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ABSTRACT

The incidence and prevalence of chronic kidney disease represents
an important problem for public health. In renal diseases, the
main histologic alterations derive from the development of renal
fibrosis which results from the loss of the balance between pro-
and anti-fibrotic factors. Tyrosine kinase receptors (RTKs) and
matricellular proteins (MPs) are nowadays studied as potential
modulators of renal injury. RTKs regulate cell cycle, migration,
metabolism and cellular differentiation. Discoidin domain recep-
tor-1 (DDR-1) is an RTK that has been extensively studied in
cancer, and lung and renal diseases. It modulates inflammatory
recruitment, extracellular matrix deposition and fibrosis; in renal
diseases, it appears to act independently of the underlying disease.
MPs regulate cell-matrix interactions and matrix accumulation,
cellular adhesion and migration, and expression of inflammatory
cells. Periostin is an MP, mainly studied in bone, heart, lung
and cancer. Several studies demonstrated that it mediates cell-
matrix interactions, migration of inflammatory cells and devel-
opment of fibrosis. Recently, it has been reported in several ne-
phropathies. In this review, we discuss the potential pathological
roles of DDR-1 and periostin focussing on the kidney in both
experimental models and human diseases.

Keywords: discoidin domain receptor-1, matricellular proteins,
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INTRODUCTION

Chronic kidney disease (CKD) represents a major problem for
public health. It affects up to 10% of the general population
with a prevalence and incidence that has increased worldwide

over the past 25 years and has almost doubled in both the USA
and Europe [1]. Diabetes and high blood pressure are the
major causes of CKD, followed by glomerulonephritis. Inde-
pendent of the underlying cause, the pathogenesis of CKD is
characterized by the progressive impairment of glomerular,
tubulointerstitial and vascular compartments. Chronic expos-
ure of these structures to pathogens leads to the development
of glomerulosclerosis, interstitial fibrosis, tubular atrophy and
vascular sclerosis.

For CKD patients, dialysis and renal transplantation are the
only effective therapies. Apart from drugs targeting the renin–
angiotensin system (RAS), which are only partially effective,
there are no drugs able to reduce or reverse fibrotic processes
during kidney diseases.

This review consists of three parts: in the first, recently pub-
lished data about novel mediators of renal fibrosis are discussed;
in the second and third ones, the role of tyrosine kinase recep-
tors and matricellular proteins (MPs) in both renal and other
diseases are briefly presented, focussing mainly on DDR-1 and
periostin, respectively.

OLD AND NOVEL MEDIATORS OF RENAL
DAMAGE

Development of renal fibrosis is characterized by accumulation
and deposition of extracellular matrix (ECM) and microvascular
rarefaction. The mechanisms underlying these processes result
from the loss of the correct balance between pro- and
anti-fibrotic factors (Figure 1) [2]. The main acknowledged
mediators of renal fibrosis are angiotensin II (Ang-II), endothe-
lin-1, transforming growth factor-β (TGF-β), platelet-derived
growth factor (PDGF), epidermal growth factor and the
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inhibitor of type 1 plasminogen activator. Among them, Ang-II,
TGF-β and PDGF have been better studied and characterized.

Overexpression of Ang-II, typical in most renal diseases, is
directly correlated with an increase in the expression of other
pro-fibrotic factors, such as TGF-β, collagen I, collagen IV and
matrix metallopeptidase-2 and 9. Drugs targeting AT II action
or production have a protective effect in both kidney and heart
diseases, since they inhibit the progression of CKD and reduce
cardiovascular risk in CKD patients. TGF-β is also a major
pro-fibrotic factor. Its overexpression promotes ECM synthesis
and deposition and, at least in vitro, epithelial–mesenchymal
transition (EMT). The protective effect of its blockage has
been demonstrated by several groups in different experimental
models of nephropathies [3]. Pirfenidone is a recently devel-
oped anti-TGF-β drug. Whereas its precise mechanism of
action is not totally understood, it exhibits both anti-fibrotic
and anti-inflammatory effects. In detail, it reduces fibroblast
proliferation and the expression of TGF-β in experimental
models; in patients with lung and kidney fibrosis, it showed
clear anti-fibrotic properties. Moreover, it is able to reduce the
production of inflammatory mediators such TNF-α and inter-
leukin-1 [4]. Concerning kidney diseases, the drug was tested
in focal and segmental glomerulosclerosis and in diabetic
nephropathy with encouraging results [5].

Another important pro-fibrotic factor is PDGF, which is
expressed in most renal cells during development and after
injury [6] and modulates cell proliferation and migration,
ECM accumulation, production of pro- and anti-inflamma-
tory mediators and tissue permeability. PDGF receptors have
tyrosine kinase activity and, similar to the majority of this
kind of receptors, upon ligand binding are autophosphory-
lated. PDGF inhibitors have been developed and used to treat
gastrointestinal and breast cancers, but unfortunately all of
them exhibit limited selectivity for PDGF [7].

Among other anti-fibrotic factors, bone morphogenic pro-
teins (BMPs), tissue plasminogen activator and hepatic growth
factor (HGF) are the most studied. BMPs, especially BMP-7,
and HGF act as natural TGF-β antagonists by blocking Smad
2/3 nuclear translocation in interstitial fibroblasts. Unfortu-
nately, the encouraging results obtained from experimental
models were not reproduced in clinical trials [8].

TYROSINE-KINASE RECEPTORS AND DDR-1

Receptors with tyrosine kinase activity (RTKs) are transmem-
brane receptors with intrinsic, ligand-stimulable tyrosine kinase
activity. Insulin receptor, epidermal growth factor receptor
(EGFR), PDGFR and fibroblast growth factor receptors
(FGFRs) are part of this group of receptors. They regulate cell
cycle, migration, metabolism and cellular differentiation both
during embryogenesis and in adult life.

A typical RTK comprises three domains: (i) extracellular,
the binding site of the ligands; (ii) transmembrane (22–26
amino acids), with anchorage functions; (iii) intracellular, the
signal transduction domain, composed of a juxtamembrane
region, a tyrosine kinase catalytic domain and a carboxyl-
terminal region. Usually, the binding of the ligand is followed

by dimerization of the receptor, autophosphorylation and,
finally, the transduction of the signal and the activation of
several intracellular pathways including MAP kinases (Erk1/2,
Jnk, p38, Rrk5) and PI3k/AKT [9].

DDR-1 is an RTK. In humans, the DDR-1 gene is localized
on chromosome 6, in the region 6p21.3 [10]. Compared with
the other RTKs, it has a longer juxtamembrane domain and a
unique activation pattern that takes place several hours after
the initial stimulation. DDR-1 is activated by several types of
collagen including collagen I–VI and VIII in its native, triple-
helical form; due to alternative splicing in the intracellular
domain, five isoforms have been identified (a- to -e) [11]. Each
isoform seems to have a distinct and specific biological role.
For example, DDR-1b protein is the predominant isoform
expressed during embryogenesis, whereas the a-isoform is
commonly found in several human mammary carcinoma cell
lines. As with most RTKs, MAP kinase and PI3 pathways are
the downstream effectors of DDR-1 (Figure 2).

Generation of the DDR-1 knock-out mice led to the deter-
mination of the biological role of DDR-1 in morphogenesis, dif-
ferentiation and proliferation in several organs. Initial reports
stated that DDR-1 KO mice are smaller than wild-type mice,
and that females are not fertile due to defects in blastocyst im-
plantation and are unable to produce milk [12]. However, these
initial observations were not confirmed in subsequent studies
using KO mice with a stable genetic background.

In human atherosclerosis, the activation of the receptor
seems to be implicated in the induction of MMP1 and MMP2
expression, therefore modulating ECM accumulation [13]. DDR-1
has been widely studied in cancer and shown to be overexpressed
in many types of cancers including brain [14], ovarian [15], liver
[16], pancreatic [17], prostate [18] and colon [19] cancer. In these
cancers, DDR1 overexpression, which mediates proliferation and
the metastatic process, correlates with the progression of the
disease, therefore representing a potential prognostic marker [20].
In haematologic disorders, anomalies in the expression of DDR-1
were described in acute lymphoblastic leukaemia [21].

Recent investigations focussed their interest on the implica-
tion of DDR-1 in renal disease. In an Ang II-induced hyper-
tensive model of renal disease, it was shown that DDR-1 was
overexpressed in renal vessels and glomeruli of treated mice.
While systolic blood pressure increased similarly in Ang II-
treated WT and DDR-1 KO mice, renal function and histology
were significantly preserved in the second group. DDR-1 KO
mice also showed a significant reduction in T lymphocyte and
macrophage infiltration and in collagen I and IV deposition
in renal tissue [22]. In a model of tubulointerstitial fibrosis
(unilateral ureteral obstruction or UUO), DDR-1 was overex-
pressed in interstitial cells, especially macrophages [23].
Conversely, DDR-1 KO mice showed less perivascular inflam-
mation and interstitial fibrosis. In ex vivo experiments, inflam-
matory cells isolated from DDR-1 KO mice showed reduced
migratory activity [23]. Subsequent studies, investigated the role
of DDR-1 in crescentic glomerulonephritis induced by anti-
bodies against the glomerular basement membrane. Similar to
the previous models, DDR-1 KO mice were protected in terms
of renal function, histological lesions and mortality [24]. Similar
results were obtained after the administration of specific
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antisense oligonucleotides for DDR-1. Clinical data regarding
DDR-1 implication in human nephropathies and the potential
role of its modulation in a therapeutic sense are still missing.

Inhibitors of tyrosine kinase receptors with a preferential
selectivity for DDR-1 are under development, and experimen-
tal and clinical data have underscored their efficiency in treat-
ing cancers and haematological disorders. Until now, two of
them have been tested and showed some promising effects:
imatinib and nilotinib.

Imatinib is a non-selective inhibitor of several RTKs, including
DDR-1. In particular, it is able to modulate the expression of
PDGFR α and β, C-KIT and colony-stimulating factor-1 receptor
[25]. All three of them are modulators of inflammatory and fi-
brotic processes [26]. Imatinib is nowadays used in patients with
haematologic disorders such as chronic and acute myeloid leu-
kaemia and gastrointestinal stromal tumours. It has been tested
in many experimental studies with very encouraging results in
diabetic, cryoglobulinaemic and lupus nephropathy models.

Unfortunately, it is not free from side effects (occasional nausea,
diarrhoea, periorbital oedema and muscle cramps), correlated
with its non-selective inhibition of RTKs which results in epithe-
lial toxicity. These limitations underline the need for specific
therapeutic targets in order for selective inhibitors to be designed.

Nilotinib is a second-generation inhibitor of RTKs. It was
tested in a model of chronic nephropathy with promising
results. Unfortunately, its tolerance in humans remains to be
demonstrated. Taking into account the capacity of both imati-
nib and nilotinib to modulate the immune response and
inhibit fibrogenesis, a possible therapeutic role for them in dis-
eases such as lupus erythematosus, chronic humoral rejection
in kidney transplantation and cryoglobulinaemia has been hy-
pothesized [27]. However, this is an emerging field of pharma-
cology and the recent description of novel selective and orally
bioavailable DDR1 inhibitors will provide additional new tools
to test the efficiency of blocking DDR1 in renal and other
inflammatory/fibrotic diseases [28].

MPs AND PERIOSTIN : RECENT MEDIATORS
IN RENAL FIBROSIS

Research about MPs and specifically periostin in renal diseases
represents a promising recent field. ECM deposition is an im-
portant step in the progression of kidney injury. MPs are part
of a class of ECM-related molecules that are able to bind to cell
surface receptors (integrins) and to extracellular growth fac-
tors and collagens and modulate cell-matrix interactions [29].
Besides their normal expression during development, they are
re-expressed in pathologies like fibrosis and cancer. Their role
has mainly been studied in cancer, where a direct link between
MP up-regulation, tumour growth and metastasis was demon-
strated. In this context, MPs, produced by both tumour and
surrounding stromal cells (fibroblasts and macrophages),
modulate cellular adhesion and migration, ECM deposition
and angiogenesis due to the regulation of TGF-β and other
growth factors and their receptors, and to the stimulation of
integrins that transduce pro-survival or pro-migratory signals.
Most of these actions also induce a chronic low inflammatory

F IGURE 1 : Progression or regression of fibrotic lesions depends on the balance between pro- and anti-fibrotic systems.

F IGURE 2 : DDR-1 promotes the activation of transcription factors
and gene expression through MAP Kinase and PI3 pathways.
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state, involved in tissue neoplastic transformation and tumour
progression [30].

MPs have been recently reported in the pathogenesis of
chronic glomerulopathies and tubulointerstitial diseases. In
human crescentic glomerulonephritis, osteopontin is overex-
pressed in macrophages. Similarly, in a diabetic mouse model,
a contribution of the MP SPARC in glomerulosclerosis and
tubulointerstitial damage was detected and related to increased
TGF-β1 expression [31]. Finally, thrombospondin was shown
to regulate pathophysiological changes in different models
of renal disease via activation of TGF-β, pro-apoptotic and
pro-inflammatory mediators [32].

Periostin is an MP of 90 kDa originally named osteoblast-
specific factor 2; its strong expression within the periosteum
and periodontal ligament changed its name to that in use. The
protein is composed of an N-terminal EMI domain rich in cyst-
eine residues, which is the protein–protein interactions site [33];
a fasciclin I domain, containing four tandem Fas I domains,
each composed of ∼150 amino acids; and the carboxyl-terminal
domain, which includes a heparin-binding site at its C-terminal
end. This site is frequently cleaved by proteolysis giving the
protein-specific characteristics and functions (Figure 3).

For example, a specific cleavage at a region near the C-
terminus of periostin (a heparin-binding site) was reported as
essential for the association of periostin with tenascin-C.
Normally, many pathways influence the expression of perios-
tin. In bone diseases, it is up-regulated by c-fos, TGF-β, BMP-
2, retinoic acid, PDGF, FGF-1 and FGF-2, and parathormone
[34]. After its stimulation, periostin directly interacts via its
EMI domain with collagen I, fibronectin and Notch-1 via its
Fas I domain with tenascin C and BMP-1.

The generation of mice lacking periostin expression con-
tributed to a better understanding of its biological role. Anom-
alies are detectable at 3 months in teeth and periodontal
apparatus, with distinct radiographic signs of alveolar bone
destruction and external root reabsorption and defective peri-
odontal ligaments, reflecting a significant increase in osteoclast
activity [35]. Subsequent studies demonstrated that these
somatotropic defects are either due to malnutrition or to genetic
background since some stabilized strains do not exhibit a
particular phenotype. The importance of periostin in bone
metabolism is also underscored by its re-expression after

mechanical stress and fracture, participating in the repair pro-
cesses due to its capacity of binding to cell-surface receptors
modulating cell adhesion, proliferation, differentiation and
cell-matrix interactions. Periostin overexpression has been de-
scribed in the stroma of many tumours such as bone, non-
small cell lung cancer, renal cell carcinoma and malignant
pleural mesothelioma, and is associated with metastasis and
poor prognosis.

The role of periostin in the heart and the lung under physio-
pathological conditions has also been investigated. Many of the
observations in animal models seem to be reflected in humans.
Periostin is highly expressed during embryogenesis and in-
volved in valve and ventricular development [36]. After ischae-
mic injury and in advanced heart failure, periostin is
abundantly expressed by cardiac fibroblasts in the infarct border
in response to TGF-β1, reflecting the well-known direct link
between TGF-β1 and periostin [37]. In this context, periostin
seems to promote fibroblast migration through interaction with
integrin ανβ3, production of collagen I and fibrillogenesis [38].
In patients with atherosclerotic and rheumatic valve disease,
periostin expression is markedly elevated in the sub-endothelial
layer of the valve, whereas its expression is reduced in the valves
of infants with congenital bicuspid aortic valve stenosis [38].

With regard to lung diseases, in patients affected by idio-
pathic pulmonary fibrosis, it was demonstrated that periostin
is produced by structural and inflammatory cells and is up-
regulated during fibrotic responses. Moreover, serum periostin
gives important information about the progression of the
disease [39]. In asthmatic patients, the protein is secreted by
activated airway epithelium into the underlying matrix where
it has autocrine effects on epithelial cell function and paracrine
effects on fibroblasts, probably contributing to airway remod-
elling [40]. In a recently published study in asthmatic patients,
serum periostin levels were inversely correlated to the thera-
peutic response to lebrikizumab, a monoclonal antibody with
anti-IL-13 function [41]. Involvement of periostin in many
human cancers such as that of the lung, colon, pancreatic and
breast has also been described. After binding to integrins, peri-
ostin activates signalling pathways that induce an increase of
cell survival, angiogenesis and metastasis.

Periostin is expressed in the kidney during development and
tissue remodelling, and has a role in tubulogenesis and

F IGURE 3 : Structure and interactions of periostin.
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vasculogenesis [42]. As in other organs, periostin is re-
expressed during renal injury. The role of periostin in renal
diseases has been studied in several models of kidney injury.
In hypertensive nephropathy, its expression was correlated
with the increase of blood pressure, and its levels were lower in
the group of mice treated with RAS blockers [43]. Recently, it
was shown that periostin, in addition to being a marker, can
also mediate renal disease, and targeting its reactivation pre-
served the decline of renal function and structure. Thus, mice
lacking the periostin gene showed less injury-induced intersti-
tial fibrosis and inflammation in the UUO model [44]. In add-
ition, in vivo delivery of antisense oligonucleotides to inhibit
periostin expression protected animals from hypertension-
induced renal injury. The mechanism of periostin action prob-
ably involves an interaction with the TGF-β pathway since in
vitro administration of TGF-β to renal epithelial cells increased
the expression of periostin several-fold, leading to subsequent
loss of the epithelial phenotype [44].

In patients affected by autosomal dominant polycystic kidney
disease, the periostin gene was one of the most abundant genes
in cyst epithelial cells compared with normal tubular cells. Peri-
ostin expressed in renal cysts accelerates their growth and contri-
butes to structural changes in the kidney, including interstitial
fibrosis via αν-integrin signalling [45].

Periostin expression was also observed in biopsies from
glomerular diseases [46]. Specifically, biopsies from patients
with glomerulopathies and renal dysfunction were analysed
and they revealed enhanced periostin expression in the mesan-
gium, tubular interstitium and sites of fibrosis. Moreover,
the increase of periostin staining correlated with the decline of
the glomerular filtration rate in these patients. Periostin urinary
excretion rates have been measured in a limited number of pro-
teinuric and non-proteinuric CKD patients [47]. In a recent study
performed with a small number of biopsies of transplanted
kidneys, periostin was detected in glomerular, interstitial and
vascular areas of injury. Moreover, in these patients, urinary

Table 1. DDR-1 and periostin involvement in human diseases

Authors Year Field of interest Conclusions

DDR-1
Ferri et al. [13] 2004 Atherosclerosis In atherosclerotic lesions, DDR-1 is expressed in smooth muscle cells. Its

phosphorylation leads to decreased collagen biosynthesis and increased collagen and
elastin breakdown that modulate ECM remodelling.

Weiner et al. [14] 2000 Brain cancer DDR-1 is expressed in high-grade brain neoplasms. It could be a potential marker of
the tumour presence within the central nervous system.

Heinzelmann-Schwarz
et al. [15]

2004 Ovarian cancer DDR-1 up-regulation is an early event in the development of ovarian cancers and
could aid in the early detection of disease.

Gu et al. [16] 2011 Liver cancer Detection of activation of several ROS tyrosine kinases, DDR-1 included, in
cholangiocarcinoma.

Ford et al. [20] 2007 Lung cancer Association of DDR-1 with human lung cancer. DDR-1 is significantly up-regulated
in patients and has a strong prognostic role.

Chiaretti et al. [21] 2005 Haematological disorders High expression of DDR-1 in BCR/ABL-positive adult acute lymphocytic leukaemia.
Wallace and Gewin [27] 2013 Renal diseases Possible beneficial effect of RTK inhibitors in human nephropathies: membranous

nephropathy, systemic lupus erythematosus, chronic humoral rejection after renal
transplantation and cryoglobulinaemic vasculitis.

Periostin
Naik et al. [39] 2012 Idiopathic pulmonary fibrosis In idiopathic pulmonary fibrosis, periostin is produced by structural and

inflammatory cells and is up-regulated during fibrotic responses. Plasma periostin
may be a useful biomarker to predict early progression of disease.

Sidhu et al. [40] 2010 Asthma Periostin is secreted by airway epithelial cells and has both autocrine (activation of
TGF-β, up-regulation of collagen-I) and paracrine effects (collagen production in
fibroblasts). Its persistent up-regulation in the airway epithelium in asthma could
increase airway fibrosis and decrease airway dispensability.

Corren et al. [41] 2011 Asthma Patients with high levels of serum periostin respond better to treatment with
brikizumab than patients with low serum periostin levels.

Wallace et al. [45] 2008 Autosomal dominant
polycystic kidney disease

Increased expression of periostin accelerates cyst growth and modulates structural
changes in the kidney (interstitial fibrosis). Periostin is overexpressed in human
ADPKD cyst-lining cells and accumulates within the interstitium and cyst fluid of
ADPKD kidneys in situ.

Sen et al. [46] 2011 Renal diseases Periostin is increased in glomeruli of proteinuric patients. De novo expression,
proportional to loss of renal function, is found also in the tubules and interstitium
of CKD patients.

Satirapoj et al. [47] 2012 Renal diseases Periostin is a marker of tubular de-differentiation and a promising tissue and urine
biomarker for kidney injury in human renal disease.

Satirapoj et al. [48] 2014 Renal transplantation Periostin could be used as a potential urine biomarker for chronic progressive renal
injury in transplant recipients.

Braun et al. [49] 2013 Peritoneal dialysis Periostin is expressed by fibroblasts and deposited in the peritoneal cavity of patients
with encapsulating peritoneal sclerosis and with simple peritoneal fibrosis on
peritoneal dialysis. It could modulate the progression of peritoneal injury.

Wantanasiri et al. [50] 2015 Lupus nephritis Periglomerular overexpression of periostin, which is also present in fibrotic foci. The
periostin staining score correlated with the chronicity index score and renal function
in patients with lupus nephritis.
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periostin showed a direct correlation with urine protein/
creatinine ratio and serum creatinine [48].

In another recent retrospective study performed in patients
undergoing peritoneal dialysis, a role for periostin in the
development and progression of peritoneal fibrosis was hypo-
thesized. In control peritoneal biopsies, the protein was consti-
tutively present in the walls of larger arteries and focally in the
ECM in the sub-mesothelial zone. In patients with encapsulat-
ing peritoneal sclerosis, its expression was mostly in the scler-
otic layer. In a subgroup of patients periostin concentration in
dialysate liquid was also evaluated and significantly increased
with time in peritoneal dialysis in patients without signs of
encapsulating peritoneal sclerosis [49]. Finally, the periostin
staining score correlated with the chronicity index score of
renal pathology and the worsening of renal function in pa-
tients suffering from lupus nephritis [50]. All these findings
indicate a role for periostin not only as a mediator of but also
as a prognostic factor for disease.

CONCLUSIONS

Drugs available nowadays are not sufficient to reduce the
increase of prevalence and incidence of CKD worldwide. The
recent identification of DDR-1 and periostin as potential med-
iators of injury in several organs and in different diseases
subsequently led to the study of their roles in renal injury. Ex-
isting evidence so far, mainly derived from experimental
models and supported by emerging data in patient cohorts
(summarized in Table 1), shows that they have an important
role in the onset and progression of renal injury, independent
from the primary cause of disease. Periostin expression has
been demonstrated in human renal disorders and may be used
in the future to obtain diagnostic and prognostic information.
DDR-1 still remains to be characterized in these disorders.
However, new perspectives in this field must consider the
effect of DDR-1 and periostin modulation with the aim to
develop drugs capable of reducing the progression of renal
injury.
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