitative
tools for their analysis.

After developing the general framework, we apply it to two tasks. First, we as-
sess and compare the resourcefulness of various non-Gaussian states that have been
theoretically proposed or even realized experimentally. In particular, we are going to
see that the cubic phase state —a resource that unlocks universality in the context of
CV measurement-based quantum computation— has a degree of resourcefulness that
can be non-trivially boosted by squeezing operations. Also, we give evidences that
photon-added and photon-subtracted states are at most as resourceful as a single-photon
Fock state. Second, concerning state manipulation, we evaluate the efficiency of a set of
Gaussian simple protocols that consume copies of non-Gaussian inputs to produce more
resourceful outputs. These types of resource-concentration protocols are usually a critical
point of other resource theories, such as for quantum communication and fault-tolerant
DV quantum computation. Our results individuates optimal working points of these
concentration protocols, and can thus be used to guide the development of new more
efficient ones.

After the completion of the work presented here and in [10], we have become aware
of work by R. Takagi and Q. Zhuang [272] covering very similar issues.
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8.1 Resource theoretical framework

The ingredients of a resource theory are: free operations, free states, and resource states.
The fundamental condition that links these elements is that the set of free states must be
closed under the set of free operations —i.e. it must not be possible to obtain a resource
state by applying only free operations. This restriction still leaves much freedom in
the choice of both free operations and states, and the structure of the resource theory
is dictated by this choice. One can choose the free operations and then consequently
define free states as the maximal set generated by free operations acting on one fiducial
state. Vice-versa, by fixing the set of free states, free operations can be considered as
the maximal set that leaves the free states invariant. The freedom left by the abstract
formulation is generally restricted by operational issues. Crucially, we are guided by
practical considerations regarding the prompt availability of operations such as classical
randomness and conditional measurements.

In this section, we introduce a resource theory based on two pragmatical considera-
tions: first, we consider operationally relevant Gaussian transformations, including in
particular those that involve conditioning on coarse-grained measurements; second, we
consider convex free-state sets. These features set apart our framework from previous
studies on the quantification and manipulation of non-Gaussian resources [104-106, 312].

8.1.1 Free operations

The set of free operations is our starting point for the construction of the resource theory.
In general, there is a contrast between physically motivated sets of operations and other
larger sets with better mathematical properties.

Physically motivated operations are those which, in a given context, can be assumed
to be implementable without effort —for example, SLOCC operations in entanglement
theory, or stabilizer operations in the resource theory of stabilizer computation. Un-
fortunately, these operations are usually hard to characterize and other sets of free op-
erations, with better mathematical properties, are often introduced (maximal resource
non-generating operations). Even though they do not generate any resource, some
amount of resource is typically needed to practically implement them. As said, here we
adopt an operational point of view, hence we are not going to deal with these maximal
resource non-generating operations.

Ideal and operational Gaussian protocols

Here, we denote with |¢g) an arbitrary pure Gaussian state, with U a Gaussian unitary,
and with S(#) the set of density operators on the Hilbert space  of an arbitrary (finite)
number of bosonic modes. In the context of quantum optics a set of free operations with
a strong operational motivation is given by Gaussian protocols (GPs), which we define as
follows.

Definition 1. A Gaussian protocol is any map from p € S(H) to o € S(H') composed of the
following operations:
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1. Gaussian unitaries: p — Ug p ag
2. Composition with pure Gaussian states: p — p ® | ) (Pg|.

3. Pure Gaussian measurements on subsystems: p — Trs[p 1 ® |pg(a)) (P (a)|]/p(|p),
with probability density p(a|p) = Tr[p 1 ® |Pg(a))(Pg(a)|] where a is a vector of con-
tinuous measurement outcomes in the real domain.

4. Partial trace on subsystems: p — Trg|p].
5. The above quantum operations conditioned on classical randomness or

(a) single measurement outcomes (ideal case)

(b) measurement outcomes falling into finite-size intervals (operational case).

The above operations encompass what is routinely available in current experiments
where CVs are manipulated at the quantum level. They include general quadratic inter-
actions, the generation and control of a large number of bosonic systems, and efficient
measurement strategies such as homodyne detection, which correspond to a projection
on an infinitely squeezed and unnormalized Gaussian state |{g). Actually, requirement
3. could be restricted to homodyne detection only, since the projection on any Gaussian
state can be obtained via Gaussian unitaries and homodyne detection [111]. In particular,
in quantum optical setups, such Gaussian unitaries correspond to inline squeezing op-
erations and passive linear optics circuits [36]. Notice that probabilistic operations are
included, therefore a generic probabilistic GP Agp is a trace non-increasing CP map. Physi-
cally, nondeterministic maps come from selecting particular states based on measurement
outcomes; this operation cannot generate resource states from free states, not even proba-
bilistically. However we are going to see that it is possible to use nondeterministic free
operations to probabilistically concentrate the resource.

The requirements 1.-4. above are standard in the context of non-Gaussianity quan-
tification [104-106], whereas requirement 5. needs an explanation. First and foremost, a
reasonable request for a quantum resource theory is that classical randomness should not
be regarded as a resource, therefore the inclusion of conditioning on classical randomness.
In turn, as anticipated, the latter entails that set of GPs is convex. Second, GPs are the CV
analogous of the stabilizer operations introduced in Ref. [256] but with some relevant
differences due to the infinite dimensional setting. Since the outcomes of projective
Gaussian measurements are continuous parameters, single outcomes are obtained with
zero probability. Therefore the class of GPs satisfying property 5.a (ideal GPs) contains
operations that are unattainable practically; for this reason, in the applications of our
resource theory, we mainly consider the subclass of GPs that satisfy condition 5.b —which
we dub operational GPs. This subclass is defined by the requirement that every output
state must be obtained with finite probability, therefore every conditioning must be done
on a finite-size interval of measurement outcomes. The major consequence of choosing
operational GPs is that they exclude the possibility to define a resource theory on pure
states only, since output states with non-zero probability must be mixed. We remark that
this is a peculiar feature of the framework here introduced that is inherently linked to
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infinite-dimensional systems, without analogue in the resource theories introduced so far
in DV settings.

To conclude this part, we stress again that, from an operational point of view, it is not
useful to enlarge the set of GPs, since any operation “easy” to implement in the lab is
already included. Not surprisingly however, these physically meaningful free operations
are hard to characterize mathematically —similarly to what occurs for other resource
theories.

8.1.2 Free states

We consider two classes of free states, both satisfying the standard requirements [34] —in
particular, both being closed with respect to GPs. The first class is the most natural choice,
and it is given by the maximal set of states that can be generated via GPs —namely, the
Gaussian convex hull, defined as

6= {peslo= [rrMiver) e}, 1)

where p(A) is an arbitrary probability distribution. We remark that A in Eq. (8.1) repre-
sents the vector of 2n? + 31 real parameters needed to parametrize an arbitrary n-mode
pure Gaussian state. We dub continuous variable quantum states not in the Gaussian
convex hull G as quantum non-Gaussian (QnG). Therefore, the theoretical framework de-
rived considering set G is dubbed the resource theory of quantum-non-Gaussianity. We recall
that witnesses of QnG states have previously been introduced [85, 103, 126, 138, 149, 1,
albeit outside of a resource theoretical context.
Alternatively, one can define the free states as those with a positive Wigner function:

Wy = {p € S(H) [ Wp(r) > 0}, (8.2)

where W, = W/p] is the Wigner function of the state p; this set is also convex and it is
a proper superset of G, i.e. G C W,. As per the Hudson theorem [136, 263], these two
sets coincide when restricted to pure states. We dub continuous variable quantum states
with a non-positive Wigner function (states not in the set YW, ) as Wigner negative (WN).
Therefore, the theoretical framework derived considering W, is referred to as the resource
theory of Wigner negativity. We recall that, from an operational point of view, a positive
Wigner function is a sufficient condition to have a quantum system that can be efficiently
simulated by classical algorithms [185, 226, , ].

As already mentioned, not all Wigner-positive states can be generated using GPs.
In this sense, the choice of W, as free states of the theory is less natural with respect
to choosing G. This is still a valid choice, in the same sense that, for the entanglement
resource theory, it is a valid choice to consider the set of states with positive partial
transpose. QnG states with positive Wigner function are bounded resources: despite the
fact that they cannot be generated using GPs, no other resource (free resource) can be
extracted from them using GPs only —not even when an arbitrary large supply of them
is available.

The definition of the set G allows to specify some additional considerations regarding
GPs. An arbitrary GP can be extended to a deterministic (trace-preserving) GP Apgp by
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considering all the possible outcomes. A deterministic GP can be characterized in terms
of its free Kraus operators; free means that the trace-decreasing map given by a single
Kraus operator is a GP itself. By considering Kraus operators corresponding to all the
continuous outcomes of Gaussian measurements, we can write Apgp(p) = [ dAK,pK],
where K, G K; C G (disregarding normalization). A different free Kraus representation of
Apgp can be obtained by coarse-graining measurement outcomes, Apgp(p) = Y; KipK;r,
with where K;GK] C G; in this case every Kraus operator corresponds to an operational
GPD, i.e. it gives an output state with finite probability.

Absence of maximally resourceful states

A relevant observation that can be made at this stage is that no maximally resourceful
states exist in the present resource theory —a result that is at odds with the most common
resource theories, including entanglement. Namely, there is no resource state that can be
transformed via GPs into any other state, in particular any other pure state.

For operational GPs, this is an immediate consequence of the fact that the output
states are either mixed (when measurements are involved) or they are the output of a
Gaussian unitary operation on the given state. In the latter case a parameter-counting
argument immediately proves the claim since, on one hand, Gaussian unitaries on a finite
number 1 of bosonic systems are characterised by a finite number of parameters (namely,
the dimension of the affine symplectic group ISp(2#n, R): 2n% + 3n), whereas, on the other
hand, a generic pure CV state cannot be specified by a finite number of parameters,
due to the infinite dimension of the Hilbert space. A slightly refined argument is valid
also for the case of ideal GPs. Again, it is sufficient to consider the case of pure output
states. In fact, any ideal GP with pure outputs is an element of the set of (non necessarily
positive) linear bounded superoperators @ that send the set of Gaussian states into itself.
These maps ® have been studied in details in Ref. [65], where it is proven that they are
characterised by a finite number of parameters. Therefore, again a parameter-counting
argument proves the claim.

The absence of a maximally resourceful state implies relevant consequences that are
peculiar to the present resource theory. First, regarding resource quantification, there exist
no natural unit for the resource at hand to which all measures can be normalized. Second,
regarding resource manipulation, there exist no natural target for resource distillation
protocols, nor a natural starting state for resource dilution.

Despite this, notice that there exist at least one class of states that can play the role of
maximally resourceful states, the so-called cubic-phase states [115] (see below). It is in
fact known that, provided that an arbitrary large supply of these states can be consumed,
any state can be generated via ideal GPs [191] (as recalled, magic states play an analogous
role for DV stabilizer protocols). In Sec. 8.3.1 we thus consider cubic-phase states more
closely. A similar result is suggested to hold true also for Fock states [109].

8.1.3 Monotones

Once the sets of free operations and states are chosen, one can indeed try to quantify a re-
source. In general, there is no unique way to quantify a resource and different monotones
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are usually connected to the performance of different tasks. Moreover, monotones can be
used as a tool to assess the feasibility of resource conversion. In the best case scenario, a
complete set of monotones can give necessary and sufficient conditions for the conversion
between resource states, as in [5].

We can now define both Quantum-non-Gaussianity and Wigner Negativity mono-
tones.

Definition 2. A Quantum-non-Gaussianity (resp. Wigner Negativity) monotone is a functional
from the set of quantum states to non-negative real numbers M : S(H) — [0, o0) which satisfies
the following properties

1. M(p) =0 Vp e G (resp. W,).

2. (Monotonicity under deterministic Gaussian protocols)
For any trace-preserving GP Apgp the monotone must not increase: M(p) > M (Apgp(p))-

3. (Monotonicity on average under probabilistic Gaussian protocols)
Given a trace-preserving GP Apgp we can express its action in terms of free Kraus operators,
we require that the monotone must not increase on average:

_1

p(Alo) K/\PKX. We require that

(a) Ideal case: Apgp(p) = [ dAp(A|p)oy, where oy =
M(p) = [ dAp(Alp) M(ap).

(b) Operational case: Apgp(p) = L; pip0i, where 0; = ﬁ‘ﬁKl-pK;r, We require that
M(p) = ¥ pijpM(0i)

Some additional properties that a monotone can enjoy are faithfulness: M(p) > 0 <=
p & G (resp. Wy), convexity: M( [ dvp(v)py) < [dvp(v)M(py) for a generic probability
distribution p(v) and additivity: M(p ® o) = M(p) + M(c)!. If the monotone is convex,
monotonicity on average directly implies monotonicity under deterministic operations
(32 = 2), moreover convexity also gives operational average inequalities from the ideal
ones (3a = 3Db).

Monotones can be used to give bounds on the efficiency of interconversion between
resource states. Suppose that A is a free operation which converts resource states in a

probabilistic manner: it maps k copies of p to m copies of a target state ¢, i.e. A (p®k) =

o®" with probability p. By virtue of the monotonicity on average (3b) we can write
M(p7) = pM(c™m), (8.3)

where we considered an operational GP to get a finite probability p and we discarded the
other conditional states in the sum.

Moreover, additive monotones allow us to express the inequality in terms single letter
quantities

kM(p) > pmM(0). (8.4)

In the context of entanglement theory this property is called strong additivity, while weak additivity only
requires M (0®") = nM(p).
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This inequality also gives a lower bound for the average conversion ratio [256]. On
average we will need to run the probabilistic operation 1/p times to obtain a successful
outcome, therefore the average number 7 of copies needed to extract m target states is
E[n] = k/p. We can thus rewrite (8.4) as

M(0o)

Elnl = = " )

>m

(8.5)

= | =

i.e., the average number of copies of the input state is lower bounded by the ratio of the
monotones times the number of output copies of the protocol. This means that in order to
concentrate the resource (i.e., M(c)/M(p) > 1), we need an average conversion ratio
smaller than unity m/E[n] < 1.

If free operations converting two resource states in both directions exist, we must
have M (p®K) = M(o®™); this is trivially true if the conversion is achieved with a free
unitary transformation. It is usually difficult to exactly convert between resource states
using a finite number of copies, therefore it is customary to consider conversions in the
asymptotic limit of infinite copies. However, we are not going to treat the asymptotic
resource theory of QnG in the present work.

Faithful quantum non-Gaussianity monotones

Before going on to introduce our main monotone in Sec. 8.2, which is a non-faithful
monotone, we want to mention here two possible ways to define faithful QnG monotones.

The non-Gaussianity measure § introduced in Sec.1.4.4, which we can also call relative
entropy of non-Gaussianity, can be considered as a monotone for the resource theory
non-Gaussianity, where the set of free states is the non-convex set of Gaussian states. For
this reason the relative entropy of non-Gaussianity can be arbitrarily increased by GPs.
However, we believe it should be possible to build a QnG monotone by extending this
measure to mixed states with a convex roof construction, i.e.

dcrlp] = p_if}pf_> Y pidllgi)] (8.6)

where p = Y; pi| ;) (¢;]; i can also represent a continuous value, in which case p; becomes
a distribution and the sum is replaced by an integral. The functional dcR is convex by
construction and property 1 and 2 of Definition 2 can easily be proven. We have not been
able to prove property 3a (property 3b follows by convexity), however we performed
some preliminary numerical checks and we conjecture property 3a to be true.?

A second approach to introduce faithful monotones could be to connect the resource
theory of quantum non-Gaussianity to the resource theory of coherence; something in this
spirit has been proposed for the DV resource theory of magic [203]. For CV, the resource
theory of coherence has been generalized to the coherent state basis through a limiting
procedure [274]; the resulting coherence monotone is also a monotone for the resource
theory of linear optics, i.e. passive Gaussian transformations. This can be interpreted also

2 After the completion of the work presented in this chapter, a preprint where this conjecture has apparently
been solved has appeared [224].
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as a resource theory of nonclassicality for CV systems, where nonclassical states as those
with a negative Glauber-Sudarshan P-function, see Sec. 1.4.4. Remarkably, this resource
theory has recently been studied in detail and linked to a metrological interpretation [161,

]. We stress that this framework is entirely different from ours, since in our resource
theory squeezing is assumed to be free.

For our purposes it might be possible to take similar steps and define a resource
theory of superpositions of pure Gaussian states. An viable option could be to generalize
results from [276], where a general resource theory of superposition of arbitrary non-
orthogonal states is presented, for finite dimensions. We leave such questions open for
future investigations.

8.2 A computable monotone: continuous-variable mana

Negativity of the Wigner function has long been recognized as an important quantum
feature and in particular the volume of the negative part has been introduced as a
nonclassicality quantifier (see Sec. 1.4.4). Here we use it to define a resource monotone.

In [286] a computable and additive magic monotone based on the negative values of
the discrete Wigner function, dubbed mana, was introduced. We call the CV counterpart
CV mana’; it is defined as (all the logarithms in the following are taken to be in base 2 (we
measure quantities in bits)

W(p) = log(/dr ’Wp(r)’), (8.7)

where the integral runs over the whole phase-space R?", 1 is the number of modes and
W, (r) = Wlp|(r) is the Wigner function of the state p. In the next section we explicitly
show that this monotone satisfies all the required properties even if it is not convex.

Clearly, the CV mana is a faithful monotone for the resource theory of Wigner Negativ-
ity but not for Quantum-non-Gaussianity. This is akin to what happens in entanglement
theory for the log-negativity of entanglement [235, 311], depending on whether one
considers separable or positive partial transpose states as free states.

The CV mana is an additive monotone, since the Wigner function of separable states
can be factorized. This means that the bound (8.5) is valid and we can use the ratio
between logarithmic Wigner negativities to lower bound the average number of copies
of an input resource state to obtain a certain number of copies of the target state using a
probabilistic Gaussian protocol. We remark that this result does not say anything about
the actual existence of such protocols.

Similarly to the DV case we can prove that the CV mana is essentially the unique mea-
sure which depends on the negative values of the Wigner function, under the assumption
that the position of these “negative patches” in phase space do not affect such a measure.
The proof follows the same idea of the DV case presented in [286] and lately extended to
coherence and entanglement [311].

5The manuscript where these results were presented has been accepted for publication, but this monotone is
renamed Wigner logarithmic negativity (WLN) in the final version. In this Thesis we retain the original name.
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As a final remark, notice that the CV mana is computable in the sense that its value can
usually be assessed by numerical integration. However, in general it is not possible to
obtain closed-form expressions, since the analytical integration of the absolute value of a
function requires finding the zeros of such function.

8.2.1 Proofs about CV mana

We start by first considering a monotone based the integral of the absolute value of the
Wigner function, called Wigner negativity:

ol = [ driW,(r)| -1, (838)

(this is twice the volume of the negative part of the Wigner function ). After proving the
properties of this monotone it is easy to generalized them to CV mana.

Wigner negativity

The Wigner negativity (8.8) trivially satisfies property 1 of Def. 2 and in the following we
prove that it also satisfies all the properties implied by property 3. The constant factor —1
does not affect the proofs, it is only needed to make the monotone take the value zero on
states with a positive Wigner, so we just consider the integral of the Wigner function in
the following statements.

1. Invariance under Gaussian unitaries

Np] = N [Ucplit] (8.9)

This directly follows from the definition of Wigner function (1.119) by changing the
integration variables, since det S = 1.

2. Invariance under composition with Gaussian states

Nlo®pc] = No] (8.10)

This property directly follows from the fact that the Wigner function of a tensor
product is the product of Wigner functions, see Eq. (1.113), and from the fact the
Gaussian states have Gaussian (and thus positive) Wigner functions.

3. Non-increasing on average under Gaussian measurements

/dAp Noa] < Np] (8.11)

We consider a Gaussian POVM [ dAIT, = 1, where W[IT,](r) are Gaussian func-
tions. Given an initial state p we have the unnormalized post-measurement states
oy = Trp [pI1, ], the probability density p(A) = Tr[pII,] and the normalized post
measurement states py = 0, /p(A).
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Since the Wigner transform is a linear functional and probability density are positive
we can write

‘VVL/dAp pA] L/dﬂp o), (8.12)
and using linearity again we have that
[l = | [ awinn), 815)

where 0 are unnormalized post measurement states, for which the Wigner function
is given by (1.112). We can thus write

Vmwm

l/dAHVa) |—l/dA‘2n /drVV 1 (r, 7 YWIIL ()

fg/dAQn) /dﬂhvmunrﬂM4H¢Kﬂﬂ::/dHDM@Mnﬂ)

(8.14)

7

where we used the integral triangle inequality and the POVM resolution of the
identity for the Wigner functions (1.109).

Integrating both sides of this inequality w.r.t. r we get to the sought result:

[/ dAp(A m} [ dApQ)N[pa] < Mo, (8.15)

where we also proved monotonicity under trace preserving operations. By taking
the appropriate limit these results hold also for homodyne measurements, where
WIII,] (') are proportional to Dirac deltas functions.

Non-increasing under partial trace

N (Trppag] < Npag] (8.16)

This property follows from the fact that the Wigner function of a partial trace the
marginal of the Wigner function of the bipartite system (cf. Eq. (1.111)), using again
the integral triangle inequality as in the previous proof.

Convexity

</dw7 > L/mm (8.17)

Trivially follows from the integral triangle inequality (that we have actually already
used in the proof at point 3).

To have an operational Gaussian protocol, i.e. in order to have non-zero conditional

probabilities, we need to consider a finite region of the outcome space (); and not a
single outcome. Formally this procedure amounts to a coarse-graining of the continuous
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outcomes into subsets, thus defining a new POVM. The new effects for discrete outcomes
are just obtained by integration I; = |, 0 dAIT,, where the outcome space is partitioned
as () = U;Q);. The Wigner function of such POVMs is thus a statistical mixture of the
original Wigner functions; as a consequence, since the original functions are always
positive, the same is true for the coarse grained ones. This implies that the previous proof
can straight-forwardly extended to these coarse-grained POVMs. The same inequality for
coarse grained POVMs can be obtained by virtue of the convexity of .

Finally, we remark that the proofs discussed do not rely on the Gaussian character of
states and POVM elements, but just on the positivity of their Wigner functions.

CV mana

The CV mana (8.7) can be defined in terms of the Wigner negativity (8.8) as
W/p] = log(Np] +1). (8.18)

Properties 1, 2 and 4 follow directly from the fact that log(x + 1) is a monotonically
increasing function of x.
For the mana the chain of inequalities (8.15) splits in two separate inequalities

w| [ axpp| < wie (519
[ aAp(A)Wiea] < Wigl. (5.20)

The the first inequality represents monotonicity under deterministic operations and fol-
lows from (8.15) and from the monotonicity of the logarithm. Inequality (8.20) represents
monotonicity on average and it is guaranteed by Jensen’s inequality

[ dp(a) tog(Wlpa] +1) < 1og(1 v/ dAp(A)N[pA]), (821)

which holds since the logarithm is a concave function. Notice that the same inequality is
true also for the coarse grained case, since Jensen’s inequality is valid both for discrete
and continuous distributions.

Similarly to what happens in other resource theories, the logarithm makes this mono-
tone additive for separable states W[p; ® p2] = W[p1] + W]pz], but also breaks convex-
ity. To have a convex monotone after the logarithm, the original monotone should be
log-convex, f(px+ (1 —p)y) > f(x)Pf(y)'~P, which is a stronger requirement than
convexity. The lack of convexity is the reason why inequalities (8.19) and (8.20) are not
chained as (8.15).

8.2.2 Uniqueness of negativity and mana

The argument given in [286] for the uniqueness of sum negativity can be adapted to CV,
even though in this case we need to perform the limit to unphysical infinite energy states.
We present the single mode case for simplicity, the argument can be easily generalized to
multi-mode states.
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We assume to have two states p and p’ with the same negativity (and thus also the same
mana) N [p] = N[p’]; we also assume that M is a generic monotone that depends only
on the negative values of the Wigner function, but not on their position in phase space.
We define a function f,(x,y) = |[W,(x,y)| when W,(x, p) is negative and f,(x,y) = 0
everywhere else. We note that f,(x, p) /N '[p] is a well defined probability distribution. If
p and p’ have negative values we build two ancillary states

7= [ dxdyfy(x,y)x) (x| @ |y) (],

(8.22)
o' = [ dxdyfy (x,y)[x) (x| @ |y) (],

where |x) are unnormalized position eigenstates, which are the infinite squeezing limit of
Gaussian position squeezed states. Therefore we have

Mnlp] = Mn[p@0'] = My[o' @ 0] = MyTp'], (8.23)

the two outer equalities are due to the fact that o and ¢’ are the limit of a sequence of states
in G. The central inequality is due to the fact that the monotone My depends only on the
negative value of the values of the Wigner function and not on their position. Note that
the two Wigner functions have the same negative values, since the Wigner function of o
and ¢’ correspond exactly to the probability distribution function f,/N[p] and f, /N p'],
since the Wigner functions of |x) is a one dimensional J function. Equality (8.23) implies
that M is a function of NV. Suppose that N'[p'] > N[p], we can always find a new state o
such that My [p’] = Mp[p ® 0] > My|p], where the last inequalities is due to the weak
monotonicity property of monotones. This means that My is a monotonically increasing
function of V.

Furthermore, if we require that My is additive, i.e. My[p®"] = nMy[p] we can
also follow the proof given in [311] to show that My must correspond to the mana W
multiplied by an arbitrary positive constant.

8.3 Resource analysis of classes of pure states

Given its relevance in the general framework just introduced, now we use the CV mana
to assess the resourcefulness of some paradigmatic examples of non-Gaussian states. In
particular, besides the aforementioned class of cubic phase states, we focus also on states
that are of relevance in quantum optical experiments: photon-added, photon-subtracted,
and cat states.

In addition to the CV mana, given that we consider pure states only, we also calculate
the non-Gaussianity, see Eq. (1.157). As said, the latter is still not proved to be a monotone
in our framework, however the comparison between the two quantities is particularly
fruitful to single out the properties of the states considered.
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8.3.1 Cubic phase state

As recalled, a particularly important non-Gaussian continuous variable state is the so
called cubic phase state [115]. For finite squeezing it is defined as

|7, 1) = exp [i'ya??’} S(r)|0), (8.24)

where the squeezing operator $(r) = exp {—%r(fﬁ + ﬁﬁ)} for r > 1 squeezes in mo-
mentum and anti-squeezes in position — i.e., the Heisenberg evolution of the position
operator is $(r)t£5(r) = ¢"£. This implies that a squeezing unitary can be used to change
the value of -y of a cubic phase gate [115]:

S(r)"exp {i’yﬁ‘o’} S(r) = exp {i’ye&ﬁ?’}. (8.25)

This identity shows that we can “consume” the initial squeezing to enhance the
nonlinear parameter by anti-squeezing the state (a Gaussian unitary)

\637/7, ry =S(=")|y,r+7). (8.26)

This means that every monotone must be a function of the effective parameter ¢, since
it has to be invariant under Gaussian unitaries:

M) = M(1e77,00) = £ (&) - (327)

As a consequence the contour lines of any monotone on the plane (r, y) are of the form
v o« e~ 3", In particular, Eq. (8.27) shows that the resourcefulness of the cubic phase state
can be boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r — oo Eq. (8.26) formally means
that we can freely interconvert between ideal cubic phase states with simple Gaussian
operations. This is consistent as long we assume to be in the degenerate case where the
monotone assumes an infinite value for every cubic phase state, irregardless of the value
of .

For a pure cubic phase state we can also compute the relative entropy of non-
Gaussianity (1.157), which is again invariant for Gaussian unitaries

8[|, 7)) = h(\/l + 9(@3")/)2>, (8.28)

where h(x) = ("%1) log ("%1) - (%) log<xT*1) ; we can explicitly see the dependence
on the combination ¢*’v. This measure goes to infinity as log(e*7y) for ¥’y — oo, as
expected.

We are working with pure states and therefore the Hudson theorem implies that if one
measure is zero also the other has to be zero. Furthermore, in this and in the following
examples we observe that, as long as both the mana W and the non-Gaussianity ¢ are
functions of a single effective parameter, the two measures are monotonic and thus display
the same qualitative behaviour. We remark that the same fact has also been observed



152 8.3 Resource analysis of classes of pure states

W and 6
5l
= 1
480
0 2 4
3 s .
""" W
oL
1 _————______ __________
q/””‘l | | | | )

Figure 8.1: Non-Gaussianity ¢ (solid blue) and mana W (dashed red) of the cubic phase state as a
function of their unique parameter e, Inset: parametric plot of the two quantities.

for ground states of anharmonic potentials [9]. Given this heuristic argument, we also
expect the mana of the cubic phase state* to be a monotonically increasing function of its
effective parameter, with a behaviour similar to the measure J; this is indeed what we
observe from a numerical evaluation, see Fig. 8.1. In particular we expect it to diverge
like the non-Gaussianity monotone in the limit of infinite squeezing or nonlinearity, in
accordance to the intuition from Eq. (8.26).

8.3.2 Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added Gaussian states are respectively
defined as |&, 7)syp = N;Ui/z aD(a)S(r)|0) and |, 7) 394 = N;jld/z a*D(x)S(r)|0), where
Ngp = sinh?7 4 |#|? and N,qq = 1+ sinh® 7 4 |#|2 are normalization constants. These
states have been realized experimentally [18, 19, 25, , , ] and they have recently
been suggested as non-Gaussian ancillas to implement arbitrary non-Gaussian opera-
tions [21]. Multimode photon subtracted and added Gaussian states have also shown a
non-trivial interplay with entanglement [289].

We can employ again the invariance under Gaussian operations to get

M{|a, 7)sup] = M [Ns—u})/z (e“P sinh |r||1) + a|o>)} (8.29)
Ml ) aaa] = M|Nygf*(cosh r||1) +a"[0))], (8.30)

where r = |r|e!¥ and M represents a generic monotone.

The results above suggest that the maximum amount of resource reachable by these
two classes of states is that of a single photon state |1), a result in agreement with the
physical intuition about the preparation of these states. Photon subtracted states can
be prepared by sending the input state in a high-trasmissivity beam-splitter and then

4To compute the mana we have used the analytical Wigner function of the cubic phase state [133], but we do
not report the expression here.
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Figure 8.2: Non-Gaussianity ¢ (full lines) and mana W (dashed lines) of photon subtracted (blue,
lower curves) and photon added (red, upper curves) states as a function of r for fixed |a| = 1.
The horizontal black lines represent the value of the two figure of merit for the state |1). Inset:
parametric plot of the two quantities. Since a photon-added state is non-Gaussian for any value of
7, both W and 6 never go to zero. In the region ¢ £ 0.8 the two parametric curves perfectly overlap.

conditioning on a single photon detection on an output mode. On the other hand, photon
addition can be implemented as beam splitting the input state with a single photon state,
and then conditioning the output on the detection of no photons. This resource theoretical
analysis shows that measurements and ancillary states are indeed equivalent resources in
this case, as clearly confirmed by the plot in Fig. 8.2. We remark that while these schemes
are appropriate for single mode states, more complicated schemes might be needed for
multimode states, see e.g. [24, 237] for photon subtraction.
We can compute the non-Gaussianity (1.157) for these pure states

8
5[|“rr>sub] =h 3 +1 (8.31)

(\a\zcschz(r) + 1)

8
O, 7)ada] = b s +1|; (8.32)

(|0¢|2sech2(r) + 1)

once again this is a function of a single parameter in both cases. In Fig. 8.2 we also observe
that non-Gaussianity and mana have the same qualitative behaviour.

8.3.3 Cat states

We now want to complement the intuition we gained with the previous examples on a
different class of non-Gaussian states: Schrodinger cat states. We are going to see that the
two figures of merit represented by Non-Gaussianity 6 and mana W can also display a
qualitatively different behaviour.
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Figure 8.3: Non-Gaussianity ¢ (full lines) and mana W (dashed lines) of cat states for different
values of the parameters as a function of |«|. The values of the parameters are (a): ¢ = 71/4,0 = 7,
(b): ¢ =m/4,0=0,(c): ¢ =t/8,0 = mwand (d): ¢ = 71/8,6 = 0. Inset: parametric plot of the same
quantities.

We define a cat state as the superposition of two coherent states |«) and | — &) and we
keep both the amplitudes and the relative phase as parameters, as follows

1p(a, $,0)) = (cos¢\a> + sin ¢e’®| — oc)), (8.33)

i

where K is a normalization constant
K =1+ sin(2¢) cos e 22", (8.34)

The non-Gaussianity 6[|¢(«, ¢,0))] is not a function of the absolute value |«| only, but
it depends on both angles; we do not report here the cumbersome analytical expression of
this quantity. A comparison between the two figures of merit shows that their behaviour
is qualitatively the same as a function of ¢ and 6, while they show a remarkable difference
as functions of |a|. As a matter of fact, while the mana is known to saturate to a finite value
for increasing separation between the two Gaussian peaks of the Wigner function [151],
the non-Gaussianity diverges, i.e. lim,|_,o, 0[|1p(a, ¢, 0))] = oo.

This is shown in Fig. 8.3, where we present the two quantities for a choice of pa-
rameters ¢ and 6 as a function of |x|. We stress that even though the two quantities
have a different behaviour, they still remain monotonically increasing functions of one
another (but not strictly monotonic). It is reasonable to ascribe this difference to the
fact that non-Gaussianity is sensitive to the distance between the state in question and
pure Gaussian states. Given the double-peaked structure of cat states such a distance is
bounded to increase indefinitely for large energies. On the other hand the CV mana is
clearly insensitive to this.
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8.3.4 Comparison at fixed energy

We conclude this section by studying the behaviour of the monotones as a function of the
mean number of bosonic excitations (7), a standard resource in CV quantum information
processing. In general there is no one to one relationship between mean energy and any
OnG or WN monotone, therefore we consider the maximum value of the monotones for
every fixed value of (7).

For the cubic phase state the problem amounts to maximizing the parameter 3" «y. We
find that the mana of the cubic phase state is a monotonically increasing function of (1)
as intuitively expected. For photon subtracted and photon added Gaussian states the
problem amounts to maximizing the probability of the |1) component in (8.29) and (8.30).
When (71) > 1 the maximum value of both monotones is the same as for the state |1) and
this is achieved for « = 0. The photon-subtracted state can also have (7) < 1, in this case
the maximal value for both monotones is equivalent to that of the state /1 — (7)|0) +
V/(A)|1) . For cat states we restrict to equal amplitudes of the two components, i.e.
¢ = /4. In this case, for (1) > 1 we have that 6 = 7, i.e. the odd cat state, is always
optimal. However, when (1) < 1 the state with 6 = 71 does not exist and we need to
numerically find the best angle 6 for every value of ().

All these findings are summed up in Fig. 8.4, where we report an explicit comparison
of the mana W as a function of (7). We also show points corresponding to Fock states |n),
which have an higher value of W than the classes of states we consider. In particular, for
(f1) = 1 photon subtracted /added Gaussian states and odd cat states reduce to the single
photon Fock state |1).

We remark that the same qualitative analysis applies also to the non-Gaussianity J;
however, in this case it can be proven that Fock states have the maximum value of ¢ at
fixed energy [104].

8.4 Negativity Concentration via passive Gaussian operations

We have already recalled that, given an arbitrarily large supply of cubic phase states, it is
possible to generate any state via ideal GPs. It is therefore possible to increase the amount
of quantum non-Gaussianity of a state, and in particular to distil CV mana. Given the role
played by CV mana established by our framework, it is relevant to consider experimen-
tally realistic settings that can concentrate the amount of CV mana via operational GPs.
Specifically, taking inspiration from existing CV quantum state engineering protocols
based on linear optics, we now want to study the task of concentrating the negativity
of the Wigner function from many copies of an input state to a single output state. We
know that when a state can be transformed to another via GPs, then the conversion rate
is limited by the bound in Eq. (8.5), where we use the CV mana as monotone.

A more general framework which also makes use of single photon sources and general
Gaussian measurements detection has been presented in [225] to implement arbitrary

5We remark that the maximum value of the monotones is achieved for a vanishing value of the parameters «
and r and this corresponds to the limit of a vanishing probability of a successful photon subtraction, i.e. the
normalization constant Ng,, — 0
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Figure 8.4: Maximal value of the mana as a function of the mean number of bosonic excitations for
the considered classes of states, the solid light blue line represents the cubic phase state, the dashed
orange line the class of cat states (with equal amplitude) and the dotted green line represents photon
subtracted and added Gaussian states, the red dots represents Fock states.

nonlinear potentials. Some general calculations about states obtainable starting from Fock
states by applying two-mode interactions and conditional operations based on homodyne
post-selection can be found in [109].

8.4.1 Quantitative study of a negativity concentration protocol

Let us exploit the theoretical framework described in the previous section to analyse a
quantum state engineering protocol based on beam splitter interaction. In what follows
we consider the mana W defined in Eq. (8.7) as the resource monotone. Each probabilistic
protocol is indeed a GP A that converts k copies of a resource state p, into m copies of a
state o, with a given probability p.

Since we focus on the “negativity concentration” properties of these protocols, we
introduce two figures of merit. The first one corresponds to the resource gain of the
protocol, and it is defined as the relative difference between the mana of the output state
and the mana of the input state,

W(o) — W(p)
W(p)

The second figure of merit quantifies the efficiency of the protocol, and it is defined as

e[A] = (8.35)

_ mW(o)
il ]—pkw(p) <1,

(8.36)

whose maximum value is one, as a consequence of Eq. (8.4).

In particular, here we focus on a protocol that has been implemented experimentally
as described in Refs. [77, 78]: a pair of identical Fock states p = |n)(n| is mixed at a
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Y

Figure 8.5: Schematic representation of the concentration protocol. The detector represents either
an homodyne (“homo”) with outcome x or an heterodyne one (“het”) with outcomes a = |a|e?.
The input states are two copies of p, while the output state ¢ is postselected according to the output
values of the measurement.

beam-splitter with transmissivity T, and a homodyne detection of the quadrature * is
performed on one of the two arms, see Fig. 8.5. We also study the case of heterodyne
detection for comparison.

To gain intuition about this protocol, consider the output state of the beam splitter,
which is of the form Z "o frlp,2n — p). If we were able to condition on the detection of no
photons we would obtam the state |2n), which in turn would imply the concentration of
the resource. However, conditioning on the vacuum via Gaussian measurements occurs
with zero probability and is therefore unfeasible. The actual protocol works instead
conditioning on outcomes that belong to a finite interval around zero. This produces a
POVM element which is very close to the ideal projection on the vacuum |0) (0], but with
non-zero probability and therefore feasible [77, 78].

In the case of heterodyne detection, the state on the other arm of the beam splitter
is kept if the outcome of the measurement is in the range 0 < |a| < cper, While we
average over the phase 6 (note that this makes the POVM elements diagonal in Fock
basis). Analogously, in the case of homodyne detection the output is conditioned on the
result x falling within the interval [—cpom, Chom]- Dealing with initial Fock states, these
computations are most easily carried out in Fock basis, using the matrix elements of the
beam splitter [3] and computing the coarse grained POVM matrix elements:

A Chom A Chet
(0 Dl Iy = [ xlalelxlm) (ol e ) = [ tin] [ % ool
~Chom “Chet
(8.37)

These integrals can be efficiently evaluated for every value of chom /het- The (unnormal-
ized) conditional state and corresponding probability are then

Thom = Trp [(ubs(P ® P)Ugs) 1® ﬁchom] Phom = Trg [(7hom] ’ (8.38)

and analogously for heterodyne detection. The output states of the concentration protocol
are the mixed states 0y,om = Fhom/ Phom and Ohet = Thet/ Phet- The Wigner functions can
be obtained from the density matrix in Fock basis, by using the previous formulas (6.23).
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With homodyne conditioning it is not possible in general to obtain the state |211), since
we would need to condition around a value x where all the wave functions (x|n) = 0 for
n > 1. This is possible just in the case of single photon states since the superposition is
simply between |0,2) and |2,0) and therefore we could approximate a projection on the
vacuum by conditioning the homodyne detection in a region around the zero of (x|2),
which is obtained for xo = 1/ V2.

In terms of our figures of merits we have k = 2 input and m = 1 output copies. To
start, we study the protocol with two single photon states |1) in input. The protocol
efficiency 7[A] and the resource gain €[A] are plotted in the upper panels of Fig. 8.6
and 8.7, as a function of the heralding parameters cpet and cpom, and for different values
of T. We observe that € > 0 up to certain threshold values of cpet and chom, depending
on the the transmissivity T. On the other hand the maximum efficiency can always be
achieved for a balanced beam-splitter, since this maximizes the matrix element (2|c|2) of
the output states. Typically, these optimal values are obtained for values of cpet and cpom
that in turn corresponds to lower values of €. This trade-off is better highlighted in the
lower panels of Fig. 8.6 and 8.7, where we show the efficiency 7 as a function of the gain
€. We observe that we can indeed gain more negativity with heterodyne heralding, since
we are approximately creating the state |2), in this case there is a strict trade-off between
1 and €, i.e. 7 is a monotonically decreasing function of e.

For homodyne heralding we gain less negativity, but at least for T = 0.5, there is
an optimal region, where large values of the two figure of merits can be achieved (large
values in the sense that they are close to the maximum values that one can achieve via this
protocol, by changing the interval width cyqp,). However, by changing the transmissivity
of the beam splitter we observe a monotonically decreasing behaviour of 7 as a function
of ¢, similarly to the heterodyne case.

We then consider the same protocol with lossy Fock states p = (1) (1| + (1 — )]0) (0]
as input (resource) states and by fixing the transmissivity to T = 1/2. We observe the
same trade-off in the parametric plot in Fig. 8.8: the protocol becomes less effective for
decreasing values of 8, and the optimal region for homodyne measurements is not present
anymore for 8 < 0.9.

Finally, we consider Fock states |n) with n up to 5 as input resources (mixed at a
balanced beam-splitter) and we plot in Fig. 8.9 1 as function of €. All the curves present
a similar behaviour, but it is clear that the performances of the protocol in terms of our
figures of merit decreases for increasing #.

A remark about negativity concentration

These schemes we studied are concentration protocols at the single copy level, in the sense
that the single outcome state is more resourceful than a single input state, but two input
states must be used.
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Figure 8.6: Heterodyne post-selection Efficiency 7 and negativity gain € for the heterodyne con-
centration scheme with two single photon Fock states |1) in input as a function of the conditioning
parameter cpt for different beam-splitter transmissivities.

In particular, these schemes satisfy the following inequality

W(o)
W) < 1, (8.39)

which is a much stronger constraint than what imposed by the bound (8.3), i.e. the
mana of the output state never surpass the mana of the global input state, not even
probabilistically.

The reason for this bound is that negativity of Fock states is sublinear in n [151], this
implies that

W(|21)) < 2W(|n)) (8.40)

and the mana of the output states is never higher than the one of the state |2n).

One might think that this is true in general for GPs, but this is not the case. We found
a simple counter-example to this by considering a two-mode non-Gaussian entangled
input state of the form

[$in) = /1 - Bl0,0) + /BIL,1).

If one mode of this state is measured with an heterodyne detector and the outcome
conditioned to be in certain intervals, the remaining state on the other mode is thus the
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Figure 8.7: Homodyne post-selection Efficiency 7 and negativity gain € for the homodyne concen-
tration scheme with two single photon Fock states |1) in input. Top: both quantities as a function of
the conditioning parameter cpop, for different beam-splitter transmissivities. Bottom: parametric
plot of efficiency and negativity when cyo, is varied.

following mixture (we show the unnormalized state):

Gout = [ 92 [ alalal | (1 - )| (0)P10) (0] + pl{al1) 1) (1

+/B(1— B) ({«l0)(a[T) 0} (1] + <a|1><oc|o>|1><0|)].

For sufficiently small values of § and conditioning “far” from the origin one can indeed
obtain W(oout) > W(|¢in)). These outcomes are however very unlikely and the values
for the efficiency # are very low; even if the mana is increased we are not close to the
saturation of bound (8.3). For example we find that for a; = 2.5, 2y — 00,07 = —7t/6 and
0 = +71/6 we have W(oout) — W(|$hi,)) = 0.05, however the probability is very small
Pout = 5-107* and therefore the efficiency is negligible as well 7 ~ 8 - 10~4.

(8.41)

Summary

o Understanding the possibilities and limits of manipulating non-Gaussian states with
Gaussian operations is a challenging but timely topic of research. Such operations
are found to be beneficial in many quantum information protocols involving non-
Gaussian states.

e We have introduced a general and physically motivated framework for the resource
theory of quantum non-Gaussianity and Wigner Negativity. The free operations,
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Figure 8.8: Parametetric plot of the efficiency 1 and the negativity gain € for both the heterodyne
and homodyne protocols with two lossy single photon states (1 — 5)|0)(0| + B|1) (1] for different
values of B.

dubbed Gaussian protocols, are very general and involve all the relevant experi-
mental ingredients, including conditioning on measurement outcomes.

e In this resource theory there is no maximally resourceful state.

e We introduced a computable monotone —the CV mana (or Wigner logarithmic neg-
ativity), and used it to gauge the resource content of some classes of experimentally
relevant states.

e We studied the efficiency of some resource concentration protocols involving passive
interactions and Fock input states.

o The results presented here promote a celebrated quantifier of non-classicality — the
volume of the negative part of the Wigner function — to a fully fledged monotone
for this resource theory, which is relevant for quantum information processing
with infinite-dimensional systems. We argue that this framework will contribute
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towards the development of sub-universal and universal CV quantum information

processing.

e Our framework also incorporates the peculiar feature of CV measurements that
finite-probability output states are necessarily mixed. This is of practical relevance
when assessing the interconversion rate of state manipulation protocols.



Conclusion and outlooks

In this PhD dissertation we have presented two fairly different main themes, the leitmotiv
being the quest to identify “resources” for various tasks. As explained in the introduction,
this word has been mostly used in a colloquial manner, to express a slightly vague concept,
but also with a more precisely defined meaning in the last chapter.

In the first part we have presented a comprehensive quantum estimation theoretical
framework to handle continuously monitored quantum systems, shedding some light on
the correct figures of merit to use. The main quantifier of precision in quantum metrology
is the QFI, which comes in three flavours for such time-continuous metrological schemes.
We dubbed these figures of merit unconditional, effective and ultimate QFI, corresponding
respectively to the unconditional dynamics (Markovian master equation), the conditional
dynamics (Markovian stochastic master equation) and the unitary global dynamics of
system and environment (but still under a Markovian approximation). In particular, the
most experimentally relevant quantity is the effective QFI, since it pertains to realistic
monitoring strategies and it takes into account both the classical information gained by
the specific measurement and the information encoded on the conditional states. On the
other hand, the ultimate QFI is mostly used as a theoretical upper bound, derived by
assuming that any kind of measurement on the environmental modes is possible.

After laying out these quantum estimation theoretical tools, we have applied them to a
couple of concrete and interesting problems involving two level atoms. The first problem
we have tackled is magnetometry with large atomic ensembles. The limit of a large num-
ber of atoms was essential to obtain analytical results, thanks to a Gaussian approximation.
In this physical setup the coupling between the field used for continuous (homodyne)
monitoring and the atoms is collective, thereby implementing a time-continuous version
of a collective spin measurement. We have shown that this strategy is very powerful to
estimate the rotation induced by the magnetic field (which reduces to a displacement
in the Gaussian approximation). In particular, we have shown that both the classical
information coming from the observed photo-current and the QFI of the conditional
states exhibit Heisenberg scaling, i.e. quadratic in the number of atoms, even though the
initial state of the atoms was assumed to be completely uncorrelated.

The second problem addressed is frequency estimation with two level atoms (here
treated more abstractly as qubits) under a noisy dynamical evolution. In this case we have
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assumed an initially entangled state, but we have considered a separate environment
acting on each qubit. It is well known that for noisy unconditional dynamics (when the
environmental modes are not measured) no Heisenberg scaling can be obtained. We have
shown that perfectly monitoring the environment restores Heisenberg scaling for two
different geometries of the noise: parallel or transverse to the encoding Hamiltonian.
These results hold both for photon-counting and homodyne-detection. In the case of
parallel noise we have shown that the full information of the noiseless case can be regained,
and that by considering GHZ initial states the requirements on the implementation are
less stringent. We have shown that for inefficient measurements Heisenberg scaling is
lost (for parallel noise; for transverse noise the numerical results are inconclusive), but
one can still obtain a non-trivial gain in precision.

The second part of the thesis starts with another quantum estimation problem, involv-
ing only the unconditional dynamics; here the parameter to be measured is exactly the
coupling with the environment (i.e. the loss rate). We have shown that if the Hamiltonian
of the system includes a non-linear self-Kerr interaction it is possible to obtain a higher
value for the QFI of the evolved state, with the same initial Gaussian state. However, it is
more difficult to reap this advantage, because common measurement strategies do not
saturate the quantum Cramér-Rao bound. In the regime of short interaction times we
could show that this improvement is significant and can also be witnessed by suboptimal
measurements on the state. These results are intriguing; while the nonlinear Hamiltonian
is clearly beneficial for initial Gaussian states, it seems hard to draw strong connections
with other nonclassical properties of the evolved state, as shown by considering already
non-Gaussian initial states.

We have then proceeded to study more closely nonclassical properties of continuous
variable systems. For some classes of anharmonic oscillators we have shown that the
degree of nonlinearity of the Hamiltonian, quantified by the non-Gaussianity of the
ground state, can be quantitatively linked to the nonclassicality of the ground state,
even though the details are dependent on the definition of nonclassicality considered. In
particular, we have shown that non-Gaussianity and the volume of the negative part of the
Wigner function for such ground states are very closely connected. They are monotonic
quantities when there is only one effective parameter and being almost monotonic when
there is more than one effective parameter.

We have also considered the so-called backflow effect arising in the dynamics of a free
particle. This effect is completely dependent on the initial state and therefore we have
considered it as a nonclassical property of CV states. It can be quantified by the maximal
increase in the probability of going in the direction opposite to the direction of motion,
during an arbitrary time interval. In particular, we have shown that this quantitative
measure of the effect singles out a more fragile degree of quantumness than the one
measured by the negativity of the Wigner function.

Finally, the last chapter of this dissertation has been devoted to the construction of a
resource theory for non-Gaussian and Wigner-negative states. The crucial ingredient in
this theoretical framework are the so-called Gaussian protocols, which we consider as
free operations. These include: Gaussian unitaries and Gaussian measurements, ancillary
Gaussian states as well as conditioning on classical randomness and on measurement
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outcomes. With these operationally motivated free operations one can consider both
states outside the convex hull of Gaussian states and states with negative Wigner function
as resources. We have proved that CV mana, the logarithm of the integral of the absolute
value of the Wigner function, is an additive monotone for this resource theory, albeit an
unfaithful one if one considers non-Gaussian states. We have computed this quantity for
some classes of pure states, comparing it to the measure of non-Gaussianity; we have also
analysed a simple protocol to concentrate the negativity based on passive linear unitaries
and Gaussian measurements.

Outlooks

In thesis we have introduced two frameworks. The quantum estimation theoretical
framework for continuous measurement was not completely new, but we believe that our
way of organising and presenting it, together with the generic numerical tool we have
implemented, will be useful to the scientific community. We plan to apply these ideas and
tools to many more physical problems, in particular also in the context of multi-parameter
estimation. We would also like to get in touch with experimental groups, tackling the
challenging problem of applying abstract ideas about estimation to actual measurement
data.

We also plan to carry out more abstract studies. First, we want to study more in
detail the generalized master equations needed to compute the ultimate QFI, in particular
with a phase-space approach for CV systems, generalizing the calculations presented in
Sec. 3.2.2. Second, the results of Chapter 4 suggest that, whenever we deal with inefficient
monitoring, Heisenberg scaling is lost; we plan to attack this question in a general way,
possibly generalizing the methods of [160] to conditional dynamics.

The second framework we have introduced is the convex resource theory of non-
Gaussianity, is novel, even though very closely related to the finite dimensional version.
We will try to use this resource theory to approach more concrete problems, pertaining to
CV universal and sub-universal quantum computation. A guide in this studies would be
again the path taken by DV resource theories, the final goal possibly being a CV analogue
of the results presented in [134].
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