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In Focus

Fifteen years of research on nephrin: what we still need to know
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In March 1998, the seminal work of Tryggvason’s group was
published [1], in which the protein mutated in congenital ne-
phrotic syndrome of the Finnish type was discovered and
termed ‘nephrin’.

In the manuscript, besides identifying the mutations causa-
tive of the disease, the authors described for the first time the
predicted molecular structure of nephrin, a transmembrane
protein of the immunoglobulin superfamily. The protein was
formed by an N-terminal signal peptide, followed by an extra-
cellular domain containing eight Ig-like modules and one fi-
bronectin type III-like module, and had a single
transmembrane domain and an intracellular C-terminal
domain. The extracellular part could be potentially heavily gly-
cosylated and presented binding sites for heparan sulphate.

The authors concluded that the protein was ‘likely to be an
adhesion receptor and a signalling protein. The cytosolic
domain contains nine tyrosines, some of which could become
phosphorylated during ligand binding of nephrin’ [1].

These initial data were confirmed by subsequent analyses
which demonstrated that nephrin behaves as a signalling hub
at the slit diaphragm, by binding to other slit diaphragm pro-
teins and scaffolding molecules that transduce signals from
phosphorylated nephrin to activate different intracellular
pathways [2]. Fifteen years of research efforts have unequivo-
cally established that nephrin is essential to glomerular fil-
tration and to the health of podocyte foot processes.

The extracellular domain of nephrin contains free cy-
steines that allow formation of disulphide bonds with adja-
cent molecules. Cis and trans homophilic and heterophilic
interactions of nephrin with itself and with Neph family pro-
teins (Neph1, Neph2 and Neph3) are required to provide

stability and maintain the health of the slit diaphragm [3–5].
Among the Ig-like molecules that form the slit diaphragm,
the prominent importance of nephrin is not only confirmed
by the fact that nephrin mutations are associated with the
most severe forms of nephrotic syndrome, but also by the
reduction in nephrin observed in numerous experimental
and human glomerular diseases. In our experience, nephrin
appears to be altered or down-regulated at the very first
stages of almost all types of proteinuric diseases (Figure 1),
when no changes \of other podocyte proteins, such as
podocin, can be detected.

Likely, one of the best indirect proofs of the importance of
nephrin in mammals is its absence in birds. Compared with
mammalian glomeruli, the avian ones have larger slit dia-
phragms [6], and the genome of birds does not contain a
coding sequence for nephrin, while expressing the other
Neph family members [7]. Interestingly, birds excrete nitro-
gen mainly in the form of uric acid, which is not completely
soluble in water and therefore requires a significant amount
of proteins to be maintained in a colloidal suspension in the
urine, forming the so-called urine spheres. These proteins
need to pass the glomerular filtration barrier and nephrin
absence seems to guarantee the necessary glomerular leakage.
Ultimately, proteins are not lost thanks to a process of reab-
sorption in the lower colon.

Nephrin is an expression-restricted protein and a part
from glomerular podocytes can be found in a few other
mammalian cell types, such as neuronal cells, lymphocytes,
testis cells and pancreatic β cells [8–11]. Recently, a role for
nephrin has been proposed in the development of cardiac
vessels [12].
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The expression in neuronal cells is of particular interest,
because the nephrin orthologues in Caenorhabditis elegans
(Syg-2) and Drosophila melanogaster (Hibris) are crucial
players in synapse targeting and positioning [13, 14],
suggesting that, evolutionarily speaking, the original function
of nephrin is that of a synaptic adhesion molecule.

Since its discovery, the neuronal expression of nephrin has
been repetitively acknowledged [8, 15, 16]. Compared with the
expression observed during development and at birth, in the
adult rodent central nervous system [17], nephrin extends to
the pons, but is reduced in the hippocampus. Adult rodents
also display a diffuse presence of nephrin in basal ganglia and
motor cortex, but complete negativity of the sensory cortex,
suggesting the involvement of nephrin in distinct brain net-
works related to movement. The association of nephrin with
movement activities is further confirmed by its presence in the
Purkinjie cells of the cerebellum, and helps to explain the
ataxic symptoms of nephrin-deficient mice, when their survival
is prolonged by re-expressing nephrin only in the kidney [18].

The presence of nephrin in the central nervous system
strongly supports a series of recognized similarities between
podocytes and neuronal cells, which have been recently con-
firmed by an expression analysis conducted on both maturing
and adult podocytes [19]. Podocytes and neurons are highly
ramified post-mitotic cells characterized by specialized
adhesion structures, the slit diaphragm in podocytes and the
synapse in neuronal cells. Of note, the cytoplasmic insertion
site of the slit diaphragm and the postsynaptic density of
neurons are both lipid rafts, that is membrane regions of
TritonX-100-resistant electron-dense material enriched in
sphyngolipids, cholesterol and signalling proteins, such as
nephrin [17].

In both podocytes and neuronal cells, the nephrin cyto-
plasmic domain can be phosphorylated by the Src family
kinase Fyn [17, 20]. Interestingly, Fyn knockout mice not
only show proteinuria, but also display alteration of long-
term potentiation and spatial learning [21].

Phosphorylation is important for raft-mediated nephrin
internalization and is an event needed for podocyte foot
process development and maintenance, as demonstrated by
the finding that phosphorylated nephrin recruits adaptor pro-
teins such as Nck1/2, Grb2 and Crk1/2, resulting in the as-
sembly of protein complexes that regulate actin
polymerization [22].

Podocyte foot processes, as well as dendritic spines in neur-
onal cells, highly depend for their function on a dynamic actin
cytoskeleton, and actin dynamics are influenced by nephrin in
various manners. In fact, nephrin can recruit other actin-
associated proteins like nWASp, Arp2/3 and, importantly, the
regulatory p85 subunit of PI3 kinase [22]. Activated PI3K con-
verts the plasma membrane lipid phosphatidylinositol-4,5-bi-
sphosphate [PI(4,5)P2] to phosphatidylinositol-3,4,5-
trisphosphate [PI(3,4,5)P3], which can regulate the activity of
the actin filament-severing protein cofilin, inducing actin
polymerization and maintaining a branched actin network.

It is well known that actin polymerization is a dynamic
process that needs to be kept in a tight balance. Very recent
data started shedding some light on this process by showing
the involvement of Slit2-Robo2 activity in inhibiting nephrin-
induced actin polymerization [23].

Phosphorylation of nephrin can also lead to the recruit-
ment, phosphorylation and activation of phospholipase C γ1
(PLCγ1), which can trigger calcium signalling [22].

Detailed understanding of calcium signalling in podocytes
constitutes a rapidly growing field of investigation, particularly
after the discovery that mutations of the transient receptor
potential calcium channel TRPC6 cause a genetic form of
focal segmental glomerulosclerosis. Increased calcium entrance
in podocytes, due to the gain of function TRPC6 mutations, or
to increased expression of the channel in acquired forms of ne-
phrotic syndrome, leads to podocyte damage [24].

TRPC6 has been shown to interact with podocin [25],
whereas another potent calcium channel, the ionotropic
NMDA glutamate receptor (NMDAR), directly interacts with
nephrin [17]. Imbalances of NMDAR activity, either the
blockade or an excessive activation, are known to be harmful
to neuronal cells, and the same is true for podocytes. Sus-
tained activation of the NMDAR by its specific agonist
results in oxidative stress leading to apoptotic cell death [26].
Similarly, blockade of NMDAR by the specific antagonists
norketamine and MK-801 increases albumin loss in mice and
humans, and causes profound remodelling of the actin–
myosin podocyte cytoskeleton and disappearance of nephrin
from podocyte cell processes [27].

First analyses by the group of Tryggvason provided infor-
mation on the nephrin promoter, showing consensus se-
quences for the transcription factors GATA-1, GATA-2, NF-1
and AP-2 in the immediate region preceding the start of

F IGURE 1 : The same glomerulus from a case of minimal-change glomerular disease displays segmental loss of nephrin (a), but intact
podocin staining along the tuft (b). Indirect immunofluorescence—magnification ×400, scale bar 50 µm.

IN
F
O
C
U
S

M. Li et al.

768

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/article-abstract/28/4/767/1855112 by U

niversità degli Studi di M
ilano - D

ip. Storia arti, m
usica e spettacolo user on 24 Septem

ber 2018



human nephrin transcription [28] and identifying potential
transcription factor recognition sites which are conserved
between human and mouse, such as GATA-1, GATA-2, AP4,
Ets-1, NFAT, deltaEF1 and MZF1 binding sites [16].

Subsequent studies have shown that the nephrin gene can
be regulated by the transcription factors WT1, Sp1 and Snail
[29–31], have implicated the transcription factor PTf1a in
nephrin expression in the central nervous system [32] and
have described response elements for retinoic receptors and
vitamin D receptor in the rodent nephrin promoter [33].

In this issue of NDT, Ristola et al. identify the transcription
factor GABP as a positive regulator of nephrin expression. In-
terestingly, GABP has been shown to cooperate with Sp1 to
increase responsiveness to retinoic receptors in myeloid cells
[34], and is known to regulate genes involved in the formation
of the neuromuscular junction, such as utrophin [35].

Despite this evidence, we are still far from having a com-
plete picture of the precise sequence of events which control
nephrin transcription in development, maintain nephrin
expression in healthy podocytes and intervene in nephrin
changes during disease. Furthermore, other questions remain
unanswered, such as the role played by two described variants
of nephrin, one found in the kidney that lacks the transmem-
brane domain [36] and one in the brain that lacks the extra-
cellular signalling domain [16].

Therefore, research on nephrin is far from concluded and
additional information is certainly required to gain complete
knowledge on nephrin properties and its role in podocytes as
well as in other cell types.
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Inflammation from dialysis, can it be removed?
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ABSTRACT

Mortality among hemodialysis patients remains unacceptably
high in the USA, especially among newly diagnosed end-
stage renal disease patients. Chronic inflammation is a risk
factor for cardiovascular disease among HD patients. It has
been shown that complications of the arteriovenous (AV)
access are not just limited to overt infectious complications

but they may also pose a threat as a haven for occult infection
and can aggravate the chronic inflammatory state. This
inflammatory state is characterized by failure to thrive, ery-
thropoietin-resistant anemia, hypoalbuminemia, elevated
plasma C-reactive protein levels, which are well-known risk
factors for increased morbidity and mortality on dialysis. In
this issue, Wasse et al. presents a paper that demonstrates in
a large cohort that failed AV grafts are associated with in-
creased chronic inflammatory markers. They have provided a
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