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SUMMARY
Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human
cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53
mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated
with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy
samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome
arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased
proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic
correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm
aneuploidy.
INTRODUCTION

Aneuploidy, an unbalanced number of chromosomes, was first

observed in tumor cells over 100 years ago (reviewed in Holland

andCleveland, 2009) and is a predominant cancer feature occur-

ring in�90%of solid tumors (Weaver andCleveland, 2006). Even

though it is among the oldest described cancer alterations, and

even though genomics efforts have allowed high-throughput

‘‘karyotyping’’ of patient cancers, the role of aneuploidy in tumor-

igenesis is still a mystery.

Aneuploidy and focal copy-number alterations represent two

classes of somatic copy-number alteration (SCNA) (Tang and

Amon, 2013). Studies of genomic and phenotypic correlates of
Significance

Although its universality makes aneuploidy a salient feature
aneuploidy remains a mystery. Powerful technologies for gen
of aneuploidy more tractable. Here, we look across cancer to
of aneuploidy which further hint at its importance for the proce
neer aneuploid chromosome armswill now enable the developm
tigate the proliferative and survival impact of cancer aneuploid

676 Cancer Cell 33, 676–689, April 9, 2018 ª 2018 The Authors. Pub
This is an open access article under the CC BY-NC-ND license (http://
aneuploidy and SCNAs have examined copy number based on

cytoband (Carter et al., 2006) or based on number of SCNAs,

including broad and focal events (Davoli et al., 2017; Buccitelli

et al., 2017). By these definitions, increased SCNA levels were

reported to correlate with proliferation pathways (Carter et al.,

2006; Davoli et al., 2017; Buccitelli et al., 2017) and to anti-corre-

late with immune signaling within individual tumor types (Davoli

et al., 2017; Buccitelli et al., 2017).

We define aneuploidy as SCNAs of whole chromosomes and of

chromosome arms. In cancer, aneuploidy affects more of the

genome than any other somatic genetic alteration (Beroukhim

et al., 2010; Zack et al., 2013; Mitelman, 2000). The most frequent

recurrent armalterationsoccur inover30%of tumors,whereas the
of cancer genomes, the functional significance of cancer
ome analysis and genome engineering now make the study
identify universal and cancer-type-specific characteristics
ss of cancer pathogenesis. Furthermore, the ability to engi-
ent ofmore complex cellular models to generate and inves-
y.
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most frequent recurrent focal copy-number alterations occur at a

frequency below 0.15 (Beroukhim et al., 2010). Chromosome

arm SCNAs are more common than whole chromosome SCNAs,

occurring at higher frequencies in 12 of 16 cancer types analyzed

(Beroukhim et al., 2010). Cancer subtypes are often characterized

by tumor-specific patterns of chromosomal arm-level alterations

(Ried et al., 2012), including squamous subtypes of lung, esopha-

geal, and bladder tumors (Hoadley et al., 2014). Specific chromo-

somearm-level alterationshavealsodefinedgroupsof tumors that

are responsive to particular therapies, such as low-grade gliomas

with 1p/19q co-deletions that have been shown to be responsive

to specific chemoradiotherapy regimens (Cairncross et al., 2013).

The functional effect of an individual aneuploidy is often

thought to be due to the deletion of a tumor suppressor or over-

expression of an oncogene (Liu et al., 2016). However,

increasing evidence suggests that the effects of broad SCNAs

result from the alteration of a combination of genes (Xue et al.,

2012; Bonney et al., 2015). Recent SCNA models suggest that

the phenotypic effect of chr_17p loss is due to more than TP53

loss of heterozygosity (Liu et al., 2016). Chr_3p loss is an early

event in lung squamous cell carcinoma observed in preneoplas-

tic regions in the lung (Hung et al., 1995; Sundaresan et al., 1992),

yet studies suggest that its contributions to tumor development

are not the result of loss of one gene (Wistuba et al., 2000).

Tostudy the roleofaneuploidy in tumordevelopment,modelsof

whole chromosome aneuploidy have been developed. Trisomies

and monosomies have been extensively modeled in yeast, where

they slow proliferation and induce proteosomal stress (Torres

et al., 2007; Sheltzer et al., 2011). Mouse cells with Robertsonian

translocations can be used to model one trisomy at a time (Wil-

liams et al., 2008), or cells can be compared that differ only by sin-

gle chromosomes added by microcell-mediated cellular transfer

(Sheltzer et al., 2017; Stingele et al., 2012). These studies also

show that whole chromosome aneuploidy leads to cellular senes-

cence and decreased proliferation and transformation capabil-

ities; however, karyotype evolution can lead to a rescueof prolifer-

ation rates (Sheltzer et al., 2017). There is one characterizedmodel

of targeted chromosome arm-level deletion, where chromosome

arm 8p was deleted in mammary epithelial cells by targeting

TALENs at either end of the chromosome arm and screening for

recombination (Cai et al., 2016). In this model, 8p deletion does

not lead to an increase in growth rate or tumorigenic potential.

Recent advances in targeting of endonucleases allow ap-

proaches to generating broad chromosomal alterations in vitro.

CRISPR-Cas9 systems are particularly advantageous for their

high efficiency and design tools available for targeting DNA

throughout the genome (Mali et al., 2013; Hsu et al., 2013).

CRISPR-targeting, when combined with an artificial telomere-

containing plasmid, can be used to truncate a chromosome

arm (Uno et al., 2017).

Here, we apply methods that define chromosome arm-level

aneuploidy and a global cancer aneuploidy score to 10,522

tumors of 33 types in The Cancer Genome Atlas (TCGA), and

develop and analyze an experimental cellular model of chromo-

some arm-level aneuploidy. By combining analysis of highly

annotated cancer genomes and the experimental ability to

manipulate chromosomes, we can advance our understanding

of the effects of aneuploidy and specific chromosome arm-level

alterations in cancer development and progression.
RESULTS

Generation of Aneuploidy Scores for 10,522 TCGA
Cancers
To study features associated with aneuploidy, we first generated

an aneuploidy score reflecting the total number of chromosome

arms with arm-level copy-number alterations in a sample. When

identifying these arm-level alterations, we were cognizant that

two SCNAs that did not overlap could be misconstrued as a

single event if we simply tallied arms with more than 50% of

their length altered—for instance, if the SCNAs originated on

opposite ends of the chromosome arm. Conversely, a simple

length cutoff might exclude smaller SCNAs even if they cover

most of the genomic region covered by larger SCNAs called as

arm-level events (Figure S1A). We therefore clustered SCNAs

on each arm based upon their locations and lengths (using a

Gaussian mixture model) to identify events with likely similar

consequences (Figure S1B and Method S1). Clusters in which

the mean length of that SCNA was greater than 80% of the chro-

mosome arm were considered positive for an arm alteration,

samples whose SCNA length was less than 20% of a chromo-

some armwere considered negative, and clusters whose SCNAs

were of intermediate length were not called.

We applied this approach to 10,522 samples spanning 33

cancer types from the TCGA pan-cancer dataset (Table S1).

Somatic DNA copy-number was determined from Affymetrix

SNP 6.0 array profiling of tumor samples. From SNP array data

and mutational data, we used the ABSOLUTE algorithm (Carter

et al., 2012) to generate segmented absolute copy-number

and estimate sample purity, ploidy, and number of whole

genomedoublings. SCNAs, identified by ABSOLUTE to be clonal,

were termed deviations from the euploid level of the sample: we

considered a purely tetraploid cell (identified in 18 samples in

our analysis) as having no arm-level SCNAs. (See the STAR

Methods and Table S1 for additional information about expres-

sion and mutation data.) Using this arm-calling approach, we

determined the arm-level SCNA status of more than 400,000

chromosomearmsandmore than 175,000 non-acrocentricwhole

chromosomes for the 10,522 cancer genomes (Table S2).

We then calculated an aneuploidy score that reflects the total

burden, or number, of arm-level events in each sample. This

aneuploidy score ranged from 0 to 39, the total number of human

autosomal chromosome arms: p and q arms for chromosomes

1–12 and 16–20, together with q arms for the acrocentric

chromosomes 13–15 and 21–22 (Figures 1A and S1C). Previous

studies have demonstrated that there is less than a 2-fold

change in frequency of arm alteration due to arm length (Berou-

khim et al., 2010), and our aneuploidy score highly correlates

with fraction of genome altered by aneuploidy (Spearman’s

rank correlation coefficient = 0.975, Figure S1D). For these

reasons, we chose the sum of arms altered for subsequent

analyses.

Samples that have undergone whole genome doubling, as

defined by ABSOLUTE, have a higher degree of aneuploidy

(Spearman’s rank correlation coefficient = 0.55), suggesting

that tumors with increased ploidy are more prone to aneu-

ploidy events (Figure 1B). However, among samples of the

same genome doubling status, increased aneuploidy is gener-

ally associated with decreasing ploidy, indicating that the
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Figure 1. Aneuploidy Correlates with Ploidy, Genome Doubling Status, and Tumor Type

(A) Schematic of aneuploidy score. Step 1 is to generate copy-number calls per sample, including somatic copy-number alterations (SCNAs) of all sizes. Step 2 is

to distinguish arm-level alterations within these SCNAs. Step 3 is to total the number of altered arms to generate the aneuploidy score.

(legend continued on next page)
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Figure 2. Aneuploidy Score Correlates with

TP53 Mutations and Overall Mutation Rate

(A) The y axis is –log10 Bonferroni corrected p value

for linear model coefficient of aneuploidy score.

Dots represent every mutated gene.

(B) The x axis is aneuploidy score. The y axis is rate

of non-silent mutations per megabase (square

root). Blue samples have been called as micro-

satellite instability (MSI)-high or POLE mutated,

whereas red samples do not have these features or

have not been called.

(C) Spearman correlation coefficients for aneu-

ploidy score and mutation rate across TCGA

tumor types, arranged from smallest to largest

value. Tumor types in blue have MSI-high or

POLE mutated samples. Average of correlation

coefficients across cancer types is in purple.

See also Figure S2 and Tables S3 and S4.
arm-level events that contribute to aneuploidy are more often

absolute losses than gains (Figure 1C).

Across the entire sample panel, 88% of cancers had at least

some detectable aneuploidy (mean aneuploidy score of 10.0);

however, this rate varied substantially across cancer types (SD

between cancer type aneuploidy means = 4.8; Figure 1D). For

example, only 26% of thyroid carcinomas have any chromosome

arm-level alteration (mean aneuploidy score of 0.87), and less than

half of acute myeloid leukemias and thymomas have these alter-

ations (mean aneuploidy scores of 1.6 and 3.8, respectively). In

contrast, virtually all glioblastomas (99%, mean aneuploidy score

of 8.2), uterine carcinosarcomas (96%, mean aneuploidy score of

17.2), and testicular germ cell tumors (99%, mean aneuploidy

score of 18.7) have at least one aneuploidy event (Figure 1D).

Relationship between Cancer Mutation Frequencies
and Aneuploidy
A variety of studies have assessed the relationship between

chromosomal copy-number alteration and somatic mutation

(Ciriello et al., 2013; Zack et al., 2013; Davoli et al., 2017). We

applied the aneuploidy scores of the full pan-cancer cohort of
(B) Each tumor sample is organized by genome doubling status (blue, not doubled; green, one genome doubl

is aneuploidy score, the sum of the number of altered chromosome arms. The y axis is ploidy as determ

coefficient = 0.55.

(C) The x axis is aneuploidy score, the sum of the number of altered chromosome arms. The y axis is ploidy as

by whole genome doubling status: samples without genome doubling (left, blue; Spearman’s rank correlati

doubling (middle, green; Spearman’s rank correlation coefficient = �0.32), and samples with two or mor

correlation coefficient = 0.17).

(D) Each tumor sample is organized by tumor type and genome doubling status (blue, not doubled; green

doublings). Samples are organized by tumor type, and ranked from least to most aneuploid samples within a t

is sample number.

See also Figure S1 and Tables S1 and S2.
TCGA cases to examine this relationship.

To assess whether gene mutations are

associated with aneuploidy, we used a

multivariable linear regression model

that accounts for cancer type and the

number of mutations per sample.

In this analysis, TP53 was an outlier,

with the highest coefficient in the linear
model (toward enrichment of mutations among aneuploid sam-

ples) and the highest statistical significance (Figure 2A; Table

S3), consistent with previous studies (Ciriello et al., 2013; Zack

et al., 2013; Davoli et al., 2017). We also detected significant as-

sociations between aneuploidy and mutation rate for 34 other

genes. However, the correlation coefficients for these genes

were always negative (toward enrichment of mutations in low

aneuploidy samples) and never exceeded a magnitude of

0.027, whereas the coefficient for TP53 was positive 0.13.

Next, we assessed the relationship between somatic mutation

rate and aneuploidy. It has been previously reported that there is

an inverse relationship between the frequencies of recurrent

copy-number alterations and of recurrent somatic mutations in

cancer (Ciriello et al., 2013; Figure S2A). Although we do also

observe that cancers with very high mutation rates have low

aneuploidy scores (Figure 2B), these high mutation rate/low

aneuploidy cancers largely exhibit high levels of microsatellite

instability (MSI) or POLEmutation, primarily in colon adenocarci-

noma and endometrial cancers (Figure 2B).

In contrast, when these hypermutated tumors are excluded,

we observed a positive correlation between mutation frequency
ing; red, two or more genome doublings). The x axis

ined by ABSOLUTE. Spearman’s rank correlation

determined by ABSOLUTE. Samples are separated

on coefficient = �0.13), samples with one genome

e genome doublings (right, red; Spearman’s rank

, one genome doubling; red, two or more genome

umor type. The x axis is aneuploidy score, the y axis
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Figure 3. Aneuploidy Score Negatively Correlates with Immune Infiltrate, Which Contributes to Decreased Expression of Immune Genes

(A) Spearman correlation coefficients for aneuploidy score and impurity across TCGA tumor types, arranged from smallest to largest value. Average of correlation

coefficients across tumor types is in purple.

(B) Spearman correlation coefficients for aneuploidy score and leukocyte fraction across TCGA tumor types, arranged from smallest to largest value. Average of

correlation coefficients across tumor types is in purple.

(C) Spearman correlation coefficients for aneuploidy score and non-leukocyte stroma across TCGA tumor types, arranged from smallest to largest value. Average

of correlation coefficients across tumor types is in purple.

(D) Heatmap of normalized enrichment scores for Hallmark gene sets in GSEA (gene set enrichment analysis), with FWER (family-wise error rate) p value < 0.01.

Gray, not significant or not enriched. Predictor variables describe variables included in linear regressionmodel for gene expression. Pathways are those identified

from genes with significant coefficients in linear regression analysis.

See also Figure S2 and Tables S4, S5, and S6.
and aneuploidy score (Spearman’s rank correlation coefficient =

0.38), as well as between recurrent SCNAs and recurrent

mutations (Spearman’s rank correlation coefficient = 0.34). The

positive correlation betweenmutation and aneuploidy was found

in most cancer types with the notable exceptions of colorectal

carcinoma (COAD and READ) and uterine carcinoma (UCEC

and UCS), as well as uveal melanoma and stomach adenocarci-

noma (Figure 2C; Table S4). All of these exceptions other than

uveal melanoma had some cases of MSI or POLE mutation.

Relationship between Immune Infiltrates and
Aneuploidy
Another important question about the cancer genome is the rela-

tionship between genome alterations and the immune response.

Tumor mutational burden is known to be associated with

response to immune checkpoint inhibition in cancer (Topalian

et al., 2016; Rizvi et al., 2015), while aneuploidy has been re-

ported to be associated with decreased immune infiltrate across

many tumor types (Davoli et al., 2017). To assess the relationship

between aneuploidy and immune infiltrates, we performed

analyses of gene expression as a function of aneuploidy scores.

The contribution of cells such as fibroblasts, leukocytes, endo-

thelial cells, and other cell types is a confounding factor in the

analysis of gene expression in primary tumors, so we also

controlled for these features in our analysis. We measured im-

mune and stromal cell populations using computational analyses

rather than pathology-based estimates, as sections of the tumor

used for histology were different from those used for molecular
680 Cancer Cell 33, 676–689, April 9, 2018
profiling. For estimating purity, we used ABSOLUTE, an estab-

lished copy-number pipeline used in most TCGA studies that

has been benchmarked histologically (Carter et al., 2012; Zack

et al., 2013). For the leukocyte fraction, estimates based on

methylation (Thorsson et al., 2018) and expression (Aran et al.,

2017) correlate with a Spearman’s rank correlation coefficient

of 0.706 (Figure S2B). Namely, we first identified features reflect-

ing cellular composition that associated with aneuploidy, and

included these in our regression model tying gene expression

to aneuploidy.

We first found that cancer impurity, as measured by

ABSOLUTE (Carter et al., 2012), positively correlated with

aneuploidy; in other words, cancers with high aneuploidy were

associated with a higher fraction of non-cancerous cells

(Figure 3A; Table S4). However, the measurement of leukocyte

fractions based on methylation signatures, as described

previously (Carter et al., 2012; Thorsson et al., 2018), showed

a negative correlation with aneuploidy (Figure 3B; Table S4).

Most individual tumor types showed a negative correlation

between aneuploidy and leukocyte fraction, which was

strongest in pancreatic adenocarcinoma and head and neck

squamous cell carcinoma (HNSC) (Spearman’s rank correlation

coefficients = �0.428 and �0.312, respectively) (Figure 3B;

Table S4). This observation is consistent with previous

reports that aneuploidy is associated with decreased levels of

cancer immune infiltrate (Davoli et al., 2017). Paradoxically,

pan-cancer analysis shows a slight positive correlation between

aneuploidy score and leukocyte fraction (Spearman’s rank
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correlation = 0.0568, Figure S2C), but this is driven by differ-

ences between tumor types as there is a negative correlation

within most tumor types (Figure S2D). Combining the aneu-

ploidy and leukocyte fraction results, the observed positive cor-

relation of aneuploidy with impurity could be related to a non-

leukocyte cellular fraction that is associated with aneuploidy

(Figure 3C; Table S4).

Another way to assess immune infiltrates is by gene expression

rather than methylation data. Using RNA sequencing data from

9,670 TCGA cancers for which there was also aneuploidy data

(Table S1; STAR Methods), we generated a linear regression

model relating the expression of each gene (measured by

RNA-Seq by Expectation Maximization [RSEM] values of RNA

sequencing data) in each sample as a function of aneuploidy

score,acrossall cancer types (TableS5).A ranked listof significant

aneuploidy score coefficients for eachgenewasanalyzedbygene

set enrichment (GSEA) with the MSigDB hallmark gene sets.

In the case of univariate linear regression, we observed a sta-

tistically significant (family-wise error rate [FWER] p value < 0.01)

enrichment for proliferation pathways (such as E2F targets,

mitotic spindle, and G2M checkpoint) and immune pathways

(including interferon gamma response, allograft rejection, and

immune response) (Figure 3D, column 1; Table S6). At first

glance, this result appears contradictory to previously published

studies (Davoli et al., 2017; Buccitelli et al., 2017). However,

when we added tumor type as an additional variable in the linear

regressionmodel, immune gene sets were negatively associated

with aneuploidy scores (Figure 3D, column 2; Table S6), consis-

tent with other studies that assessed correlations within specific

tumor types (Davoli et al., 2017; Buccitelli et al., 2017). When

calculating an immune gene set expression score per sample,

we also observed a pan-cancer-positive correlation which is

driven by tumor type, consistent with the linear regression model

(Figures S2E and S2F).

To determine whether the purity and immune infiltrate factors

contribute to the aneuploidy-correlated expression patterns, we

added them to our linear model. Adding purity or non-leukocyte

stroma as variables did not affect the enrichment of immune sig-

natures (Figure 3D, columns 3 and 4; Table S6), but addition of

leukocyte fraction as a variable resulted in the loss of the immune

signature enrichment (Figure 3D, column 5; Table S6). These re-

sults suggest that the enrichment of the immune expression

signature was due to the fraction of leukocyte infiltrate present

in that sample. In contrast, pro-proliferative and cell cycle

pathways were significantly positively correlated with aneu-

ploidy score, regardless of other predictors in the model (Fig-

ure 3D and Table S6).

Cancer-type-specific Patterns of Chromosome
Arm-Level Aneuploidies
Subsequently, we assessed the rates of whole chromosome and

chromosome arm alteration across human cancer types. Arm or
Figure 4. Patterns of Arm-Level Alterations Cluster by Tumor Site, Tis

(A) Matrix of mean arm-level alteration within each tumor type/subtype. Hierarch

(B) Integrated genomics viewer (IGV) plots of chromosome 3 copy-number alterat

gain. Numbers for lung squamous and lung adenocarcinoma samples that had arm

of co-occurrence of chromosome 3p loss and chromosome 3q gain.

See also Figure S3 and Tables S7 and S8.
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whole chromosome alterations occurred in 88% of cancer

samples. Not including acrocentric chromosomes, whole

chromosome alterations occurred in 66% of samples and

chromosome arm-level alterations occurred in 78% of samples

(Table S2). Individual arms and chromosomes were altered at

different frequencies (Table S7); 8p and 17p were the most

frequently deleted (at 33% and 35%, respectively), 8q was the

most commonly gained (33% of samples), and 2p and 2q the

least commonly altered (total 18% and 16%, respectively).

Chromosome arms 6p, 12q, 17q, and 19q were gained and

lost in equal percentages (difference between gain and loss fre-

quency < 0.03), but others were predominantly gained (1q, 7p,

8q, and 20q) or predominantly lost (3p and 17p).

We observed that every cancer type harbors a unique pattern

of aneuploidy, with different arms or whole chromosomes

altered at different frequencies (Table S7). To compare different

cancer types and molecular subtypes, we performed hierarchi-

cal clustering of mean arm-level calls (Figure 4A; Table S8), pre-

viously performed across 3,000 TCGA samples (Beroukhim

et al., 2010). Within an individual cancer type, molecular sub-

types often clustered together, such as glioblastoma subtypes

and testicular germ cell tumor subtypes (Figure S3A). Consistent

with previous analyses, endometrial cancer was a notable

exception, as copy-number-high ‘‘serous like tumors’’ cluster

separately from other endometrial subtypes (Figure 4A and Can-

cer Genome Atlas Research Network et al., 2013). Testicular

germ cell tumors were characterized by chromosome 12p gain

among other aneuploidy events (Taylor-Weiner et al., 2016).

Glioblastomas without IDH mutations are characterized by

chromosome 7 gain and chromosome 10 loss, consistent with

previous studies (Brennan et al., 2013). Low-grade gliomas

cluster near glioblastomas, but are characterized by distinct

alterations of chromosome 1p loss and chromosome 19q gain

correlating with IDH mutation (Cancer Genome Atlas Research

Network et al., 2015), a pattern shown to be therapeutically rele-

vant (Cairncross et al., 2013).

Several cross-tumor clusters emerged from our analysis (Fig-

ure 4A and Table S8). Gastrointestinal tumors (colorectal, non-

squamous esophageal, stomach, and pancreatic) clustered

together with co-occurring gains of 8q, 13q, and chromosome

20, regardless of the status of microsatellite or chromosome

instability. We also observed a cluster of some gynecological

tumors (ovarian cancer and endometrial cancers with high

copy-number alterations) and a second cluster of epithelial tu-

mors characterized by 1q gain (lung adenocarcinoma, breast

cancers, and liver hepatocellular carcinoma). Neural lineage

cancers (low-grade glioma, glioblastoma, and melanoma)

formed a cluster neighboring additional mesoderm-derived tu-

mors (endometrial cancers with few copy-number alterations,

renal clear cell carcinoma, and renal papillary cell carcinoma),

characterized by recurrent chromosome 7 gain and fewer

aneuploidy alterations.
sue of Origin, and Squamous Morphology

ical clustering of tumor type by Pearson’s method.

ions in lung squamous cell carcinoma or lung adenocarcinoma. Blue, loss; red,

calls for both 3p and 3q. The p values represent chi-square test for enrichment



Previous clustering efforts by multiple data types across 12

tumor types showed that squamous cancers from different tis-

sues of origin (lung, esophagus, and bladder) clustered together

(Hoadley et al., 2014). Our analyses also separated out squa-

mous cancers based on aneuploidy data alone, suggesting

that broad SCNAs are a major determinant of the squamous

cluster. A dominant feature of the squamous cancer cluster

was chromosome arm 3p loss and chromosome arm 3q gain,

which is present in cervical squamous cell carcinomas and

HPV-positive HNSCs, and strongest in esophageal squamous

cell carcinomas, lung squamous cell carcinoma, and HPV-nega-

tive HNSCs.

Chromosome 3 alterations are a known feature of lung squa-

mous cell carcinoma (Bass et al., 2009; Hagerstrand et al.,

2013; Zabarovsky et al., 2002), with chromosome 3p loss present

in preneoplastic lesions in the lung (Hung et al., 1995; Sundaresan

et al., 1992). In our lung squamous cell carcinoma dataset, chro-

mosome 3p was deleted in almost 80% of tumors and chromo-

some arm 3q was gained in over 60% of tumors (Figure 4B).

The co-occurrence of chr_3p loss and chr_3q gain was

significantly more frequent than would be expected by chance

(Figure 4B; chi-square test p = 0.0386). Alterations in the reverse

direction, chr_3p gain and chr_3q loss, were not observed in our

dataset. In contrast, in lung adenocarcinoma, less than half of

tumors had 3p loss and only 13% had 3q gain (Campbell et al.,

2016), and these did not significantly co-occur (p = 0.0626).

Chr_3p gains occurred, though rarely, and chr_3q loss occurs at

higher rates. As expected, deletion of 3p correlated with a reduc-

tion of 3p gene expression across TCGA samples (Figure S3B).

Based on the linear modeling of gene expression, chr_3p alter-

ation negatively correlated with hallmark sets of cell cycle (E2F

targets/G2M checkpoint; Figure S3C, FWER p value < 0.01),

epithelial mesenchymal transition, interferon gamma response,

and tumor necrosis factor alpha signaling (Figures S3D and

S3E, FWER p value < 0.01). These pathways were downregulated

when 3p is gained and upregulated when 3p is lost.

Genome Engineering Approach to Delete Chromosome
Arm 3p In Vitro

Chromosome arm-level aneuploidies occur in almost 80% of

cancers, yet have been rarely modeled in human cells (Cai

et al., 2016; Uno et al., 2017). Given the continuing scientific

mystery regarding the function of cancer aneuploidy, and given

that deletion of chromosome 3p occurs in almost 80% of

squamous cell lung cancers, we wanted to further understand

the effect of chr_3p deletion in lung epithelial cells. We devel-

oped a recombination directed approach to remove the 3p chro-

mosome arm. Using the CRISPR-Cas9 system, we generated

double-strand breaks (DSBs) centromeric to all genes on the

3p arm. We modified a plasmid containing an artificial telomere

and puromycin selection cassette (Uno et al., 2017) by addition

of 1 kb DNA of sequence homologous to the region centromeric

of the chr_3p DSB (Figure 5A). The CRISPR plasmid and telo-

mere-containing plasmid were co-transfected into cells, and

the recombination event was selected for with puromycin treat-

ment. We observed successful recombination verified by Sanger

sequencing, in a human immortalized lung epithelial cell line

(AALE, immortalized by SV40 large T antigen) (Figure S4A). To

test for chr_3p hemizygous deletion, we performed qPCR on
genomic DNA to compare chr_3p and chr_3q levels. Single-

cell clones that were positive for recombination were positive

for chr_3p hemizygous deletion by qPCR (Figure 5B), as well

as whole genome sequencing (Figures 5C and S4B) and karyo-

typing (Figure 5D).

Chromosome Arm 3p Deleted Cells Evolve over Time
Weevaluated the growth of cells with chromosome 3p truncation

(Figure 6A). At the first round of characterization, ten passages

post-single-cell cloning, chromosome 3p deleted cells prolifer-

ated more slowly than their non-deleted siblings (Figure 6B,

p value < 0.05). The chr_3p hemizygously deleted cells did not

undergo increased apoptosis as measured by propidium iodide

staining (Figure S4C). However, we observed more cells in G1 of

the cell cycle by propidium iodide staining in fixed cells,

indicative of cell cycle arrest (Figure S4D, p value <0.001).

AALE parental cells do not form colonies in soft agar (Lundberg

et al., 2002), and 3p deleted cells were also negative in this assay

for anchorage independent growth (data not shown). RNA

sequencing of deleted clones and their non-deleted siblings

confirmed downregulation of chr_3p genes in cis, statistically

significant for 64% of genes (false discovery rate [FDR] < 0.05)

(Figure S4E). STAC and ROBO1 were the most downregulated

3p genes, decreased by more than 15-fold, and chr_3p genes

UBA7 and LMCD1 were upregulated more than 2-fold. Chr_3p

hemizygously deleted cells also had upregulation of interferon

and immune response pathways by GSEA (FWER < 0.01) (Fig-

ure 6C), consistent with the finding that 3p copy-number was

anti-correlated with these pathways in the pan-cancer analysis

(Figures S3D and S3E).

After an additional 4–5 passages (approximately 10 population

doublings) and one round of freeze-thaw, 3p deleted cells no

longer proliferated more slowly (Figure 6D). Fifty-three percent

of chr_3p genes were still significantly downregulated (FDR <

0.05) (Figure S4F), with STAC and ROBO1 decreased more

than 13-fold. Interestingly, UBA7, an ubiquitin enzyme on 3p

that targets interferon gene ISG15, was no longer upregulated.

By GSEA, interferon pathways were still upregulated (Figure 6C),

though enrichment scores were lower and other immune signa-

tures were no longer significant. Later stage chr_3p deleted cells

had downregulation of genes involved in the epithelial mesen-

chymal transition and angiogenesis (GSEA FWER < 0.01), but

the implications of this remain obscure. We also observed

subclones with duplication of the remaining full copy of chromo-

some 3 in two of the three deleted clones (Figures 6E and S4G).

In these subclones with chromosome 3 duplications, 3q is

gained and 3p is no longer lost. We conclude that selection of

advantageous alterations or expression changes allow chr_3p

deleted cells to overcome the negative growth effects of aneu-

ploidy in this model system (Figure 6F). In this section, we have

demonstrated that it is possible to model aneuploidy. We have

not observed a neutral or positive affect on aneuploidy on cell

proliferation. Results are summarized in Table 1.

DISCUSSION

Here, we present parallel computational and experimental

approaches that provide insight into the largely unexplored role

of aneuploidy in cancer. By calculating aneuploidy level in
Cancer Cell 33, 676–689, April 9, 2018 683
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Figure 5. CRISPR-Based Approach can Delete a Chromosome Arm in Human Immortalized Cells
(A) Schematic of CRISPR and recombination-based approach to delete chr_3p in vitro. A linearized plasmid containing homologous DNA, a puromycin selection

marker, and an artificial telomere is co-transfected with a CRISPR-Cas9 construct to target DNA sequence adjacent to the centromere. Upon transfection, a

double-strand break is produced and repaired by homologous directed recombination, removing a chromosome arm and replacing it with an artificial telomere.

(B) qPCRmeasuring chr_3p gDNA normalized to chr_3q gDNA in single-cell clones. Bars represent means with error bars ± SD. Light blue, single-cell clones that

were not transfected (NTF) and did not have chr_3p deletion; dark blue, single-cell clones that were transfected (TF) but did not have chr_3p deletion; and red,

single-cell clones that were TF and have chr_3p deletion. *p value <0.05.

(C) Whole genome sequencing output of HMMCopy, for one chr_3p deleted cell clone (top) and a non-deleted control clone (bottom).

(D) Karyotype of one chr_3p deleted cell clone. Chromosome 3 is circled, arrows point to chromosomal abnormalities, and arrowheads point to missing

chromosomes. Mar, marker chromosome.

See also Figure S4.
10,522 tumors, we uncovered the correlation of aneuploidy with

TP53 mutations, overall somatic mutation rate, and proliferative

signatures, and an inverse correlation with leukocyte fraction.

Our analysis revealed expression changes in cell cycle and im-

mune hallmarks associated with individual chromosome arm-

level alterations, independent of aneuploidy level. We also

observe tissue-specific patterns of aneuploidy, and squamous

tumors of different tissue origins clustering together. Using

CRISPR technology, we modeled one of the chromosome arm

alterations observed in squamous tumors (chr_3p deletion) in

human immortalized lung epithelial cells. A decrease in cellular

proliferation rate is associated with chr_3p deletion, a phenotype

that is reversed by gain of chromosome 3.

Examining Pan-cancer Aneuploidy Analyses
In this study, we defined aneuploidy to include chromosome

and arm-level SCNAs, but not smaller SCNAs. In some cases,
684 Cancer Cell 33, 676–689, April 9, 2018
computationally derived definitions of aneuploidy and analyses

of SCNAs have included both broad and focal SCNAs (Davoli

et al., 2017; Buccitelli et al., 2017). Broad and focal events occur

by different mechanisms and have different effects; broad

events affect a large number of genes by one or few copies, while

focal events affect fewer genes with higher amplitudes of gain or

with homozygous deletion (Beroukhim et al., 2007). Therefore we

chose to restrict our analysis to the broad events, to harmonize

the definition of aneuploidy more with the mechanism of gener-

ation of the structural and transcriptional consequences.

Aneuploidy level varies greatly across tumor type, impacting

the analyses of aneuploidy correlations with mutation rate

and immune signatures and potentially leading to conflicting

results in the literature (Ciriello et al., 2013; Davoli et al., 2017;

Buccitelli et al., 2017). By controlling for tumor type, as well as

confounders such as sample purity and cellular composition,

our analysis reconciles discrepancies in the literature. Regarding
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Figure 6. Chromosome 3p Lung Cells Initially have Slower Proliferation, but Normalize over Time

(A) AALE cells were transfected, and 1 day later cells were selected with puromycin for cells that had incorporated transfected DNA. Cells were single-cell cloned

to isolate chr_3p deleted clones, and assayed before and after extensive passaging.

(B) Proliferation curves were generated using CellTiter-Glo over 6 days (x axis). The y axis is relative luminescence units, normalized to day 0. Data plotted are

means with error bars ± SD. *p value <0.01, **p value <0.001. Cells were from time point (A).

(C) Heatmap of normalized enrichment scores for Hallmark gene sets in GSEA.

(D) Proliferation curves were generated using CellTiter-Glo over 6 days (x axis). The y axis is relative luminescence units, normalized to day 0. Data plotted are

means with error bars ± SD. Cells were from the higher passage population.

(E) Karyotype from one of the chromosome 3p deleted clones. Chromosome 3 is circled, arrows point to chromosomal abnormalities, and arrowheads point to

missing chromosomes.

(F) During passaging, cells have gained additional changes (*) to adapt to chr_3p deletion.

See also Figure S4.
mutation rate and aneuploidy correlations across cancers,

mutation rate is inversely proportional to aneuploidy, but this

anti-correlation is driven by tumors with high MSI (mostly

colon adenocarcinoma and endometrial cancers). Once MSI

tumors are removed, mutation and aneuploidy are positively

correlated (consistent with Davoli et al., 2017 and Buccitelli

et al., 2017).
When controlling for tumor type, our results are consistent with

a negative correlation between aneuploidy and leukocyte

infiltrate, which explains a decrease in expression of immune sig-

natures. Interestingly, some studies have shown that abnormal

karyotypes or hyperploidy can trigger an immune response

(Santaguida et al., 2017; Senovilla et al., 2012). This result

suggests the possibility that aneuploid tumor cells may have to
Cancer Cell 33, 676–689, April 9, 2018 685



Table 1. Summary of Results

Aneuploidy and Ploidy

d Across 10,522 pan-cancer samples, the correlation coefficient between ploidy and aneuploidy score is 0.55.

d Across 6,800 samples without genome doubling, the correlation coefficient is -0.13.

d Across 3,242 samples with one genome doubling, the correlation coefficient is -0.32.

d Across 480 samples with two or more genome doublings, the correlation coefficient is 0.17.

Aneuploidy and Mutations

d Across 9,702 samples (with copy number and mutation data) and corrected by tumor type and mutation rate, TP53 mutation is enriched in

samples with higher aneuploidy, with a coefficient of 0.126 and a Bonferroni corrected p value of 5.58*10-141 .

d Across 9,766 pan-cancer samples in 30 tumor types (with copy number, mutation rate, and leukocyte fraction data), the correlation coeffi-

cient between non-silent mutation rate and aneuploidy score is 0.336.

d Across 191 samples with high microsatellite instability or POLE mutations, the correlation coefficient between non-silent mutation rate

and aneuploidy score is -0.239.

d Across 9,575 samples without high microsatellite instability or POLE mutations, the correlation coefficient between non-silent mutation

rate and aneuploidy score is 0.379.

Aneuploidy and Microenvironment Correlations

d Across 9,766 pan-cancer samples, the average tumor-type correlation coefficient between impurity and aneuploidy score is 0.089.

d Across 9,766 pan-cancer samples, the average tumor-type correlation coefficient between leukocyte fraction and aneuploidy score is -0.077.

d Across 9,766 pan-cancer samples, the average tumor-type correlation coefficient between non-leukocyte stroma and aneuploidy score

is 0.241.

Chromosome Arm-Alterations and Cross-Tumor Clusters

d Clustering 25 tumor subtypes revealed a group of gastrointestinal tumors, including colon adenocarcinoma, rectal adenocarcinoma,

esophageal adenocarcinoma, stomach adenocarcinoma, and pancreatic adenocarcinoma. The Pearson’s correlation coefficients range

from 0.37 to 0.99.

d Clustering revealed a group of gynecological tumors, including endometrial carcinoma with high copy number levels and ovarian cancers.

The Pearson’s correlation coefficient is 0.90.

d Clustering revealed a group of squamous cell carcinomas, including lung squamous cell carcinoma, head and neck squamous cell carci-

noma, esophageal squamous carcinoma, and cervical squamous carcinoma. The Pearson’s correlation coefficients range from 0.58 to 0.94.

Phenotypes of Chromosome 3p Deletion

d Chromosome 3p deletion and chromosome 3q gain are significantly enriched in lung squamous cell carcinoma, with a p value of 0.039.

d Chromosome 3p deletion does not induce apoptosis.

d Chromosome 3p deletion induces slowed cell cycle (more cells in G1), with a p value of 0.0006.

d Chromosome 3p deletion initially induces slower cellular proliferation (p value < 0.0017), rescued over time.

d Chromosome 3 duplication occurs in chromosome 3p deleted cells.
overcome or evade this ploidy-related immune response for tu-

mors to progress.

When controlling for tumor type, aneuploidy level, and cellular

composition of each sample, we identified immune expression

signatures that can independently correlate with individual

arm-level copy-number alterations. Deletions of some arms,

including 3p, 8p, 13q, or 17p, are positively correlated with

immune signatures, whereas deletions of other arms, including

4q, 5q, and 14q, are anti-correlated with immune signatures.

The distinct correlations of immune signatures with deletion of

different arms also suggest that immune signature changes

might be due to specific genes or regions within each affected

arm rather than to overall aneuploidy.

Genome Engineering to Model an Individual Cancer
Aneuploidy
We have developed a method to generate chromosome arm de-

letions by initiating centromeric DNA breaks with CRISPR-Cas9

to promote replacement of an arm with a selection cassette and

an artificial telomere. The method described here can be applied

to deletion of any chromosome arm. In the case of chr_3p dele-

tion, differential expression of chr_3p genes and interferon

response genes is consistent with expression changes across
686 Cancer Cell 33, 676–689, April 9, 2018
TCGA samples, supporting the utility of both our computational

and experimental approaches.

Consistent with single-chromosome aneuploidy models in

human cells (Stingele et al., 2012; Sheltzer et al., 2017), chromo-

some arm-level deletion of human chr_3p has an anti-prolifera-

tive effect that cells can overcome with time. Even though p53

is inhibited in the lung epithelial cells, as they were immortalized

with SV40 large T antigen (Lundberg et al., 2002), chr_3p deletion

initially caused a decrease in cell proliferation. We initially pre-

dicted that deletion of chr_3p would not be as anti-proliferative

as other aneuploidies, as it is thought to be an early event in

lung tumorigenesis (Hung et al., 1995; Wistuba et al., 2000).

However, in our cells, selective pressures have likely induced

some secondary changes in the chr_3p deleted cells to promote

proliferation.

One previously observed mechanism of selection is the evolu-

tion of cell line karyotypes over time (Sheltzer et al., 2017). In two

of the three chr_3p deleted clones, we observed subclones with

a duplicated wild-type copy of chromosome 3, changing an indi-

vidual cell from chr_3p deleted to chr_3q gained. Interestingly,

chr_3q gain is also a defining feature of squamous cell carci-

noma, and contains oncogenes such as SOX2, PIK3CA, and

TERC. In the future, we plan to expand our chromosome deletion



model to different chromosome arms (Cai et al., 2016; Uno et al.,

2017), and thereby to interrogate how specific aneuploidies can

induce distinct expression patterns, phenotypes, and selection

mechanisms.

Open Questions in Aneuploidy: Tissue Specificity and
Selection
The tissue specificity we observe in patterns of aneuploidy could

be due to the specific transcriptional effects of different aneu-

ploidies. Our work here begins to analyze expression changes

induced by each arm alteration while controlling for overall aneu-

ploidy level and other confounders. By focusing our analysis

within tumor types and comparing between them, we can

uncover whether specific aneuploidies have different transcrip-

tional consequences in different tissues. Determining whether

transcriptional consequences have distinct selective advan-

tages and disadvantages in different tissues will require further

integration of in vitro models and computational analysis. In

addition, specific aneuploidies may trigger unique depen-

dencies; future directions involve interrogating existing in vitro

CRISPR and small hairpin RNA cell line data to identify potential

therapeutic targets that can be validated in the in vitro models.

The major question about cancer aneuploidy remains open: is

aneuploidy positively selected for in cancer? We favor the view

that aneuploidy is positively selected for, as it is a universal

and tissue-consistent feature of epithelial cancer. However, the

experimental data on cancer aneuploidy do not currently support

this model. There are a few possible explanations for this contra-

diction. In the case of oncogenic mutations, overexpression in

model systems often leads to oncogene-induced senescence

(Larsson, 2011); individual aneuploidies may elicit a similar

response. In addition, we have not yet identified the exact envi-

ronment for positive selection of aneuploidy; p53/RB inhibition

and TERT activation may not be sufficient to allow selection of

aneuploidies. Future work will involve combining models of

diverse aneuploidy events, including chromosome arm gains

and losses, along with different mutations and different cellular

contexts. It will be increasingly important to incorporate models

of stromal interaction into prospective studies of aneuploidy and

its selection, whether by advanced cellular modeling, single-cell

sequencing, or use of animal models. In particular, CRISPR

manipulation in human lung organoids will be a useful approach

to assess interactions of different lung cell types with aneuploidy

alterations, as well as potential stromal cell interactions in a 3D

tissue model (Barkauskas et al., 2017). Continued integration

of computational and experimental approaches will be required

to understand how an aneuploidy alteration, affecting hundreds

of genes simultaneously, results in an aneuploidy phenotype

and contributes to tumor development or, alternatively, is an

unselected event.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Nextera DNA Sample Preparation Kit Illumina Catalog: FC-121-1030

NEBNext Ultra Directional RNA Library Prep Kit New England Biolabs Catalog: E7420S

QIAamp DNA Mini Kit Qiagen Catalog: 51304

Qiagen RNeasy Mini Kit Qiagen Catalog: 74104

CellTiter-Glo Luminescence Viability Assay VWR Catalog: PAG7572

Deposited Data

Raw data files for RNA-sequencing of in vitro AALE clones This paper https://www.ncbi.nlm.nih.gov/

Traces/study/?acc=SRP133935

Raw data files for DNA-sequencing of in vitro AALE clones This paper https://www.ncbi.nlm.nih.gov/

Traces/study/?acc=SRP133935

Experimental Models: Cell Lines

Immortalized Lung Epithelial Cells (AALE) Lundberg et al., 2002 #N/A

Oligonucleotides

Chr_3p CRISPR (5’ TGATCAGTCAGGTAAGGATG 3’) This paper #N/A

Recombination PCR Forward (5’

CTACCCGCTTCCATTGCTCA 3’)

This paper #N/A

Recombination PCR Reverse (5’

TTGGTTGAGCAGTTGGACAT 3’)

This paper #N/A

Chr_3p qPCR Forward (5’ ACAATCCAAACTAGCATGCACA 3’) This paper #N/A

Chr_3p qPCR Reverse (5’ AGCGTTAGAGGGAGGGGAG 3’) This paper #N/A

Chr_3q qPCR Forward (5’ CGTGTCCGGGGTAGATCTTG 3’) This paper #N/A

Chr_3p qPCR Reverse (5’ GCTTACATCCTCGGGCAGAA 3’) This paper #N/A

Software and Algorithms

ABSOLUTE Carter et al., 2012 Version 1.5

Python Package SciKit-Learn Pedregosa et al., 2011 Version 0.16.1

Python Package scipy stats www.scipy.org Version 0.19.0

edgeR Robinson et al., 2010

STAR Dobin et al., 2013

RSEM Li and Dewey, 2011

GSEA Subramanian et al., 2005 Version 3.0

HMMCopy Lai et al., 2016

IchorCNA Adalsteinsson et al., 2017

Morpheus https://software.broadinstitute.org/

morpheus/index.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Matthew

Meyerson (matthew_meyerson@dfci.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All in vitro experiments were performed in XX immortalized lung epithelial cells (AALE cells), derived at Dana-Farber and immortalized

by SV40 large-T antigen (Lundberg et al., 2002). Cells were maintained at 37 degrees Celsius and 5% CO2 in Lonza small airway

growth medium (CC-3118).
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METHOD DETAILS

Pan-Cancer Computational Analyses
Datasets

For 10,522 TCGA samples, somatic DNA copy number was determined from Affymetrix SNP 6.0 arrays. For 9,670 of these

10,522 samples, RSEM (RNA-seq by Experimentation Maximization) expression values were determined from Illumina mRNA

sequencing data. For 9,756 of these 10,522 samples, mutations were called from whole-exome DNA sequencing data (Ellrot

et al., 2018). (See also Table S1.)

Calculating Arm-Level Events and Aneuploidy Score

Using the ABSOLUTE algorithm (Carter et al., 2012) for each sample, we determined the likeliest ploidy and absolute total copy

number of each segment in the genome. Each segment was designated as amplified, deleted, or neutral based on whether its

copy number was greater than, smaller than, or equal to the sample’s ploidy (rounded to the nearest integer) respectively. For am-

plifications and deletions separately (collectively ‘‘alterations’’), segments were joined until either the entire chromosomewas consid-

ered altered or more than 20% of the genomic length between the start and ends were not altered in the same direction; e.g. >20%

deleted or neutral for joining amplification segments. For every combination of arm/chromosome and direction of alteration within

each TCGA tumor type, the start coordinates, end coordinates, and percentage length of the longest joined segment were clustered

across samples using a Gaussian Mixture Model (Pedregosa et al., 2011, Python package SciKit-Learn). The optimal clustering

solution between 2-9 clusters inclusive was chosen based on the lowest BIC (Bayesian information criterion). Tumors in clusters

whose mean fraction altered in either specific direction was >=80% were considered ‘‘aneuploid.’’ Tumors altered <20% (in

both directions) were considered ‘‘non-aneuploid,’’ and others were designated ‘‘other.’’ Each arm was assigned -1 if lost, +1 if

gained, 0 if non-aneuploid, and ‘‘NA’’ if other. Aneuploidy score (number of altered arms) for each tumor is calculated as the sum

total of altered arms, for a range of 0 (no arms) to 39 (all arms – long and short arms for each non-acrocentric chromosome, and

only long arms for chromosomes 13, 14, 15, 21, and 22).

Other Scores. Fraction of genome altered by aneuploidy was determined bymultiplying each arm altered by its length, and dividing

by the length of the genome. Recurrent SCNA scores are the sum of recurrent SCNAs as identified by GISTIC2.0 (output to be

available at NCI Genomic Data Commons). Recurrent mutation scores are the sum of recurrent mutations, defined in the TCGA

MC3 manuscript (Ellrott et al., 2018).

Spearman Correlations

Spearman correlation coefficients were calculated using the spearmanr function in the stats package of scipy-0.19.0, which was run

using Python-3.5.4 or using cor.test in R (method = ‘‘spearman’’), which was run using R version 3.2.3.

Linear Modeling

Linear modeling was performed in R version 3.2.3, using lm. The equations used:

Expression(gene X) � b1*predictor variable + b2*aneuploidy score
Mutation(gene X) � b1*predictor variable + b2*aneuploidy score
Expression(gene X) � b1*chromosome arm + b2*aneuploidy score

P values for each coefficient were calculated by the lm function in R.

Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using Broad GSEA v.3.0 (Subramanian et al., 2005). Ranked lists of genes and

coefficients were entered, and enrichment was assessed using Hallmark and Positional Gene Sets.

Clustering

Hierarchical clustering of tissue-means of arm-level alterations was performed using 1-Pearson’s in Morpheus (https://software.

broadinstitute.org/morpheus/index.html).

Cell Line Analyses
Karyotype Analysis

Karyotype analysis was performed by the Brigham and Women’s Cytogenomics Core.

RNA Sequencing and Analysis

RNA was isolated from cells using the Qiagen RNAeasy kit (Qiagen 74104), with DNAse treatment. PolyA isolation and sequencing

library preparation was performed using the NEBNext Ultra Directional RNA Library Prep Kit. Each set of samples were pooled and

sequenced in one lane of HiSeq2500 RR, 100 basepair paired end. Sequencing reads were aligned using STAR (Dobin et al., 2013)

and expression level was quantified by RSEM (Li and Dewey, 2011). Differential expression analysis was performed using the edgeR

pipeline (Robinson et al., 2010). Ranked lists of genes with fold change were entered into GSEA as described above.
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DNA Sequencing and Analysis

DNA was isolated from cells using the QiaAmp Mini DNA kit. Sequencing library preparation was performed using the Nextera DNA

Sample Preparation Kit. Sampleswere pooled and sequenced bymiSeq, 300 basepair paired end. Copy number profileswere gener-

ated by HMMCopy (Lai et al., 2016). Subclonal analysis was performed using IchorCNA (Adalsteinsson et al., 2017).

Cell Maintenance, Transfection and Proliferation Assays

Transfections were performed using Fugene-6 (Promega E2691) following manufacturer’s instructions at a 3:1 ratio. 24 hours after

transfection, cells were selected with 2 mg/mL puromycin through several passages and a round of single cell cloning. For single cell

cloning, individual cells were plated in each well of a 96-well plate using cell sorting, with each well containing 100mL of 50% condi-

tioned small airway growth media (SAGM). After single cell cloning and confirmation of telomere recombination, puromycin was no

longer added in the media. For cell proliferation assays, 1500 cells per well in a 96-well plate were plated in 100mL of media. Plates

were collected at time of plating and days 2, 4, and 6. 50mL of CellTiter-Glo Reagent was added, and plates were incubated for

20 minutes before luminescence readings.

Flow Cytometry

For apoptosis analysis, adherent cells were washed, trypsinized, collected, and stained in propidium iodide solution. Propidium

iodide levels were measured on the BD LSRii.

For cell cycle analysis, adherent cells were washed, trypsinized, collected, and fixed in 10% formalin buffered solution and 70%

ethanol. After fixing, cells were stained with propidium iodide solution for thirty minutes before analysis on the BD LSRii. Cells were

assigned to G1, S, and G2 stages of the cell cycle by identifying the G1 peak and 2x G2 peak.

PCR and qPCR

PCR was performed using the Sigma Aldrich AccuTaq enzyme (D8045) with primers listed under Key Resources Table. Quantitative

PCR (qPCR) was performed using the Power SYBR Green PCR mastermix (ThermoFisher 4367659), with the primers listed above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are noted above.

DATA AND SOFTWARE AVAILABILITY

The raw TCGA data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/

legacy-archive/search/f) and the PancanAtlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The

mutation data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also be explored

through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) and the Memorial Sloan Kettering Cancer Center

cBioPortal (http://www.cbioportal.org). For the in vitro assays, RNA-sequencing BAM files are available at the Sequence Read

Archive as Study PRJNA436953 (SRP133935), Run Numbers SRR6806553-SRR6806554 and SRR6806559-SRR6806570. Related

DNA-sequencing BAM files are available at the Sequence Read Archive as Study PRJNA436953 (SRP133935), Run Numbers

SRR6806543-SRR6806552 and SRR6806555-SRR6806558. Details for software availability are in the Key Resources Table.
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