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Abstract. We study the stability for the direct acoustic scattering problem
with sound-hard scatterers with minimal regularity assumptions on the scat-

terers. The main tool we use for this purpose is the convergence in the sense
of Mosco.

We obtain uniform decay estimates for scattered fields and we investigate

how a sound-hard screen may be approximated by thin sound-hard obstacles.

1. Introduction. We are interested in the following direct scattering problem.
Let us send a time-harmonic acoustic wave across a medium in RN , N ≥ 2. If the
medium is homogeneous such an incident wave remains unperturbed, whereas the
presence of a scatterer creates a perturbation by producing a scattered wave. The
scattered wave is radiating and it satisfies a suitable boundary condition on the
boundary of the scatterer, that depends on the nature of the scatterer.

As incident wave we use a time-harmonic plane wave, which is characterized by
its field, referred to as the incident field. The incident field is given by ui(x) =
eikx·d, x ∈ RN , where k > 0 is the wavenumber and d ∈ SN−1 is the direction of
propagation. A scatterer K in RN is a compact subset of RN such that RN\K is
connected. We say that a scatterer is an obstacle if K is the closure of its interior,
whereas a scatterer is called a screen if its interior is empty. If the incident wave
encounters a scatterer K, then a scattered wave is created and its corresponding
field will be called the scattered field and denoted by us. The total field u of the
acoustic wave is given by the sum of the incident field and the scattered field and
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solves the following direct scattering problem

(1.1)


∆u+ k2u = 0 in RN\K
u = ui + us in RN\K
B.C. on ∂K

lim
r→∞

r(N−1)/2

(
∂us

∂r
− ikus

)
= 0 r = ‖x‖,

where the last limit is the Sommerfeld radiation condition and corresponds to the
fact that the scattered wave is radiating. The boundary condition on the boundary
of K depends on the character of the scatterer K. For instance, if K is sound-soft,
then u satisfies the following homogeneous Dirichlet condition

(1.2) u = 0 on ∂K,

whereas if Σ is sound-hard we have

(1.3) ∇u · ν = 0 on ∂K,

that is a homogeneous Neumann condition. Other conditions such as the impedance
boundary condition or transmission conditions for penetrable scatterers may occur
in the applications.

We recall that the Sommerfeld radiation condition implies that the scattered field
has the asymptotic behaviour of an outgoing spherical wave, namely

(1.4) us(x) =
eik‖x‖

‖x‖(N−1)/2

{
us∞(x̂) +O

(
1

‖x‖

)}
,

where x̂ = x/‖x‖ ∈ SN−1 and us∞ is the so-called far-field pattern of us. In par-
ticular, the scattered field satisfies the following decay property for some positive
constants E and R

(1.5) |us(x)| ≤ E‖x‖−(N−1)/2 for any x ∈ RN so that ‖x‖ ≥ R.

We refer to [14] for further details about the direct scattering problem (1.1). See
also [5] where the corresponding inverse problems are considered.

Here we wish to find suitable conditions on sound-hard scatterers K that make
the scattering problem (1.1) stable with respect to K, that is with respect to vari-
ations in the scatterer. Such a problem is of interest since in general solutions to
Neumann problems for elliptic equations may not be stable under domain variations
as the so-called Neumann sieve case points out, see for instance [11].

We recall that the simpler case of sound-soft scatterers has been treated in [12].
There, under minimal regularity assumptions on the scatterers, stability results for
the solutions of the direct scattering problems with respect to the scatterer and
uniform decay estimates for the corresponding scattered fields have been obtained.

In order to evaluate distances between scatterers and convergence of scatterers
we shall use the Hausdorff distance. In particular, a sequence of bounded open sets
Ωn contained in BR for some R > 0 converges to an open set Ω if their complements
in BR converges to the complement of Ω in the Hausdorff distance. The main
tool we shall use is the so-called Mosco convergence of the corresponding Sobolev
spaces H1(Ωn) to H1(Ω). It has been proved that Mosco convergence is essentially
equivalent to convergence of solutions of Neumann problems, at least for elliptic
equations which are strictly coercive in H1. We shall show that Mosco convergence
is indeed a sufficient condition also for the convergence of solutions of Neumann
problems for the Helmholtz equation, and in particular for scattering problems,
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provided a uniform Sobolev type inequality holds true for any Ωn. These results are
contained in Section 2.

Then we are interested in finding classes of scatterers for which we have uniform
decay estimates for the scattered fields, that is estimates like (1.5) with constants
E and R independent on K. This will be done in Section 3. Again the key point,
besides a uniform Sobolev type inequality, is establishing sufficient conditions on
scatterers that guarantee, under convergence in the Hausdorff distance, convergence
of corresponding Sobolev spaces in the sense of Mosco. Such a problem, motivated
by convergence of solutions of Neumann problems, has been extensively studied in
the literature.

In dimension 2, the problem is fully solved since Bucur and Varchon gave a
necessary and sufficient condition, [2]. The starting point of [2] was the sufficient
condition proved by Chambolle and Doveri, [4], which is still a fairly convenient one
to use for the applications. In dimension 2 complex analytic techniques, in particular
duality arguments, are crucial for obtaining these results.

In dimension 3 and higher, there is a result by Giacomini, [8], where the admis-
sible sets K may be, roughly speaking, described in the following way. We have a
finite number of pairwise disjoint closed Lipschitz hypersurfaces, with or without
boundary. Then K consists of the union of a finite number of subsets of these Lips-
chitz hypersurfaces, each of these subsets having in the relative topology a Lipschitz
boundary.

We precisely recall these assumptions in dimension 2 and in dimension 3 and
higher in Section 3. Moreover we introduce a new sufficient condition, see Theo-
rem 3.9, which is based on a generalization of a class of sets previously introduced
in [13]. As in [8], we have a finite number of closed Lipschitz hypersurfaces, with
or without boundary, and K consists of the union of a finite number of subsets of
these Lipschitz hypersurfaces, each of these subsets having in the relative topology
a Lipschitz boundary, in a sense which is slightly less general than that used by
Giacomini. On the other hand, the Lipschitz hypersurfaces need not to be pairwise
disjoint that is they can intersect. In such a case, we need to control the correspond-
ing angle of intersection. Just as an example of the main advantage we have with
this new class, a propeller shape in R2 may belong to it but it can not belong to
the one defined by Giacomini.

Finally, in Section 4, we show how to approximate a (Lipschitz) screen by a thin
obstacle surrounding it. Such a result may ease the numerical computation of the
solution to the scattering problem for a screen and it is also related to some issues
arising in the so-called cloaking problem, see [10].

The plan of the paper is the following. In Section 2 we deal with the stability for
the direct acoustic scattering problem with sound-hard scatterers. We first discuss
Mosco convergence and the stability of Neumann problems for the Helmholtz equa-
tion, then we treat scattering problems. In Section 3 we define suitable classes of
sound-hard scatterers whose corresponding scattered fields satisfy a uniform decay
estimate. Finally in Section 4 we show how we can approximate sound-hard screens
by thin sound-hard obstacles.

2. Stability of Neumann problems for the Helmholtz equation. For any
x ∈ RN , N ≥ 2, we denote x = (x′, xN ) ∈ RN−1 × R and x = (x′′, xN−1, xN ) ∈
RN−2×R×R. For any s > 0 and any x ∈ RN , Bs(x) denotes the ball contained in
RN with radius s and center x, whereas B′s(x

′) denotes the ball contained in RN−1
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with radius s and center x′. Moreover, Bs = Bs(0) and B′s = B′s(0). Finally, for any
E ⊂ RN , we denote Bs(E) =

⋃
x∈E Bs(x).

2.1. Mosco convergence. We recall that, given {An}n∈N, a sequence of closed
subspaces of a reflexive Banach space X, we denote

A′ = {x ∈ X : x = w- lim
k→∞

xnk , xnk ∈ Ank}

and

A′′ = {x ∈ X : x = s- lim
n→∞

xn, xn ∈ An}.

We note that A′ and A′′ are subspaces of X, that A′′ ⊂ A′, and that A′′ is closed.
We say that An converges, as n→∞, to a closed subspace A in the sense of Mosco
if A = A′ = A′′. In other words, the following two conditions need to be satisfied.

i) For any x ∈ X, if there exists a subsequence Ank and a sequence xk, k ∈ N,
such that xk converges weakly to x as k → ∞ and xk ∈ Ank for any k ∈ N,
then x ∈ A.

ii) For any x ∈ A, there exists a sequence xn ∈ An, n ∈ N, converging strongly to
x as n→∞.

Let Ω1 b Ω be bounded open sets contained in RN , N ≥ 2. We assume that Ω
has a Lipschitz boundary. We denote

A = {K ⊂ Ω1 : K is compact}.

We have that A is compact with respect to the Hausdorff distance, see for instance
[6].

Let us notice that if Kn ∈ A, n ∈ N, converges in the Hausdorff distance, as
n→∞, to K ∈ A, then we also have limn→∞ |Kn\K| = 0.

Fixed K ∈ A, we consider the isometric immersion of H1(Ω\K) into L2(Ω,RN+1)
as follows. To each u ∈ H1(Ω\K) we associate the vector (u,∇u) with the conven-
tion that u and ∇u are extended to zero in K. In such a way we may consider
H1(Ω\K) as a closed subspace of L2(Ω,RN+1).

Given a sequence {Kn}n∈N contained in A and K ∈ A, we say that H1(Ω\Kn)
converges, as n → ∞, to H1(Ω\K) in the sense of Mosco if this holds considering
H1(Ω\Kn), n ∈ N, and H1(Ω\K) as subspaces of L2(Ω,RN+1).

We are interested to find sufficient conditions on Kn, n ∈ N, and K in order to
have that H1(Ω\Kn) converges, as n → ∞, to H1(Ω\K) in the sense of Mosco.
The following results are present in the literature, under the assumption that Kn

converges, as n → ∞, to K in the Hausdorff distance. For any N ≥ 2, a sufficient
condition on Kn, n ∈ N, is established in [8]. For N = 2, instead, the key assumption
is that the number of connected components of Kn, n ∈ N, is uniformly bounded.
Under this assumption, and the convergence in the Hausdorff distance, Bucur and
Varchon, [2, 3], proved that the convergence in the sense of Mosco holds if and only if
|Ω\Kn| converges, as n→∞, to |Ω\K|. A sufficient condition, and a starting point
for the result of Bucur and Varchon, has been given by Chambolle and Doveri, [4].
They proved the convergence in the sense of Mosco provided we have a uniform
bound on the number of connected components of ∂Kn and a uniform bound on
H1(∂Kn), n ∈ N.

Let us remark that the convergence in the sense of Mosco is built in such a way
that is essentially equivalent to convergence of solutions of Neumann problems in
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the following sense. For any f ∈ L2(Ω) and for any K ∈ A, let u = u(K, f) be the
solution to the following problem

(2.1)

{
−∆u+ u = f in Ω\K
∇u · ν = 0 on ∂(Ω\K),

that is u ∈ H1(Ω\K) and satisfies∫
Ω\K
∇u · ∇ϕ+

∫
Ω\K

uϕ =

∫
Ω\K

fϕ for any ϕ ∈ H1(Ω\K).

Then the following result holds.

Proposition 2.1. Let us fix a sequence {Kn}n∈N contained in A and K ∈ A.
If H1(Ω\Kn) converges, as n→∞, to H1(Ω\K) in the sense of Mosco, then for

any f ∈ L2(Ω) we have that un = u(Kn, f), solution to (2.1) with K replaced by
Kn, converges to u = u(K, f), solution to (2.1), where as before the convergence is
in the sense of L2(Ω,RN+1).

Conversely, if Kn converges, as n → ∞, to K in the Hausdorff distance and
for any f ∈ L2(Ω) we have that un = u(Kn, f) converges to u = u(K, f) in
L2(Ω,RN+1), then H1(Ω\Kn) converges to H1(Ω\K) in the sense of Mosco.

Proof. See for instance Proposition 3.2 and Remark 3.3 in [3].

By Proposition 2.1, taking f ≡ 1, we easily infer that the convergence of |Ω\Kn|
to |Ω\K|, as n → ∞, is a necessary condition for the convergence of H1(Ω\Kn)
to H1(Ω\K) in the sense of Mosco, for any N ≥ 2. In fact, under the conver-
gence, as n → ∞, in the sense of Mosco of H1(Ω\Kn) to H1(Ω\K), we have
limn→∞ |(Ω\K)∆(Ω\Kn)| = 0 or, equivalently, limn→∞ |K∆Kn| = 0, which im-
plies that |Ω\Kn| converges, as n→∞, to |Ω\K|.

Moreover, the following important observation will be of use.

Proposition 2.2. Let {Kn}n∈N be a sequence in A and let K and K̃ ∈ A. Let

Ãn = H1(Ω\∂Kn), n ∈ N, and Ã = H1(Ω\K̃). Let us assume that, as n→∞, Ãn
converges to Ã in the sense of Mosco, that ∂Kn converges to K̃ in the Hausdorff
distance, and that Kn converges to K in the Hausdorff distance.

Then H1(Ω\Kn) converges, as n→∞, to H1(Ω\K) in the sense of Mosco.

Proof. We begin by proving condition i) of Mosco convergence. Let Knk be a subse-
quence and (uk,∇uk) ∈ H1(Ω\Knk) be a sequence such that (uk,∇uk) is converging
weakly to (u, V ) in L2(Ω,RN+1). We need to show that (u, V ) ∈ H1(Ω\K). It is
easy to infer that u ∈ H1(Ω\K) and that V = ∇u in Ω\K. Therefore it remains

to prove that u and V are zero almost everywhere in K. Since ∂K ⊂ K̃ ⊂ K, it is

sufficient to prove that for K\K̃ =
◦
K \K̃, actually for any ball Bδ(x), with δ > 0

and such that B2δ(x) ⊂
◦
K \K̃. By the Hausdorff convergence, we have that the

intersection of Bδ(x) with ∂Knk is empty, for any k large enough. Since x ∈ K, we
deduce that Bδ(x) is contained in Knk , again for any k large enough. Finally, since
uk is zero in Knk , we conclude that u is zero in Bδ(x). An analogous reasoning holds
for V , hence u ∈ H1(Ω\K) and the first property of Mosco convergence is proved.

We now consider condition ii) of Mosco convergence. Let us fix f ∈ L2(Ω) such
that f ≡ 0 in a neighborhood of K. Let un = u(Kn, f), n ∈ N, solution to (2.1)
with K replaced by Kn, and u = u(K, f), solution to (2.1). We need to show that
un converges to u in L2(Ω,RN+1).

Inverse Problems and Imaging Volume 7, No. 4 (2013), 1307–1329
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For any n ∈ N large enough, we have that f ≡ 0 in Kn, therefore, since un is zero
inside Kn, we have that un ∈ H1(Ω\∂Kn) and un solves (2.1) also with K replaced
by ∂Kn.

By the first part of Proposition 2.1 we have that un converges in L2(Ω,RN+1) to

a function ũ solving (2.1) with K replaced by K̃. Hence we just need to show that
ũ solves (2.1) also for K, that is ũ = u.

First of all, we show that ũ ∈ H1(Ω\K), that is we need to show that ũ, and
its gradient, are zero almost everywhere in K. This may be done as in the previous
part of this proof.

Then, take ϕ ∈ H1(Ω\K). We prove that ϕ belongs to H1(Ω\K̃). Since K̃ ⊂ K,

we have that ϕ and its gradient are zero in K̃. We notice that Ω\K̃ = (Ω\K) ∪ (
◦
K

\K̃). Since ϕ ∈ H1(Ω\K) and ϕ and its gradient are zero in
◦
K \K̃, we infer that

ϕ ∈ H1(Ω\K̃). So we notice that∫
Ω\K

fϕ =

∫
Ω\K̃

fϕ =

∫
Ω\K̃
∇ũ · ∇ϕ+

∫
Ω\K̃

ũϕ =

∫
Ω\K
∇ũ · ∇ϕ+

∫
Ω\K

ũϕ

and consequently ũ = u.
Then the second condition of Mosco convergence follows from the fact that {u =

u(f,K) : f ∈ L2(Ω) and f ≡ 0 in a neighborhood of K} is dense in H1(Ω\K), see
for instance the argument in the proof of Corollary 1 in [4].

We conclude this subsection by pointing out the following two lemmas.

Lemma 2.3. Let {Kn}n∈N be a sequence in A converging, as n → ∞, to K ∈ A
in the Hausdorff distance. Let An = H1(Ω\Kn), n ∈ N, and A = H1(Ω\K).

If |K\Kn| goes to zero as n→∞, then we have that A′ ⊂ A.

Proof. Let {AnK}k∈N be a subsequence and let (uk,∇uk) ∈ Ank for any k ∈ N. We
assume that (uk,∇uk) weakly converges, as k →∞, to (v, V ).

For any x ∈ Ω\K there exist r > 0 and k ∈ N such that Br(x) ⊂ Ω\Knk for any

k ≥ k. It follows immediately that v ∈ H1(Br(x)) and that V = ∇v in Br(x). Then
it is easy to conclude that v ∈ H1(Ω\K) and V = ∇v in Ω\K.

It remains to prove that v and V are 0 almost everywhere in K. Clearly (uk,∇uk)
are identically equal to zero on K∩Knk , for any k ∈ N. Therefore, for any ϕ ∈ L2(K)
we have ∣∣∣∣∫

K

ukϕ

∣∣∣∣ =

∣∣∣∣∣
∫
K\Knk

ukϕ

∣∣∣∣∣ ≤ ‖uk‖L2(Ω)

(∫
K\Knk

ϕ2

)1/2

,

and clearly the right-hand side goes to zero as k →∞ since |K\Knk | goes to zero.
Therefore uk weakly converges in L2(K), as k → ∞, to zero, that is v = 0 almost
everywhere in K. A similar reasoning holds for ∇uk, so the proof is concluded.

Lemma 2.4. Let {Kn}n∈N be a sequence in A and let K ∈ A. Let An = H1(Ω\Kn),
n ∈ N, and A = H1(Ω\K).

If K ⊂ Kn for any n ∈ N and |Kn\K| goes to zero as n→∞, then we have that
A ⊂ A′′.

Proof. Fixed u ∈ H1(Ω\K), take un = u(1 − χKn), n ∈ N. Clearly un belongs to
H1(Ω\Kn) and (un,∇un) strongly converges to (u,∇u) in L2(Ω,RN+1).

Inverse Problems and Imaging Volume 7, No. 4 (2013), 1307–1329
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Remark 2.5. We note that, in the previous lemma, it would be sufficient to assume
for instance that Kn converges, as n→∞, to K in the Hausdorff distance. In fact
convergence in the Hausdorff distance implies that |Kn\K| goes to zero as n→∞.

Corollary 2.6. Let {Kn}n∈N be a sequence in A converging, as n→∞, to K ∈ A
in the Hausdorff distance. Let An = H1(Ω\Kn), n ∈ N, and A = H1(Ω\K).

If K ⊂ Kn for any n ∈ N, then we have that An converges to A, as n → ∞, in
the sense of Mosco.

2.2. Application to stability of Neumann problems. We observe that Mosco
convergence is enough to pass to the limit in Neumann problems, at least in a weak
sense and under a mild compactness assumption. Let us fix k > 0.

Proposition 2.7. Let {Kn}n∈N be a sequence in A and let K ∈ A. Let An =
H1(Ω\Kn), n ∈ N, and A = H1(Ω\K). Let us assume that, as n → ∞, An con-
verges to A in the sense of Mosco.

For any n ∈ N, let un ∈ H1(Ω\Kn) solve, in a weak sense,

(2.2)

{
∆un + k2un = 0 in Ω\Kn

∇un · ν = 0 on ∂Kn,

that is ∫
Ω\Kn

∇un · ∇ϕ− k2unϕ = 0

for any ϕ ∈ H1(Ω\Kn) such that the support of ϕ is compactly contained in Ω.
Let us assume that, for a constant C,

(2.3) ‖un‖L2(Ω\Kn) ≤ C for any n ∈ N.

Then, up to a subsequence, we have that un converges weakly in L2(Ω) to a
function u solving in the same weak sense

(2.4)

{
∆u+ k2u = 0 in Ω\K
∇u · ν = 0 on ∂K.

Proof. Let us assume that, up to a subsequence, we have that un is converging
weakly to u in L2(Ω) as n→∞.

Let us fix an open subset D such that D is of class C1, and Ω1 b D b Ω. Let
r > 0 be such that Br(∂D) b Ω\Ω1.

By standard regularity estimates, we may infer that there exists a constant C1

such that

‖un‖C1(Br/2(∂D)) ≤ C1 for any n ∈ N.
Therefore, since ∫

D\Kn
|∇un|2 = k2

∫
D\Kn

u2
n +

∫
∂D

(∇un · ν)un,

we conclude that {(un,∇un)}n∈N is uniformly bounded in L2(D,RN+1), so we may
assume that, up to a subsequence, it converges weakly to (v, V ) as n→∞. Clearly
v = u, and, by the Mosco convergence, we have that u ∈ H1(D\K) and V = ∇u.

Then, take ϕ ∈ H1(Ω\K) such that ϕ = 0 outside D. By the Mosco convergence,
we can find ϕn ∈ H1(Ω\Kn), such that ϕn = 0 outside D for any n ∈ N, that
converges strongly to ϕ as n→∞. Then, since∫

Ω

∇un · ∇ϕn − k2unϕn = 0,

Inverse Problems and Imaging Volume 7, No. 4 (2013), 1307–1329
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we are able to pass to the limit and prove that∫
Ω

∇u · ∇ϕ− k2uϕ = 0.

The proof immediately follows by changing in a suitable way the set D.

By Proposition 2.7 and Proposition 2.2, we immediately infer this useful modifi-
cation.

Proposition 2.8. Let {Kn}n∈N be a sequence in A and let K and K̃ ∈ A. Let

Ãn = H1(Ω\∂Kn), n ∈ N, and Ã = H1(Ω\K̃). Let us assume that, as n→∞, Ãn
converges to Ã in the sense of Mosco, that ∂Kn converges to K̃ in the Hausdorff
distance, and that Kn converges to K in the Hausdorff distance.

For any n ∈ N, let un ∈ H1(Ω\Kn) solve (2.2) and let us assume that, for a
constant C, (2.3) holds.

Then, up to a subsequence, we have that un converges weakly in L2(Ω) to a
function u solving (2.4).

In certain cases, weak convergence might not be enough. In order to have strong
convergence in L2, we need to modify the previous propositions in the following
way.

Proposition 2.9. Let {Kn}n∈N be a sequence in A and let K ∈ A. Let A =

H1(Ω\K), and, for any n ∈ N, An = H1(Ω\Kn) and Ãn = H1(Ω\∂Kn). Let us
assume that, as n→∞, Kn converges to K in the Hausdorff distance.

Let us assume that, as n→∞, either An converges to A in the sense of Mosco,
or Ãn converges to Ã = H1(Ω\K̃) in the sense of Mosco and ∂Kn converges to K̃

in the Hausdorff distance, for some K̃ ∈ A.
For any n ∈ N, let un ∈ H1(Ω\Kn) solve (2.2) and assume that, for a constant

C,

(2.5) ‖(un,∇un)‖L2(Ω,RN+1) ≤ C for any n ∈ N.
Let us further assume that there exist constants p > 2 and C1 > 0 such that for

any n ∈ N we have

(2.6) ‖v‖Lp(Ω\Kn) ≤ C1‖v‖H1(Ω\Kn) for any v ∈ H1(Ω\Kn).

Then, up to a subsequence, we have that un converges strongly in L2(Ω) to a
function u solving (2.4).

Proof. Either by Proposition 2.7 or by Proposition 2.8, up to a subsequence, we
have that un converges weakly in L2(Ω) to a function u solving (2.4). By standard
regularity estimates, and by the convergence in the Hausdorff distance, we may also
assume that un converges to u strongly in L2 on any compact subset of Ω\K.

For any ε > 0, we can find Dε, a compact subset of Ω\K, such that, denoting
Eε = (Ω\K)\Dε, we have |Eε| ≤ ε.

Let us notice that, for any n ∈ N and any ε > 0, fixed p > 2, we have

‖un‖L2(Eε) ≤ ‖un‖Lp(Eε∩(Ω\Kn))ε
(p−2)/(2p).

Then, fixed ε > 0 and n ∈ N such that Kn ⊂ K ∪ Eε, we have that

‖un − u‖L2(Ω) ≤ ‖u‖L2(Eε) + ‖un‖L2(Eε) + ‖un‖L2(K\Kn) + ‖un − u‖L2(Dε).

By (2.6) and (2.5), we infer that

‖un− u‖L2(Ω) ≤ ‖u‖L2(Eε) +CC1(ε(p−2)/(2p) + |K\Kn|(p−2)/(2p)) + ‖un− u‖L2(Dε).
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Fixed δ > 0, we find ε > 0 and n ∈ N such that for any n ≥ n we have Kn ⊂ K∪Eε
and

‖u‖L2(Eε) + CC1(ε(p−2)/(2p) + |K\Kn|(p−2)/(2p)) ≤ δ/2.

Here we have used the fact that Mosco convergence implies that |K∆Kn| goes to 0
as n → ∞. Then by the convergence on compact subsets, there exists ñ ≥ n such
that for every n ≥ ñ we have ‖un − u‖L2(Dε) ≤ δ/2, therefore for every n ≥ ñ we
have

‖un − u‖L2(Ω) ≤ δ

and the proof is concluded.

Remark 2.10. We observe that all the results in this subsection remain valid if we
let the wavenumber k depend on n, with the assumption that kn ≥ 0 converges to
a real number k∞ ≥ 0.

We conclude this subsection finding sufficient conditions for the assumption (2.6)
to hold. Given C a fixed cone in RN , we say that an open set D ⊂ RN satisfies the
cone condition with cone C if for every x ∈ D there exists a cone C(x) with vertex
in x and congruent to C such that C(x) ⊂ D. We remark that by a cone we always
mean a bounded not empty open cone. We shall use two different kind of conditions.

Lemma 2.11. Let C be a fixed cone in RN . Let D be a bounded open set satisfying
the cone condition with cone C.

Then there exist constants p > 2 and C1 > 0 such that

(2.7) ‖v‖Lp(D) ≤ C1‖v‖H1(D) for any v ∈ H1(D).

Here p depends on N only and C1 depends on p, N and the cone C only.

Proof. See for instance the book by Adams, [1, Theorem 5.4].

Remark 2.12. We notice that if D is a bounded open set such that, for some
constants p > 2 and C1 > 0, (2.7) holds, then the immersion of H1(D) into L2(D)
is compact.

Lemma 2.13. Let D be a bounded open set satisfying the following condition. Fix
constants p > 2 and C̃ > 0 and an integer M . We assume that there exist M open

subsets D1, . . . , DM of D such that |D\
⋃M
i=1Di| = 0 and

‖v‖Lp(Di) ≤ C̃‖v‖H1(Di) for any v ∈ H1(Di) and any i = 1, . . . ,M.

Then there exists a constant C1 > 0 such that

‖v‖Lp(D) ≤ C1‖v‖H1(D) for any v ∈ H1(D).

Here C1 depends on C̃ and M only.

Proof. Let v ∈ H1(D). We have that

‖v‖pLp(D) ≤
M∑
i=1

‖v‖pLp(Di)
≤

M∑
i=1

C̃p‖v‖pH1(Di)
≤MC̃p‖v‖pH1(D),

therefore it is enough to choose C1 = M1/pC̃.
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2.3. The scattering case. Let us consider the following scattering problem. Let
{Kn}n∈N be a sequence of compact sets contained in BR for some R > 0. Let, for

any n ∈ N, An = H1(BR+1\Kn) and Ãn = H1(BR+1\∂Kn).
Let us assume that RN\Kn is connected and that the immersion ofH1(BR+1\Kn)

into L2(BR+1\Kn) is compact for any n ∈ N. Let ui be an entire solution of the
Helmholtz equation in RN . Let us remark that here and in what follows we may re-
place, with the obvious modifications, ui with a solution of the Helmholtz equation
in RN\{x0}, with ‖x0‖ > R+ 1, and we may also replace R+ 1 with any R1 > R.
Then for any n ∈ N there exists a unique weak solution to the following scattering
problem

(2.8)


∆un + k2un = 0 in RN\Kn

un = ui + usn in RN\Kn

∇un · ν = 0 on ∂Kn

limr→+∞ r(N−1)/2
(
∂usn
∂r − ikusn

)
= 0 r = ‖x‖.

For existence and uniqueness see for instance [14].
We assume that Kn converges, as n→∞, to K ⊂ BR in the Hausdorff distance,

where K is compact and such that RN\K is connected.
We also assume that, as n → ∞, either An converges to A = H1(BR+1\K) in

the sense of Mosco, or Ãn converges to Ã = H1(BR+1\K̃) in the sense of Mosco

and ∂Kn converges to K̃ in the Hausdorff distance, for some K̃ ⊂ BR, K̃ compact.
Let us further assume that there exist constants p > 2 and C1 > 0 such that for

any n ∈ N we have

‖v‖Lp(BR+1\Kn) ≤ C1‖v‖H1(BR+1\Kn) for any v ∈ H1(BR+1\Kn).

We begin with the following lemma.

Lemma 2.14. Let us assume that, for some positive constant C, we have

(2.9) ‖un‖L2(BR+1) ≤ C for any n ∈ N.

Then un converges to a function u strongly in L2(Br) for any r > 0, with u
solving

(2.10)


∆u+ k2u = 0 in RN\K
u = ui + us in RN\K
∇u · ν = 0 on ∂K

limr→+∞ r(N−1)/2
(
∂us

∂r − ikus
)

= 0 r = ‖x‖.

Proof. By Lemma 3.1 in [12], we have that, up to a subsequence, un converges to a
function u uniformly on compact subsets of RN\K, with u solving

∆u+ k2u = 0 in RN\K
u = ui + us in RN\K
limr→+∞ r(N−1)/2

(
∂us

∂r − ikus
)

= 0 r = ‖x‖.

By Proposition 2.7 or Proposition 2.8, without loss of generality we may assume that
un converges to u weakly in L2(BR+1) and u also satisfies the boundary condition

∇u · ν = 0 on ∂K,

that is u solves (2.10). Since (2.10) has at most one solution, we have that the whole
sequence un converges to u uniformly on compact subsets of RN\K.
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It remains to prove that un converges to u in L2(Br) for a fixed r, R < r < R+1.
By the reasonings used in the proof of Proposition 2.7, we have that there exists a
constant C̃ > 0 such that

(2.11) ‖(un,∇un)‖L2(Br,RN+1) ≤ C̃ for any n ∈ N.

Then we can conclude the proof by using Proposition 2.9.

In the next proposition we wish to drop the assumption (2.9).

Proposition 2.15. Let {Kn}n∈N be a sequence of compact sets contained in BR
for some R > 0. Let us assume that RN\Kn is connected.

We assume that Kn converges, as n→∞, to K ⊂ BR in the Hausdorff distance,
where K is compact and such that RN\K is connected.

We also assume that, as n → ∞, either An converges to A = H1(BR+1\K) in

the sense of Mosco, or Ãn converges to Ã = H1(BR+1\K̃) in the sense of Mosco

and ∂Kn converges to K̃ in the Hausdorff distance, for some K̃ ⊂ BR, K̃ compact.
Let us further assume that there exist constants p > 2 and C1 > 0 such that for

any n ∈ N we have

‖v‖Lp(BR+1\Kn) ≤ C1‖v‖H1(BR+1\Kn) for any v ∈ H1(BR+1\Kn).

Let un solve (2.8), for any n ∈ N. Then un converges to a function u strongly in
L2(Br) for any r > 0, with u solving (2.10).

Proof. Let an = ‖un‖L2(BR+1). If {an}n∈N is bounded, then the conclusion follows
from the previous lemma.

By contradiction, let us assume that limn→∞ an = +∞, possibly by passing to
a subsequence. Let us consider vn = un/an. We have that

‖vn‖L2(BR+1) = 1.

Therefore vn, up to a subsequence, converges to a function v strongly in L2 on any
compact subset of RN . The function v satisfies

(2.12)

{
∆v + k2v = 0 in RN\K
∇v · ν = 0 on ∂K.

Clearly we also have that ‖v‖L2(BR+1) = 1.
On the other hand, we have that ‖usn/an‖L2(BR+1), n ∈ N, is uniformly bounded.

Therefore, again up to a subsequence, usn/an converges, as n→∞, to a function w
strongly in L2 on any compact subset of RN\K. Such a function w satisfies

(2.13)

{
∆w + k2w = 0 in RN\K
limr→+∞ r(N−1)/2

(
∂w
∂r − ikw

)
= 0 r = ‖x‖.

Since vn = ui/an + usn/an, we may immediately conclude that, outside K, we have
v = w. That is v solves

(2.14)


∆v + k2v = 0 in RN\K
∇v · ν = 0 on ∂K
limr→+∞ r(N−1)/2

(
∂v
∂r − ikv

)
= 0 r = ‖x‖.

By uniqueness, and the fact that RN\K is connected, we may conclude that v is
identically zero, which leads to a contradiction since ‖v‖L2(BR+1) should be equal
to 1.
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Remark 2.16. We observe that all the results in this subsection remain valid if we
let the incident field ui depend on n. In particular we may have that the wavenumber
k and the direction of propagation d depend on n, with the assumption that kn > 0
converges to a real number k∞ > 0 and dn converges to a direction d∞, therefore
uin converges to the incident field ui∞(x) = eik∞x·d∞ , x ∈ RN .

We further notice that, if N ≥ 3, then we may allow k∞ to be even equal to
zero. In this case we need to replace the Sommerfeld radiation condition with the
following condition at infinity for the scattered field

us = o(1) as r = ‖x‖ → +∞.

We refer to [12, Lemma 3.1] for further details. For N = 2, instead, we need to
require k∞ > 0, see for instance the discussion in [9] for the low wavenumber
asymptotics of scattering problems in dimension 2.

3. Uniform decay property for scattered fields. We begin by defining suitable
classes of admissible scatterers.

Definition 3.1. We say that Ã is an admissible class of scatterers in RN if the
following properties holds.

i) There exists a constant R > 0 such that any K ∈ Ã is a compact set contained
in BR ⊂ RN .

ii) For any K ∈ Ã, we have that RN\K is connected. Furthermore, if K is the

limit in the Hausdorff distance of a sequence of elements of the class Ã, then
RN\K is connected.

iii) Ã satisfies one of the two following conditions. Either for any sequence Kn ∈ Ã,
n ∈ N, converging in the Hausdorff distance to K, we have that H1(BR+1\Kn)

converges to H1(BR+1\K) in the sense of Mosco. Or for any sequence Kn ∈ Ã,

n ∈ N, such that ∂Kn converges in the Hausdorff distance to K̃, we have that
H1(BR+1\∂K) converges to H1(BR+1\K̃) in the sense of Mosco.

iv) There exist constants p > 2 and C1 > 0 such that for any K ∈ Ã we have

‖v‖Lp(BR+1\K) ≤ C1‖v‖H1(BR+1\K) for any v ∈ H1(BR+1\K).

Let us then fix an admissible class of scatterers Ã. By condition ii), RN\K is

connected, for any K ∈ Ã. We also recall that condition iv) above implies that the

immersion of H1(BR+1\K) into L2(BR+1\K) is compact, for any K ∈ Ã.
Let us fix constants 0 < k < k and let us denote, for any N ≥ 2,

(3.1) IN =

{
[k, k] if N = 2,

(0, k] if N ≥ 3.

Fixed K ∈ Ã, for a fixed wavenumber k ∈ IN and a fixed direction of propa-
gation d ∈ SN−1, let the incident field ui be the corresponding plane wave, that is
ui(x) = eikx·d, x ∈ RN . Then, let uK,k,d be the solution to (2.10) and usK,k,d be its
corresponding scattered field.

We begin by stating the following uniform boundedness of solutions.

Proposition 3.2. Let us fix constants 0 < k < k and let IN be defined as in (3.1).

Let Ã be an admissible class of scatterers in RN .
Fixed K ∈ Ã, k ∈ IN , and d ∈ SN−1, let ui(x) = eikx·d, x ∈ RN , uK,k,d be the

solution to (2.10) and usK,k,d be its corresponding scattered field.
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Then there exists a constant E, depending on Ã and IN only, such that

(3.2) ‖uK,k,d‖L2(BR+1) ≤ E for any K ∈ Ã, any k ∈ IN , and any d ∈ SN−1.

Proof. We sketch the proof. We argue by contradiction. Let us assume that there
exist, for any n ∈ N, Kn ∈ Ã, kn ∈ IN , and dn ∈ SN−1 such that

‖uKn,kn,dn‖L2(BR+1) ≥ n.
Then we define vn = uKn,kn,dn/‖uKn,kn,dn‖L2(BR+1), n ∈ N.

Then we obtain a contradiction arguing in an analogous manner as in Proposi-
tion 2.15 and using Remark 2.16.

As a corollary, as in Lemma 3.2 in [12], we may prove the following uniform decay
property.

Corollary 3.3. Under the same assumptions and notation of Proposition 3.2, there
exists a constant E1, depending on the constant E in (3.2), IN , R and N only, such

that for any K ∈ Ã, any k ∈ IN , and any d ∈ SN−1 we have

|usK,k,d(x)| ≤ E1‖x‖−(N−1)/2 for any x ∈ RN so that ‖x‖ ≥ R+ 2.

In the remaining part of this section we wish to discuss Assumptions i)-ii)-iii)-iv)
defined above.

Assumption i) is self-explanatory. We notice however that it guarantees that Ã
is relatively compact with respect to the Hausdorff distance.

A sufficient condition for Assumption ii) to hold is the following, [12, Lemma 2.5].

Assumption A (uniform exterior connectedness). Let δ : (0,+∞)→ (0,+∞)

be a nondecreasing left-continuous function. We assume that for any K ∈ Ã, for
any t > 0, for any two points x1, x2 ∈ RN so that Bt(x1) and Bt(x2) are contained
in RN\K, and for any s, 0 < s < δ(t), then we can find a smooth (for instance C1)
curve γ connecting x1 to x2 so that Bs(γ) is contained in RN\K as well.

Let us notice that such an Assumption A is closed under convergence in the
Hausdorff distance.

Assumption iv) has been already discussed in Lemma 2.11 and Lemma 2.13. Let
us further notice that such an assumption is closed under convergence in the sense
of Mosco of the corresponding Sobolev spaces. In particular, it holds for any K
which is the limit in the Hausdorff distance of a sequence of elements of the class
Ã, provided Assumptions i) and iii) hold true, possibly by using Proposition 2.2.

About Assumption iii) we state three sufficient conditions. The first one is proved
in [4] and it holds only for N = 2, the second is taken from [8] and it is valid in any
dimension N ≥ 2. The third one is new, and it will be proven here, and it uses a
class which is a generalization of one developed in [13]. Let us finally remark that
in what follows Assumption i) will be always tacitly assumed.

Assumption B [4]. Let us assume that N = 2. Let us assume that there exist

constants M ∈ N and C > 0 such that for any K ∈ Ã we have that the number of
connected components of ∂K is bounded by M and H1(∂K) ≤ C.

We notice that, under Assumption B, for any K ∈ Ã we have that the number
of connected components of K is bounded by M . Moreover, if K is the limit in the
Hausdorff distance of a sequence Kn, n ∈ N, of sets belonging to Ã, we have that
the number of connected components of K is bounded by M . Furthermore, without
loss of generality, we may assume that ∂Kn converges, in the Hausdorff distance, to
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a compact set K̃. Since ∂K ⊂ K̃ ⊂ K, we deduce by a general version of Gola̧b’s
Theorem, see for instance Corollary 3.3 in [7], that H1(∂K) ≤ H1(K̃) ≤ C as well.

We finally point out that the number of connected components of K̃ is bounded by
M , whereas the same may not be true for ∂K. However, if Assumption ii) holds, then
R2\K is connected, therefore, by the next Lemma 3.4, K and ∂K have the same
number of connected components, so also the number of connected components of
∂K is bounded by M . In other words, if Assumption ii) holds, then Assumption B
is closed under convergence in the Hausdorff distance.

Lemma 3.4. Let us assume that K is a compact subset of R2 such that R2\K is
connected. Then K and ∂K have the same number of connected components,

Proof. Without loss of generality we can assume that K is connected and we prove
that ∂K is connected as well. The result is trivial if K is smooth enough, for instance
it is the closure of a smooth connected open set. We sketch the approximation
argument which is needed for a nonsmooth set K.

By contradiction, let ∂K be the union of A1 and A2, two closed, not empty,
disjoint sets. Let d0 > 0 be such that Bd0(A1) ∩Bd0(A2) = ∅.

We can construct a sequence of sets Kn, n ∈ N, such that for any n ∈ N Kn is
the closure of a C∞ open sets and

K ⊂
◦
Kn+1⊂ Kn+1 ⊂

◦
Kn⊂ Kn ⊂ B1/n(K).

We have that ∂Kn =
⋃mn
j=1 γ

n
j where γnj are smooth pairwise disjoint Jordan curves.

By the Jordan curve theorem, we set Dn
j the open set bounded by γnj .

We have that for any j there exists δ > 0 such that one between Bδ(γ
n
j ) ∩ Dn

j

and Bδ(γ
n
j )\Dn

j has empty intersection with Kn. Without loss of generality we can

assume that K\Dn
j or, respectively, K ∩Dn

j is not empty.
Let now fix x1 and x2 and a smooth curve α connecting them such that for any

i = 1, 2, dist(xi, Ai) < d0/4 and γ ⊂ R2\K. For any n large enough and any i = 1, 2,
xi 6∈ Kn and we can find γnji such that dist(xi, γ

n
ji

) < d0/4 and γnji ⊂ B1/n(Ai). Also,
α ∩Kn = ∅.

It remains to analyse the following cases. For each i = 1, 2 we can have that
either xi belongs to Dn

ji
or to its complement. Furthermore, either Dn

j1
and Dn

j2
are

disjoint or one of them is contained in the other. We thus obtain 8 different cases,
each of them implying that either α intersects Kn or K is not connected, thus a
contradiction.

Assumption C [8]. There exist a fixed cone C in RN−1 and positive constants δ,

L1 and L2 such that any K ∈ Ã satisfies the following condition.
For any x ∈ ∂K there exists a bi-Lipschitz function Φx : Bδ(x)→ RN such that

C1) for any z1, z2 ∈ Bδ(x) we have

L1‖z1 − z2‖ ≤ ‖Φx(z1)− Φx(z2)‖ ≤ L2‖z1 − z2‖;

C2) Φx(x) = 0 and Φx(∂K ∩Bδ(x)) ⊂ π = {y ∈ RN : yN = 0};
C3) for any y ∈ ∂K ∩Bδ/2(x) we have

Φx(y) ∈ Cy ⊂ Φx(∂K ∩Bδ(x)),

where Cy is obtained by the cone C through a rigid change of coordinates.
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It is not difficult to see that Assumption C is closed under convergence in the
Hausdorff distance. With the following lemma we show that Assumption C guaran-
tees that not only Assumption iii) is satisfied but also Assumption iv) is.

Lemma 3.5. Let us assume that Ã satisfies Assumption C. Then there exist con-
stants p > 2 and C1 > 0 such that for any K ∈ Ã we have

‖v‖Lp(BR+1\∂K) ≤ C1‖v‖H1(BR+1\∂K) for any v ∈ H1(BR+1\∂K),

hence the same property is satisfied by BR+1\K.

Proof. We sketch the proof. Without loss of generality, let δ be such that 0 < δ ≤
1/2. We can find positive constants δ1, δ2 such that for any x ∈ ∂K we have that
Bδ2 ⊂ Φx(Bδ(x)) and Bδ1(x) ⊂ Φ−1

x (Bδ2). Clearly δ1 and δ2 depend on δ, L1 and
L2 only.

Then we obtain that Φ−1
x (Bδ2)\∂K is contained, up to a set of measure zero,

in the set Ux = Φ−1
x (Bδ2\π). Since Ux is the image through a bi-Lipschitz map of

Bδ2\π, we have that Ux satisfies, for some p > 2 and C > 0 depending on δ, L1 and
L2 only, the following Sobolev inequality

‖v‖Lp(Ux) ≤ C‖v‖H1(Ux) for any v ∈ H1(Ux).

We have that Bδ1/4(∂K) is contained in
⋃
x∈Bδ1/4(∂K)

Bδ1/4(x). We can find a

finite number of points zi ∈ Bδ1/4(∂K), i = 1, . . . ,m1, such that Bδ1/4(∂K) ⊂⋃m1

i=1Bδ1/4(zi). With a simple construction, it is possible to choose m1 depending
on δ1 and R only, for instance by taking points such that Bδ1/8(zi) ∩ Bδ1/8(zj)
is empty for i 6= j. Then, for any i = 1, . . . ,m1 we can find xi ∈ ∂K such that
Bδ1/4(zi) ⊂ Bδ1(xi), therefore Bδ1/4(∂K) ⊂

⋃m1

i=1Bδ1(xi).

Then consider the set A = BR+1/2\Bδ1/4(∂K). Again, we can find points yj ∈
A, j = 1, . . . ,m2, such that A ⊂

⋃m2

j=1Bδ1/4(yj). Again, with the same kind of
construction, it is possible to choose m2 depending on δ1 and R only. We notice
that Bδ1/4(yj) ⊂ BR+1\∂K for any j = 1, . . . ,m2.

Therefore, BR+1\K is contained, up to a set of measure zero, in the following
union (

BR+1\BR+1/2

)
∪

(
m1⋃
i=1

Uxi

)
∪

m2⋃
j=1

Bδ1/4(yj)

 .

The conclusion immediately follows by Lemma 2.13.

The third sufficient condition is a generalization of arguments developed in [13].
We need to fix some preliminary notation and prove some lemmas.

Let us fix a bounded open set Ω. Let K ⊂ Ω be a compact subset of RN . We
say that K is a Lipschitz hypersurface, with or without boundary, with positive
constants r and L if the following holds.

For any x ∈ K there exists a bi-Lipschitz function Φx : Br(x)→ RN such that

a) for any z1, z2 ∈ Br(x) we have

L−1‖z1 − z2‖ ≤ ‖Φx(z1)− Φx(z2)‖ ≤ L‖z1 − z2‖;

b) Φx(x) = 0 and Φx(K ∩Br(x)) ⊂ π = {y ∈ RN : yN = 0}.
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We say that x ∈ K belongs to the interior of K if there exists δ, 0 < δ ≤ r, such
that Bδ(0)∩ π ⊂ Φx(K ∩Br(x)). Otherwise we say that x belongs to the boundary
of K. We remark that the boundary of K might be empty. Further we assume that

c) for any x belonging to the boundary of K, we have that

Φx(K ∩Br(x)) = Φx(Br(x)) ∩ π+

where π+ = {y ∈ RN : yN = 0, yN−1 ≥ 0}.
Let us notice that, by compactness, such an assumption is enough to guarantee

that HN−1(K) is bounded, hence |K| = 0. In particular, if Ω ⊂ BR for some
R > 0, then HN−1(K) is bounded by a constant depending on R, r and L only.
Furthermore, the boundary of K has HN−2 measure bounded by a constant again
depending on R, r and L only.

Moreover, K has a finite number of connected components, again bounded by
a constant depending on R, r and L only, and the distance between two different
connected components of K is bounded from below by a positive constant depending
on r and L only.

We begin with the following lemma.

Lemma 3.6. Let us fix a bounded open set Ω and positive constants r and L.
Let B = B(r, L) be the class of compact sets K ⊂ Ω such that K is a Lipschitz
hypersurface with constants r and L.

Then B is closed under the convergence in the Hausdorff distance, that is if
{Kn}n∈N is a sequence in B, then up to a subsequence Kn converges, as n→∞, to
a set K ∈ B in the Hausdorff distance. Furthermore, the boundary of Kn converges
to the boundary of K in the Hausdorff distance.

Proof. Without loss of generality, up to a subsequence, we may assume that Kn and
their boundaries converge to a compact set K and a compact set H, respectively.

Let x ∈ K. Then there exists a sequence xn ∈ Kn such that limn→∞ xn = x.
Again up to subsequences, we have that Φnxn converges to a function Φx : Br(x)→
RN satisfying Condition a) above. Clearly, since Φnxn(xn) = 0, we have that Φx(x) =
0 as well. It is not difficult to show that Condition b) is also satisfied.

As far as Condition c) is concerned, we first prove that H coincide with the
boundary of K. Let x ∈ H, then there exists xn belonging to the boundary of Kn

such that limn→∞ xn = x. Again up to subsequences, we have that Φnxn converges

to a function Φx : Br(x) → RN satisfying Condition a) above. Again it is not
difficult to prove that Φx satisfies both Condition b) and Condition c). Therefore,
H is contained in the boundary of K. We need to prove that the boundary of K
is contained in H. By contradiction, let us assume that there exists x belonging to
the boundary of K such that x does not belong to H. For some positive constant
c and for any n large enough, we have that the distance of x from the boundary of
Kn is greater than c. If xn ∈ Kn converges to x, we have that xn has a distance
from the boundary of Kn greater than c/2, for any n large enough. Therefore there
exists a positive constant c1 such that for any n large enough we have Bc1(0)∩ π ⊂
Φnxn(Kn∩Br(xn)). Passing to the limit, we obtain that Bc1(0)∩π ⊂ Φx(K∩Br(x))
as well, therefore x belongs to the interior of K. Such a contradiction concludes the
proof.

Definition 3.7. Let us fix a bounded open set Ω and positive constants r and L.
We assume that ∂Ω consists of a finite number of hypersurfaces without boundary
belonging to B(r, L).
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Let us also fix ω : (0,+∞)→ (0,+∞) a nondecreasing left-continuous function.

We say that a compact set K ⊂ Ω belongs to the class B̃ = B̃(r, L, ω) if K̂ =
K ∪ ∂Ω satisfies the following conditions

1) K̂ =
⋃M
i=1K

i where Ki ∈ B(r, L) for any i = 1, . . . ,M ;
2) for any i ∈ {1, . . . ,M}, and any x ∈ Ki, if its distance from the boundary of Ki

is δ > 0, then the distance of x from the union of Kj , with j 6= i, is greater than
or equal to ω(δ).

Let us notice that in the previous definition the number M may depend on K.
However, there exists an integer M0, depending on the diameter of Ω, r, L and ω
only, such that M ≤ M0 for any K ∈ B̃. As before, we obtain that HN−1(K̂) is

bounded, hence |K̂| = 0. In particular, if Ω ⊂ BR for some R > 0, then HN−1(K̂)
is bounded by a constant depending on R, r, L and M0 only. Furthermore, if we
set as the boundary of K̂ the union of the boundaries of Ki, i = 1, . . . ,M , then the
boundary of K̂ has HN−2 measure bounded by a constant again depending on R,
r, L and M0 only.

We also remark that, by Condition 2), we have that Ki ∩Kj is contained in the
intersection of the boundaries of Ki and Kj , for any i 6= j.

We prove the analogous of Lemma 3.6 for the class B̃.

Lemma 3.8. Under the previous notation and assumptions, we have that B̃ =
B̃(r, L, ω) as in Definition 3.7 is closed under the convergence in the Hausdorff dis-

tance, that is if {Kn}n∈N is a sequence in B̃, then up to a subsequence Kn converges,

as n → ∞, to a set K ∈ B̃ in the Hausdorff distance. Clearly also K̂n converges
to K̂ in the Hausdorff distance. Furthermore, if K̃n, n ∈ N, is the corresponding
sequence of boundaries of K̂n and K̃ is the boundary of K̂, then K̃n converges to
K̃ in the Hausdorff distance.

Proof. Up to a subsequence, we may assume that as n→∞ Kn converges to a set
K, hence K̂n converges to K̂ = K ∪ ∂Ω, and K̃n converges to a set H. Moreover,
we may assume that M(n) = M for any n ∈ N and, by Lemma 3.6, that for any
i = 1, . . . ,M Ki

n converges to a set Ki ∈ B = B(r, L) and the boundary of Ki
n

converges to the boundary of Ki. It is not difficult then to show that K̂ =
⋃M
i=1K

i

and that H is the union of the boundaries of Ki, i = 1, . . . ,M . Therefore K satisfies
Condition 1) above.

We now deal with Condition 2). Let us take x belonging to the interior of Ki

and let δ > 0 be its distance from the boundary of Ki. Let xn ∈ Ki
n converge to x.

For any ε, 0 < ε < δ/2, there exists n = n(ε) such that for any n ≥ n we have that
the distance of xn from the boundary of Ki

n is greater than δ − ε. We obtain that
the distance of xn from the union of Kj

n, with j 6= i, is greater than or equal to
ω(δ − ε), for any n ≥ n. Provided 0 < ε < ω(δ − ε), we can find a further n̂ = n̂(ε)
such that for any n ≥ n̂ we have that the distance of xn from the union of Kj , with
j 6= i, is greater than or equal to ω(δ − ε) − ε. Passing to the limit as n → ∞ we
obtain that the distance of x from the union of Kj , with j 6= i, is greater than or
equal to ω(δ− ε)− ε for any 0 < ε < ω(δ− ε). We then let ε→ 0+ and we conclude
by the left-continuity of ω.

We are now in the position of stating and proving the following Mosco conver-
gence result.
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Theorem 3.9. Let Ω and B̃ = B̃(r, L, ω) be as in Definition 3.7.

Let {Kn}n∈N be a sequence in B̃ converging, as n→∞, to K ∈ B̃ in the Hausdorff
distance.

Then H1(Ω\Kn) converges, as n→∞, to H1(Ω\K) in the sense of Mosco.

Proof. Let us denote An = H1(Ω\Kn), n ∈ N, and A = H1(Ω\K).
Since |K| = 0, then by Lemma 2.3, we immediately have that A′ ⊂ A. Therefore it

is enough to prove that A ⊂ A′′ or, in other words, that for every ϕ ∈ A there exists
ϕn ∈ An such that ϕn converges as n→∞ to ϕ in L2(Ω,RN+1). We notice that it
is enough to prove that for any subsequence Ank there exists a further subsequence
Ankj and ϕj ∈ Ankj such that ϕj converges as j → ∞ to ϕ in L2(Ω,RN+1).

Therefore during our proof we can always pass to subsequences, without loss of
generality.

We may assume that K̂n is converging to K̂ and K̃n is converging to K̃ in the
Hausdorff distance.

Since A′′ is closed, it is enough to prove the result for any ϕ in a dense subset of
A. For instance, let us consider the following subset of A

Ã = {ϕ ∈ H1(Ω\K) : ϕ is bounded and ϕ = 0 in a neighborhood of K̃}.

We wish to show that Ã is dense in A. By an easy truncation argument we can show
that {ϕ ∈ H1(Ω\K) : ϕ is bounded} is dense in A. It is enough to show that Ã

is dense in this last set. Since HN−2(K̃) is finite, then K̃ has zero capacitiy. Hence

for any neighborhood U of K̃ and for any ε > 0 there exists a function χε such that
χε ∈ H1(Ω), 0 ≤ χε ≤ 1 almost everywhere in Ω, χε = 1 almost everywhere outside

U , χε = 0 almost everywhere in a neighborhood of K̃, and∫
Ω

‖∇χε‖2 ≤ ε.

Take ϕ ∈ H1(Ω\K) such that ϕ is bounded. Clearly we have that χεϕ ∈ Ã and

‖χεϕ− ϕ‖L2(Ω) ≤ ‖ϕ‖L2(U), ‖∇(χεϕ)−∇ϕ‖L2(Ω) ≤ ‖∇ϕ‖L2(U) + ‖ϕ‖L∞(Ω)

√
ε.

Since U and ε are arbitrary, we conclude that Ã is dense in A.
Take ϕ ∈ Ã and let Ũ be an open neighborhood of K̃ on which ϕ is zero. We

can find an open subset D compactly contained in Ω\K, a finite number of points

xj ∈ K̂ and positive numbers δj , j = 1, . . . ,m, such that B2δj (xj) ∩ K̃ = ∅ for any
j = 1, . . . ,m and

Ω ⊂ (Ũ ∩ Ω) ∪D ∪

 m⋃
j=1

(Bδj (xj) ∩ Ω)

 .

Moreover, for any j = 1, . . . ,m, we have that xj belongs to the interior of Ki(j) for
some i = i(j) ∈ {1, . . . ,M} and we may assume that 2δj ≤ r and that B2δj (xj) ∩
K̂ = B2δj (xj) ∩Ki(j).

By using a partition of unity, we may therefore reduce ourselves to the following
cases. It is sufficient to consider a function ϕ ∈ Ã that is compactly supported
either in Bδj (xj), for some j ∈ {1, . . . ,m}, or in D. In the latter case, we have that

D ⊂ (Ω\Kn), hence ϕ ∈ H1(Ω\Kn), for any n large enough, so the convergence is
trivially proved.
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It remains to prove the convergence for ϕ ∈ Ã that is compactly supported in
Bδ(x) for some 0 < δ ≤ r/2 and x ∈ Ki ⊂ K̂ such that B2δ(x) ∩ K̃ = ∅ and

B2δ(x) ∩ K̂ = B2δ(x) ∩Ki.
We use the reasoning developed in the proof of Theorem 4.2 in [8]. For the

convenience of the reader we repeat the construction. We suppose that x ∈ Ω,
the case when x ∈ ∂Ω requires just a little modification. Possibly passing to a
subsequence, let xn ∈ Kn converge to x and Φnxn converge to a function Φx :

Br(x) → RN . Without loss of generality, we may assume that Bδ(x) ⊂ Φ−1
x (Br1)

for some positive r1 such that Br1 ⊂ Φx(Br(x)). Moreover, we may also assume
that Br1 ∩ π ⊂ Φx(Br(x) ∩ K) and Br1 ∩ π ⊂ Φnxn(Br(xn) ∩ Kn) for any n large

enough. Let ψ = ϕ ◦ Φ−1
x . Then ψ ∈ H1(Br1\π). We denote by ψ± the function ψ

defined above or below π, that is in the halfspaces T± = {y ∈ RN : ±yn > 0},
respectively. Then, by an odd reflection, we may define two H1

0 (Br1) functions, ψ̃±

such that ψ̃± = ψ± on T±. Let ϕ̃± = ψ̃± ◦ Φx ∈ H1
0 (Bδ(x)).

Finally we define

ϕn =

{
ϕ̃+(x) if Φnxn(x) ∈ T+

ϕ̃−(x) if Φnxn(x) ∈ T−.

By construction we have that ϕn ∈ H1(Ω\Kn). Furthermore, ϕn converges almost
everywhere to ϕ. Since |ϕn| ≤ max{|ϕ̃+|, |ϕ̃−|}, by the Dominated Convergence
Theorem we have that ϕn converges to ϕ in L2. The same argument holds true for
the gradients, so the proof is concluded.

As an immediate corollary to Theorem 3.9, we infer that the following assumption
on Ã is a sufficient condition for Assumption iii) to hold.

Assumption D. Fixed R > 0, let Ω = BR+1. Let us fix positive constants r and L
and let ω : (0,+∞)→ (0,+∞) be a nondecreasing left-continuous function.

We assume that Ã satisfies Assumption i) and that for any K ∈ Ã we have that

∂K belongs to B̃(r, L, ω).

We conclude the section simply by pointing out that, by Lemma 3.8, we have
that Assumption D is closed under convergence in the Hausdorff distance.

4. Approximation of sound-hard screens. Let K be a scatterer in RN , that is
K is a compact set such that RN\K is connected. Let us assume that K ⊂ BR for
some R > 0.

We define a class of scatterers K satisfying some minimal Lipschitz type regu-
larity assumptions.

Definition 4.1. A scatterer K is said to be Lipschitz if, for some positive constants
r and L, the following assumptions hold.

For any x ∈ ∂K, there exists a function ϕ : RN−1 → R, such that ϕ(0) = 0 and
which is Lipschitz with Lipschitz constant bounded by L, such that, up to a rigid
change of coordinates, we have x = 0 and

Br(x) ∩ ∂K ⊂ {y ∈ Br(x) : yN = ϕ(y′)}.

We say that x ∈ ∂K belongs to the interior of ∂K if there exists δ, 0 < δ ≤ r,
such that Bδ(x)∩∂K = {y ∈ Bδ(x) : yN = ϕ(y′)}. Otherwise we say that x belongs
to the boundary of ∂K. We remark that the boundary of ∂K might be empty and
that, if x ∈ ∂K belongs to the interior of ∂K, then K may lie at most on one side
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of ∂K, that is Bδ(x)∩K = Bδ(x)∩ ∂K, or Bδ(x)∩K = {y ∈ Bδ(x) : yN ≥ ϕ(y′)},
or Bδ(x) ∩K = {y ∈ Bδ(x) : yN ≤ ϕ(y′)}.

For any x belonging to the boundary of ∂K, we assume that there exists another
function ϕ1 : RN−2 → R, such that ϕ1(0) = 0 and which is Lipschitz with Lipschitz
constant bounded by L, such that, up to the previous rigid change of coordinates,
we have x = 0 and

Br(x) ∩ ∂K = {y ∈ Br(x) : yN = ϕ(y′), yN−1 ≤ ϕ1(y′′)}.

Finally, for any x ∈ ∂K, let e1(x), . . . , eN (x) be the unit vectors representing the
orthonormal base of the coordinate system for which the previous representations
hold. Then we assume that eN (x) is a Lipschitz function of x ∈ ∂K, with Lipschitz
constant bounded by L, and eN−1(x) is a Lipschitz function of x, as x varies in the
boundary of ∂K, with Lipschitz constant bounded by L.

The following properties hold for a Lipschitz scatterer. Let us notice that, by
compactness, HN−1(∂K) is bounded, hence |∂K| = 0. In particular, if K ⊂ BR for
some R > 0, then HN−1(∂K) is bounded by a constant depending on R, r and L
only.

We also have that ∂K is a Lipschitz hypersurface as defined in Section 3. We
notice that K has a finite number of connected components, again bounded by
a constant depending on R, r and L only, and the distance between two different
connected components of K is bounded from below by a positive constant depending
on r and L only. More precisely, we have that each connected component of K is
either the closure of a Lipschitz domain or a Lipschitz hypersurface with boundary.
Obviously, the exterior of any connected component of K is connected, since the
exterior of K is. Furthermore, the numbers of connected components of K and
∂Kcoincide, that is if a connected component of K is the closure of a Lipschitz
domain then its boundary is connected. Here we have made use again of the fact
that the exterior of K is connected. We may conclude that the exterior of K is
connected if and only if the exteriors of its connected components are connected.

Finally any connected component of ∂K is an oriented Lipschitz hypersurface
with or without boundary. In the case of a hypersurface without boundary, then
this is the boundary of a Lipschitz domain contained in K.

Let us now fix a scatterer K and let us denote d : RN → [0,+∞) the function
defined as follows

d(x) = dist(x,K) for any x ∈ RN .

We say that a Lipschitz function d̃ : RN → [0,+∞) is a regularized distance for
K if the following properties are satisfied.

First, there exist constants a and b, 0 < a ≤ 1 ≤ b, such that

ad(x) ≤ d̃(x) ≤ bd(x) for any x ∈ RN .

For any h > 0, let us call Kh = {x ∈ RN : d̃(x) ≤ h}. Second, we require that,
for some constants h0 > 0, p > 2 and C1 > 0, for any h, 0 < h ≤ h0, RN\Kh is
connected and

‖v‖Lp(BR+1\Kh) ≤ C1‖v‖H1(BR+1\Kh) for any v ∈ H1(BR+1\Kh).

The interest in such a regularized distance is given by the following remark. If
we take a decreasing sequence of positive numbers {εn}n∈N such that limn εn = 0
and define Kn = Kεn for any n ∈ N, we immediately have that Kn converges to
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K in the Hausdorff distance and that H1(BR+1\Kn) converges to H1(BR+1\K) in
the sense of Mosco. Finally, all the assumptions of Proposition 2.15 are satisfied.

We wish to find sufficient conditions on K so that a regularized distance d̃ exists.
A simple sufficient condition is that K is a compact convex set. In fact, clearly we

have that RN\K is connected. Then, we can take d̃ = d or the distance from K with
respect to any norm on RN , not only with respect to the Euclidean one. Then, for
any h > 0, Kh = Bh(K), clearly with respect to the chosen norm. For any h > 0,

we have that Bh(K) is still a convex set, therefore RN\Bh(K) is connected and
also the other required properties are satisfied, for example by using Lemma 2.11.
Clearly we can extend this property to a set K which is the union of a finite number
of compact convex sets which are pairwise disjoint.

The main result of this section is the following.

Proposition 4.2. Let K be a Lipschitz scatterer. The K admits a regularized dis-
tance.

We finally remark that if K is the union of a finite number of pairwise disjoint
compact convex sets and Lipschitz scatterers, then it also admits a regularized
distance.

Proof. The main difficulty in the proof of Proposition 4.2 lies in the Lischitz char-
acter of K. If K would be smoother then the distance d itself would be enough.
Another difficulty is the fact that we need a global construction, locally it would be
enough to raise (or lower) ∂K by a translation along the direction eN .

Fixed h > 0, let

(4.1) Kh = K ∪ {x+ teN (x) : x ∈ ∂K, t ∈ [−h, h]}∪
∪ {x+ seN−1(x) + teN (x) : x in the boundary of ∂K, t ∈ [−h, h], s ∈ [0, h]}.

Notice that Kh ⊂ Bh̃(K) for any h̃ >
√

2h. In order to construct the function d̃
and prove the required properties, without loss of generality we may assume that
K has only one connected component.

We begin with the simpler case of K = D, D being a Lipschitz domain. In such
a case, at least for h ≤ r/2,

Kh = K ∪ {x+ teN (x) : x ∈ ∂K, t ∈ [0, h]}.
By a standard use of the contraction mapping principle, it is not difficult to prove
that there exist positive constants h0, c, 0 < c < 1, r1 and L1, depending on r and
L only, such that for any h, 0 < h ≤ h0, the following holds.

For any x ∈ ∂Kh there exists a function ϕh : RN−1 → R, such that ϕ(0) = 0 and
which is Lipschitz with Lipschitz constant bounded by L1, such that, up to a rigid
change of coordinates, we have x = 0 and

Br1(x) ∩Kh = {y ∈ Br1(x) : yN ≤ ϕh(y′)}.
Furthermore, for any x ∈ ∂K we have that Bch(x) ⊂ Kh, that is Bch(K) ⊂ Kh.
Finally Kh and its boundary are connected and its exterior is connected as well.

We notice that such a Lipschitz condition implies that BR+1\Kh satisfies a cone
condition with a cone not depending on h but only on r and L. Therefore, by
Lemma 2.11, the required properties are all satisfied.

A sketch of the proof is the following. Let us fix x ∈ ∂K. Without loss of gener-
ality, we take x = 0 and assume that

K ∩Br = {y ∈ Br : yN ≤ ϕ(y′)},
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with ϕ : RN−1 → R a Lipschitz function with Lipschitz constant bounded by L and
such that ϕ(0) = 0. There exists a constant c1, 0 < c1 ≤ 1/4, depending on L only
such that the graph of ϕ with y′ ∈ B′c1r is contained in Br/4 and, consequently, it
is a connected set.

For any y′ ∈ B′c1r, let ν(y′) = eN (y′, ϕ(y′)), which is a Lipschitz function of y′

with Lipschitz constant bounded by L(L+ 1). Notice that ν(0) = eN (0) = eN and
that, as usual, ν = (ν′, νN ) ∈ RN−1×R. Fixed h, let Gh : B′c1r → RN−1 be defined
as follows. For any y′ ∈ B′c1r, Gh(y′) = y′+hν′(y′). Provided |h|L(L+ 1) ≤ 1/2, we
have that Gh is Lipschitz with Lipschitz constant bounded by 3/2. Moreover, Gh is
injective and, by the contraction mapping principle, we have that Gh(B′c1r) contains

B′c1r/2. Finally, G−1
h is Lipschitz on B′c1r/2 with a Lipschitz constant bounded by

2. For any z′ ∈ B′c1r/2, let ϕh(z′) = hνN (G−1
h (z′)) + ϕ(G−1

h (z′)). Such a function

ϕh is Lipschitz with a Lipschitz constant bounded by L1, L1 depending on L only.
Again we notice that ϕh(0) = h.

Next, we can find constants h0, 0 < h0 ≤ 1/(2L(L+ 1)), and r1, 0 < r1 ≤ c1r/2,
depending on r and L only, such that for any z′ ∈ B′r1 we have that ϕh(z′) is a
strictly increasing function with respect to h, −h0 ≤ h ≤ h0. Therefore, possibly
after reducing r1, for any h > 0 and any z′ ∈ B′r1 we have that

Br1(z′, ϕh(z′)) ∩ ∂Kh = {y ∈ Br1(z′, ϕh(z′)) : yN = ϕh(y′)}.

Thus we have obtained that ∂Kh satisfies a Lipschitz condition, with constants
depending on r and L only, and hence RN\Kh and Kh satisfy a cone condition with
a cone depending on r and L only. Finally, taking z′ = 0, it is easy to show that
there exists c, 0 < c < 1 depending on such a cone only, such that Bch(0) ⊂ Kh,
that is Bch(K) ⊂ Kh.

Then, for any x ∈ Kh0
, we define d̃(x) = min{h ≥ 0 : x ∈ Kh}, where K0 = K.

For any x ∈ RN\Kh0 , we define d̃(x) = h0 + dist(x,Kh0). Clearly the definition of

Kh with respect to the distance d̃ is consistent with (4.1) for any h, 0 < h ≤ h0.

Finally, it is now easy to show that the function d̃ satisfies all the required properties.
In the case when K is equal to ∂K and consists of one connected component given

by a Lipschitz hypersurface with boundary, we can prove that BR+1\Kh satisfies
a cone condition with a cone not depending on h, for any h small enough. The
arguments and the construction of the function d̃ are similar to the one exposed
above. Some care along the boundary of the hypersurface is needed. The basic idea is
the following. We can enlarge ∂K into another Lipschitz hypersurface K̃ by taking,
for some h0 > 0 small enough,

K̃ = {x+ seN−1(x) : x in the boundary of ∂K, s ∈ [0, h0]}.

We have that K̃ satisfies the same kind of Lipschitz properties and, for any h small
enough, the two surfaces γh± = {x ± heN (x) : x ∈ K̃} are Lipschitz as well. On
the other hand, also α = {x + teN (x) : x in the boundary of ∂K, t ∈ [−h0, h0]}
is a Lipschitz hypersurface and thus also αh = {x + heN−1(x) : x ∈ α}, for any h
small enough. Then to have the desired properties of Kh it is enough to check the
way αh intersects γh+ and γh− . We leave the lengthy but straightforward details to
the reader.
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