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Abstract

We numerically implement the variational approach for reconstruction
in the inverse crack and cavity problems developed by one of the authors.
The method is based on a suitably adapted free-discontinuity problem. Its
main features are the use of phase-field functions to describe the defects to
be reconstructed and the use of perimeter-like penalizations to regularize
the ill-posed problem.

The numerical implementation is based on the solution of the corre-
sponding optimality system by a gradient method. Numerical simulations
are presented to show the validity of the method.
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1 Introduction and setting of the method

We consider a homogenous and isotropic conducting body, assumed to be con-
tained in Ω, a bounded, Lipschitz domain of RN , N ≥ 2. We assume that
there exist Ω1, a Lipschitz domain contained in, and different from, Ω, and a
closed set γ ⊂ ∂Ω ∩ ∂Ω1 such that the interior of γ is not empty and γ has
a positive distance from Ω\Ω1. We assume that γ is known and accessible to
measurements.

In the body there might be present some defects, which we assume to be
perfectly insulating and outside Ω1. Namely, we model these defects by a closed
set K0 ⊂ Ω such that K0∩Ω1 is empty. A minimal assumption on K0 is that the
(N −1)-dimensional Hausdorff measure of K0 is finite. We denote with GK0 the
connected component of Ω\K0 containing Ω1, that is the region of Ω reachable
from γ without crossing K0.

The defects may have different geometrical properties. For instance, we may
have, even at the same time, cracks (either interior or surface-breaking), or
material losses (either interior, that is cavities, or at the boundary).
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We say that a defect K0 is a material loss if GK0
coincides with the interior of

its closure. In this case no cracks are present and K0 represents the boundary of
the material loss. For instance, if the defect is given by a single cavity σ0 = D0,
whereD0 is a domain compactly contained in Ω and such that Ω\σ0 is connected,
then K0 = ∂σ0 and GK0 = Ω\σ0. The other connected component of Ω\K0

in this case is simply given by D0. In Figure 1 we illustrate the geometric
configuration, in the case when we have at the same time two cracks and one
cavity.

Figure 1: Geometric configuration.

Let us consider the following experiment. If a current density f0 is applied
on γ, then the electrostatic potential in Ω, u0 = u(f0,K0), is the solution to the
following (normalized) Neumann boundary value problem

(1.1)


∆u = 0 in Ω\K0

∇u · ν = f0 on γ
∇u · ν = 0 on ∂(Ω\K0)\γ∫
γ
u = 0.

The current density is modeled by a function f0 ∈ Ls(γ), for some constant
s > N − 1, such that

∫
γ
f0 = 0. The electrostatic potential u0 may then be

measured on γ. We call such a measurement g0 = u0|γ and we observe that
g0 ∈ L2(γ) and

∫
γ
g0 = 0. In this way we obtain an electrostatic boundary

measurement of voltage, g0, and current, f0, type on γ. In mathematical words,
we measure the Cauchy data (g0, f0) of the harmonic function u0 on γ. Clearly,
prescribed the current f0, the voltage g0 depends on K0. If K0 is unknown,
then the measured voltage g0 may provide information about the unknown
defect. In fact, the aim of the inverse problem is to reconstruct an unknown
defect K0 by prescribing one or more current densities f0 and measuring the
corresponding value of the potentials on γ. Such a problem arises, for instance, in
non-destructive evaluation, for the determination of flaws like cracks or cavities
in conducting bodies by non-invasive methods. We refer to this problem as
the inverse crack problem, in the general case. Instead, when we a-priori know
that the defect is a material loss, we denote it as the inverse cavity problem.
For results on the inverse crack problem and related problems, we refer to the
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review article [7], where uniqueness, stability and reconstruction results are
reviewed. We wish to mention that more recently new numerical methods have
been devised for the reconstruction of cracks, although in the case of perfectly
conducting ones, [5, 4].

Here we simply wish to note that a single measurement (that is performing
the experiment previously described only once) is enough to determine uniquely
a material loss, in any dimension. In the general crack case, instead, one mea-
surement may not be enough, however two suitably chosen measurements (cor-
responding to two suitable prescribed current densities) are enough for unique
identification of any kind of defects at least in the planar case. The prescribed
current densities that give uniqueness in the two-dimensional case are of the
following type. We consider three electrode locations on the boundary. At one
of these location we keep fixed a positive electrode, while the negative is posed
alternatively on one of the other two locations. This kind of configuration is used
in the numerical experiments, where four electrode locations are used, each one
on a different side of the computational domain. For each measurement, we pose
the positive electrode in one location and the negative in another.

Let us finally remark that if the unknown defect is a-priori assumed to be
interior (that is K0 ⊂ Ω) and if the whole boundary of Ω is accessible and
connected, then we may simply take γ = ∂Ω. This is the assumption we make
for the numerical experiments.

Our approach to this inverse problem is the following. We observe that u0 is
smooth outside K0, whereas it may, and generally does, jump across K0. There-
fore, starting from the Cauchy data, we wish to reconstruct the function u0 in
Ω, and in particular its discontinuity set J(u0). We notice that this is not a clas-
sical Cauchy problem for u0, since u0 is harmonic in Ω\K0 with K0 unknown!
Rather, it looks more like a free-discontinuity problem for u0, since its discon-
tinuity set J(u0) is unknown and it is actually the aim of our reconstruction. If
we are able to reconstruct u0 and J(u0), then we obtain valuable information
on K0, given the fact the J(u0) ⊂ K0. Actually, for the inverse cavity problem,
J(u0) determines the whole ∂GK0

. On the contrary, in the inverse crack prob-
lem, it may happen that a crack is not visible for a particular measurement,
that is J(u0) does not detect the whole ∂GK0 . In this case, we may change the
prescribed current density, reconstruct again the electrostatic potential from its
values on γ, and recover another portion of ∂GK0

. The uniqueness results tell
us how many times and with which kind of prescribed current densities we need
to repeat this procedure to fully reconstruct the unknown defect.

The main difficulties in the reconstruction of u0 from its Cauchy data are
the following. First of all, the problem is severely ill-posed, as Cauchy problems
for elliptic equations are. Second, since the potential u0 to be reconstructed is
a discontinuous function whose discontinuities are unknown (actually they are
the aim of our reconstruction), the problem is not even linear. Thus all the main
difficulties of the original inverse problem are still present in the reconstruction
of u0.

The way to tackle ill-posedness is crucial. In fact, since the boundary data
are measured, the data which are really available are not the exact Cauchy data
(g0, f0) but some noisy perturbation of them.

As mentioned, rather than a classical Cauchy problem, we consider such a
reconstruction as a free-discontinuity problem for the unknown potential u0.
For further details on free-discontinuity problems and their approximations we
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refer for instance to [1, 6]. We follow the variational approach developed in
[10, 11] for cracks and material losses, respectively. Such a method is based on
the following two features. The first one is the choice of the regularization. In
order to regularize the problem a perimeter-like penalization is used. Namely, we
penalize the (N−1)-dimensional measure of the unknown defect K0 (actually of
the discontinuity set of the unknown potential). Second, the discontinuity sets
are modeled through phase-field functions.

In this paper we develop the numerics of the approach in [10, 11]. Let us
describe in details the method we plan to use.

We recall that we have fixed Ω and Ω1, two bounded, Lipschitz domains
of RN , N ≥ 2, such that Ω1 is a proper subset of Ω. We also fix a closed set
γ ⊂ ∂Ω ∩ ∂Ω1 such that the interior of γ is not empty and γ has a positive
distance from Ω\Ω1.

Assumptions on the prescribed current density

We fix a constant s > N − 1. The prescribed current density will be denoted by
f0 ∈ Ls(γ), such that

∫
γ
f0 = 0.

Assumptions on K0

We assume that K0 is a closed subset of Ω such that K0 ∩ Ω1 is empty. We
assume that the (N −1)-dimensional Hausdorff measure of K0 is finite and that
there exist a constant q > 2 and a constant C, independent of f0, such that

(1.2) ‖∇u0‖Lq(Ω) ≤ C‖f0‖Ls(γ),

where u0 = u(f0,K0) solves (1.1).

Such a constant q > 2 will be kept fixed throughout the paper and depends
on very mild regularity properties of the defect K0 to be reconstructed. We refer
to Proposition 5.2 in [11] for a description of sufficient conditions under which
(1.2) holds. Associated to q, we shall also need a constant q1 defined as follows

0 < q1 = (q − 2)/(2q) < 1/2.

Assumptions on the boundary data

The measured potential at the boundary will be g0 = u0|γ , where u0 solves
(1.1). We notice that g0 ∈ L2(γ) and

∫
γ
g0 = 0. The available noisy data will

be (gε, fε) where ε, 0 < ε ≤ 1/2, denotes the noise level. We assume that fε
belongs to Ls(∂Ω) and satisfies supp(fε) ⊂ γ and

∫
∂Ω
fε = 0, whereas gε belongs

to L2(γ) and satisfies
∫
γ
gε = 0. We assume that

(1.3) ‖f0 − fε‖Ls(γ) ≤ ε and ‖g0 − gε‖L2(γ) ≤ ε.

We shall use the following auxiliary functions.
Let ψ : R → R be a continuous and non-decreasing function such that

ψ(0) = 0, ψ(t) > 0 if t > 0, and ψ(1) = 1. We assume that for some exponent
α, 0 < α ≤ 1, ψ ∈ C1,α(R) and that its C1,α norm is bounded. Furthermore,
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we require that for any t ≤ 0 we have ψ(t) = ψ(0) = 0 and ψ(t) = ψ(1) = 1 for
any t ≥ 1. In particular, we have that ψ′(0) = ψ′(1) = 0. For example, we may
set

ψ(t) = −2t3 + 3t2, for any t ∈ [0, 1],

with straightforward extension beyond [0, 1].
Finally, for any 0 < ε ≤ 1/2, we define

ψε = (1− ε2)ψ + ε2.

We introduce a single-well potential V centered at 1, that is a non-negative
continuous function such that V (t) = 0 if and only if t = 1. We assume that
V ∈ C1,α(R) and that its C1,α norm is bounded. We also require that for any
t ≤ 0 we have V (t) ≥ V (0). Obviously, we have that, for any t ≥ 1, V (t) ≥ V (1).
For example, we may choose

V (t) = (t− 1)2/4, for any t ∈ [0, 1],

with straightforward extension beyond [0, 1].
We shall also need a double-well potential W centered at 0 and 1, that is a

non-negative continuous function such thatW (t) = 0 if and only if t ∈ {0, 1}. We
assume that also W ∈ C1,α(R) and that its C1,α norm is bounded. Obviously,
we have that, for any t ≤ 0, W (t) ≥ W (0), and, for any t ≥ 1, W (t) ≥ W (1).
For example, we may choose

W (t) = 9t2(t− 1)2, for any t ∈ [0, 1],

with straightforward extension beyond [0, 1].
We define the space H(Ω) = {ṽ ∈ H1,2(Ω) : ṽ = 0 a.e. in Ω1}. To any

ṽ ∈ H(Ω) we associate the function v = 1− ṽ. We remark that v ∈ H1,2(Ω) and
v = 1 almost everywhere in Ω1.

We finally fix positive tuning parameters a, b and c, and a noise level ε,
0 < ε ≤ 1/2. All these constants and the notation will be kept fixed throughout
the paper.

The method is the following. We begin from the crack case and we propose to
minimize, with respect to the phase-field variable ṽ ∈ H(Ω), with the constraint
0 ≤ ṽ ≤ 1, the functional Fε : H(Ω) → R, which is defined as follows. For any
ṽ ∈ H(Ω), recalling that v = 1− ṽ, we set

(1.4) Fε(ṽ) =
a

εq1

∫
γ

|ũε − gε|2 + b

∫
Ω

ψε(v)|∇ũε|2 +
c2

ε

∫
Ω

V (v) + ε

∫
Ω

|∇v|2.

Here ũε = ũε(ṽ) solves

(1.5)


div(ψε(v)∇ũε) = 0 in Ω
ψε(v)∇ũε · ν = fε on ∂Ω∫
γ
ũε = 0.

We notice that the first term is the fidelity term with respect to the mea-
sured boundary datum, the other three terms are the regularization. Here the
regularization is based on the so-called Mumford-Shah functional, [9], and its
approximation, in the sense of Γ-convergence, with phase-field functionals due to
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Ambrosio and Tortorelli, [2, 3]. In fact, the last three terms corresponds to the
Ambrosio-Tortorelli functional. We recall that in the Ambrosio-Tortorelli ap-
proach the discontinuous function u and its discontinuity set J(u) are replaced,
respectively, by a smooth function u and by a smooth phase-field function v.
Therefore, the Ambrosio-Tortorelli functional depends on two independent vari-
ables, the state variable u and the phase-field variable v. To have an easier
implementation and faster computations, we use here a formulation depending
on a single variable only, namely on the phase-field variable v, with the state
variable u depending on the phase-field variable v through (1.5)

The link with the prescribed boundary datum and with the presence of
cracks is through ũε, the solution of the weighted elliptic equation. We observe
that the single-well potential V forces the phase-field function v = 1 − ṽ to be
equal to 1 except in a small region, which is where the crack should be located.
The tuning parameters a, b and c allow to put more emphasis on one or the
other of the features of the functional. Namely, a controls the match with the
Dirichlet datum, b the smoothness of the reconstructed potential away from its
discontinuities and c the penalization on the (N − 1)-dimensional measure of
the discontinuities. Therefore c may be seen as a regularization parameter.

For the material loss case, we simply replace the single-well potential V with
the double-well potential W . Namely, we define Gε : H(Ω)→ R in an analogous
way by simply replacing V with W , that is, for any ṽ ∈ H(Ω), we set

(1.6) Gε(ṽ) =
a

εq1

∫
γ

|ũε − gε|2 + b

∫
Ω

ψε(v)|∇ũε|2 +
c2

ε

∫
Ω

W (v) + ε

∫
Ω

|∇v|2.

We then minimize, with respect to the phase-field variable ṽ ∈ H(Ω), with the
constraint 0 ≤ ṽ ≤ 1, the functional Gε.

Here we use a more classical perimeter penalization and its approximation,
again in the sense of Γ-convergence, with phase-field functionals due to Modica
and Mortola, [8]. In fact the last two terms are the Modica-Mortola functional,
which corresponds to a penalization of the perimeter of GK0

in Ω. Here the
double-well potential W forces the phase-field function v to be either 0 (inside
the material loss) or 1 (outside the material loss), with a quick transition between
these two regions. We notice that the single-well potential V forces the phase-
field function v to be close to 1 except in a small neighborhood of an (N − 1)-
dimensional region, that is a crack or the boundary of a cavity, whereas the
double-well potential allows the phase-field function v to be close to 1 and to 0
on large regions, corresponding respectively to the exterior and the interior of a
cavity. Therefore, the first method is apt for the recovery of crack-like structures
while the second may be used for the recovery of material losses.

Summarizing, we shall minimize the functional Fε, when we aim to recon-
struct defects such as cracks, and the functional Gε, when we aim to reconstruct
material losses. Namely, we wish to solve numerically the following minimization
problems (depending on the properties of the unknown defect K0)

(i) minFε on H(Ω), with the constraint 0 ≤ ṽ ≤ 1, if K0 contains portions of
cracks.

(ii) minGε on H(Ω), with the constraint 0 ≤ ṽ ≤ 1, if K0 is a material loss
defect.
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Let us notice that, by the direct method, both these minimum problems
admit a solution.

The motivation for using this approach is contained in the convergence anal-
ysis developed in [10, 11]. For what concerns the cavity case, in Theorem 4.2
of [11] it has been proved, essentially by Γ-convergence techniques, that as the
noise level ε goes to 0, a minimizer ṽε to Gε converges to the characteristic
function of K0, provided K0 is a material loss.

For the crack case, in [10] it has been introduced the regularization based on
the phase-field functionals due to Ambrosio and Tortorelli. In that formulation,
which is amenable to numerical implementation, the functionals to be minimized
depend on two independent variables, the state variable u and the phase-field
variable v. In [10, Theorem 4.6] an analogous convergence result has been proved
for this approach to the inverse crack problem. To have an easier implementation
and faster computations, it would be desirable to have a formulation depending
on a single variable only, namely on the phase-field variable v, and preserving
the same convergence properties. This may be done in a rigorous way only for
the material losses, see [11]. The idea would be to let the state variable u to
depend on the phase-field variable v, for instance through (1.5). This is the
approach we have decided to follow in this paper. In fact our functional Fε is
a small modification of the one used in [10] with the additional constraint that
u is linked to v through (1.5). Unfortunately, there are evidences that for the
functional Fε a convergence result does not hold, see the discussion in Section 5
of [11]. In the same section it is also discussed why, when letting u depend on
v, among other possible modifications of the functional developed in [10] the
one used in this paper should be preferred. Finally, the numerical examples in
this paper shows that this simplification allows us to obtain good reconstruction
with an easier implementation.

About the numerical method, in order to find the minimizers, we use an
iterative method. We formulate the corresponding optimality system and we
use a gradient method. In particular, in Section 2, we describe the method and
we prove that along the iterations the functional is decreasing, unless we hit
a critical point. Since the functional to be minimized is not convex, it is not
possible to guarantee that we converge to an absolute minimizer, since there
might be local minimizers or even critical points. In the numerical experiments,
we have used an Armijo-type line search to try to move past local minimizers
or critical points that might be encountered along the iterations. An important
feature of our approach and of our numerical simulations is that we do not need
any a-priori assumption about the number and the location of the defects (in
the crack case, in principle, not even whether the defect is a crack or a cavity).
Therefore, we do not make any initial guess on the number and location of the
defects to be reconstructed. In fact in all the experiments we start with the same
initial phase-field function v = 1− ṽ, which is a very small perturbation of the
constant function equal to 1. We can not start with the function which is iden-
tically equal to 1 just because this is a critical point of the functional. Another
important property of the method is that it works with few measurements. We
recall that, at least in the planar case, two different measurements in principle
suffice. Moreover, in the applications it is important to be able to obtain good
reconstruction with as few measurements as possible. Therefore, we purportedly
decided to use few measurements in our numerical simulations.

In Section 3 numerical simulations are presented for both the single- and
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double-well approximations. Numerical experiments are performed for various
types of defects with noise-free and noisy data-sets.
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2 Optimality system and the gradient method

We now look towards the numerical implementation of the method. In this
section we describe the iterative algorithm we shall use in the numerical ex-
periments. In particular, we shall prove that the functional decreases along the
iterations, unless we hit a critical point.

We begin by recalling the differentiability properties of the functionals Fε
and Gε, which have been investigated in [11, Section 6].

We define the following spaces. For any p, 2 ≤ p ≤ +∞, let us call Lp(Ω) =
{ṽ ∈ Lp(Ω) : ṽ = 0 a.e. in Ω1} and Hp(Ω) = H1,2(Ω) ∩ Lp(Ω), with norm
‖ṽ‖Lp(Ω) = ‖ṽ‖Lp(Ω) and ‖ṽ‖Hp(Ω) = ‖ṽ‖Lp(Ω) + ‖∇ṽ‖L2(Ω). To any ṽ ∈ L2(Ω)
we as usual associate the function v = 1− ṽ. If ṽ belongs either to Lp(Ω) or to
Hp(Ω), then v ∈ Lp(Ω), v = 1 almost everywhere in Ω1, and, provided 0 ≤ ṽ ≤ 1
almost everywhere in Ω, we also have 0 ≤ v ≤ 1 almost everywhere in Ω. We
observe that H2(Ω) = H(Ω) as previously defined.

For any q, q ≥ 2, we define

H1,q
γ (Ω) =

{
u ∈ H1,q(Ω) :

∫
γ

u = 0

}
.

We observe that, by a generalized Poincaré inequality, on H1,q
γ (Ω) the usual

H1,q(Ω) norm and the norm ‖u‖H1,q
γ (Ω) = ‖∇u‖Lq(Ω) are equivalent. Therefore,

we shall set this second one as the natural norm of H1,q
γ (Ω).

We define Hε : L2(Ω)→ H1,2
γ (Ω) as follows

Hε(ṽ) = ũε(ṽ) for any ṽ ∈ L2(Ω).

There exist constants p(ε) ≥ 2 and q(ε) > 2, depending on ε and α, such
that all the following results hold.

First, Hε : L2(Ω)→ H
1,q(ε)
γ (Ω), with bounded image in H

1,q(ε)
γ (Ω), and, for

any ṽ0 ∈ L2(Ω), such an operator Hε is differentiable in ṽ0 with respect to the

Lp(Ω), with p ≥ p(ε), and H
1,q(ε)
γ (Ω) norms. Let DHε(ṽ0) : Lp(Ω)→ H

1,q(ε)
γ (Ω)

be the differential in ṽ0. Then for any ṽ in Lp(Ω) we have

DHε(ṽ0)[ṽ] = Uε(ṽ0, ṽ)
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where Uε = Uε(ṽ0, ṽ) ∈ H1,2
γ (Ω) solves the following problem

(2.1)

{
div(ψε(v0)∇Uε) = div(ψ′ε(v0)ṽ∇(Hε(ṽ0))) in Ω
ψε(v0)∇Uε · ν = 0 on ∂Ω.

Obviously, v0 = 1 − ṽ0. We recall that for any vector valued function G ∈
L2(Ω,RN ), div(G) defines a functional on H1,2(Ω) in the following way

div(G)[φ] = −
∫

Ω

G · ∇φ for any φ ∈ H1,2(Ω).

Therefore, the weak formulation of (2.1) is looking for a function Uε ∈ H1,2
γ (Ω)

such that∫
Ω

ψε(v0)∇Uε · ∇ϕ =

∫
Ω

ψ′ε(v0)ṽ∇(Hε(ṽ0)) · ∇ϕ for any ϕ ∈ H1,2(Ω).

Here, and analogously in the sequel, the differentiability has to be understood
in the following sense. For any ṽ in Lp(Ω)

Hε(ṽ0 + ṽ) = Hε(ṽ0) +DHε(ṽ0)[ṽ] +R(ṽ)

where

lim
‖ṽ‖Lp(Ω)→0

‖R(ṽ)‖
H

1,q(ε)
γ (Ω)

‖ṽ‖Lp(Ω)
= 0.

We conclude that, for any ṽ0 ∈ H(Ω), Fε and Gε are differentiable in ṽ0 with
respect to the Hp(Ω) norm, with p ≥ p(ε). Let DFε(ṽ0), DGε(ṽ0) : Hp(Ω)→ R
be the differentials in ṽ0 of Fε and Gε, respectively. Then, for any ṽ ∈ Hp(Ω)
we have

(2.2) DFε(ṽ0)[ṽ] =
2a

εq1

∫
γ

(Hε(ṽ0)− gε)Uε(ṽ0, ṽ)+

b

∫
Ω

(
2ψε(v0)∇Hε(ṽ0) · ∇Uε(ṽ0, ṽ)− ψ′ε(v0)|∇Hε(ṽ0)|2ṽ

)
+

c2

ε

∫
Ω

(−V ′(v0)ṽ) + 2ε

∫
Ω

∇ṽ0 · ∇ṽ

and

(2.3) DGε(ṽ0)[ṽ] =
2a

εq1

∫
γ

(Hε(ṽ0)− gε)Uε(ṽ0, ṽ)+

b

∫
Ω

(
2ψε(v0)∇Hε(ṽ0) · ∇Uε(ṽ0, ṽ)− ψ′ε(v0)|∇Hε(ṽ0)|2ṽ

)
+

c2

ε

∫
Ω

(−W ′(v0)ṽ) + 2ε

∫
Ω

∇ṽ0 · ∇ṽ.

An important remark is the following. If N = 2, then we may actually choose
p(ε) = 2, and we observe that H2(Ω) is a Hilbert space, with the scalar product∫

Ω
∇ṽ1·∇ṽ2 for any ṽ1, ṽ2 ∈ H2(Ω). IfN > 2, then it might happen that p(ε) > 2

and that Hp(ε)(Ω) has not a Hilbert space structure anymore. However, since
p(ε) is finite, Hp(ε)(Ω) is still a strictly convex real reflexive Banach space.
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In the sequel we shall fix p = p(ε), (with p(ε) = 2 if N = 2) and we call
MFε the following functional, which is defined on H1,2

γ (Ω)×Hp(ε)(Ω),

(2.4) MFε(u, ṽ) =
a

εq1

∫
γ

|u− gε|2 +

∫
Ω

(
bψε(v)|∇u|2 +

c2

ε
V (v) + ε|∇v|2

)
,

for any (u, ṽ) ∈ H1,2
γ (Ω)×Hp(ε)(Ω).

Such a functional is finite for any (u, ṽ) ∈ H1,2
γ (Ω)×Hp(ε)(Ω). By similar reason-

ings, for any (u0, ṽ0) ∈ H1,q(ε)
γ (Ω)×Hp(ε)(Ω), we have thatMFε is differentiable

in (u0, ṽ0) and for any (u, ṽ) ∈ H1,2
γ (Ω)×Hp(ε)(Ω) we have

(2.5) DMFε(u0, ṽ0)[(u, ṽ)] =
2a

εq1

∫
γ

(u0 − gε)u+

b

∫
Ω

(
2ψε(v0)∇u0 · ∇u− ψ′ε(v0)|∇u0|2ṽ

)
+
c2

ε

∫
Ω

(−V ′(v0)ṽ) + 2ε

∫
Ω

∇ṽ0 ·∇ṽ.

We observe that Fε(ṽ) =MFε(Hε(ṽ), ṽ). Analogously, we defineMGε sim-
ply by replacing V with W . Analogous properties of differentiability hold for
MGε as well.

Let us finally define LFε : H1,2
γ (Ω)×Hp(ε)(Ω)×H1,2(Ω)→ R such that for

any (u, ṽ, φ) ∈ H1,2
γ (Ω)×Hp(ε)(Ω)×H1,2(Ω) we have

(2.6) LFε(u, ṽ, φ) =MFε(u, ṽ) +

∫
Ω

ψε(v)∇u · ∇φ−
∫
∂Ω

fεφ.

In an analogous way we define LGε replacing MFε with MGε.
We observe that LFε (and LGε as well) is differentiable in any (u0, ṽ0, φ0) ∈

H
1,q(ε)
γ (Ω)×Hp(ε)(Ω)×H1,2(Ω). For any (u, ṽ, φ) ∈ H1,2

γ (Ω)×Hp(ε)(Ω)×H1,2(Ω)
we have

(2.7)
∂LFε
∂u

(u0, ṽ0, φ0)[u] =

2a

εq1

∫
γ

(u0 − gε)u+ 2b

∫
Ω

ψε(v0)∇u0 · ∇u+

∫
Ω

ψε(v0)∇φ0 · ∇u,

and

(2.8)
∂LFε
∂ṽ

(u0, ṽ0, φ0)[ṽ] = −b
∫

Ω

ψ′ε(v0)|∇u0|2ṽ +
c2

ε

∫
Ω

(−V ′(v0)ṽ)+

2ε

∫
Ω

∇ṽ0 · ∇ṽ −
∫

Ω

ψ′ε(v0)ṽ∇u0 · ∇φ0,

and, finally,

(2.9)
∂LFε
∂φ

(u0, ṽ0, φ0)[φ] =

∫
Ω

ψε(v0)∇u0 · ∇φ−
∫
∂Ω

fεφ.

Then the resulting optimality system is the following. We look for critical
points, or better minimizers, of Fε, or, equivalently, ofMFε(u, ṽ) subject to the
constraint u = Hε(ṽ). We use a gradient method, whose algorithm is divided
into steps. A completely analogous method may be used for finding minimizers
of Gε. We describe the algorithm and show that the functional is decreasing
along the iterations.
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Step 0: initialization.

We initialize the algorithm by putting k = 0 and choosing an initial guess
ṽ0 ∈ H(Ω) such that 0 ≤ ṽ0 ≤ 1 almost everywhere. We observe that taking
ṽ0 ≡ 0 (that is v0 ≡ 1) is not a good choice because this is a critical point of
the functional Fε, thus the gradient method fails in this case.

Step 1: finding uk.

We solve

(2.10)


div(ψε(vk)∇uk) = 0 in Ω
ψε(vk)∇uk · ν = fε on ∂Ω∫
γ
uk = 0,

that is we look for uk ∈ H1,2
γ (Ω) such that

(2.11)

∫
Ω

ψε(vk)∇uk · ∇φ−
∫
∂Ω

fεφ = 0 for any φ ∈ H1,2(Ω).

We notice that uk = Hε(ṽk) and uk actually belongs to H
1,q(ε)
γ (Ω). By (2.6)

and by (2.9), we have that for any φ̃ ∈ H1,2(Ω)

LFε(uk, ṽk, φ̃) =MFε(uk, ṽk) = Fε(ṽk) and
∂LFε
∂φ

(uk, ṽk, φ̃) = 0.

Step 2: finding φk.

We solve the following boundary value problem

(2.12)


div(ψε(vk)∇φk) = −div(2bψε(vk)∇uk) in Ω

ψε(vk)∇φk · ν = − 2a

εq1
(uk − gε)χγ on ∂Ω∫

γ
φk = 0.

Here χγ denotes the characteristic function of γ, that is

(uk − gε)χγ =

{
(uk − gε) on γ
0 on ∂Ω\γ.

The weak formulation of (2.12) is looking for φk ∈ H1,2
γ (Ω) such that

(2.13)

∫
Ω

ψε(vk)∇φk · ∇u =

− 2b

∫
Ω

ψε(vk)∇uk · ∇u−
2a

εq1

∫
γ

(uk − gε)u for any u ∈ H1,2(Ω).

Such a solution φk exists and is unique. Then LFε(uk, ṽk, φk) =MFε(uk, ṽk) =
Fε(ṽk) and, by (2.7),

∂LFε
∂φ

(uk, ṽk, φk) = 0 and
∂LFε
∂u

(uk, ṽk, φk) = 0.

11



Step 3: computing the gradient and updating vk.

We compute the differential of Fε at the point ṽk. We observe that if u = Hε(ṽ),
then for any φ̃ ∈ H1,2(Ω) we have

Fε(ṽ) =MFε(Hε(ṽ), ṽ) = LFε(Hε(ṽ), ṽ, φ̃).

Therefore, since uk = Hε(ṽk), and if we pick φ̃ = φk, then

DFε(ṽk) =
∂LFε
∂ṽ

(uk, ṽk, φk).

We conclude that, by (2.8), we have for any ṽ ∈ Hp(ε)(Ω)

(2.14) DFε(ṽk)[ṽ] = −b
∫

Ω

ψ′ε(vk)|∇uk|2ṽ +
c2

ε

∫
Ω

(−V ′(vk)ṽ)+

2ε

∫
Ω

∇ṽk · ∇ṽ −
∫

Ω

ψ′ε(vk)ṽ∇uk · ∇φk.

Let us now consider the space Hp(ε)(Ω). We recall that either Hp(ε)(Ω) =
H2(Ω) (if N = 2), that is Hp(ε)(Ω) is a Hilbert space, or Hp(ε)(Ω) is a strictly
convex real reflexive Banach space (if N > 2). In either cases, if H = Hp(ε)(Ω),
we fix an operator T : H∗ → H such that for any w∗ ∈ H∗, we have

〈w∗, T (w∗)〉 = ‖w∗‖2 and ‖T (w∗)‖ = ‖w∗‖,

where 〈·, ·〉 is the usual duality between H∗ and H. We may choose T as the
duality mapping from H∗ into H∗∗ = H. If H is a Hilbert space and we also
identify H∗ with H, then T is actually the identity. See, for instance, [12, Sec-
tion 42.6]. Let us call Tε the corresponding operator for Hp(ε)(Ω).

For a positive constant tk, we then update ṽk by setting

v̂k+1 = ṽk − tkTε(DFε(ṽk)).

We observe the following. If DFε(ṽk) = 0, then (uk, ṽk, φk) is a critical
point of LFε and ṽk is a critical point of Fε and the algorithm comes to a
stop. Otherwise, provided tk is small enough, an easy computation shows that
Fε(v̂k+1) < Fε(ṽk).

Step 4: normalization and finding ṽk+1.

We normalize v̂k+1 by truncation as follows. We set ṽk+1 = (v̂k+1 ∧ 1) ∨ 0. In
such a way we obtain that ṽk+1 ∈ Hp(ε)(Ω) and 0 ≤ ṽk+1 ≤ 1 almost everywhere
in Ω.

Let us note that, by our hypotheses, such a truncation does not increase the
value of the functional, in fact for any v̂ ∈ Hp(ε)(Ω), if ṽ = (v̂ ∧ 1) ∨ 0, then

Fε(ṽ) ≤ Fε(v̂).

Therefore, we have found that either DFε(ṽk) = 0, and the algorithm stops, or,
otherwise, provided tk is small enough, Fε(ṽk+1) < Fε(ṽk).

Once we have computed ṽk+1, we iterate the algorithm by going back to
Step 1.
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3 Numerical experiments

The data for the numerical experiments are generated by solving Laplace equa-
tion numerically on an domain with certain prescribed defects (cracks or cavi-
ties). We solve the Neumann problem with given flux on the boundary of the
computational domain, and read off the corresponding Dirichlet data to get
a feasible pair of Neumann and Dirichlet boundary data on a discrete set of
measurement points on the boundary from which the defect has to be recon-
structed. As input fluxes we choose pairs of plus-shaped current profiles with
opposite sign located at two different sides of the rectangular computational
domain. The Laplace equation is solved on a very fine irregular grid using lin-
ear finite elements. The boundary data are genuinely defined on the unevenly
distributed nodal points of elements on the boundary and are interpolated onto
a much courser regular grid of measurement points. When experimenting with
noisy input data, both boundary values are contaminated by adding Gaussian
distributed artificial noise to the data, usually with different noise levels for
f = ∂u

∂ν |γ and g = u|γ .
About step 0 of our algorithm, we choose as initial guess ṽ0 which is a small

perturbation of the function which is identically equal to 0. We recall that ṽ0 ≡ 0
has to be avoided because this is a critical point for our functionals. The initial
guess is kept fixed in all the experiments and carries no information whatsoever
on the defects to be reconstructed.

For the numerical implementation of step 1 in the algorithm described in
the previous section (that is the numerical solution of equation (2.11) for uk
with given vk and prescribed fε), we also use linear finite elements for the
discretization of uk. In contrast to the data generation routine, we discretize
the potential on a regular, structured grid which is usually much coarser than
the grid used for the data generation. Later on, we shall assume that the phase-
field vk is also an element in the space of piecewise linear functions on the same
underlying regular grid as for uk. For the assembling of the stiffness matrix for
(2.11), however, we replace the phase-field vk by its L2-projection onto the space
of functions which are piecewise constant on the triangles of the finite element
space. A completely analogous procedure is applied for the solution of the adjoint
equation (2.13) described in step 2 for the adjoint variable φk. Note that both
systems share the same stiffness matrix and that the right-hand side of (2.13)
can be easily assembled using a slightly modified stiffness matrix. We shall use
up to six different Cauchy data-sets for the reconstruction of the defect. The
data-sets correspond to all possible combinations of pairs of electrodes where
each electrode is located on a different side of the computational rectangle. We
can use the same factorization of the stiffness matrix for all different right-hand
sides of (2.11) and (2.13).

The calculation of the descent direction for the cost functional as described
in step 3 requires another solution of an elliptic boundary value problem for the
variable δṽk = Tε(DFε(ṽk)). As mentioned above, the update δṽk is discretized
using linear triangular elements on a regular grid. To find δṽk we have to solve an
elliptic equations with system matrix defined by a discretization of the operator
T : H∗ → H. In our 2-dimensional test examples, we always set H = H1,2(Ω)
and for any w∗ ∈ H∗ we set T (w∗) = v where v solves in a weak sense v−c∆v =
w∗ with some parameter c > 0 and homogeneous Dirichlet boundary conditions.
The choice of Dirichlet boundary conditions is motivated by the desire to keep
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the phase-field constantly at the value 1 on the boundary. The assembling of the
right-hand side of the equation for δṽk is done by evaluating (2.14) for piecewise
linear in all bases functions ṽ.

The projection required in step 4 is easily implemented for piecewise linear
functions by thresholding the nodal values. Moreover, a suitable step-length for
the update of the phase-field is found using an Armijo-type line search. We use
a maximum number of five reduction steps for the correction of the step-length.
Since each evaluation of the cost functional requires one solution of the state
equation, we try to steer the step-size modification in a rather conservative way.

Within this setup, the following numerical experiments have been performed.
For all experiments, the phase-field parameter ε was decreased in several steps
from an initial value of ε = 2 · 10−4 down to ε = 1 · 10−6 for the single-well
potential and to ε = 2 · 10−6 for the double-well case. We run 2500 iterations of
our algorithm in the single-well case and 1000 in the double-well case. Figure 2
shows the final phase-field together with the linear crack (as a white line) which
was used for the data generation. We use all six available data-sets with electrode
positions on (up/down), (left/right), (down/left), (up/left), (down/right), and
(up/right) sides of the rectangle for the reconstruction and set the noise-level
to zero. In this simple situation where the crack is located rather close to the
boundary we obtain very good reconstruction of the crack location with the
single-well approximation.

Figure 2: Reconstruction of a small linear crack with noise-free data.

In Figure 3 it is shown a comparison between reconstructions using 3 mea-
surements (left image) with electrode positions on (left/right), (left/up), and
(right/up) edges and 6 measurements (right figure), again in the single-well
case. It is notable that in the reconstruction with 3 data-sets the crack tips
are accurately identified but the reconstructed crack is strongly curved which
is probably due to the fact that we have no electrode located on the lower edge
of the computational domain. In contrast the overall geometrical shape of the
crack is reconstructed much better with 6 data-sets but the position of the crack
tips is less accurate. We believe that this is due to fact that, in general, the re-
constructions tend to be offset towards the center of the computational domain,
maybe because we keep the phase-field value to be fixed near the boundary.
This tendency, together with the fact that the jump set of minimizers of the
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Mumford-Shah functional is smooth outside critical points, explains why when
the shape recovered is more straight we have higher inaccuracy in the recovery
of the crack tips. In any case, the main reason for these inaccuracies is due to the
exponential ill-posedness of the problem, that is even if the reconstructions are
quite different from the looked-for defects, their corresponding boundary data
may still match the measured ones very well. In these two simulations we added
one percent of normally distributed noise to Neumann and Dirichlet data.

Figure 3: Comparison of reconstructions from 3 and 6 measurements.

Figure 4 shows results for a situation with two cracks and different noise
levels. Here we fixed the noise-level for the Neumann data to 1% for both exper-
iments whereas the Dirichlet data were contaminated with 1% (left image) and
5% (right image) of noise. We used three measurements (left/right), (left/up),
(right/up) and the single-well potential. There is no big difference in the quality
of the reconstructions. In both cases the placement of the smaller crack in the
upper right corner is inaccurate and the larger crack in the lower left corner is
curved. Nonetheless the convergence of the algorithm is not heavily effected by
the presence of (moderately strong) noise and the reconstructions are stable.

Figure 4: Comparison with different noise levels.
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We notice that the tendency of the reconstructed lower left crack to bend
inward is not due to the choice of the mesh used. To this purpose, in the next
Figure 5 we illustrate the dependence of the method on the mesh. In the leftmost
image we have reconstruction with a low resolution mesh (100 × 100 which is
slightly lower than the one used in the other experiments which is 140 × 140).
In the center image we have a higher resolution mesh of 200× 200, whereas in
the rightmost image we have the same high resolution but the grid is rotated of
90 degrees. In these three experiments we used exactly the same Cauchy data
with a noise level of 1% on both Neumann and Dirichlet data. The differences
between these reconstructions are again due to the ill-posedness of the problem,
whereas there is no significant influence of mesh refinement or rotation.

Figure 5: Dependence of reconstructions from the mesh.

The next series of experiments presented in Figure 6 shows the tendency
of the single-well based algorithm to produce dendrite-like structures. In fact,
the dendrite-shaped crack in the leftmost image is reconstructed quite well. The
polygonal crack in the middle image is approximated by a cloth-hanger like
structure which has a satisfactory data fit with a shorter overall length than the
polygonal curve. Finally the cavity in the rightmost image is approximated by
a one-dimensional structure which looks roughly like the skeleton of the cavity.
In all these three experiments noise level is 1% for Neumann data and 5% for
Dirichlet data and the three measurements (left/right), (left/up), (right/up) are
used. The dendrite-like structures may be explained as follows. The methods
tries to minimize the length of the defects, thus it prefers these skeleton like
structures. Moreover, we already noticed that the jump set of minimizers of the
Mumford-Shah functional is usually smooth outside critical points, thus sharp
corners tend to be avoided. On the other hand, on a critical point of the jump set
of minimizers of the Mumford-Shah functional, a typical structure which may
be found is that of a triple point or propeller, which is exactly what we obtain
in our reconstructions. Clearly, the most important reason of this behavior is
again the exponential ill-posedness of the problem.

Figure 7 shows reconstructions obtained by using the double-well approxi-
mation. As expected, the phase-field approximates the characteristic functions
of one cavity (left image) and two cavities (right image). In these two tests noise
level is 1% for Neumann data. In the left image noise level for Dirichlet data is
5% and the three measurements (left/right), (left/up), (right/up) are used. In
the right image noise level for Dirichlet data is 1% but only one measurement,
namely (left/right), is used. The overall location of the cavities is satisfactory,
but the lower left quadrilateral is approximated by a non-convex shape. In this
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Figure 6: Dendrite-like reconstructions with single-well potential.

respect the experiment with the double-well potential for two cavities resem-
bles the results shown in Figure 3 where the lower left crack also has a strong
tendency to bend inward.

In another numerical experiment, documented in Figure 8, the double-well
approach was used for the reconstruction of one-dimensional defects like the
polygonal crack shown in the left image and the star-shaped crack shown on
the right-hand side of the figure. In both cases the defect is approximated by
a two dimensional structure. An interesting feature is the occurrence of a self-
intersection of the boundary curve of the reconstructed defect in the case of the
star-shaped crack. Also in these two tests, noise level is 1% for Neumann data
and 5% for Dirichlet data and the three measurements (left/right), (left/up),
(right/up) are used.

Figure 7: Reconstructions of cavities with double-well potential.

Finally, we also tested the method when no defect is present. We used a
noise level of 1% both for Neumann and Dirichlet data and a high resolution
mesh. In Figure 9 is shown the final phase-field which is correctly identically
equal to one but for some small artifacts in correspondence to the input pulses.
We also compare the (numerical) solution u to the direct problem (left image)
to the reconstructed u by our iterative process (right image). Their difference,
illustrated in the last image, shows that the deviation is comparable, in percent-
age, with the noise level on the Cauchy data used. This means that, although
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Figure 8: Reconstructions of cracks with double-well potential.

not designed for such a purpose, our approach provides indirectly a reasonably
efficient method for the numerical solution of Cauchy problems.

As a conclusion we can state that both algorithms give reconstructions of
the defects with a satisfactory accuracy for an exponentially ill-posed problem.
The algorithms show a quite stable behaviour in the presence of data noise. The
single-well and double-well models develop the types of structures for which
they are designed (one-dimensional for the single-well and two-dimensional for
the double-well potential), so the single-well approach approximates cavities by
dendrites and the double-well approach approximates cracks by cavities. The
double-well approach looks more stable with respect to noise, is slightly less
sensitive with respect to the adjustment of the phase-field parameter ε and
usually needs less iterations for convergence. This may be in accordance with
the theory, in fact for the double-well case a convergence analysis is proved,
whereas the single-well model we use is a modification of the one for which we
have convergence results. Finally, it turned out to be important to update the
phase-field parameter ε adaptively during the algorithm. If the parameter ε is
chosen too small initially or decreased too fast, sharp interfaces develop too
early, sometimes at incorrect locations, and the algorithm is not able to move
well established interfaces to other locations. On the other hand, if the parameter
ε is decreased too much, the term containing the potential might prevail and
not well established defects, usually the smaller ones, may disappear.
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Figure 9: No defect case.
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