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Abstract—In IoT environments, data are collected by many
distinct devices, at the periphery, so that their feature-sets can
be naturally endowed with a faceted structure. In this work,
we argue that the IoT requires specialized ML models, able
to exploit this faceted structure in the learning strategy. We
demonstrate the application of this principle, by a multiple kernel
learning approach, based on the exploration of the partition
lattice driven by the natural partitioning of the feature set.
Furthermore, we consider that the whole data management,
acquisition, pre-processing and analytics pipeline results from
the composition of processes pursuing different and non-perfectly
aligned goals (most often, enacted by distinct agents with different
constraints, requirements competencies and with non-aligned
interests). We propose the adoption of an adversarial modeling
paradigm across the overall pipeline. We argue that knowledge
of the composite nature of the learning process, as well as of the
adversarial character of the relationship among phases, can help
in developing heuristics for improving the learning algorithms
efficiency and accuracy. We develop our argument with reference
to few exemplary use cases.

I. INTRODUCTION

A lot of current hype on Machine Learning (ML) mod-
els within Artificial Intelligence (AI) is due to applications
showcasing the impressive performance of a new generation of
Deep Learners (DLs). However, experience has shown that ML
analytics can achieve satisfactory performance only provided
that two key conditions are met:

a. Input data are an accurate statistical representation of the
physical environment, suitable for the chosen ML model.

b. Distributed training and execution of the chosen ML
model can meet the deadlines given the applications
latency and resource constraints.

Unfortunately, these two key conditions are seldom met by
Internet-of-Things (IoT) applications. IoT data are extracted
from the physical reality through a transformation process
that includes data sensing and acquisition, data preparation
and preprocessing. This transformation is performed as part of
data gathering and preparation by sensors and other devices at
the periphery, as well as by edge processors, and is rather far
from an ideal statistical measurement process (e.g. the classic
one, mapping a point value into a normally distributed mea-
surement). Also, input data latency, availability, and veracity,
as well as the corresponding computational load, may widely
vary, depending on the conditions in the field.

A. Context and problem

IoT applications address multi-layered scenarios (Fig. 1)
where the input consists of highly dimensional data points
coming from multiple sources and/or characterized by different
feature subsets. For example, a person can be identified by
face, finger-print, EEG brain-waves, and irises, each coming
from a different sensor, while the surface of a physical object
can be represented by its color and texture attributes, which
correspond to two perceptually separate subsets of features.
These scenarios involve huge and highly dimensional data
flows, where each data item has hundreds, thousands or even
millions of dimensions. Creating and managing such flows
may be straightforward (e.g. when real estate is monitored
via a single multi-spectral camera on a satellite or UAV), or,
on the contrary may require the computation of semantic-
driven joins (e.g. when a situation is monitored by a sand-
dust of heterogeneously distributed sensors not all of which
are operational at any given time).

We argue that IoT environments require specialized ML
models, for two major reasons.

• Firstly, a feature-set, collected by many different sensors,
or mobile devices, at the periphery, will have natively
a faceted structure that can be exploited in the learn-
ing strategy. A set of ML analytics techniques, called
multi-view learning, treat input data facets (called views)
differently, e.g. using multiple kernels, when learning
classification models, or coordinating training of multiple
models (co-training). Notably, multiple kernel learning
algorithms exploit those kernels that naturally correspond
to different views and combine them linearly or non-
linearly to improve learning performance; co-training
algorithms pursue agreement between models trained on
distinct views, and subspace learning algorithms try to
identify a latent subspace shared by multiple views by
assuming that the input views are generated from it.

• Secondly, IoT ecosystems are owned and managed by
multiple operators, each with its own interests and
agenda; therefore, they cannot rely on full mutual trust
between the pipeline modules and stages, which is usually
assumed in learning. We envision model composition
to incorporate adversarial learning, which deals with
high-dimensional data where features may have diverse
veracity, due to the presence of hostile, untrusted or
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Fig. 1. Analytics computation in the IoT setting.

semi-trusted components along the model training chain.
The adversarial paradigm considers the data gather-
ing/preparation as inherently including a source of pertur-
bation/noise/uncertainty and train ML models considering
the uncertainty type and the corresponding uncertainty
principles.

Today, most standard ML algorithms made available
through libraries are designed to be effective and accurate
under ideal conditions. Even when data transformation issues
are taken into account, the algorithms are devised to be robust
with respect to inaccuracy, but not necessarily consider tougher
challenges, due to data gathering and preparation choices.
Often, the choice of an AI algorithm for analytics makes the
implicit assumption that the input data are still representative
samples of the actual phenomenon to be studied. When it is
known that the data do not fulfill this condition, in principle
they can be simply discarded and further data acquisition
rounds can be envisaged; in practice, often such data are used
anyway, and the final user of the analytics the human decision-
maker - is not informed that the analytics outcomes cannot be
fully trusted and, even if so, he does not understand why this
is the case.

B. Proposed approach

We envision an approach to integrated design and de-
ployment of data preparation/preprocessing and data analytics
providing a clear understanding of the entire data pipeline
to ground the human decision-maker level of trust in the
outcome, improving human ability to compare and select the
ML model results.

Such an approach will model the IoT data analytics/machine
learning pipeline (acquisition, preparation, preprocessing, and
analytics) as a composition of services [1] pursuing different
and non-aligned goals. Our abstract representation needs to be
translated into deployable computations at the device, edge,
and core of the IoT. Also, it must be adaptively tunable
to address bias and loss of precision due to missing data
substitutions, alignment of data from different dimensions,
interpolation/extrapolation, and introduction or artificial au-
tocorrelation in time series, and to assure the desired non-

functional properties of the computation in terms of privacy,
data integrity and data protection.

We propose to base our integrated design process on
two pillars: structural awareness, making the learning pro-
cess reminiscent of the multiple sources contributing to
multi-dimensional data, and adversarial composition, mod-
eling the data preparation/gathering as a source of perturba-
tion/noise/uncertainty; this paradigm would take as parameters
the pertinent uncertainty models and the related uncertainty
principles. One can also consider and investigate ethics and
legal concerns as modular sources of perturbation, which may
depend on the cultural and regulatory environment where the
pipeline is deployed.

This approach will provide to the human designer full
visibility and control over distributed preparation of input data,
as well as training and execution of the ML models, in order
to: (i) achieve certifiable performance, security and quality
of the analytics (ii) provide a clear foundation for a chain
of trust in the ML-based analytics outcome (iii) provide a
lever to enforce ethical and legal constraints (e.g. fairness
or privacy-related) within the pipeline, without compromising
analytics quality. Within an adversarial paradigm, we can
model the overall data analytics/machine learning pipeline
(acquisition, preparation, preprocessing, analytics) as the com-
position of processes pursuing different and non-perfectly
aligned goals (most often, enacted by distinct agents with
different constraints, requirements competencies and with non-
aligned interests).

Thanks to an integrated design process, one can choose the
suitable strategies in the different phases. For instance:
• if the interests of preprocessing and analytics are aligned,

one can resort to optimization,
• if they are partially unaligned, one can resort to multi-

objective optimization
• if the agents are also different and with different objec-

tives, one can resort to game theory
The specification of the uncertainty model involved helps in a
principled choice of the algorithms suitable for preprocessing
and analytics. The uncertainty model is especially useful
to model the relationships among the quantities of interest
(e.g. related by uncertainty principles) and to identify the
tradeoffs (as in the case of bias-variance-consistency etc. for
the statistical estimators).

Hereafter, after pointing to the related works (Section 2),
we illustrate the notion of partition-driven multi-view learning
(Section 3). Then, we develop the concept of the use of the
adversarial paradigm (with its Game Theoretical implications)
across the whole data acquisition, management, preprocessing
and analytics pipeline (Section 4). A brief discussion (Section
5) concludes the paper.

II. RELATED WORK

A. Kernel methods
In multidimensional data classification, an optimal linear

separator is the hyper-plane that has the largest margin be-
tween positive examples on one side and negative examples



on the other. Finding it is a well-known quadratic optimization
problem; however, this problem may have no solution in the
original data space. Kernel methods try to map data to a higher-
dimensional space where they will be linearly separable. To do
so, one has to identify a suitable transformation, creating new
dimensions out of the original ones. The invertible functions
that are used to operate these transformations are called
kernels. Kernels are built combining input features by using
basic operations such as the multiplication or exponentiation
and their linear combinations [2].

Among the most used kernels are polynomial kernels and
radial basis function (RBF) kernels, that provide parametric
templates whose parameters can be found by optimization.
Choosing a kernel is itself a problem; one can explore the
combinatorial space of dimensions and assess results by cross-
validation. For highly multi-dimensional data, however, the ex-
haustive exploration of the combinatorial space is unfeasible.

Much research has been devoted to building complex ker-
nels as combinations of simpler ones: different kernels may
correspond to using different notions of similarity or – more
interestingly for our current purposes – may be using groups
of features that come from related sources or are otherwise
semantically related. The kernel function can be a linear or a
nonlinear function, it can combine already optimized kernels
or perform the optimization of their parameters during the
combination. There is a significant amount of work in the
literature for combining multiple kernels: a review is provided
in [3]. Our proposal, in the next section, relates to a particular
technique for the exploration of the partition lattice which
represents an example of IoT friendly faceted learning.

B. Adversarial models

Adversarial models based on Game Theoretical principles
have recently gained attention thanks to their use in the final
phases of the data processing pipeline [4], [5], specifically in
the machine learning phase.

Huang et al. [4] define adversarial machine learning as
the study of effective machine learning techniques against an
adversarial opponent; the opponent might, for instance, affect
the veracity of the training samples.

Goodfellow et al. [5] develop this idea into a training
technique that can be applied when the analytics involves
learning generative models. Generative models are forms of
representations that capture the data distribution from the
available training data and can then be used to generate new
samples, typically with the purpose to make them available to
the training process. Goodfellow et al. propose a change of
perspective: they provide a framework to estimate generative
models by training in parallel two models: the generative one
(G) and a discriminative one (D) that estimates the probability
that a sample came from the training data rather than G. The
training procedure for G is to maximize the probability of
D making a mistake. They frame this concept into the game
theoretical model of zero-sum games, which are two-player
games where the interest of the players are perfectly opposite
to one another (same direction, opposite sign), so that the gain

Fig. 2. Lattice of Partitions of a 4-Element Set (courtesy of Tilman Piesk).

of one player in a realization of the game is equal to the loss
of the other.

Our point here is different. We propose to consider the ad-
versarial component all along the data acquisition management
and processing pipeline. In our view, the pipeline is operated
by actors/players with non-aligned interests. They need not
be opponents to one another: the players in the pipeline
are typically driven by compatible objectives, however, the
optimization of one players objective prevents the optimization
of the other players.

III. MULTIPLE KERNEL METHODS BASED ON THE
PARTITION LATTICE

As mentioned in the previous section, multiple-kernel meth-
ods create each kernel by aggregating (e.g. by multiplication)
the elements in a subset of the data features. Intuitively each
choice of multiple kernel configuration corresponds to picking
a partition of the full set of features and subsequently multi-
plying together all the elements lying in the same partition
block. Our idea relies on exploring the partition lattice by
using a technique originally introduced for navigating service
descriptions [6], i.e. selectively ”smushing” block boundaries
by applying lattice operation to obtain new partitions [7].
An analogous exploration with a different approach was used
in [8] for the task of hierarchical clustering, based on the
navigation of the Boolean lattice.

To outline our ”smushing” technique, let us briefly recall
some background notions. A partition π of a set S is a way
of writing S as a disjoint union of nonempty subsets called
blocks. The above picture shows the fifteen partitions of a
four-element set, ordered by refinement. There is a natural one-
to-one correspondence between the partitions of a set S and
the equivalence relations on it; each class of the equivalence



relation provides a block of the corresponding partition. A
partition π is finer than a partition π′ iff every block of π′

results from the union of blocks of π. This puts a partial
ordering on the set Π(S) of all partitions of S: we say π ≤ π′
(or π ≥ π′) if π is finer (coarser) than π′. This ordering
makes Π(S) into a complete lattice (unlike the Boolean lattice
Bn = 2S of subsets of S, Πn = Π|S| = Π(S) is not
distributive). Notice that partitions π ∈ Πn of rank i consist
in (n− i) blocks.

Here, we elaborate on the classic result that equivalence
relations on a set of multidimensional data points can be
induced to obtain approximation spaces over it (see Pawlak
[9]). Specifically, let the data-set S contain N data n-tuples.
Let us denote by tkj the value of the k-th feature (k ∈ [n])
of the j-th n-tuple (j ∈ [1, N ]). We can build an equivalence
relation on the set of N tuples based on the coincidence of
the values of a chosen feature, the k-th feature: any relation
∼k: S → S such that ti ∼k tj iff tki = tkj , is an equivalence
relation on S.

In the classic Pawlak construct, each subset T of S can be
expressed, based on the partition ∼k, using a pair, composed of
a lower approximation T∼k

(the largest class of ∼k contained
in T ) and of an upper approximation T∼k

(the smallest
class containing T of the coarser partitions ∼′k≥∼k). Clearly
T∼k

⊆ T∼k
. Pawlak’s rough set constructs T∼k

and T∼k

identify an approximate cover of T with the information
granules of ∼k. The index k (which selects a single feature)
is often substituted by a feature subset K, computed by
minimizing an Entropy function or the difference between the
upper and lower approximations of benchmark subsets.

Let us consider a simple example in four dimensions:

Device ID Battery Level OS Available
1 AVERAGE Android N
2 HIGH Android Y
3 AVERAGE iOS Y
4 LOW Symbian N

Here, there are N = 4 instances, or n-tuples, each describing
a phone. If K = {OS}, we get the equivalence relation
∼K≡ {{1, 2}, {3}, {4}}. Consider the concept set T of
”available phones” (instances such that Available = Y ).
Under this relation, the lower approximation is T∼K

= {3},
and the upper approximation is T∼K

= {{1, 2}, {3}}. The
approximation accuracy (defined by the ratio between the
lower approximation and upper approximation cardinalities)
is 0.5.

Our idea is to select K dynamically, based on the ap-
proximation accuracy on benchmark concepts (as opposed to
statically, based of semantic distance between features). We
generate a starting partition of S in two blocks (K,S−K) to
be exploited for two-kernel computations. Then, we explore
the partition lattice using refinements of block S −K of the
starting partition (exploring the lattice lower cone). Intuitively,
we are looking for an optimal partition, in the sense that adding

an additional kernel will not improve the performance of the
system.

Should the exploration be exhaustive, its complexity would
be given by the sum of the level numbers – known as Stirling
numbers of the second kind (sum of Stirling numbers of the
second kind are known as Bell numbers) of the partition lattice
cone rooted in (K,S−K) [10]. We, on the contrary, are look-
ing at an exploration strategy based on chain decompositions
[11], which would be linear in the cardinality of S −K.

Let a partially ordered set (P, <) be given (we refer
specifically to the Boolean lattice Bn with the inclusion
relation and to Π(S) with the refinement relation). A chain
C = (x1, x2, . . . , xc) in P is a sequence x1 < x2 < . . . < xk
where each xi ∈ P . For x, y ∈ P , we say that y covers x if
x < y and there does not exist z ∈ P such that x < z and
z < y. A saturated chain (or skipless chain) C in P , is a chain
where each element is covered by the next. P is ranked if there
exist a function r : P → Z≥0 such that x covers y implies
r(y) = r(x) + 1. Suppose min{r(x)|x ∈ P} = 0, the rank of
P is denoted r(P) = max{r(x)|x ∈ P}. A saturated chain
x1 < . . . < xn in a ranked poset P is said to be a symmetric
chain if r(x1) + r(xn) = r(P). A poset P has a symmetric
chain decomposition if it can be written as a disjoint union of
saturated symmetric chains: P = C1 ∪ C2 ∪ · · · ∪ Ck.

The Boolean lattice Bn admits symmetric chain decompo-
sitions, most notably the Bruijn’s decomposition [12]. On the
contrary, the partition lattice is not symmetric. For example,
there are 2n−1 − 1 partitions of an n-set into two blocks, but
only n(n − 1)/2 partitions of an n-set into n − 1 blocks.
Thus, there is no complete decomposition of the lattice into
symmetric chains (for n ≥ 3). However, using de Bruijn’s
decomposition together with a certain method to encode sets,
Loeb, Damiani and D’Antona [11] find a maximal collection
of disjoint symmetric chains of partitions. Specifically, using
de Bruijn’s decomposition of Bn they show how to gener-
ate a partial decomposition of the lattice Πn+1 of the set
{1, 2, . . . , n+ 1}: they find a collection of disjoint symmetric
chains which includes all partitions of rank ≤ b(n − 1)/2c.
Such a collection is clearly maximal. We refer to [11] for the
details of the complex mapping procedure based on a specific
encoding c(S) of the elements of the chains in Bn.

We provide an illustrative example adapted from [11].
The de Bruijn decomposition of B3 consists of the 3 chains
C1 = (∅, {1}, {1, 2}, {1, 2, 3}), C2 = ({2}, {2, 3}) and
C3 = ({3}, {1, 3}). Encoding the sets above yields the
following partition types (each digit in each sequence represent
the cardinality of a block) (1111, 112, 13, 4), (121, 31) and
(211, 22). Then one computes the partitions of each type.
The resulting decomposition is shown in Table I. The column
marked Π4 lists the three chains in the decomposition of Π4.

Using the chain decomposition of Π(S), we can perform
the search for the optimal kernel partition starting from a two
block partition (K,S −K) in polynomial time.



TABLE I
EXAMPLE OF CHAIN DECOMPOSITION OF Π4

S ∈ B3 c(S) Π4

∅ 1111 → 1111 1/2/3/4
{1} 0211 → 112 1/2/34

{1, 2} 0031 → 13 1/234
{1, 2, 3} 0004 → 4 1234

{2} 1021 → 121 1/23/4, 1/24/3
{2, 3} 1003 → 31 123/4, 124/3, 134/2

{3} 1102 → 211 12/3/4, 13/2/4, 14/2/3
{1, 3} 0202 → 22 12/34, 13/24, 14/23

IV. ADVERSARIAL MODELS ALL THE WAY ACROSS THE
DATA PIPELINE

The adversarial component is present all along the data
acquisition and processing pipeline because the the pipeline
is operated by actors/players with non-aligned interests. Al-
though they are typically driven by compatible objectives, the
optimization of one player’s objective prevents the optimiza-
tion of the other player’s.

As a concrete example, we consider the contrast between
the goals of a data preprocessing phase with those of a ML
data analytics phase (the contrast between the players enacting
the two phases).
• The typical goal of the data preprocessing phase consists

in improving the quality of the data coming from the
data acquisition phase and yielding a final dataset which
can be considered in some sense ”correct” for further
data processing algorithms. We can call these the recon-
structed data.

– The data coming from the data acquisition phase can
be affected by undesired factors such as noise, miss-
ing values, redundant or inconsistent data; sometimes
also the huge size of the data represent an unde-
sired factor for the subsequent knowledge extraction
phases. The latter kind of concerns is addressed in
the sub-phase of data reduction, the former in the
sub-phase of data preparation.

– Data preparation includes tasks such as data nor-
malization, missing value imputation, noise identifi-
cation, data cleaning, data transformation and data
integration. Data reduction includes tasks such as
instance-selection, feature-selection, and discretiza-
tion.

– Among the preprocessing operations that are most
critical to the subsequent analytics are missing value
imputation and data integration. A prototypical ex-
ample of data integration consists in the creation
of d-dimensional records out of d single-feature
records: the data of each column could have been

gathered by different sensors on a homogeneous
field, measuring different quantities (temperature,
humidity, wind speed) annotated with their time-
stamps. Let us assume the measurements of the
different sensors are not synchronized. The passage
from d 1-dimensional views of the reality to a
single d-dimensional view can be obtained by first
merging the time-stamps into an ordered list: the data
available at each time-stamp will naturally compose a
multi-dimensional record typically plagued by miss-
ing feature-values.

• In passing from the raw data coming from the acquisition
phase to the reconstructed data, some manipulations are
performed (see below) and a considerable amount of
information might be lost. In practice, one can keep
track of the uncertainty associated to the reconstructed
data only to some point, because of the cost and the
operational difficulties of such a task.

• For the sake of illustration, we consider a ML analytics
phase whose goal is to learn an accurate predictive model.
A predictive model is useful, in practice, if it provides
also information on the veracity of its predictions because
the lack of veracity has a cost. On the one hand, to make
available an uncertainty model of the predictions one
needs to use in input an uncertainty model associated to
the input data. Due to the preprocessing manipulations,
this uncertainty model might be not available. On the
other hand, devising and using ML algorithms able to
act on the raw data would have a high cost.

A. Single player setting

Should the overall data processing be controlled by a
single player P, he/she could choose the optimal strategy of
data preprocessing suitable for the ML analytics phase. For
instance, given a dataset – issued by the data acquisition phase
– plagued by missing values of some features, and given the
task of learning a decision tree out of the data, player P can
decide whether
• to resort to the imputation of convenient substitutes for

the missing data and accept the consequent inaccuracies
in the prediction

• or to avoid missing data imputation altogether and the
learn as many different models as the combination of
available features.

This single player should be able to strike a balance between
the inaccuracy of the predictor and the cost of learning many
models.

This can be done by adopting an optimization approach,
typically a multipurpose optimization approach.

B. Many players setting

Most often there are several players and the interest of the
players enacting the preprocessing phase are not aligned with
the ones of the following phases.

Data preprocessing is a costly operation and seldom is
performed with the purpose of feeding a single analytics



algorithm. Most of the time, the preprocessing tries to produce
a dataset that is later usable by different algorithms: sometimes
the restricted set of analytics algorithm that is going to be
used later is known in advance, some other times, on the
contrary, the preprocessing phase might even avoid altogether
considering specific analytics and point to a general purpose
data-set (completely agnostic w.r.t. the applicable analytics).

In the multi-player setting all the players share some parts
of one’s another goals (all aim at the successful development
of the overall data acquisition, preprocessing and analytics
process), however the best choice of a player (e.g. in terms of
costs) does not necessarily yield the best results to the other. In
this contrast consists the ”adversary” character of the process.

Although the adversarial character is very common, one
has to distinguish different settings based on the information
available to the players regarding the other (preceding or
subsequent) phases. Those scenarios can be modeled within
Game Theory. A possible Game Theoretic frame form mod-
eling the process is the one of sequential games of imperfect
information, where a player needs to take decisions only based
a partial knowledge of the other players decisions/strategies.

V. CONCLUSION

In this work, we argued that IoT environments require
specialized ML models since the feature-sets of the data,
collected by many different devices, at the periphery, will
be naturally endowed with a faceted structure, that can be
exploited in the learning strategy. We showed an example of
such an approach, developed around the exploration of the
partition lattice to build multiple kernel configurations.

We also pointed to the need of adopting adversarial mod-
els of the IoT data acquisition, preprocessing and analytics
pipeline. This is motivated by the fact that IoT ecosystems
are managed by multiple operators. Although those interests
do not point in completely opposite directions, they are not
aligned. As a consequence, one cannot rely on full mutual
trust among all the pipeline modules. An adversarial paradigm,
based on Game Theory can help in soundly modeling the
overall process.
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