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Entropy production and correlations in a controlled non-Markovian setting
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We study the relationship between (non-)Markovian evolutions, established correlations, and the entropy
production rate. We consider a system qubit in contact with a thermal bath and in addition the system is strongly
coupled to an ancillary qubit. We examine the steady-state properties finding that the coupling leads to effective
temperatures emerging in the composite system, and show that this is related to the creation of correlations
between the qubits. By establishing the conditions under which the system reaches thermal equilibrium with the
bath despite undergoing a non-Markovian evolution, we examine the entropy production rate, showing that its
transient negativity is a sufficient sign of non-Markovianity.
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I. INTRODUCTION

The inevitable interaction of a system with its surroundings
necessitates we find suitable means for modeling the dynamics
of open quantum systems [1]. Under certain situations, in
particular when the coupling between the system and its
environment is sufficiently weak such that the environment is
unaffected by this interaction, the system evolves in a Marko-
vian (memoryless) manner. For these settings, a well-known
and widely used approach is to model the time evolution using
a dynamical semigroup. Conversely, allowing for memory
effects the scenario drastically changes [2], and different
approaches to the very definition of a non-Markovian dynamics
have been recently introduced [3–5], as discussed in the recent
reviews [6,7].

An equally important issue is developing a clear thermody-
namic framework for quantum systems [8,9]. Indeed, thermo-
dynamic quantities, such as work and heat, must be carefully
re-examined when the working materials are inherently quan-
tum. In the thermodynamic characterization of a given process,
the (irreversible) entropy production and the associated entropy
production rates are crucial [10–14]. The entropy production
can be naturally defined as the difference between the change in
entropy of the reduced system state and the mean exchanged
heat with a bath at fixed temperature, T , divided by T . For
the case of a quantum dynamical semigroup with a stationary
state in Gibbs form the entropy production is guaranteed to be
positive or zero and can naturally be associated with a statement
of the second law. An equivalent expression for the entropy
production in a semigroup dynamics can be introduced also in
the presence of an invariant state [10]. However, in general, this
definition lacks a clear thermodynamic interpretation since the
invariant state is not necessarily a thermal equilibrium state. To
date several significant advances have been made in defining
and understanding the thermodynamic entropy production for
quantum systems [15–21]; however, only recently has the
explicit consideration of non-Markovian maps, where negative
entropy production rates can appear, been explored [22–24].

It is in this direction that the present work progresses. We
consider a two-level quantum system (qubit) immersed in a

Markovian bath. The system is in turn strongly coupled to an
ancillary two-level system such that the joint dynamics of the
two qubits is Markovian, while the reduced dynamics of the
system alone is manifestly non-Markovian. Thus, our setting
significantly differs from other recent works, for example,
Refs. [22,23], as we have a direct access to the state of both
the system and ancilla. Indeed, in our model we can consider
the ancilla as a special subset of environmental degrees of
freedom with which the system interacts and which gives
rise to a non-Markovian evolution. Thus, at variance with
other studies, one of the main goals of the present work
is to assess the role that the establishment of correlations
plays in the thermodynamic characterization of the evolution.
By first characterizing the steady-state properties, we show
that the strong coupling can lead to a nonequilibrium steady
state exhibiting correlations between the two qubits. These
correlations can be related to the emergence of effective
temperatures, different from that of the bath, for the system
and the ancilla, making a thermodynamic description of the
process more complex. Despite this, as the overall system
and ancilla evolve under a Markovian map, a meaningful,
albeit not necessarily thermodynamically meaningful, entropy
production can be studied. By identifying the conditions under
which the reduced system qubit reaches thermal equilibrium,
we then study its associated entropy production and entropy
production rate. While the long-time entropy production is
consistent with the Markovian case, the coupling induced
non-Markovian dynamics can lead to transiently negative rates.
While such negative entropy production rates are due to the
non-Markovian dynamics, the two notions are not necessarily
commensurate, which we show by examining the trace distance
measure of non-Markovianity.

II. THE MODEL

We consider a bipartite system consisting of two coupled
spin-1/2 particles (qubits), labeled S and A. The free evolution
of the qubits is governed by their respective Hamiltonians
HS(A) =ωS(A)σz. Throughout we will denote |0〉(|1〉) as their
ground (excited) state and assume units such that h̄ = kB = 1.
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We will assume that only qubit S feels the effects of an external
thermal environment (bath), and thus the dynamics of the total
system can be described by the Markovian master equation
(omitting the explicit time dependence) [25]

�̇SA = L(�SA) = −i[HI+HS +HA, �SA] +D(�SA), (1)

with HI = (Jxσx ⊗ σx + Jyσy ⊗ σy + Jzσz ⊗ σz) defining
the interaction between the two qubits and

D(�SA) = γ
[
(σ− ⊗ 1)�SA(σ+ ⊗ 1)

− 1
2 {�SA, (σ+ ⊗ 1)(σ− ⊗ 1)}]

+�
[
(σ+ ⊗ 1)�SA(σ− ⊗ 1)

− 1
2 {�SA, (σ− ⊗ 1)(σ+ ⊗ 1)}], (2)

where σ+ =σ
†
− =|1〉〈0| are the spin raising and lowering

operators, while γ and � fix the dissipation rates. The inverse
temperature of the bath is given by β = 1

2ωS
ln ( γ

�
). The

expressionHI of the interaction captures a broad range of im-
portant physical processes, including energy- and excitation-
preserving models. The dynamics of the reduced state of the
system

�S = TrA[�SA] (3)

provides a physically legitimate evolution; crucially, however,
it is no longer Markovian due to the strong interaction with
A. We remark that similar settings have been explored in
the literature [25,26], and moreover, its general validity was
recently examined [27].

Our model therefore provides a versatile setting to explore
the interrelation between the establishment of strong correla-
tions, both quantum and classical, non-Markovian dynamics,
and the behavior of the entropy production. Indeed, our model
not only allows one to seamlessly move from a Markovian
to a non-Markovian picture, but also allows for the study
of nonequilibrium steady states with respect to the bath and
clearly establish a relation with the emergence of such states
and the correlations shared between S and A.

III. STEADY-STATE PROPERTIES

As the steady state, �∞
SA, plays a crucial role in evaluat-

ing the entropy production, in this section we focus on its
characteristics. By solving the LHS of Eq. (1) set equal to
zero �∞

SA can be obtained fully analytically; however, given its
cumbersome form we do not report it here. Regardless of the
explicit expressions, some properties are immediately evident,
in particular the steady state is in X form and independent of
Jz, while all other parameters enter nontrivially. The presence
of off-diagonal terms implies some correlations are established
between the two qubits. We can examine the quantum correla-
tions present using the entanglement of formation (EoF)

E= h
(

1
2 [1 +

√
1 − C2]

)
, (4)

where h(x) = − xlog2x − (1 − x)log2(1 − x) is the binary
entropy function and C is the concurrence of the state. The
latter is an equally valid entanglement measure and can be
found in terms of the eigenvalues λ1 � λ2,3,4 of the spin-
flipped density matrix ρAB (σy ⊗ σy )ρ∗

AB (σy ⊗ σy ) as C =

max[0,
√

λ1−
∑4

i=2

√
λi ]. A more general measure of correlations

in a state is given by the quantum mutual information (MI)

I(ρ12) = S(ρ1) + S(ρ2) − S(ρ12), (5)

where S(ρ) = −Tr[ρ log ρ] is the von Neumann entropy of
a generic state ρ. This measure accounts for all correlations
both classical and quantum. Fixing Jy =1 and ωS =1, in
Figs. 1(a) and 1(b) we find that both quantifiers depend
nontrivially on the frequency detuning between the two spins
and the coupling strength Jx . Immediately we see that there
are significant parameter ranges where the steady state exhibits
no entanglement, while the MI exhibits a markedly different
dependence on the parameters, in particular, being identically
zero only when Jx =Jy , as highlighted by the vertical white
line. For other interaction strengths it is clear that the presence
of correlations indicates that the strong coupling between S

and A results in a nonequilibrium steady state with respect
to the bath. As expected, the actual steady state compares to
a thermal ansatz of S+A given by a canonical Gibbs state,
determined by the total Hamiltonian HS +HA +HI and the
inverse temperature of the bath β only for Jx =Jy and γ ≈�,
which corresponds to an excitation-preserving interaction in
the limiting case of infinite temperature for the bath. As we
show in the following, for other parameter choices we find that
additional characteristic temperatures can emerge from �∞

SA.
Due to the X shape of the steady state, the reduced state of

S, i.e., �∞
S =TrA[�∞

SA], is diagonal for all parameter values,
and therefore we can define an effective temperature, βeff,
for the system. In Fig. 1(c) we examine how the strength
of the coupling between S and A and their relative detuning
affects βeff. When correlations are present in the steady state,
as captured by the MI, the effective temperature that the system
reaches is higher than that of of the bath, and the discrepancy
is enhanced for smaller values of ωA, corresponding to the fact
that a transfer of thermal excitations to the system is favored.
Interestingly, for Jx =Jy we find that S thermalizes with the
environment regardless of the relative detuning between the
two qubits. For this value of coupling the steady state is
diagonal and takes the form

�∞
SA = e−βHS

ZS

⊗ e−β̃HA

ZA

, (6)

where β̃ = (βωS )/ωA. The factorized form of this state puts
into clear evidence the vanishing MI shown in Fig. 1(b).
It is worth stressing at this point that although S is in
thermal equilibrium with the bath for Jx =Jy , by virtue of
the interaction, a second characteristic temperature emerges
for A. The appearance of the two distinct parameters β and
β̃ can be understood as follows. For Jx =Jy we have an
excitation-preserving interaction and the temperature associ-
ated to each system is naturally introduced by imposing a
detailed balance condition for the energy exchange. For the
system S we have � = γ exp (−βωS ) to be compared with
�eff = γeff exp (−βωA) for qubit A. Note that for this special
choice of coupling the stationary state is left invariant by
the Hamiltonian and the dissipative contribution separately.
While the overall state can exhibit correlations, which for
Jx 	=Jy can also amount to entanglement, the local states of
S and A are in Gibbs form. Indeed, the interplay between
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FIG. 1. (a) Steady state EoF and (b) MI (in base 2) versus the
frequency, ωA of the ancillary system A and coupling strength Jx .
(c) Effective inverse temperature, βeff of the system S. In all panels
γ = 10, � = 1, Jy = 1, Jz = 0, and ωS = 1.

global entanglement and local thermal states appears to be
a typical quantum feature [28], and we remark that there is
evidence of a thermodynamic role played by (quantum) cor-
relations [16,17,29,30]. Therefore, although S always reaches
a canonical Gibbs state at some temperature regardless of the
particular parameter choice, the interaction can introduce other
characteristic temperatures to the overall system. Thus, while

an expression for the entropy production can be found that
is meaningful, the emergence of the additional temperatures
makes discussing any thermodynamic aspect more difficult.
In this regard, the choice of Jx =Jy and ωS =ωA is special as
the model retains the unique temperature defined by the bath,
β. In what follows we will restrict ourselves to this setting to
allow for a more meaningful and consistent thermodynamic
interpretation.

IV. ENTROPY PRODUCTION

A. Preliminaries

Let us consider a system in contact with a bath at inverse
temperature β, with which it can exchange heat. The irre-
versible contribution to the entropy production for a given
transformation is then defined as [31]

〈�〉 = �S − β�Q, (7)

where �S is the change in entropy of the system and �Q

denotes the mean exchanged heat, so that 〈�〉 indeed provides
the contribution in entropy change which cannot be traced back
to a reversible heat flow. Assuming as initial and final times of
the transformation zero and t , respectively, and defining Q =
Tr ρH , where H is the system Hamiltonian, this expression
can be equivalently rewritten as

〈�〉 = S(ρ(0)||ρβ ) − S(ρ(t )||ρβ ), (8)

where ρβ denotes a Gibbs state for the system at inverse
temperatureβ, and we have introduced the Umegaki’s quantum
relative entropy [32]

S(ρ||w) = Tr ρ ln ρ − Tr ρ ln w.

If the dynamics of the system is given by a collection of
time-dependent completely positive trace-preserving maps
{�(t, 0)}t , admitting ρβ as an invariant state, the irreversible
entropy production as defined by Eq. (8) is a positive quantity,
in accordance with the second law. One can further consider
the quantity

σ (t ) = − d

dt
S(ρ(t )||ρβ ), (9)

which can be naturally interpreted as the (instantaneous) en-
tropy production rate. Consider the case in which the collection
of completely positive trace-preserving maps is P -divisible, in
the sense that the following composition law holds:

�(t, 0) = �(t, s)�(s, 0), t � s � 0, (10)

with �(t, s) a positive map ∀ t � s � 0, and where by defini-
tion

�(t, 0)ρ(0) = ρ(t ).

Due to the fact that the relative entropy is a contraction under
the action of a completely positive trace-preserving map [33],
and as recently shown also for a positive trace-preserving map
[34], in this case also the entropy production is a positive
quantity.

As already observed in Ref. [10] considering the special
case of quantum dynamical semigroups, the very existence of
an invariant state of the dynamics, say, ρ̄, not necessarily in
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Gibbs form, is sufficient to introduce via

〈�̄〉 = S(ρ(0)||ρ̄) − S(ρ(t )||ρ̄), (11)

a quantifier of entropy production which is always positive, and
whose associated entropy production rate σ̄ (t ) is also positive
provided the dynamics is P -divisible according to Eq. (10).
For the special case of a quantum dynamical semigroup with
generator,G, the entropy production rate is given by the explicit
expression

σ̄ (t ) = Tr{G[ρ(t )][ln ρ̄ − ln ρ(t )]}, (12)

whose positivity, following from the divisibility of the dynam-
ics, is also known as Spohn’s inequality [10,11]

Tr{G[ρ(t )][ln ρ̄ − ln ρ(t )]} � 0.

Both definitions for the entropy production rate provide convex
functions of the system state, thus ensuring stability, and
they are positive in the presence of a P -divisible dynamics.
However, only σ (t ) defined in Eq. (9) via its relation to Eq. (8),
and therefore heat transfer, can be directly connected to a
thermodynamic interpretation.

Turning our attention to the dynamics, recently different
notions of non-Markovianity have been introduced, related
to a notion of divisibility of the quantum dynamical map
or motivated by information backflow between system and
environment; see Refs. [6,7,35,36] for recent reviews. The
definition of non-Markovianity related to divisibility was
originally conceived in terms of CP -divisibility, that is, asking
that �(t, s) in Eq. (10) is a completely positive map [37]. On
the other hand, in order to connect the presence of memory
effects with an information exchange between system and
environment, it has been suggested to consider the behavior in
time of the trace distance between time-evolved distinct initial
system states given by

D(ρ1(t ), ρ2(t )) = 1
2‖ρ1(t ) − ρ2(t )‖, (13)

where the trace norm of an operator ‖A‖ = Tr
√

A†A has
been introduced, reducing to the sum of the modulus of its
eigenvalues for a self-adjoint operator. Revivals in time of the
trace distance [Eq. (13)] for at least a pair of initial states
is then assumed as a definition of non-Markovian dynamics
[38]. Despite the difference in the formulation, it has been
realized that there is a close connection between the notions of
divisibility and information backflow. In particular it has been
shown [39–41] that the trace distance criterion is equivalent
to P -divisibility, provided the map is invertible as a linear
transformation. Thus, it is natural to study the behavior of
the entropy production rate, and in particular its sign, and
compare it with the assessment of non-Markovianity, without
necessarily using it as a new definition of non-Markovian
dynamics [42].

B. Dynamical behavior

We next study the behavior of the entropy production rate
in our model, which provides a simple controlled way to go
from a Markovian to a non-Markovian dynamics. As stressed
previously, we will restrict to the case of Jx =Jy and ωS =
ωA where the steady state takes the form shown in Eq. (6)
with β̃ = β. For this model an analytic treatment is feasible

2 4 6 8 10
t0.0

0.2

0.4

0.6

0.8

1.0
D

2 4 6 8 10
t0.0

0.2

0.4

0.6

0.8

1.0

2 4
(a)

(b)

6 8 10
t0.0

0.2

0.4

0.6

0.8

1.0
D

2 4 6 8 10
t0.0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10
t0.0

0.1

0.2

0.3

0.4

0.5

|0

|1

FIG. 2. Trace distance for the joint S+A system (upper, black)
and reduced system S (lower, gray) setting �S (0) to be (a)
{|0〉〈0|, |1〉〈1|}. (b) {|+〉〈+|, |−〉〈−|}. Insets: MI (upper, purple) and
EoF (lower, gray). In both panels �A(0) = |+〉〈+| and γ = 10� =
1, Jx = Jy = 1, Jz = 0, and ωS = ωA = 1.

as shown in the Appendix, and in particular one can provide
the equations describing the reduced dynamics in the form of
a time-convolutionless master equation.

While the combined system and ancilla state obeys a
semigroup dynamics described by Eq. (1), the reduced dy-
namics becomes non-Markovian once the interaction with the
ancillary system is switched on. We see this clearly in Fig. 2
where we show the trace distance for S+A (black) and the
reduced system S (gray) for two different pairs of orthogonal
initial states. While the total state results in a monotonically
decreasing behavior, since the dynamics is strictly Markovian,
the interaction can lead to points of inflection or plateaus; cf.
Fig. 2(a). In contrast, the trace distance for S clearly shows the
non-Markovian nature of the dynamics. In addition, we see
from the insets that despite the steady state exhibiting zero
EoF and MI, nevertheless dynamically significant amounts
of correlations can be established. As we will see, these
correlations contribute nontrivially to the entropy production.

For S + A the entropy production rate σ̄SA(t ) is known to
be positive and given in particular by the expression

σ̄SA(t ) = Tr
{
L[�SA(t )]

[
ln �∞

SA − ln �SA(t )
]}

. (14)
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FIG. 3. Behavior of entropy production, 〈�〉, of system S for non-
Markovian dynamics (solid, red) compared with the corresponding
Markovian case when the S-A coupling is switched off (dashed,
magenta). Here �S (0) = |1〉〈1|, �A(0) = |+〉〈+|, and we have fixed
γ = 10� = 1, Jx = Jy = 1, Jz = 0, and ωS = ωA = 1. In the long-
time limit the two entropy productions coincide.

Similarly, the entropy production rate for the reduced system
S is captured via

σ̄S (t ) = − d

dt
S
(
�S (t )|| TrA �∞

SA

)

= − d

dt
S(�S (t )||ρβ ) = σS (t ). (15)

Notice that Eq. (15) retains a clear thermodynamic meaning
since in this case, due to the form of coupling, the system ther-
malizes with the bath. In fact the long-time entropy production,
〈�〉, for S is a positive quantity and, furthermore, achieves the
same value regardless of whether the underlying dynamics is
Markovian (HI =0) or non-Markovian (HI 	=0). However, in
line with the results of Ref. [22], we see the entropy production
can become transiently negative in the non-Markovian case, as
shown in Fig. 3.

In the present setting, due to the general identity
S(ρSA||τS ⊗ wA) = I(ρSA) + S(ρS ||τS ) + S(ρA||wA),

(16)

relying on the structure of the equilibrium state (6), we find
a simple relation between the various contributions to the
entropy production rate for S + A and the establishment of
correlations

σ̄SA(t ) = σ̄S(t ) + σ̄A(t ) − d

dt
I(ρSA(t )). (17)

Such a relation immediately puts into evidence the nontrivial
role that the dynamical build-up of correlations between the
constituents of the total system plays in the proper thermo-
dynamical characterization of the process, in both open and
closed system settings [12,43].

For zero interaction between the qubits, the entropy pro-
duction rate [Eq. (14)] is a strictly monotonically decreasing
function as shown by the dashed curves in Fig. 4. We examine
the effect that the interaction term has on σ̄SA in Fig. 4(a) for
various initial states of S when A is initialized in |+〉. While
in line with Markovian dynamics σ̄SA � 0 for all parameter
choices, the general behavior deviates significantly from the
Markovian case, and we see strong oscillations occurring.
In Fig. 4(b) we examine the entropy production rate for the

0
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2.5
σSA
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(b)

FIG. 4. (a) Entropy production rate for S + A Eq. (14). (b)
Entropy production rate for the reduced system S (15). In both
panels �A(0)=|+〉〈+| and we have fixed γ =10�=1, Jx =Jy =
1, Jz =0, and ωS =ωA =1. In both panels the dashed magenta curve
corresponds to the respective entropy production rate when HI = 0
and �S (0) = |0〉〈0|. The curve labels correspond to the initial states
of S.

system, S, for the same parameters. We now see that the σ̄S can
dynamically become negative, and the periods during which
this happens are closely related to when oscillations occur in
σ̄SA. Such a behavior is consistent with other studies assessing
entropy production rates in non-Markovian settings [22,23],
where the stationary state is always in Gibbs form.

Connecting this to non-Markovianity as described by an
information backflow between system and environment, as
discussed in Sec. IV A, this exchange in information can
be traced back to a change in time of the distinguishability
between distinct system states. In the present setting it is
natural to consider the relative entropy as a quantifier of the
distinguishability between system states. We can therefore
study S(�1

S (t )‖�2
S (t )) for different choices of �

1,2
S (0). For

the special case of �2
S (0) = �∞

S one describes the entropy
production rate as a change of distinguishability, and therefore
an indicator of non-Markovianity, thus, under this viewpoint,
negative entropy production rates and non-Markovianity are
directly related. However, considering the behavior of the trace
distance shown in Fig. 2, the revivals, which indicate periods
of non-Markovianity, are not in one-to-one correspondence
with the negative entropy production rates for S in Fig. 4(b).
Therefore, periods of non-Markovian dynamics under one
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figure of merit do not directly imply a negative entropy
production rate.

We can therefore conclude that a violation of P -divisibility
alone can lead to dynamically negative entropy production
rates. However, this must be caveated, for Jx =Jy there are
initial states of systems A and S for which σS � 0 at all
times. For example, setting �A(0)=�S (0)= 1

21 leads to a
positive entropy production rate for S at all times despite its
dynamics being non-Markovian. Thus, we have that satisfying
the P -divisibility property is a sufficient but not necessary
condition for a positive entropy production rate, since there are
non P -divisible dynamical maps that still lead to σS � 0 ∀t for
particular initial conditions.

V. CONCLUSIONS

We have examined the steady-state correlation properties
and dynamical entropy production in a versatile setting, con-
sisting of a single qubit, S, embedded in a Markovian bath
interacting with a clean ancillary qubit, A. While the overall
dynamics remains Markovian, this is no longer true for the
reduced dynamics of the system due to its interaction with
A. We have shown that the interaction can lead to strongly
correlated steady states for the joint system. Examining the
resulting nonequilibrium steady state we found that when such
correlations are present, S exhibits an effective temperature
which is higher than the bath. We highlight the special choice of
an excitation-preserving interaction, which ensured no correla-
tions were present in the steady state. In this setting S reached
thermal equilibrium with the bath and therefore allowed for
a meaningful assessment of the thermodynamic features of
the dynamics. By computing the entropy production rate we
showed that the non-Markovianity induced by the interaction
with A could lead to negative entropy production rates, while
the overall entropy production was still strictly positive.

Our study reveals the highly nontrivial role that the estab-
lishment of correlations plays in the thermodynamic charac-
terization of quantum systems. At the level of the system,
we have shown that the absence of quantum correlations,
i.e., entanglement, is not sufficient to ensure meaningful
thermodynamic quantities. Rather, any correlations can greatly
complicate both the dynamical and steady-state properties.
In line with previous studies we have shown that witnessing
a negative entropy production rate for the system due to a
non-Markovian dynamic does not imply a violation of the
second law. For instance, Ref. [22] insisted that one should
keep track of the entropy changes from both the system and the
environment, our study goes further by showing that one must
also take into account the correlations established between the
two, i.e., Eq. (17). The versatile nature of our model further
reveals that, while clearly interrelated, the establishment of
correlations, non-Markovian dynamics, and (negative) entropy
productions rates is quite complex. In particular, as our study
has revealed, non-Markovianity appears to be sufficient, but
not necessary, to realize negative entropy production rates.
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APPENDIX

In this appendix we provide the analytic solution of the
model (1) in the particular case when Jx = Jy = J

8 , Jz = 0,
and ωS = ωA = ω. The set of differential equations for the
elements of density matrix �SA are given by

�̇0000
SA (t ) = −γ �0000

SA (t ) + ��1010
SA (t ),

�̇0001
SA (t ) = i

J

4
�0010

SA (t ) − (2i ω + γ )�0001
SA (t ) + ��1011

SA (t ),

�̇0010
SA (t ) = −

[
1

2
(γ + �) + 2iω

]
�0010

SA (t ) + i
J

4
�0001

SA (t ),

�̇0011
SA (t ) = −1

2
(γ + � + 8iω)�0011

SA (t ),

�̇0101
SA (t ) = −(γ + �)�0101

SA (t ) + �
[
1 − �0000

SA (t ) − �1010
SA (t )

]

−i
J

4

[
�0110∗

SA (t ) − �0110
SA (t )

]
,

�̇0110
SA (t ) = i

J

4

[
�0101

SA (t ) − �1010
SA (t )

] − 1

2
(γ + �)�0110

SA (t ),

�̇0111
SA (t ) = −

[
1

2
(γ + �) + 2iω

]
�0111

SA (t ) − i
J

4
�1011

SA (t ),

�̇1010
SA (t ) = γ �0000

SA (t ) − ��1010
SA (t )+i

J

4

[
�0110∗

SA (t )−�0110
SA (t )

]
,

�̇1011
SA (t ) = −i

J

4
�0111

SA (t ) − (2iω + γ )�1011
SA (t ) + γ �0001

SA (t ).

For the reduced system’s dynamics the density matrix, �S ,
obeys the differential equations

�̇00
S (t ) = � − (γ + �)�00

S (t ) − i
J

4

[
�0110∗

SA (t ) − �0110
SA (t )

]
,

�̇01
S (t ) = −1

2
(γ+�+4iω)�01

S (t ) + i
J

4

[
�0001

SA (t ) − �1011
SA (t )

]
.

For both the total S + A and reduced system, the remaining
density matrix elements can be readily obtained by exploiting
normalization and Hermicity.

From the above equations for the reduced system we can
determine the explicit form of the generator, KS , of the non-
Markovian dynamics. Fixing the initial state of the ancilla to
be �A(0) = 1

21 in the basis { 1√
2
, σ−, σ+,

σz√
2
} the generator has

the form

KS (�S ) = −i[HS, �S] + 1

D

[
γ S

1 (t )(σz�Sσz − �S )

+ γ S
2 (t )

(
σ−�Sσ+ − 1

2
{σ+σ−, �S}

)

+ γ S
3 (t )

(
σ+�Sσ− − 1

2
{σ−σ+, �S}

)

+ e−i(2ωt+ π
4 )γ S

4 (t )

(
σz�Sσ+ − 1

2
{σ+σz, �S}

)

+ e−i(2ωt+ π
4 )γ S

4 (t )

(
σ+�Sσz − 1

2
{σzσ+, �S}

)
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+ ei(2ωt+ π
4 )γ S

4 (t )

(
σz�Sσ− − 1

2
{σ−σz, �S}

)

+ ei(2ωt+ π
4 )γ S

4 (t )

(
σ−�Sσz − 1

2
{σzσ−, �S}

)]
,

where

γ S
1 (t ) = 4λ̇1(λ3 − λ4) − 2λ1(λ̇3 − λ̇4)

γ S
2 (t ) = −2λ1[λ4(λ̇2 + λ̇3) + (λ2 − 1)(λ̇3 − λ̇4)

− λ3(λ̇2 + λ̇4)]

γ S
3 (t ) = 4λ1(λ̇3 − λ̇4) − γ S

2 (t )

γ S
4 (t ) =

√
2(λ5 − λ2)(λ̇3 − λ̇4) −

√
2λ4(λ̇2 + λ̇3 − λ̇5)

+
√

2λ3(λ̇2 + λ̇4 − λ̇5)

and D = 4λ1(λ4 − λ3), with {λi} being dimensionless func-
tions defined below and {λ̇i} being their time derivatives. It is
clear from the generatorKS , which is written here in Lindblad
form, that the non-Markovian nature of the reduced dynamics
arises from the time dependency of the rates {γj (t )}. This time
dependency is exponential, as can be seen from the explicit

form of the {λi} functions that appear in {γj (t )}

λ1 =
e− 1

2 tη
[√

�− sinh
(

t
√

�+
2
√

2

) − √
�+ sinh

(
t
√

�−
2
√

2

)]
√

2�

+
e− 1

2 tη
[
�+ cosh

(
t
√

�−
2
√

2

) − �− cosh
(

t
√

�+
2
√

2

)]
2
√

�
,

λ2 = [
√

�η(� − γ ) + γ ηe− 1
2 t (η+√

�)(�+ − �−e
√

�t )]�−3/2,

λ3 = J 2
{√

�(γ − �) + 2γ e− 1
2 tη

[
η sinh

(√
�t
2

) − √
�

]}
�3/2η

,

λ4 = J 2

η

[
1

2�
(γ − �)

(
e

√
�t
2 − 1

)2
e− 1

2 t (η+√
�) − λ2

η

]
,

λ5 = e− 1
2 tη

[
2J 2� + �(� − γ )e

1
2 tη

]
�η

− e− 1
2 t (η+√

�)�[
√

�(1 − e
√

�t ) + η(1 + e
√

�t )]

�
,

where η = γ + �, � = η2 − J 2, �± = η2 − J 2

2 ± η
√

�,
and �± = (η ± √

�). Note that if condition η > J is satisfied,
functions {λi} are real functions ∀i. Consequently, functions
{γj (t )} are also real functions.
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