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Abstract Model selection is a core topic in modern Statistics. This is a re-
view of what has been researched on optimal experimental design for model
selection. The aim is to find good designs for increasing the test power for dis-
criminating between rival models. This topic has a special impact nowadays
in the area of experimental design.

1 Introduction

Model selection is nowadays one of the hot topics in Statistics and finding
optimal experimental designs for that purpose will save time, money and risk
to the researchers. A joint solution to the problem of identifying the maximum
information both for discriminating between rival models and for fitting the
best of them is very much desirable. Obtaining a good model is crucial for
prediction in a world of presence of massive data. Optimal Experimental
Design (OED) theory and practice has a lot to say about that. The reason
for that belief is that OED is very much concerned with the information
behind the data. Traditionally this has been used for designing informative
experiments in order to save data. This is still very important if we think, e.g.
in experimentation with animals or humans. In the contemporary scenario
with great quantities of observations, frequently with low quality data, we
need tools to clean the data and discriminate which is the best model to
extract the information from it.

OED searches both for better estimates and predictions as well as for
optimizing the cost of experimenting. The research on OED has experienced
a noteworthy increase in the last few years. Main beneficiaries of the theory
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of optimal design are the areas of engineering, well-being in society and very
much in health with clinical trials and Phase I/II experimentation.

We dare to say there are two important research directions in OED at this
moment. On the one hand the most traditional interest in outlining correctly
complex, but real, situations. On the other hand there is special interest
nowadays in developing efficient algorithms for finding optimal designs, which
is a non-standard task in this area where the aim is a probability measure
in a non-Euclidean space. Both directions must go together, complementing
each other, in the research.

Whenever a variable is under the control of the experimenter OED has a
lot to say. The main idea is to search for the most informative experimental
conditions with the optimal number of replicates at each of these experi-
mental conditions. The sample size has to be fixed in advance and this is
frequently a difficult task to be solved, frequently needing number theory. A
wonderful idea was introduced by Kiefer [21] extending the concept of ex-
perimental design to any probability measure on a compact design space.
Then the so called General Equivalence Theorem (GET) [22, 40] provided
a fantastic tool for checking whether a particular design is optimal or not.
Additionally this gives the way of computing either closed–formed optimal
designs or developing numerical algorithms for their computation. What one
considers optimal here depends very much on the aim, say either estimating
the parameters, predicting results or discriminating between models; as well
as on the model itself.

Most of the optimality criteria focus on the inverse of the Fisher Informa-
tion Matrix (FIM). For linear models this is proportional to the covariance
matrix of the estimates of the parameters. The usual inferences and predic-
tions are based on this matrix, so some appropriate function of it has to be
optimized. For a linear model this matrix depends only on the design and
thus the optimization challenge is just to look for the best design according
to the corresponding criterion. If the model is nonlinear the inverse of the
FIM is asymptotically proportional to the covariance matrix, but the FIM
now depends on the unknown, and no yet, estimated parameters at the time
of planning the experimentation. There are different ways to approach this
issue,

Locally optimal designs [15], assuming some nominal values of the parame-
ters where the inverse of the FIM is locally approximated to the covariance
function.

Adaptive sequential designs, where the next design point takes into account
the observed data from previous experiments. In this case the design is a
stochastic process. This approach is rather popular, especially in medicine
and pharmacological studies with clinical trials.

Bayesian optimal designs [36], assuming a prior distribution on the param-
eters and a joint utility function including both objectives at the same
time, estimating the parameters of the model and finding the optimal de-
sign for that.
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Another important difficulty in OED arises for correlated observations,
e.g. over time or space. The world of industry is a champion on the used
of experimental designs. Computational aspects of OED have always been
an important issue. Note the contribution of Fisher [20], which gives to the
experimental design theory the current statistical approach.

Although the OED appears in 1918 with an extensive article by Kristine
Smith [32], it will not be developed at some extent until the 50’s. The volume
by Cox (1958) [16] contains a short and descriptive introduction to the basic
ideas of the theory. Pioneering monographs were written by Fedorov [19]
and Silvey [31]. A number of monographs have arrived later and can not be
mentioned here for space reasons.

The most significant advances in theory and practice of Optimal Design of
Experiments can be followed through the volumes of conference proceedings
mODa (Model-Oriented Data Analysis and Design) apart from other relevant
collections coming from workshops and conferences. The family of algorithms
traditionally used in the calculation of optimal designs are not, in a general
sense, the best possible. Although there is an important effort in this aspect
it remains as an important challenge for the theory.

2 Different approaches to the problem

One of the main criticisms to OED is that a design has to be found for a
particular model and the model has to be guessed without having the data
yet. Honestly speaking we should say there are not solutions to this issue,
which in fact is still present even with the data at hand. George Box used to
say that “Models, of course, are never true, but fortunately it is only necessary
that they be useful”, e.g. [13]. On the other hand it is quite common that
many models come from the experience, retrospective data or intuitions of
the practitioner. Sometimes they are analytically derived, e.g. as a solution
of differential equations, as happens with the majority of pharmacokinetics
models [25, 30, 29]. But, this issue is more severe in Experimental Design.
In a variety of situations before having the data two or more models may be
potential candidates. Once the data are collected a model has to be chosen
after a model selection procedure, then in a second step it has to be fitted.
Thus, the optimal design in this case faces two different objectives. On the
one hand, it has to be good for discriminating between models. This means
to organize the experiment in such a way some distances between the fitted
models from the data are as large as possible in order to make clear the
differences between them [11, 12, 23, 7, 36, 14, 37]. Appropriate distances need
to be chosen according to the existing statistical tests for discriminating [17].
On the other hand the design has to be good for inferences with the chosen
model, either for estimating the parameters, estimating some functions of
them or making predictions. Even for linear model this is not trivial at all.
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There are different approaches to this issue with some controversial and
therefore some unclear features of them. Optimal designs from different rea-
sonable perspectives may be rather different even for simple models. There
is the need of investigating this issue providing clear directions to model se-
lection. One of the first attempts to tackle the discimination paradigm from
an OED point of view consisted in embedding two (or more) rival models in
a more general model and designing to estimate the additional parameters
[5, 10]. This is the so called Ds-optimal design, which makes much sense from
an intuitive point of view. But it is not clear that this criterion increases the
power of the usual discrimination tests. As a matter of fact [24] have proved
that T- and Ds-optimality coincide only in the case that the optimal values of
the parameters in the T-criterion are the nominal values for the Ds-criterion,
which is something very artificial and may be far from reality. Otherwise, the
designs could be rather different. There is nothing definitively proved about
its relationship with the test power of the likelihood ratio test or any other
discrimination test. [28] considered three different approaches for discrimi-
nating between models: i) augmenting a given design in an optimal way, ii)
evaluating a mixture of the various criteria, and iii) optimizing an objective
subject to achieving a prescribed efficiency level for the others.

Another intuitive idea is maximizing the distance between two models as-
suming one of them is considered as the “true” model, which is the model in
the alternative hypothesis (T–optimality) [11, 12, 23]. It happens that this
focuses on maximizing the non–centrality parameter of the likelihood ratio
test statistic, which is a function of the test power. The traditional F discrim-
ination test is a particular case for nested linear models. This criterion was
extended to generalized linear models (GLM) [27] as well as heteroscedas-
ticity and multiple response [38]. As a definitive extension of T–optimality
[23] gave a criterion based on the Kullback-Leibler distance, KL-optimality,
which accounts for the likelihood ratio test power, which is also related to
the AIC. In particular, assuming just two rival models with pdf’s

fi(y, x, θi), i = 1, 2,

and assuming ft is the “true” model for either t = 1 or t = 2, the Kullback–
Leibler distance between them is

I [ft(y, x, θt), fi(y, x, θi)] =

∫
ft(y, x, θt) log

[
ft(y, x, θt)

fi(y, x, θi)

]
dy,

where i 6= t, y is the vector of responses, θi and θt are the parameters in
the two models and x is the vector of experimental conditions at which the
response y is observed.

Then, KL–optimality is defined by the following objective function,

Ii,t(ξ) = min
θi∈Ωi

∫
X
I [ft(y, x, θt), fi(y, x, θi)] ξ(dx).
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The relationship with the celebrated AIC criterion is illustrated as follows.
Let Li(θi) and Lt(θt) be the log-likelihoods of each model. It is assumed that
θ∗t is known. Then

min
θi
I[ft(y, x, θ

∗
t ), fi(y, x, θi)] = Et[Lt(θ

∗
t )]−max

θi
Et[Li(θi)],

where Et stands for the expectation according to distribution given by ft.
The expected Akaike criterion for model i is

Et[AICi] = 2{mi − Et[Li(θ̂i)]},

where mi is the number of parameters of model i and θ̂i is the Maximum
Likelihood Estimator (MLE) of θi,

θ̂i = arg max
θi

Li(θi).

Thus, if the minimum can be exchanged with the expectation then KL-
optimality also minimizes the AIC of model i.

Another way to see this relationship is using the so called relative AIC of
model i with respect to model t,

exp

[
AICt −AICi

2

]
= exp

[
log

Li(θ̂i)

Lt(θ∗t )
−mi

]
,

where the log-likelihood ratio appears in the right hand side.
[23] have proved also that T-optimality and all the mentioned existing

extensions are particular cases of KL-optimality. This means the discrimi-
nation can be considered among non-Normal models or even for correlated
observations [2, 9]. The criterion has been generalized in different ways for
more than two rival models, essentially assuming convex combinations of
the efficiencies for several models [34]. Following this idea [37] considered a
max–min criterion and provided a couple of suggesting examples with differ-
ent probability distributions or different mean in GLMs. Compound criteria
with D-optimality have been used to search for good designs also for fitting
the model [35]. The sequential [26], Bayesian [36] and Copula [1] perspectives
have also been taken into account. The computational issue still needs a lot
of work [18].

Summarizing all this, Model Selection is a major topic in contemporary
Statistics and the OED perspective can provide a significant improvement
to this problem. Finding a joint solution to the problem of identifying the
maximum information, both for discriminating between rival models and for
fitting the best them, is still a challenging topic.
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3 Hot areas for further research

In what follows some ideas for potential further work are presented.

3.1 Robustness of KL-optimal designs from different
points of view

It would be interesting to check which features in the rival models seem more
sensitive for a successful discrimination using the KL-criterion. In particular,
it would be useful to check how this criterion compared to others is able to
detect differences between rival models in the probability distribution, the
mean function, the variance structure or the dimension of the model, e.g.
more variables in the mean function. Analytic results would be very much
welcomed, but simulations studies will be there in any case. For generalized
linear models the link function must be added to this list. Atkinson [6] worked
out all the details for making inference on an extended model that includes
several submodels as GLMs.

3.2 Other divergence measures

Once a deep knowledge of what the Kullback-Leibler divergence does, bet-
ter solutions may be looked for. [23] proved that KL-optimality accounts for
maximizing the power of the likelihood ratio test, but there are other sta-
tistical tests frequently used in practice [17, 33, 39]. The test power in these
cases is likely to be connected with other divergence measures [8]. In par-
ticular, there is the need to check for the meaning of the Ds–optimality of
the differing parameters from nested models. At first sight it seems that for
nested models Ds– and KL–optimality should be the same. This is true just in
the very particular case of linear models on the parameters when the nested
model differs from the root model in just one parameter. In this case the
KL-optimal design is the Ds-optimal design for estimating that parameter.
For other models the optimal designs may be very different with very low
relative efficiencies with respect to each other [24]. For other discrimination
tests appropriate criteria must be found, taking into account other informa-
tion divergence measures, such as those derived from the Rényi entropy of
f-divergences.
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3.3 Bayesian paradigm

As mentioned above most of the optimality criteria focus on the inverse of
the information matrix. If the model is nonlinear the FIM depends on the
parameters of the model. KL-optimality, and so T-optimality, does not fo-
cus on this matrix, but directly on the probability measure (the design).
Nevertheless, even for linear models nominal values of the parameters of the
“true” model are needed. One way for approaching this issue is the use of
the Bayesian paradigm assuming a prior distribution on the parameters and
a joint utility function including both objectives at the same time, estimat-
ing the parameters of the model and finding the optimal design for that.
This theory has been considered in the literature as an important and nec-
essary approach. The Kullback-Leibler divergence jointly with the Shannon
information is used, in a different way than for discrimination, to develop a
Bayesian D-optimality criterion. [36] introduced the Bayesian approach for
discriminating between two rival models. Following-up this idea a system-
atization of the Bayesian theory for discriminating between models jointly
with fitting purposes would be welcomed. Additionally, this will avoid the
annoying assumption of the “true model”.

Utility functions focused on discrimination must be considered. This is
very much related again to looking for different divergence measures. Some
but not all of the classic optimality criteria have a utility based Bayesian
version. Mixing utility functions may help to describe several simultaneous
goals. Additionally, [37] considered a max-min criterion for more than two
rival models and gave a relationship with a Bayesian criterion assuming a
prior distribution of the weights of each model. This particular point may
be explored using mathematical programming techniques applied here. This
would be very useful for computational purposes. Max–min criteria are not
easy to deal with because of the lack of differentiability. The GET is still
applicable but an annoying auxiliary probability measure has to be found.

Summarizing these ideas, the Bayesian paradigm applied here brings
mainly three results: i) a convincing way of dealing with the unknown param-
eters, ii) better justified criteria not supported on the artificial assumption
of a “true” model and iii) efficient computational techniques for more than
two rival models.

3.4 Correlated observations

The Big Data world is a scenario of correlations, which needs to be considered
from different perspectives. In contrast with other criteria for discrimination,
KL-optimality is still valid in this situation. [9] proved that a standard gener-
alization of T-optimality to correlated observations can be done just when the
covariance matrix of the observations is assumed completely known. Designs
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for models with a partially unknown covariance structure have been widely
studied (see e.g. [4]). Most of this work has been done for D-optimality. The
approximation of the covariance matrix by the inverse of the FIM holds in
this situation under some assumptions. If these conditions are not satisfied
we have usually performed simulations with the designs obtained in the last
steps of the algorithm in order to check the monotonicity between the deter-
minants of the FIM and the covariance matrix. KL-optimality is not based on
the FIM. Therefore, there is no problem with the mentioned approximation.

A lot of work can be done on the area of optimal designs for discrimination
in presence of correlated observations. In particular, the usual time series
models require a discrimination process to select the best model, e.g. the best
values of p, d and q in an ARIMA(p, d, q) model. This is an area where things
are not so simple from an experimental design point of view. [3] considered
a rather simple time series model where the implicit covariance structure is
worked out from the model. This can be done analytically in very simple
models, but it needs some new results to be able to find a proper criterion
both for discriminating and for estimating the models.

[4] provided theoretical results for a function to be definite positive. These
results are then used to generate potential covariance structures from Bern-
stein polynomials. These results provide a powerful tool for spatio-temporal
modeling, which is not trivial since the covariance structure needs to be such
that the generated covariance matrix is nondefinite negative. Another inter-
esting point would be a deep study of the covariance structure behind the
usual time series models in order to look for appropriate optimal designs.

4 Computing optimal designs

While iterative procedures are very much needed for OED in general, they are
specially needed for finding optimal information for discriminating between
models. For KL-optimality some classical algorithms have been adapted, but
much more work has to be done here. [23] provided a general algorithm based
on the directional derivative,

(i) For a given design ξs let

θi,s = arg min
θi∈Ωi

∫
I(ft, fi, x, θi)ξs(dx)

xs = arg max
x∈χ
I(ft, fi, x, θi,s).

(ii)For a chosen αs with 0 ≤ αs ≤ 1 let

ξs+1 = (1− αs)ξs + αsξxs
,

where ξxs is a design with measure concentrated at the single point xs.
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Typical conditions for the sequences {αs} are

lim
s→∞

αs = 0,

∞∑
s=0

αs =∞,
∞∑
s=0

α2
s <∞.

This algorithm becomes slow after a while and needs to be combined with
a finer algorithm in the last part of the procedure. [37] provided another
algorithm, this time for a max-min criterion considering more than two rival
models. Convenient algorithms need to be adapted to this criterion and then
their performance need to be evaluated.

Other algorithms to be adapted include exact methods such as multi-
plicative, interior point method, active set method, sequential quadratic pro-
gramming, Nelder Mead and metaheuristic algorithms such as particle swarm
optimization, simulated annealing, genetic algorithm, and hybridizations of
these methods.

A friendly software is critical for the actual application of these ideas.
Nowadays there are web application frameworks for most of the commercial
and non commercial Mathematical an Statistical software offering a product
available for anyone without having that particular software in his or her
computer.

5 Discussion

Although OED for discrimination between models is quite popular at this
moment there is not a definitive systematization of the features and objectives
in this field converging to the joint concern of discriminating and fitting the
model. As described above, there are some controversial and unsolved issues
around all that has been done so far. Model Selection is essentially demanded
for the current need of a scientific and correct massive data treatment. KL–
optimality is currently the most general justified criterion. Nevertheless, other
criteria have to be developed according to some other statistical tests not
based on the likelihood ratio test [17]. This includes a deep study of Ds-
optimality as well as trying additional divergence measures by justifying and
comparing them.

Checking the robustness of KL–optimality for different aspects is an im-
portant task in order to have a clear idea of their strengths and limitations.
A helpful Bayesian approach can be made mainly in two ways. On the one
hand for dealing with the unknown parameters at the time of planning an
experiment. On the other hand for the case of more than two models, which
introduces a rather more complex approach with a multicriteria perspective.
The later is very much related to massive data consideration. Then in a paral-
lel way there is the case of correlated data in the so called Spatio–Temporal
Statistics, which nowadays is present everywhere with great quantities of
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possible data collection. Implementing algorithms and software for obtaining
optimal designs is very much desirable in the whole area of OED.

Model selection and so designing experiments for that purpose is very
much demanded today in our world of data analytics in the gates of the so
called Industry 4.0.
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24. López-Fidalgo J and Tommasi Ch and Trandafir C (2007) Optimal designs for discrim-
inating between some extensions of the Michaelis–Menten model. Journal of Statistical

Planning and Inference 138:3797–3804
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