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Abstract

We study conditional expectiles, defined as a natural generalisation of condi-
tional expectations by means of the minimisation of an asymmetric quadratic loss
function. We show that conditional expectiles can be equivalently characterised by
a conditional first order condition and we derive their main properties. For possible
applications as dynamic risk measures, we discuss their time consistency properties.
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1 Introduction

Expectiles have been introduced in the statistical literature by Newey and Powell
(1987) as a one parameter family of statistical functionals that includes the mean as a
special case. They are defined, for a random variable X in L2(Ω,F ,P), by the following
minimisation problem:

eα(X) = argmin
x∈R

E
[
α(X − x)2

+ + (1− α)(X − x)2
−
]
,

where α ∈ (0, 1) and x+ = max(x, 0), x− = max(−x, 0). Expectiles have many similarities
with the left and right quantiles q−α (X) and q+

α (X), that are defined by the minimisation
of an asymmetric piecewise linear function (see e.g. Koenker, 2005):

[q−α (X), q+
α (X)] = argmin

x∈R
E [α(X − x)+ + (1− α)(X − x)−] .
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Expectiles are becoming increasingly popular in the financial and actuarial literature be-
cause they have many interesting properties related to their applications as risk measures.

By definition, expectiles are elicitable; indeed, a statistical functional is said to be
elicitable if it is the minimiser of a suitable expected loss function (see e.g. Osband, 1985
or Gneiting, 2011). Elicitability is considered a useful property in the field of financial
risk management since it provides a natural methodology to compare different forecasting
models or to test the statistical hypotheses related to them; we refer to Acerbi and Szekely
(2014), Bellini and Di Bernardino (2017), Fissler et al. (2016) and the references therein.

For α ≥ 1/2, expectiles are coherent risk measures; indeed, they satisfy the well known
properties of translation invariance, positive homogeneity, monotonicity and subadditivity.
In the literature there are various axiomatic foundations for the expectiles, as the unique
coherent risk measures satisfying additional properties. Weber (2006) proved that they
are the only shortfall risk measures that are coherent; Bellini et al. (2014) proved that they
are the only generalised quantiles that are coherent; Ziegel (2016), Bellini and Bignozzi
(2015) and Delbaen et al. (2016) from slightly different angles proved that they are the
only elicitable risk measures that are coherent.

Expectiles have a straightforward financial interpretation as capital requirements, as
it was outlined e.g. in Bellini and Di Bernardino (2017). Indeed, they represent the
minimum amount of capital that has to be added to a financial loss to make it acceptable,
where the acceptance set A is defined as

A =

{
X ∈ L1 such that

E[X+]

E[X−]
≤ 1− α

α

}
.

From an actuarial point of view, they are a special case of the zero utility premium
principle, since they satisfy the equation

E [`α(X − eα(X))] = 0

with `α(x) = ax+ − (1− α)x−.
In the present paper we focus on the notion of conditional expectile, that we define as

a natural asymmetric generalisation of the notion of conditional expectation:

eGα(X) = argmin
Z∈L2(Ω,G,P)

E
[
α(X − Z)2

+ + (1− α)(X − Z)2
−
]
,

where G ⊆ F is a σ-algebra on (Ω,F). We show in Theorems 2.1 and 2.2 that the
definition is well-posed since the minimiser is P-a.s. unique and can be characterised by
a conditional first order condition. Moreover, it turns out that, for bounded random
variables, conditional expectiles belong to the class of conditional shortfall risk measures
introduced in Weber (2006). Conditional expectiles are conditional coherent risk measures
and satisfy a number of properties that we collect in Proposition 1 and Theorem 2.3.

We then consider the dynamic risk measure (eα, e
G
α) and study its time consistency

properties. Recall that a dynamic risk measure (ρ, ρG) is said to be sequentially consistent
(see Roorda and Schumacher, 2007) if it satisfies both

ρG(X) ≤ 0P-a.s.⇒ ρ0(X) ≤ 0 (acceptance consistency) and

ρG(X) ≥ 0P-a.s.⇒ ρ0(X) ≥ 0 (rejection consistency),
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while it is said to have the supermartingale property (see e.g. Detlefsen and Scandolo,
2005), if

ρ0(X) ≥ E[ρG(X)].

These properties are extremely relevant in a multiperiod setting, when the risk assess-
ment of X might depend on new information becoming available at intermediate times.
Sequential consistency guarantees that no loss will be accepted (rejected) at time 0, if it
will be accepted (rejected) for sure in the future; the supermartingale property postulates
that the riskiness of X should decrease on average when new information is available, see
e.g. Detlefsen and Scandolo (2005). It is straightforward to see that dynamic expectiles
are sequentially consistent (see Theorem 2.3, f)). The supermartingale property does
not hold in general, as it is shown in Example 2. However, in Corollary 3.1 we are able
to provide two sufficient conditions that are related to mixture convexity properties of
unconditional expectiles.

2 Conditional expectiles

Let X be a real valued random variable defined on a nonatomic probability space
(Ω,F ,P). In the following we adopt the standard actuarial notation where a positive
(negative) value of X corresponds to a financial loss (profit). All equalities and inequalities
between random variables are meant to hold P-a.s.. For the sake of notational simplicity,
Lp(Ω,F ,P) will be denoted with Lp(F), p ∈ [0,+∞]. For X ∈ L2(F) and α ∈ (0, 1), the
expectile eα(X) is defined as

eα(X) = argmin
x∈R

E
[
α(X − x)2

+ + (1− α)(X − x)2
−
]
, (1)

where x+ = max(x, 0), x− = max(−x, 0). Expectiles can also be expressed as the unique
solution of the first order condition

E [`α(X − x)] = 0, (2)

where
`α(x) = αx+ − (1− α)x−. (3)

Indeed, equation (2) is a better definition of eα since it is valid for each X ∈ L1(F). Our
first definition of conditional expectiles is a natural extension of (1).

Definition 1. Let X ∈ L2(F), G ⊆ F be a σ-algebra and α ∈ (0, 1). We define the
conditional expectile eGα(X) as:

eGα(X) = argmin
Z∈L2(G)

E
[
α(X − Z)2

+ + (1− α)(X − Z)2
−
]
. (4)

Clearly, if G = {∅,Ω} then eGα(X) = eα(X), while if G = F then eGα(X) = X. If α = 1/2
then eGα(X) = E[X | G]. In order to show that Definition 1 is well posed, in the following
theorem we prove that problem (4) has always a P-a.s. unique solution, characterised by
means of a conditional first order condition.
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Theorem 2.1. Let X ∈ L2(F), G ⊆ F and α ∈ (0, 1). The minimisation problem

min
Z∈L2(G)

E
[
α(X − Z)2

+ + (1− α)(X − Z)2
−
]

(5)

admits a P-a.s. unique solution Z∗ that satisfies

E [`α(X − Z∗) | G] = 0. (6)

Proof. To prove existence and uniqueness of the minimiser, we show that the objective
function is strictly convex, continuous and coercive; the thesis then follows from standard
results in convex optimisation (see e.g. Kurdila and Zabarankin, 2005). Let

hX(Z) := αE[(X − Z)2
+] + (1− α)E[(X − Z)2

−].

Since g(x, z) := α(x − z)2
+ + (1 − α)(x − z)2

− is strictly convex in z for each x ∈ R, it

follows that hX is strictly convex in Z. If Zn
L2

→ Z, then (X − Zn)+
L2

→ (X − Z)+ and

(X−Zn)−
L2

→ (X−Z)−, from which continuity of hX in L2 follows. Since (x−y)+ ≥ x+−y+

and (x− y)− ≥ x− − y−, it holds that

hX(Z) ≥ αE[(X+ − Z+)2] + (1− α)E[(X− − Z−)2]

= α‖(X+ − Z+)‖2
2 + (1− α)‖(X− − Z−)‖2

2

≥ α (‖X+‖2 − ‖Z+‖2)2 + (1− α)(‖X−‖2 − ‖Z−‖2)2 → +∞

when ‖Z‖2 → +∞, that shows coercivity of hX(Z). To prove the second part of the
thesis, let Z∗ be the minimiser of (5). For A ∈ G, define

fA(t) := αE[(X − (Z∗ + t1A))2
+] + (1− α)E[(X − (Z∗ + t1A))2

−].

From the dominated convergence theorem, fA is differentiable in a neighborhood of 0 and

f ′A(t) = 2αE[1A(X − (Z∗ + t1A))+]− 2(1− α)E[1A(X − (Z∗ + t1A))−].

Since Z∗ is a minimiser it must hold that f ′A(0) = 0, that gives for each A ∈ G

αE[1A (X − Z∗)+]− (1− α)E[1A (X − Z∗)−] = 0,

from which the thesis follows.

The natural domain of conditional expectiles is L1(F). It is therefore convenient to define
them directly from the conditional first order condition (6).

Definition 2. Let X ∈ L1(F), G ⊆ F and α ∈ (0, 1). We define the conditional expectile
eGα(X) as the P-a.s. unique solution of the equation

E [`α(X − Z) | G] = 0. (7)

From Theorem 2.1, Definition 1 and Definition 2 coincide on L2(F). In the following
theorem we show that Definition 2 is well posed for any X ∈ L1(F).
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Theorem 2.2. Let X ∈ L1(F), G ⊆ F and α ∈ (0, 1). There exists a P-a.s. unique
Z∗α ∈ L1(G) such that

E [`α(X − Z∗α) | G] = 0. (8)

Moreover,

eGα(X) = ess inf {Z ∈ L1(G) | E [`α(X − Z) | G] ≤ 0} (9)

= ess sup{Z ∈ L1(G) | E [`α(X − Z) | G] ≥ 0}. (10)

Proof. Let FG be a regular conditional distribution of X given G, whose existence is always
guaranteed (see e.g. Theorem 6.6.2 in Ash, 1972). Equation (8) can then be written as∫

`α(x− z)dFG(x, ω) = 0 (11)

(see e.g. Theorem 10.2.5 in Dudley, 2002). Since FG(x, ω) is a distribution function for
almost every ω ∈ Ω, it follows that equation (11) has a unique solution that we denote
Z∗α(ω). In order to show its measurability, we notice that

Z∗α(ω) = argmin
z∈R

S(ω, z),

where

S(ω, z) =

∫ [
α(x− z)2

+ + (1− α)(x− z)2
−
]

dFG(x, ω).

Since S(ω, z) is continuous in z and measurable in ω, the measurability of Z∗α follows from
the measurable maximum theorem (see e.g. Theorem 18.19 in Aliprantis and Border,
2006). To show that Z∗α ∈ L1(G), assume first that α ≤ 1/2. In this case Z∗α ≤ E[X | G],
so

E[(X − Z∗α)−] ≤ E[(X − E[X | G])−] < +∞

and

E[(X − Z∗α)+] =
1− α
α

E[(X − Z∗α)−] < +∞,

from which the thesis follows. A similar argument applies for α ≥ 1/2. To prove the last
statement, let Z̄α = ess inf {Z ∈ L1(G) | E [`α(X − Z) | G] ≤ 0}. Since eGα(X) satisfies (8),
it holds that Z̄α ≤ eGα(X). Assume by contradiction that there exists A ∈ G with P(A) > 0
such that Z̄α > eGα(X) on A. From the strict monotonicity of `α

E
[
`α(X − Z̄α)1A

]
> E

[
`α(X − eGα(X))1A

]
= 0,

which contradicts the definition of Z̄α. A similar argument proves the second equality.

We see from (9) that for X ∈ L∞(F) conditional expectiles are a special case of
conditional shortfall risk measures introduced by Weber (2006) and defined as

ρG` (X) := ess inf{Z ∈ L∞(G) | E[`(X − Z) | G] ≤ 0},

for a generic ` : R → R non decreasing, non constant and with 0 in the interior of its
range.
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In the static case, robust shortfall risk measures on L∞ have been studied in Bellini
et al. (2018), as an extension of robust entropic risk measures considered in Laeven and
Stadje (2013), while the properties of convex shortfall risk measures on L1 have been
studied in Kaina and Rüschendorf (2009).

The following proposition collects elementary properties of conditional expectiles that
can be proved directly via the corresponding properties of conditional shortfalls on L∞

by noting that `α is non decreasing with respect to α and convex for α ≥ 1
2
. From

these properties, it follows that, for α ≥ 1
2
, conditional expectiles belong to the class of

conditional coherent risk measures as introduced, up to a sign change, by Detlefsen and
Scandolo (2005).

Proposition 1. Let X ∈ L1(F) and let eGα : L1(F)→ L1(G) as in Definition 2. Then:

a) α1 ≤ α2 ⇒ eGα1
(X) ≤ eGα2

(X);

b) X ≤ Y ⇒ eGα(X) ≤ eGα(Y );

c) for any H ∈ L1(G), eGα(X +H) = eGα(X) +H;

d) for any non negative Λ ∈ L∞(G), eGα(ΛX) = ΛeGα(X);

e) for any X, Y ∈ L1(F) , if α ≥ 1
2

eGα(X + Y ) ≤ eGα(X) + eGα(Y );

if α ≤ 1
2
,

eGα(X + Y ) ≥ eGα(X) + eGα(Y ).

Further results on conditional expectiles are gathered in the following Theorem 2.3.
In particular, a) states that the conditional expectile is the static expectile applied to
the conditional distribution of the underlying position – given the information in G. This
property is to be interpreted as a conditional law-invariance, as the conditional risk mea-
surement eGα(X) solely depends on the conditional distribution of X. Property b) instead
is a generalised version of Jensen’s inequality for the asymmetric conditional expectation.
Additional continuity properties are given in d) and e), while f) and g) will be used in
the next section to establish time consistency properties of dynamic expectiles.

Theorem 2.3. Let X ∈ L1(F) and let eGα : L1(F)→ L1(G) as in Definition 2. Then:

a) eGα satisfies
eGα(X)(ω) = eα(FG(·, ω)),

where FG(·, ω) is a regular conditional distribution of X on G;

b) if φ : R→ R is increasing and convex, then

φ(eGα(X)) ≤ eGα(φ(X));

if φ : R→ R is convex, then

φ(eGα(X)) ≤ max(eGα(φ(X)), eG1−α(φ(X)));
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c) X ∈ Lp(F)⇒ eGα(X) ∈ Lp(G);

d) Xn ↑ X P-a.s.⇒ eGα(Xn) ↑ eGα(X) P-a.s.;

e) for any X, Y ∈ L1(F),

‖eGα(X)− eGα(Y )‖1 ≤ β‖X − Y ‖1,

where β = max{α/(1− α), (1− α)/α};

f) Let G1 ⊆ G2 ⊆ F . Then eG2α (X) ≤ 0⇒ eG1α (X) ≤ 0 and eG2α (X) ≥ 0⇒ eG1α (X) ≥ 0.

g) Let G1 ⊆ G2 ⊆ F . If α ∈ [1/2, 1), then

eG1α (eG2α (X)) ≥ eG1α (X),

while if α ∈ (0, 1/2], we have

eG1α (eG2α (X)) ≤ eG1α (X).

Proof. a) Recall that from the definition of regular conditional distribution FG(·, ω) is
a distribution function for almost every ω ∈ Ω, and from (8) it holds P-a.s. that

0 = E[`α(X − eGα(X)) | G] =

∫
`α(x− eGα(X))dFG(x, ω) = E[`α(Y − eGα(X))],

where Y is a random variable with distribution FG(·, ω).

b) Since φ is convex and increasing, φ(x) = supn{anx+ bn}, with an ≥ 0. Then

φ(eGα(X)) = sup
n
{aneGα(X) + bn} = sup

n
{eGα(anX + bn)} ≤ eGα(φ(X)).

For the general case notice that if an ≤ 0 the preceding argument becomes

φ(eGα(X)) = sup
n
{aneGα(X) + bn} = sup

n
{eG1−α(anX + bn)} ≤ eG1−α(φ(X)).

c) Follows immediately from b).

d) Since Xn ↑ X P-a.s., it follows that eGα(Xn) ≤ eGα(Xn+1), so eGα(Xn) ↑ Z P-a.s., with
Z ≤ eGα(X). Since

|`α(Xn − eGα(Xn))| ≤ (X − eGα(X1))+ + (X1 − eGα(X))−,

from the dominated convergence theorem it follows that

0 = E[`α(Xn − eGα(Xn)) | G]→ E[`α(X − Z) | G] = 0,

that shows Z = eGα(X).
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e) As in the scalar case, the conditional first order condition can be written as

eGα(X) = E[X | G] +
2α− 1

1− α
E
[(
X − eGα(X)

)
+

∣∣ G] .
It follows that∥∥eGα(Y )− eGα(X)

∥∥
1
≤ ‖Y −X‖1 +

2α− 1

1− α

∥∥∥(Y − eGα(Y )
)

+
−
(
X − eGα(X)

)
+

∥∥∥
1

.

Assume now that α ≥ 1/2 and let A = 1{eGα(Y )≥eGα(X)}. Clearly A ∈ G and∥∥∥(Y − eGα(Y )
)

+
−
(
X − eGα(X)

)
+

∥∥∥
1

= E
[∣∣∣(Y − eGα(Y )

)
+
−
(
X − eGα(X)

)
+

∣∣∣1A]
+
[∣∣∣(Y − eGα(Y )

)
+
−
(
X − eGα(X)

)
+

∣∣∣1Ac] ≤ E [(Y −X)+1A + (X − Y )+1Ac ]

≤ ‖Y −X‖1 .

Summing up, ∥∥eGα(Y )− eGα(X)
∥∥

1
≤ α

1− α
‖Y −X‖1 .

A similar argument holds for α ≤ 1/2.

f) From (9) it follows that

eG2α (X) ≤ 0⇒ E[`α(X) | G2] ≤ 0⇒ E[`α(X) | G1] ≤ 0⇒ eG1α (X) ≤ 0.

The other inequality follows similarly from (10).

g) For α ∈ [1/2, 1), eG1α is a coherent (and in particular subadditive) risk measure,
therefore

eG1α (X) = eG1α (X − eG2α (X) + eG2α (X)) ≤ eG1α (X − eG2α (X)) + eG1α (eG2α (X));

clearly eG2α (X − eG2α (X)) = 0, thus it follows from f) that eG1α (X − eG2α (X)) = 0, and
we obtain

eG1α (X) ≤ eG1α (eG2α (X)).

The second part of the statement follows noting that for α ∈ (0, 1/2] expectiles are
superadditive.

Being conditional coherent risk measures, conditional expectiles can be written as
suprema of conditional expectations over a set of generalised scenarios. Their dual rep-
resentation may be derived as a special case of the dual representation of conditional
shortfall risk measures that can be found in Föllmer and Schied (2011), although here the
domain is L1 instead of L∞. We provide a short and direct proof, that closely resembles
the static case considered in Bellini et al. (2014). In order to formulate it, we denote
with ess sup[ϕ | G] the conditional supremum of a random variable ϕ ∈ L∞(F) with re-
spect to a σ-algebra G ⊆ F , that is the minimal random variable Z ∈ L∞(G) such that
ess sup(ϕ1A) ≤ ess sup(Z1A) for each A ∈ G (see Barron et al., 2003 for further properties
of conditional essential suprema).
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Theorem 2.4. Let X ∈ L1(F). If α ∈ [1/2, 1), then

eGα(X) = ess max
ϕ∈MG

α

E[ϕX | G], (12)

while if α ∈ (0, 1/2], we have

eGα(X) = ess min
ϕ∈MG

α

E[ϕX | G] (13)

where

MG
α =

{
ϕ ∈ L∞(F)

∣∣∣ ϕ > 0,E[ϕ | G] = 1,
ess sup[ϕ | G]

ess inf[ϕ | G]
≤ β

}
, (14)

with β = max
(

1−α
α
, α

1−α

)
. The optimum in (12) and (13) is achieved by

ϕ̄ =
α1{X>eGα(X)} + (1− α)1{X≤eGα(X)}

E[α1{X>eGα(X)} + (1− α)1{X≤eGα(X)} | G]
.

Proof. First of all we show that for each α ∈ (0, 1) it holds E[ϕ̄X | G] = eGα(X). To this
aim, we compute

E[ϕ̄X | G] =
E[αX1{X>eGα(X)} + (1− α)X1{X≤eGα(X)} | G]

E[α1{X>eGα(X)} + (1− α)1{X≤eGα(X)} | G]

= eGα(X) +
αE[(X − eGα(X))+ | G] + (1− α)E[(X − eGα(X))− | G]

E[α1{X>eGα(X)} + (1− α)1{X≤eGα(X)} | G]

= eGα(X),

where the last equality follows from (7). Let now α ≥ 1/2. Since ϕ̄ ∈MG
α, clearly

eGα(X) ≤ ess max
ϕ∈MG

α

E[ϕX | G].

To show the opposite inequality, we prove that for each ϕ ∈MG
α

E[ϕX | G] ≤ eGα(X).

Assume w.l.o.g. that eGα(X) = 0 (otherwise replace X by X − eGα(X)). Then

E[ϕX | G] = E[ϕ(X+ −X−) | G] ≤ ess sup[ϕ | G]E[X+ | G]− ess inf[ϕ | G]E[X− | G]

≤ ess inf[ϕ | G] (βE[X+ | G]− E[X− | G]) = 0,

where the last equality follows from (14) and (7). A similar argument applies for α ≤
1/2.

Notice that if α = 1
2

then β = 1, hence from (14) it follows thatMG
1/2 = {ϕ = 1,P-a.s.},

and so we find again that eG1/2(X) = E[X | G]. If G = {∅,Ω}, then MG
α coincides with

Mα =

{
ϕ ∈ L∞(F)

∣∣∣ ϕ > 0,E[ϕ] = 1,
ess supϕ

ess inf ϕ
≤ β

}
,

that is the dual set of unconditional expectiles, see for instance Bellini et al. (2014).
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Remark 1. It is possible to check that the dual setsMα andMG
α are convex and maximal.

Further, in general MG
α 6⊆ Mα, since ess sup[ϕ | G] ≤ ess supϕ and ess inf[ϕ | G] ≥

ess inf ϕ, so
ess sup[ϕ | G]

ess inf[ϕ | G]
≤ ess supϕ

ess inf ϕ
.

As it was pointed out by an anonymous referee, it is possible to conclude that in general
it does not hold that eα(X) ≥ E[eGα(X)], since E[eGα(X)] is a coherent risk measure with
dual set MG

α. The same conclusion can be drawn from mixture concavity properties of
unconditional expectiles; see Section 3.

3 Time consistency properties of dynamic expectiles

We consider dynamic risk measures (ρ0, ρ
G) with ρ0 : L1(F) → R and ρG : L1(F) →

L1(G). In this context the σ-algebra G represents the information available at an in-
termediate time t ∈ (0, T ). Time consistency properties relate future conditional risk
assessment at time t given by ρG with today’s risk assessment given by ρ0. Recall the
following definitions (see for instance Acciaio and Penner, 2011).

Definition 3. A dynamic risk measure (ρ0, ρ
G) is said:

• dynamic consistent, if for all X, Y ∈ L1(F)

ρG(X) = ρG(Y )⇒ ρ0(X) = ρ0(Y ),

• sequentially consistent, if for all X ∈ L1(F)

a) ρG(X) ≤ 0⇒ ρ0(X) ≤ 0 (acceptance consistent), and

b) ρG(X) ≥ 0⇒ ρ0(X) ≥ 0 (rejection consistent).

• to have the supermartingale property, if for all X ∈ L1(F)

ρ0(X) ≥ E[ρG(X)]. (15)

Dynamic consistency implies sequential consistency, while the supermartingale prop-
erty implies rejection consistency but does not in general imply acceptance consistency.
Kupper and Schachermayer (2009) proved that in the monetary and law invariant case
dynamic consistency is satisfied only by the entropic risk measure, defined by the one
parameter family

ρGγ (X) =


1
γ

lnE [exp(γX) | G] , if γ ∈ (−∞, 0) ∪ (0,+∞)

E [X | G] , if γ = 0

ess sup[X | G], if γ = +∞

(Föllmer and Schied, 2011). It follows that dynamic expectiles satisfy dynamic consistency
only when they coincide with conditional expectations, that is when α = 1/2. Another
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way to see the same result is to recall that Detlefsen and Scandolo (2005) proved that
dynamic consistency is equivalent to the tower property

ρ0(ρG(X)) = ρ0(X),

that is not satisfied by conditional expectiles with α 6= 1/2, as it can be seen in elementary
examples such as the following one.

Example 1. Let Ω = {ω1, . . . , ω4}, P(ωi) = 1/4, G = {Ω, ∅, A,Ac} with A = {ω1, ω2}.
Let X(ωi) = i and α = 1/3. Then

eG1/3(X)(ω) =

{
4/3 if ω ∈ A

10/3 if ω ∈ Ac,

so e1/3(eG1/3(X)) = 2, while e1/3(X) = 13/6.

On the contrary, from Theorem 2.3, f) it follows immediately that dynamic expectiles
are sequentially consistent, coherently with Weber (2006) that showed that (under some
weak continuity assumptions and on L∞) the class of sequentially consistent risk measures
coincides with the class of dynamic shortfall risk measures. Thus the only question that
remains open is whether dynamic expectiles have the supermartingale property.

Since conditional expectiles are conditionally law invariant, a necessary condition for
the supermartingale property of dynamic expectiles is mixture concavity of unconditional
expectiles (see e.g. Pflug and Römisch, 2007). We report the argument for completeness.
Let M1 :=M1(R) be the space of distributions on R with finite first moment and recall
that a law invariant risk measure on L1 can be alternatively defined as a functional on
M1, where, with slight abuse of notation, we denote ρ(F ) = ρ(X) for any random variable
X ∼ F ∈ M1. Since (Ω,F ,P) is nonatomic, for each λ ∈ (0, 1) and for each F,G ∈ M1

there exist A ∈ F with P(A) = λ and X, Y ∈ L1(F) with X ∼ F and Y ∼ G such that
1A, X and Y are pairwise independent. Letting Z = 1AX+1ACY and G = {A,AC , ∅,Ω},
clearly Z ∼ λF + (1− λ)G, and from conditional law invariance we get

eGα(Z)(ω) =

{
eα(F ) if ω ∈ A
eα(G) if ω ∈ Ac

.

Hence the supermartingale property (15) implies that for each F,G ∈ M1 and for each
λ ∈ (0, 1),

eα(λF + (1− λ)G) ≥ λeα(F ) + (1− λ)eα(G), (16)

that corresponds to the concavity of the function

z(λ) := eα(λF + (1− λ)G). (17)

It turns out that (17) is in general not satisfied, as it can be seen in the following example.

Example 2. Let F = 1
2
δ−1 + 1

2
δ1 and G = 2

3
δ0 + 1

3
δ5. Then e1/3(F ) = −1/3, e1/3(G) = 1,

z(λ) =

{
10−13λ
10−λ if λ ∈ [0, 10/13)

10−13λ
6+3λ

if λ ∈ [10/13, 1]

11
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z′′(λ) =

{
240

(λ−10)3
< 0 if λ ∈ (0, 10/13)

24
(λ+2)3

> 0 if λ ∈ (10/13, 1),

so z(λ) changes its concavity in λ = 10/13.

Remark 2. Alternatively, the lack of mixture concavity of expectiles may be derived from
Corollary 6 in Acciaio and Svindland (2013), since the set of generalised scenarios Mα

in their dual representation is not convex with respect to mixtures (although it is convex
with respect to sums, as we noted in Remark 1).

However, for fixed F and G, we can prove an equivalent characterisation and two simple
sufficient conditions for (16) (or for the opposite inequality).

Theorem 3.1. Let F,G ∈ M1 with eα(F ) < eα(G) and let z̄ := λeα(F ) + (1− λ)eα(G),
with λ ∈ (0, 1). If α < 1/2, then

eα(λF + (1− λ)G) ≤ λeα(F ) + (1− λ)eα(G) (18)

if and only if

λ

∫ z̄

eα(F )

F (t)dt− (1− λ)

∫ eα(G)

z̄

G(t)dt ≥ 0, (19)

while
eα(λF + (1− λ)G) ≥ λeα(F ) + (1− λ)eα(G) (20)

if and only if

λ

∫ z̄

eα(F )

F (t)dt− (1− λ)

∫ eα(G)

z̄

G(t)dt ≤ 0. (21)

If α > 1/2, then (18) ⇐⇒ (21) and (20) ⇐⇒ (19).

Proof. Let x := eα(F ) and y := eα(G), so that z̄ = λx+(1−λ)y. Let Hλ := λF+(1−λ)G
and z̃ := eα(Hλ). Define also

I(z) := α

∫ +∞

−∞
(t− z)+dHλ(t)− (1− α)

∫ +∞

−∞
(t− z)−dHλ(t).

Since I(z̃) = 0 and I(z) is strictly decreasing, it follows that

z̃ ≤ z̄ ⇐⇒ I(z̄) ≤ 0.

Integrating by parts, we compute

I(z) = α

∫ +∞

z

Hλ(t)dt− (1− α)

∫ z

−∞
Hλ(t)dt = αλ

∫ +∞

z

F (t)dt+

+ α(1− λ)

∫ +∞

z

G(t)dt− (1− α)λ

∫ z

−∞
F (t)dt− (1− α)(1− λ)

∫ z

−∞
G(t)dt,

12
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where Hλ = 1−Hλ, F = 1−F , G = 1−G. For z ∈ (x, y), we break the integrals getting

I(z) = αλ

∫ y

z

F (t)dt+ αλ

∫ +∞

y

F (t)dt+ α(1− λ)

∫ y

z

G(t)dt+ α(1− λ)

∫ +∞

y

G(t)dt+

− (1− α)λ

∫ x

−∞
F (t)dt− (1− α)λ

∫ z

x

F (t)dt− (1− α)(1− λ)

∫ x

−∞
G(t)dt+

− (1− α)(1− λ)

∫ z

x

G(t)dt. (22)

Since x = eα(F ) and y = eα(G), it holds that

α

∫ +∞

y

G(t)dt = (1− α)

∫ y

−∞
G(t)dt and (1− α)

∫ x

−∞
F (t)dt = α

∫ +∞

x

F (t)dt,

so substituting the fourth and fifth integral in (22) we get

I(z) = αλ

∫ y

z

F (t)dt+ αλ

∫ +∞

y

F (t)dt+ α(1− λ)

∫ y

z

G(t)dt+ (1− α)(1− λ)

∫ y

−∞
G(t)dt+

− αλ
∫ +∞

x

F (t)dt− (1− α)λ

∫ z

x

F (t)dt− (1− α)(1− λ)

∫ x

−∞
G(t)dt+

− (1− α)(1− λ)

∫ z

x

G(t)dt = −αλ
∫ z

x

F (t)dt+ α(1− λ)

∫ y

z

G(t)dt+

+ (1− α)(1− λ)

∫ y

z

G(t)dt− (1− α)λ

∫ z

x

F (t)dt.

Recalling that z̄ = λx+ (1− λ)y, we compute

I(z̄) = −αλ
∫ z̄

x

F (t)dt+ α(1− λ)

∫ y

z̄

G(t)dt+ (1− α)(1− λ)

∫ y

z̄

G(t)dt+

− (1− α)λ

∫ z̄

x

F (t)dt = −αλ
∫ z̄

x

(1− F (t))dt+ α(1− λ)

∫ y

z̄

(1−G(t))dt+

+ (1− α)(1− λ)

∫ y

z̄

G(t)dt− (1− α)λ

∫ z̄

x

F (t)dt = −αλ(z̄ − x)+

+ αλ

∫ z̄

x

F (t)dt+ α(1− λ)(y − z̄)− α(1− λ)

∫ y

z̄

G(t)dt+ (1− α)(1− λ)

∫ y

z̄

G(t)dt+

− (1− α)λ

∫ z̄

x

F (t)dt = (2α− 1)

(
λ

∫ z̄

x

F (t)dt− (1− λ)

∫ y

z̄

G(t)dt

)
,

since −αλ(z̄ − x) + α(1− λ)(y − z̄) = 0. It follows that, in the case α < 1/2,

I(z̄) ≤ 0 ⇐⇒ λ

∫ z̄

x

F (t)dt− (1− λ)

∫ y

z̄

G(t)dt ≥ 0,

which gives the thesis. The case α > 1/2 follows immediately.

Inequalities (19) and (21) are not easy to check directly. We provide two simple sufficient
conditions in the following theorem.
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Theorem 3.2. Let F,G ∈M1 with eα(F ) < eα(G). Let α < 1/2.

a) If
F (eα(F )) ≥ G(eα(G)), (23)

then for each λ ∈ (0, 1) it holds that

eα(λF + (1− λ)G) ≤ λeα(F ) + (1− λ)eα(G). (24)

b) If
F (z) ≤ G(z), (25)

for each z ∈ (eα(F ), eα(G)), then for each λ ∈ (0, 1) it holds that

eα(λF + (1− λ)G) ≥ λeα(F ) + (1− λ)eα(G). (26)

If α > 1/2 then (23)⇒ (26) and (25)⇒ (24).

Proof. Since F and G are non decreasing, we have the straightforward inequality

λ

∫ z̄

x

F (t)dt− (1− λ)

∫ y

z̄

G(t)dt ≥ λF (x)(z̄ − x)− (1− λ)G(y)(y − z̄)

= λ(1− λ)(y − x)[F (x)−G(y)].

If (23) holds, then (19) holds, from which a) follows again from Theorem 3.1. Similarly,
from the specular inequality

λ

∫ z̄

x

F (t)dt− (1− λ)

∫ y

z̄

G(t)dt ≤ λF (z̄)(z̄ − x)− (1− λ)G(z̄)(y − z̄)

= λ(1− λ)(y − x)[F (z̄)−G(z̄)]

we get that (25)⇒ (21), from which b) follows, again from Theorem 3.1.

We illustrate the previous results in the following examples.

Example 3. Let F = δx and G = δy, with x < y. Since eα(F ) = x and eα(G) = y,
condition (23) is satisfied. By a direct computation,

eα(λF + (1− λ)G)− λeα(F )− (1− λ)eα(G) =
λ(1− α)x+ α(1− λ)y

λ(1− α) + α(1− λ)
− λx− (1− λ)y

= (2α− 1)
λ(1− λ)(y − x)

λ(1− α) + α(1− λ)
,

that has the same sign of 2α− 1, in accordance with Theorem 3.2.

Example 4. Let F = 1
2
δ0 + 1

2
δ1 and G = 2

3
δ1/3 + 1

3
δ1. Since e1/3(F ) = 1/3, e1/3(G) =

7/15, and for z ∈ (1/3, 7/15) it holds that F (z) ≤ G(z), condition (25) is satisfied. hence
the inequality

eα(λF + (1− λ)G) =
14− 5λ

30− 3λ
≥ λ

3
+ (1− λ)

7

15
= λeα(F ) + (1− λ)eα(G),

is satisfied for any λ ∈ (0, 1), as can be easily verified.

In the following Corollary we summarise the sufficient conditions for the supermartin-
gale property that follows from Theorem 3.2. The straightforward proof is omitted.
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Corollary 3.1. Let A ∈ F and let X, Y ∈ L1(F) such that 1A, X and Y are pairwise
independent. Let Z = 1AX+1ACY and let G = {A,AC , ∅,Ω}. Let F and G be respectively
the distribution functions of X and Y . The following conditions are sufficient for the
supermartingale property eα(Z) ≥ E[eGα(Z)].

i) α > 1/2 and F (eα(X)) ≥ G(eα(Y )),

ii) α < 1/2 and F (z) ≤ G(z), for each z ∈ (eα(X), eα(Y )).
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