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Abstract 
Despite the extensive research effort that has been made in the field, motor neuron diseases, namely, amyotrophic lateral sclerosis 
and spinal muscular atrophies, still represent an overwhelming cause of morbidity and mortality worldwide. Exogenous neural 
stem cell-based transplantation approaches have been investigated as multifaceted strategies to both protect and repair upper and 
lower motor neurons from degeneration and inflammation. Transplanted neural stem cells (NSCs) exert their beneficial effects 
not only through the replacement of damaged cells but also via bystander immunomodulatory and neurotrophic actions. 
Notwithstanding these promising findings, the clinical translatability of such techniques is jeopardized by the limited engraftment 
success and survival of transplanted cells within the hostile disease microenvironment. To overcome this obstacle, different 
methods to enhance graft survival, stability, and therapeutic potential have been developed, including environmental stress 
preconditioning, biopolymers scaffolds, and genetic engineering. In this review, we discuss current engineering techniques aimed 
at the exploitation of the migratory, proliferative, and secretive capacity of NSCs and their relevance for the therapeutic arsenal 
against motor neuron disorders and other neurological disorders. 
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Introduction 

 
Amyotrophic lateral sclerosis (ALS) and spinal muscular 
atrophies (SMAs) are severe diseases characterized by se- 
lective motor neuron degeneration. ALS is an incurable, 
progressive neurodegenerative disease characterized by 
loss of upper and lower motor neurons leading to irrevers- 
ible muscular paralysis and eventually respiratory failure 
and death within 3 to 5 years after onset [1]. To date, only 
two approved therapies, riluzole and edaravone, with a 
minimal impact on survival, are available for ALS, along 
with supportive care (e.g., neurorehabilitation) [2, 3]. 
SMAs are inherited degenerative disorders affecting 
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motor neurons of the anterior horns of spinal cord gray 
matter. Proximal 5q SMA results from homozygous mu- 
tations in the survival motor neuron 1 (SMN1) gene. 
Nusinersen, an antisense oligonucleotide that modulates 
the expression of SMN2, was recently approved  as  the 
first therapy for SMA 5q. However, no effective treatment 
is available for other types of SMA [4]. 

Despite the variety of studies performed in this field, 
there are currently no valid therapeutic strategies capable 
of counteracting neuronal loss after its occurrence and 
regenerating the damaged central nervous system (CNS). 
Furthermore, the complex dynamics underlying the path- 
ogenesis of motor neuron diseases (MNDs) and the rela- 
tively selective death of motor neurons remain elusive. 
Therefore, there exists an urgent need to cast a light over 
the cellular and molecular networks involved, to identify 
novel targets for drug development and to develop truly 
compelling therapeutic approaches. Clearly, to be applica- 
ble in MNDs, regenerative therapies should ultimately 
regulate or antagonize these complex pathways, thereby 
promoting the maintenance or restoration of motor neuron 
function [5]. 
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Neural Stem Cells 
 

Neural stem cells (NSC) are self-renewing and multipotent 
cells that can differentiate into the three major 
neuroectodermal lineages: neurons, astrocytes, and oligoden- 
drocytes. During the embryonic period, NSCs reside in the 
neural tube, the precursor of the mammalian CNS [6], where 
they first differentiate into neuroepithelial cells and then into 
radial glial cells, the main NSCs during embryonic 
neurogenesis, located in the ventricular zone [6]. These stem 
cells proliferate and give rise to neuronal cells, which subse- 
quently migrate radially from the ventricular zone to the cor- 
tical plate, where they settle to create the cerebral cortex [6]. 

Past research has shown that neurogenesis continues dur- 
ing adult life in discrete regions of the mammalian CNS, thus 
suggesting the possibility of neuronal repair after injury or in 
neurological conditions [7–10]. NSCs in the mammalian adult 
brain are located in the subventricular and subgranular zones 
of the hippocampal dentate gyrus and generate mature neuro- 
nal cells that appear to be involved in olfaction, learning, and 
memory processes [11, 12]. In humans, NSCs have been 
found in the subgranular zone of the hippocampus [13]. 
These findings, however, have lately been challenged by a 
report showing that the number of hippocampal neural pro- 
genitors significantly decreases in human brains after child- 
hood [14]. Nevertheless, a recent work by Boldrini and col- 
leagues further supported the former hypothesis, showing that 
a comparable number of neural progenitor cells (NPCs) and 
immature and mature neurons were observed in the dentate 
gyrus region of the brain throughout aging [15]. The precise 
amount and role of NSC replication and differentiation in the 
human adult brain, in particular in response to injury such as 
stroke or neurological disease, remains a matter of debate. 
Furthermore, cells in the spinal cord, located near the central 
canal, have been suggested to serve as NSCs, as they have 
been shown to be able to differentiate into neurons and glia 
cells in vitro [16]. This theory, however, is even more contro- 
versial than neurogenesis in the adult brain, and further re- 
search is needed in order to better elucidate the true role of 
these cells in humans. 

 
 
 
Neural Stem Cells and Motor Neuron 
Diseases: Endogenous Neurogenesis 

 
Since the therapeutic activation and guidance of endogenous 
NSCs in the brain and spinal cord could be exploited for 
reparative purposes, defining their presence, quantity, and 
functionality in the healthy and diseased adult human CNS 
is of paramount importance. Therefore, we believe that further 
research in this field is essential, particularly in a disease 
context. 

In this respect, adult transgenic human mutant SOD1 
(mSOD1) mice, the most frequently used ALS transgenic 
model, have been shown to exhibit alterations in the adult 
forebrain NSC niche, with NSCs showing more vulnerability 
to disease than NPCs [17]. The response of NSCs to mitogen 
was found to be impaired in mSOD1 symptomatic and pre- 
symptomatic mice, while the proliferation and differentiation 
abilities of neuroprogenitors were preserved throughout the 
course of disease, thus making NSCs potential targets for re- 
cruitment with pharmacological stimulation or a cell source 
for transplantation [17]. Additionally, Chi and colleagues an- 
alyzed the activation of NPCs following motor neuron degen- 
eration in ALS-like transgenic mice carrying a nestin 
enhancer-driven LacZ reporter and SOD1 mutation [18]. 
These authors reported an increased number of LacZ- 
positive NPCs in the spinal cord posterior horn with disease 
onset, while NPC proliferation in the ventral horn was only 
observed during disease progression. Conversely, the numbers 
of progenitors in the precentral brain cortex were increased at 
disease onset but not during progression, whereas no signifi- 
cant differences could be detected in the number of hippocam- 
pal NPCs. Notably, the NPCs in the ALS models gave rise to a 
neuronal population in response to neurodegenerative stimuli 
[18]. While this study is very interesting, its possible limita- 
tion resides in the technology used to reveal neurogenesis, 
based on LacZ staining, which carries a risk of false-positive 
results. 

Although further research is needed to clarify the role of 
endogenous NSCs in MNDs, these findings provide interest- 
ing evidence that regenerative treatment of these disorders 
could be pursued by stimulating and enhancing de novo 
neurogenesis. 

Notwithstanding these exciting results, ALS-induced com- 
pensatory neurogenesis in the CNS is not powerful enough to 
halt disease progression in affected animals. Therefore, we 
need to find efficient supportive strategies in order to be able 
to exploit the degeneration-induced neurogenic response at a 
clinical level. Current cell approaches focus on two predomi- 
nant modalities: stimulation of the endogenous NSC niche 
and transplantation of exogenous stem cells. The former ap- 
proach aims at stimulating the proliferation, migration, and 
persistence of brain NSCs. Lessons on this topic can be 
learned from studies on the post-ischemic brain. After stroke, 
newborn cells from the dentate gyrus and the subventricular 
zone travel along blood vessel scaffolds and relocate to areas 
of damage in order to replace dying neurons [19]. However, 
only 20% of migrating newborn cells successfully complete 
the integration process [20]. Failed integration and progenitor 
death may also be linked to inefficient neurogenesis in MNDs. 
Several strategies to increase neurogenesis after ischemic 
stroke have been attempted in experimental models. 
Selective serotonin reuptake inhibitors, statins, and ascorbic 
acid have been shown to increase NSC proliferation and 



 

 

 

migration and to improve functional outcome after experi- 
mental ischemic stroke in animal models [21–23]. 

As an alternative to promoting endogenous neurogenesis, 
other cellular types, such as astrocytes, could be 
reprogrammed into NSCs in vivo by cocktail of NSCs or 
neuronal transcription factors [24]. However, this fascinating 
approach is still in its technological infancy. 

 
 
Neural Stem Cells and Motor Neuron 
Diseases: Cell Transplantation 

 
The exogenous approach is based on the transplantation of 
NSCs obtained from different external sources to the CNS. 
This strategy has already been applied in murine models of 
different MNDs, namely, ALS [25–27], SMA [28, 29], and 
SMAwith respiratory distress (SMARD1) [28, 30]. Advances 
in stem cell biology and the use of adult somatic cells 
reprogrammed into induced pluripotent stem cells (iPSCs) as 
a possible source of NSCs have fostered basic and preclinical 
research in stem cell transplantation therapy [25]. 

Exogenous NSCs may act through a process of cellular 
replacement, migrating and engrafting into damaged tissues 
[31, 32]. However, the therapeutic effect elicited by NSCs 
extends beyond the replacement of injured cells.  
Transplanted NSCs in experimental MNDs exert trophic and 
immunomodulatory actions and increase host brain neural 
plasticity [25, 31, 32]. NSCs may lead to environmental en- 
richment by releasing trophic factors, scavenging toxic ones, 
promoting neoangiogenesis, or forming novel neural circuit- 
ries around diseased areas, eventually favoring the recovery of 
the injured CNS [25, 31, 32]. NSCs can also differentiate into 
non-neuronal progeny (oligodendrocytes, astrocytes) known 
to promote homeostasis and support regenerating host axons 
[31]. Indeed, NSCs can also elicit protection or regeneration 
of perilesional tissues and circuitries [31, 33]. In the past ten 
years, several preclinical studies focusing on the use of stem 
cells in ALS transgenic animal models have shown promising 
results [26, 27, 31, 34–37]. Furthermore, Teng and colleagues 
demonstrated an increased therapeutic effect when performing 
multiple dose-escalating injections in different CNS sites, in- 
dicating the importance of administering enough cells into 
critically functional areas to hinder ALS-induced damage 
[31]. 

Our group recently demonstrated that isolating a specific 
NSC subpopulation that expresses certain surface antigens 
allows the employment of a discrete cellular population with 
stronger therapeutic effects on ALS disease models. 

Indeed, we described that transplantation of iPSC-derived 
LewisX + CXCR4 + β1-integrin + NSCs slows motor neuro- 
nal degeneration and preserves muscle innervation in ALS 
human and rodent models [27]. The subpopulation positive 
for LewisX-CXCR4-β1-integrin protects neurons from early 

degeneration and enhances axonal elongation of human ALS- 
derived motor neurons cocultured with toxic ALS astrocytes, 
through inhibiting neuronal disease mechanisms (GSK3-b 
pathway) and blocking astrocyte activation. In vivo, this 
NSC subpopulation promotes neuromuscular junction integ- 
rity, induces novel axonal sprouting, and diminishes macro- 
and microgliosis, with an overall improvement in survival and 
neuromuscular function in transplanted SOD1G93A mice. 
These results suggest that modulating multiple diseased path- 
ways in both neuronal and glial cells could effectively increase 
the preservation of muscular functional innervation [27]. 

The first safety clinical trial of direct intraspinal delivery of 
fetal-derived NSCs into ALS patients was approved in 2009 
and has now undergone phase 2 [38–41]. The results showed 
that intraspinal stem cell transplantation can be safely per- 
formed at high doses and does not accelerate disease progres- 
sion. Outcome analysis of the phase 1/2 studies demonstrated 
significantly improved survival and function in comparison to 
that in historical datasets [42]. However, despite the encour- 
aging results, the potential biases connected with historical 
controls underline the limitations of non-controlled studies 
and post hoc analyses, thereby stating the need for efficacy 
studies and sufficiently powered and randomized clinical 
trials. 

Unfortunately, a major hurdle to successful regenerative 
therapy is the limited survival of transplanted cells, partly 
because of immunological graft rejection [43]. A postmortem 
study of graft survival conducted on six trial patients revealed 
that transplanted NSCs survived up to 2.5 years, some differ- 
entiating into neurons, while others maintained their stemness 
[44]. Notwithstanding these findings, several elements con- 
tribute to the rejection of transplanted stem cells in ALS. For 
instance, ALS progression is characterized by a concomitant 
multiphase immune activation, which actively shapes disease 
pathology and pathogenesis [45, 46]. Likewise, the inevitable 
inflammation and local trauma resulting from invasive cell 
transplantation surgery could compromise the survival of 
injected cells [25]. Furthermore, the neurodegenerating envi- 
ronment can influence stem cell endurance. In a recent exper- 
iment, murine NSCs genetically modified to express firefly 
luciferase were transplanted into the cervical spinal cord of 
presymptomatic mutant SOD1 mice [47]. A transient im- 
provement in locomotor function was witnessed only at early 
disease stages, whereas in the subsequent weeks, a sharp de- 
cline in bioluminescent imaging was found, with a complete 
signal loss at the endpoint. Macrophage activation, 
astrogliosis, and microgliosis were also noted in proximity 
to the transplantation site. Conversely, the bioluminescent sig- 
nal intensity persisted in injected healthy controls throughout 
the entire study period. Thus, disease progression seems to 
jeopardize the survival of transplanted NSCs because of the 
progressive formation of a toxic spinal cord microenviron- 
ment [47]. Exposure to a hostile environment might hinder 



 

 

 

grafted NSC survival and therapeutic effects not only through 
the generation of toxic by-products but also by increasing their 
susceptibility to immune targeting. Indeed, although grafted 
NSCs elude immune targeting by expressing low levels of 
major histocompatibility complex (MHC) antigens, pro- 
inflammatory cytokines such as interferon γ may result in 
the upregulation of MHC expression [48]. 

These findings further highlight the challenges that re- 
searchers need to overcome in order to develop a successful 
stem cell engraftment strategy. 

 
 
Engineering Strategies to Enhance NSC 
Survival and Therapeutic Effects 

 
Survival of NSCs after transplantation is the prerequisite for 
their therapeutic effect in host tissues. However, because of 
the aforementioned pathological microenvironment present in 
MNDs and other neurodegenerative diseases, the majority of 
grafted NSCs undergo cell death upon transplantation [49], 
thus making targeted stem cell manipulation to foster survival 
an essential target for intervention. To this aim, different tech- 
niques have been developed, such as hypoxic or pharmaco- 
logical preconditioning [50], seeding of NSCs within bioma- 
terial scaffolds, and genetic manipulation of cells prior to 
transplantation [51] (Fig. 1). 

 
 
Hypoxic Preconditioning 

 
Ischemic or hypoxic preconditioning treatments have been 
shown to promote tolerance and regenerative properties of 
transplanted stem cells, increasing their resistance to low sub- 
strates and oxygen availability in degenerating tissue via adap- 
tive responses such as the upregulation of anti-apoptotic genes 
(Bcl-2, HIF-1) and reduction in caspase-3 activity (Table 1) 
[50]. Additionally, NSCs have been hypothesized to be phys- 
iologically predisposed to anaerobic/microaerophilic metabol- 
ic patterns, which enhance self-renewal and inhibit differenti- 
ation [52]. Therefore, exposure of the cells to highly aerobic 
conditions, such as atmospheric oxygen, before transplanta- 
tion might unwillingly compromise their survival once 
injected into neural tissues, especially the hypoxic/anoxic en- 
vironment typical of neurodegenerative diseases [52]. 
Moreover, hypoxic preconditioning of transplanted NSCs 
has been shown to enhance the therapeutic properties of 
NSCs via neurotrophic secretion. Indeed, controlled hypoxia 
(1% O2 for 4 h) upregulates HIF-1α, neurotrophic, and 
growth factors including neurotrophin-3 (NT-3), glial cell- 
derived neurotrophic factor (GDNF), and brain-derived neu- 
rotrophic factor (BDNF) [53]. Hypoxic preconditioning pro- 
motes increased expression of HIF1-α and HIF target genes 
such as erythropoietin (EPO) and vascular endothelial growth 

factor (VEGF), but the direct molecular mechanisms of induc- 
tion of other neurotrophic factors are unknown. 

In another study, Wakai and colleagues further demonstrat- 
ed that mild hypoxia (5% O2 for 24 h) also promotes NSC 
proliferation and resilience to transplantation by upregulating 
phospho-Akt (pAkt) expression via HIF-1α and subsequent 
expression of VEGF [33]. Akt is well known to contribute to 
self-renewal and differentiation in NSCs. Thus, modulating 
pAkt levels may directly contribute to the increase in survival 
of transplanted cells. 

Overall, these findings suggest that hypoxic precondition- 
ing strategies promote survival of transplanted cells, increase 
their neuroprotective properties, and facilitate functional re- 
covery in in vivo models of neurological diseases (Table 1). 
Notably, although HIF-1α and their downstream pathways 
appear crucial, the precise cellular mechanisms activated by 
hypoxic preconditioning have not been clarified yet. Direct 
pharmacological modulation of HIF-1α could be a potential 
target to directly obtain the beneficial effects of hypoxic 
preconditioning. 

To further elucidate the molecular mechanisms underlying 
hypoxic preconditioning, a recent study analyzed the 
microRNA expression profiles of exosomes derived from nor- 
mal vs hypoxic preconditioned NSCs by next-generation se- 
quencing [54]. After hypoxic preconditioning, the exosomal 
miRNA expression profile was modified, and some miRNAs 
were differentially expressed in the two populations, such as 
miR-98-3p. Exosomal functions changed as well, and 
exosomes from preconditioned cells appeared capable of 
modulating gene expression and promoting stroke recovery 
[54]. Notably, this work reveals how the administration of 
exosomes derived from preconditioned cells could represent 
an alternative approach to direct NSC transplantation, thus 
avoiding the risks related to the use of a cellular product. 

 
 
Pharmacological and Small-Molecule 
Preconditioning 

 
Furthermore, pharmacological preconditioning strategies 
have also been studied (Table 2). NSCs exposed to 
minocycline have been observed to display upregulation of 
Nrf2, a transcription factor that regulates the basal and induc- 
ible expression of a spectrum of antioxidant genes and the 
secretion of neurotrophic factors, including BDNF, nerve 
growth factor (NGF), GDNF, and VEGF, thereby enhancing 
functional recovery in vivo [55]. The positive effects of 
minocycline preconditioning, as well as the simplicity and 
lack of safety concerns, make this strategy highly suitable 
for future clinical applications. 

Similarly, exposure to interleukin-6 (IL-6) has been dem- 
onstrated to increase expression of manganese superoxide dis- 
mutase (SOD2), a primary mitochondrial antioxidant enzyme, 



 

 

 

 
 

Fig. 1 Engineering strategies to increase stem cell engraftment and 
survival within the host tissue include hypoxic and pharmacological 
(minocycline, adjudin, interleukin-6, BDNF) preconditioning, seeding 
of cells into biomaterial scaffolds, and genetic manipulation to 
overexpress neurotrophic or survival genes. When transplanted into the 
CNS, treated cells show reduced death rates and increased proliferative 
abilities. Furthermore, they display enhanced neuroprotective properties, 

increasing endogenous neuroblasts proliferation and migration and 
reducing infarct size and reperfusion-induced injury in experimental 
models. In addition to that, engineered cells appear able to increase 
expression of anti-apoptotic (HIF1a, Bcl-2), antioxidant (iNOS, SOD2, 
catalase, Nrf2), and trophic (VEGF, EPOR) genes. Remarkably, they can 
also promote the secretion of neurotrophic factors (GDNF, BDNF, VEGF, 
NGF, NT-3) and reduce cytokine production and microglial activation 

 
 

through signal transducer and activator of transcription 3 
(STAT3), thus making transplanted NSCs more resistant to 
oxidative stress in both in vitro and in vivo settings [56]. 
Indeed, IL-6 stimulation promoted secretion of VEGF from 
NSCs [56]. The simplicity of the use of minocycline makes it 
interesting for clinical translation. 

Among pretreatments with neurotrophins, BDNF-treated 
NSCs were shown to result in higher NSC engraftment and 

survival, increased neuroprotection, and greater functional out- 
comes in a stroke model when compared to untreated NSCs 

[57]. Remarkably, BDNF pretreatment promoted expression of 
chemokine receptors and adhesion molecules, thereby favoring 
not only cerebral engraftment but also migration. In addition, 
BDNF pretreatment of NSCs stimulated the secretion of neuro- 
protective peptides. Therefore, BDNF treatment of NSCs is a 
simple strategy that can be used to increase engraftment success. 

Another small molecule tested for preconditioning is 
adjudin, which is currently under study as a potential non- 

 
hormonal male contraceptive, given its ability to disrupt the 
adherens junction between germ cells and Sertoli cells without 
affecting testosterone production [58]. This molecule has been 
suggested to be neuroprotective in stroke models [59]. For this 
reason, pretreatment of NSCs with adjudin was attempted, 
resulting in intracellular inhibition of oxidative damage, acti- 
vation of the NSC pro-survival Akt signaling pathway, and 
increased expression of BDNF, NGF, and GDNF after treat- 
ment, thereby promoting NSC survival after transplantation 
into an ischemic area [60]. 

Preconditioning can increase not only survival but also other 
proliferation and migration properties of NSCs. High-mobility 
group box 1 (HMGB1) is an inflammatory protein that exerts 
beneficial effects in the chronic phase following CNS injury 
[61]. Furthermore, HMGB1 was shown to promote NSC prolif- 
eration in vitro; thus, HMGB1 may be exploited as a precondi- 
tioning molecule. Exposure of NSCs to HMGB1 before trans- 
plantation was found to stimulate not only NSC proliferation but 



 

 

 

Table 1 Hypoxic preconditioning of NSCs prior to transplantation in the CNS 
 

Cell source and treatment Experimental model Transplantation Outcomes Ref. 

Mouse ESC-derived NPCs 
exposed to 1% O2 for 8 h 

Rat tMCAO (120 min) 48 h after MCAO; 
intracerebral 

30–40% reduced cell death after transplantation. 
Greater improvement in sensorimotor functions compared 

[79] 

 
 

Primary rat BMSCs exposed 
to 0.5% O2 for 24 h 

 
 
 

Rat tMCAO (90 min) 24 h after MCAO; 
intravenous 

to the non-preconditioned group. 
↑ expression of Bcl-2, NF, synaptophysin, HIF1alpha. 
↑ EPO secretion. 
↑ survival of NSCs. 
Greater improvement in brain functional recovery and 

motor functions compared to the non-preconditioned 
group. 

↑ expression of GDNF, BDNF, VEGF, VEGF receptor 
Flk-1 and angiotensin-1. 

↑ expression of chemokine SDF-1 and CXCR4. 
↑ EPO secretion and EPOR expression. 

 
 
 

[80] 

Primary rat BMSCs exposed 
to 0.1–0.3% O2 for 24 h 

Mouse, experimental ICH 
induced with collagenase IV 

72 h or 7 days 
after ICH; 
intranasal 

↑ perilesional levels of BDNF, GDNF, and VEGF. 
↑ neuroblast proliferation and migration. 
Improved functional recovery. 
↓ brain atrophy changes. 

[81] 

Mouse iPSC-derived NPCs 
exposed to 0.1–0.3% O2 for 
8 h  

Rat, stereotaxic TBI 72 h after TBI; 
intracerebral 

Improved sensorimotor outcome and social behaviors. 
↑ expression of oxytocin and oxytocin receptor. 

[82] 

Primary mouse NSCs exposed 
to 5% O2 for 24 h 

Mouse, experimental ICH 
induced with autologous 
whole blood 

72 h after ICH; 
intracerebral 

↑ survival of grafted NSCs. 
Improved functional recovery. 
↑ expression of HIF1alpha, phosphor-Akt, and VEGF. 

[33] 

Primary rat NSCs exposed to 
1% O2 for 2, 4 or 6 h 

Rat, stereotaxic SCI During procedure; 
intraspinal, in 
situ 

↑ locomotor recovery. 
↑ neuronal survival and reduced glial scar formation. 
↑ expression of GDNF, BDNF, NT-3, and HIF1alpha. 

[53] 

 
 

Abbreviations: BDNF, brain-derived neurotrophic factor; BMSCs, bone marrow mesenchymal stem cells; EPO, erythropoietin; EPOR, erythropoietin 
receptor; ESCs, embryonic stem cells; GDNF, glial-derived neurotrophic factor; ICH, intracerebral hemorrhage; iPSCs, induced pluripotent stem cells; 
NF, neurofilament; NPCs, neural progenitor cells; NSCs, neural stem cells; NT-3, neurotrophin-3; SCI, spinal cord injury; TBI, traumatic brain injury; 
tMCAO, transient middle cerebral artery occlusion; VEGF, vascular endothelial growth factor 

 
 

also migration [61]. Therefore, targeted HMGB1 precondition- 
ing before transplantation could enhance NSC relocalization 
within diseased areas of the CNS [61]. 

Recently, NSC pretreatment with metformin, an approved 
antidiabetic compound, was investigated, following the obser- 
vation of a potential pro-neurogenic effect of this substance 
[62]. Pretreatment of human iPSC-derived NSCs with metfor- 
min enhanced both their proliferation and their differentiation 
in culture. Moreover, metformin-preconditioned NSCs 
displayed an increased engraftment with better functional out- 
comes in rodent stroke models. Interestingly, this strategy pro- 
moted not only cell survival but also differentiation, a useful 
property for clinical application. 

A possible preconditioning approach that has not been in- 
vestigated yet involves the use of small molecules that inter- 
fere with regulated necrosis, through substances able to mod- 
ulate key enzymes of these pathways [63]. These compounds 
include necroptosis inhibitors such as necrostatin-1 (Nec-1) 
and newer molecule such as ferrostatins. This approach war- 
rants investigation in the context of NSC transplantation. 

Although whether such artificial approaches could ulti- 
mately prove relevant at a clinical level remains unclear, trans- 
lational research may be advantageous due to the simple, 

transient, and non-integrative nature of these techniques. 
Additionally, the simultaneous use of several combined small 
molecules acting on different pathways could be explored. On 
the other hand, the limitations of these approaches reside on 
their short and temporary effect. 

 
 
 
Use of Scaffolds in NSC Transplantation 

 
A further innovative technique to support NSC survival and 
engraftment is represented by the transplantation of cells in- 
cluded in natural or synthetic bioengineered scaffolds. These 
scaffolds aim to create a more favorable environment for 
transplanted cells with respect to the native host tissue, thereby 
facilitating manipulation and transplantation phases and re- 
ducing mechanical stress. 

For instance, transplanting NSCs seeded within a biopoly- 
mer hydrogel matrix was recently shown to improve the du- 
rability and performance of the graft in the host tissue [64]. 
The hydrogel was composed of cross-linked hyaluronan and 
heparin sulfate, mimicking the CNS extracellular matrix, and 
significantly promoted NSC engraftment after transplantation. 



 

 

 

Table 2 Pharmacological and small molecule-based preconditioning of NSCs prior to transplantation in the CNS 
 

Cell source and treatment Experimental 
model 

Transplantation Outcomes Ref. 

Primary rat NSCs cultured with minocycline 
hydrochloride (10 μM) for 24 h 

Rat tMCAO 
(90 min) 

6 h after MCAO; 
intracerebral 

↑ survival and proliferative capacity of 
preconditioned grafted NSCs. 

[55] 

 
 
 
 
 

Primary mouse NSCs cultured with IL-6 
(20 ng/ml) for 24 h 

 
 
 

Human ESC-derived NSCs cultured with BDNF 
(100 ng/ml) for 1 h 

 
 
 
 
 

Primary mouse NSCs cultured with adjudin (5, 10, 
30, or 60 μM) for 24 h 

 
 
 
 
 
Mouse tMCAO 

(45 min) 
 
 
 
Mouse tMCAO 

(15 min) 
 
 
 
 
 
Mouse tMCAO 

(120 min) 

 
 
 
 
 

6 h or 7 days after 
MCAO; intracerebral 

 
 
 

72 h after MCAO; 
intra-arterial (carotid) 

 
 
 
 
 

24 h after MCAO; 
intracerebral 

↑ expression of Nrf2 and Nrf2-regulated 
antioxidant genes. 

↑ secretion of BDNF, NGF, GDNF, and 
VEGF. 

Enhanced neuroprotection in ischemic area. 
↑ survival and ↓ death of grafted cells. 
↑ expression of SOD2. 
↑ in vitro and in vivo angiogenesis. 
↓ infarct size. 
Improved functional recovery (rotarod test). 
↑ NSC engraftment and survival in host 

brain. 
Improved functional recovery (horizontal 

ladder test). 
Enhanced neuroprotection in ischemic area. 
↑ secretion of ICAM-1, VCAM-1, and 

VEGF. 
↑ expression of antioxidant genes (iNOS, 

SOD2, catalase). 
↑ secretion of neurotrophic factors (BDNF, 

GDNF, NGF). 
↓ cytokine production and microglial 

activation. 
↓ infarct size. 
Enhanced neuroprotection and angiogenesis 

in ischemic area. 
Improved functional recovery (rotarod test). 
Reduced ischemia/reperfusion-induced 

blood–brain barrier leakage. 

 
 
 
 
 

[56] 
 
 
 
 

[57] 
 
 
 
 
 
 

[60] 

 
 

Abbreviations: BDNF, brain-derived neurotrophic factor; ESCs, embryonic stem cells; GDNF, glial-derived neurotrophic factor; iNOS, inducible nitric 
oxide synthase; IL-6, interleukin-6; NGF, nerve growth factor; NSCs, neural stem cells; tMCAO, transient middle cerebral artery occlusion; VEGF, 
vascular endothelial growth factor 

 

Such hydrogel matrices could also be Bfunctionalized.^ 
For instance, Adil and colleagues supplemented a 
hyaluronic acid hydrogel with arginylglycylaspartic acid 
and heparin via click chemistry  and tailored  its  stiffness 
to improve neuronal cell graft survival [65]. Cells were 
cultured and harvested within the scaffold to reduce me- 
chanical and enzymatic stress. Remarkably, after transplan- 
tation, hydrogel-encapsulated cells had a fivefold higher 
survival rate than unencapsulated donor cells, suggesting 
that the bioscaffold approach can greatly improve trans- 
plantation efficacy. 

Furthermore, scaffolds can be used as a depot release for 
growth factors to promote transplant stem cell survival and 
differentiation. Moshayedi and colleagues engineered a 
hyaluronic acid-based self-polymerizing hydrogel by 
inserting growth factors, BNDF or BMP-4, and heparin into 
the hyaluronic acid backbone in order to promote their reten- 
tion [66]. 

Recently, Soma and his team developed an injectable bio- 
logical substrate that self-assembles within the host tissues 

from a laminin-derived epitope, thereby mimicking the brain’s 
major extracellular protein, supporting long-term survival and 
functional maturation of NSCs [67]. Remarkably, scaffolds 
assembled with conductive polymers were shown to allow 
electrical stimulation of NSCs before transplantation, with en- 
hanced functional recovery [68]. This strategy is based on a 
combination of the scaffolding technology with precondition- 
ing treatment. Electrical stimulation of human NSCs changes 
the expression pattern of genes, in particular VEGF-A path- 
way genes and genes involved in cell survival. Upon trans- 
plantation, electrically preconditioned NSCs more effectively 
improved functional outcomes in animal models than did 
unstimulated NSCs. The use of scaffolds to influence the 
NSC transcriptome provides an additional opportunity to op- 
timize NSC-based approaches. 

Overall, these findings suggest that acting on the local en- 
vironment promotes the success and efficacy of NSC trans- 
plantation. This evidence advocates for the refinement of scaf- 
folding technology in order to boost the therapeutic arsenal of 
stem cell-based regenerative medicine. 



 

 

 

Ex Vivo Genetic Modification to Increase NSC 
Engraftment 

 
Ex vivo genetic engineering could also be exploited to tune 
the expression of genes involved in NSC function in order to 
tailor the NSC proteome and secretome to the therapeutic 
needs of MNDs [69]. Indeed, in addition to graft survival, 
gene therapy could also be used to maximize the therapeutic 
potential of NSCs by selectively altering their secreted prod- 
ucts [69]. NSCs genetically modified to overexpress different 
neurotrophic genes (GDNF, BDNF, neurotrophin-3, NGF) 
have shown improved survival rates and enhanced prolifera- 
tive and neuroprotective properties in the context of neurolog- 
ical diseases and MNDs [70–76]. In a recent study, human 
cortical-derived NSCs were engineered to secrete GDNF 
and transplanted into the SOD1G93A ALS rat cortex [76]. 
The cells were able to migrate and differentiate mainly into 
GDNF-producing astrocytes. This treatment resulted in the 
preservation of motor neurons and amelioration of disease 
pathology. These NSCs administered into the cortex of non- 
human primates survived and presented robust GDNF expres- 
sion without adverse effects. This study suggests a synergic 
effect of GDNF and NSC transplantation and the superiority 
of this combined approach compared to the effects of GDNF 
or NSC treatment alone shown in previous studies. Thus, the 
transplantation of genetically modified stem cells represents a 
possible therapeutic strategy for MNDs to be further explored. 

In addition to genetic modification of growth factors, over- 
expression of SOD2 to lower free radicals reduces NSC death 
rates after transplantation in a stroke model and suppresses the 
generation of reactive oxygen species after reperfusion injury 
[77]. Thus, other candidate genes could be explored for ex 
vivo genetic modifications of NSCs prior to transplantation. 

Strikingly, while previous studies focused on the selective 
manipulation of distinct genes or proteins in NSCs, recent dis- 
coveries have highlighted manifold processes, such as global 
SUMOylation, which appear to protect cell homeostasis against 
ischemia-induced stress [78]. Achieving a wider spectrum of 
favorable biological modifications in NSCs may prove more 
effective than acting on singular molecular aspects. Therefore, 
future studies could target a variety of these mechanisms simul- 
taneously in order to boost the regenerative and neuroprotective 
potential of NSC-based transplantation therapies. 

 
 
Translational Perspectives for Engineering 
Techniques 

 
Despite the enormous potential of stem cell-mediated therapy 
for MNDs, some crucial issues still need to be addressed be- 
fore allowing extensive clinical translation. NSC engineering 
techniques could represent a powerful aid to overcome some 
of these obstacles. 

First, the appropriate delivery method of cells within the 
CNS should be optimized and standardized. In this regard, 
assessments and comparisons of the exact potential of differ- 
ent scaffolding strategies and their clinical tolerability could 
prove useful. Both biodegradable and non-biodegradable ma- 
terials have been studied, but their safety and efficacy profile 
in humans has not been assessed yet. As discussed above, 
scaffolding techniques greatly improve the engraftment rate 
and may also be exploited to reduce the cellular stress con- 
nected with cell delivery. Second, confirmation of graft sur- 
vival is essential to determine treatment efficacy. In many 
animal models, this identification is obtained through immu- 
nohistochemical identification with human-specific markers 
[25]. Upon clinical translation, more sophisticated techniques 
are needed to assess this aspect. Genetic engineering tech- 
niques could allow the detection of grafted cells, for instance 
through the expression of radiotracers. Another option is the 
use of MRI-trackable scaffolds [66]. 

Reduced survival of engrafted cells is a further hindrance to 
transplantation success. Hypoxic preconditioning and phar- 
macological preconditioning have proven efficient in increas- 
ing cell resilience to delivery stress and triggering expression 
of pro-survival genes (Tables 1 and 2). Furthermore, cells 
engineered to express neurotrophic factors or antioxidant 
genes displayed an enhanced survival rate in preclinical stud- 
ies [76, 77]. Therefore, these strategies, combined with the use 
of proper scaffolds, could help address these challenges. To 
allow clinical translation, however, safety and immunogenic- 
ity in humans need to be assessed. 

Another crucial issue is represented by the oncogenic po- 
tential of transplanted cells, in particular when they are genet- 
ically modified to increase their survival. A viable strategy to 
overcome this issue involves the use of partially or fully dif- 
ferentiated cells, such as neural precursors or adult neurons, 
with limited proliferative capacity. Another technique to avoid 
neoplastic complications is represented by genetic manipula- 
tion of stem cells in order to suppress growth promoters or to 
insert specific genes, which can trigger apoptosis upon specif- 
ic stimulation [25]. In this way, transplanted cells could be 
selectively targeted by cytotoxic drugs in case they undergo 
neoplastic transformation. 

To summarize, stem cell engineering techniques are still in 
their infancy, but they present a striking potential for maxi- 
mizing the beneficial properties of NSCs in neurological dis- 
orders. Although we are still far from their clinical application, 
further development of these approaches is warranted in order 
to expand the horizons of transplantation therapy. 

 
 
Conclusions and Future Perspectives 

 
Currently, despite extensive research efforts, no successful 
treatment for MNDs is available. Nonetheless, preclinical 



 

 

 

studies on stem cell-based transplantation therapy have 
yielded significant and interesting results, showing neuropro- 
tective effects, improved functional outcomes, and delayed 
progression in treated groups [26, 27, 31, 34–37]. The main 
limitation of this approach in regard to clinical translatability 
is the low engraftment success and the high rate of stem cell 
death following transplantation. Therefore, there is a strong 
need for strategies aimed at addressing the issue of NSC via- 
bility and stability after transplant. Several approaches have 
been investigated thus far, namely, environmental stress pre- 
conditioning, biopolymer encapsulation, and genetic engi- 
neering, showing beneficial effects not only on graft integra- 
tion and survival but also on the neuroprotective and immu- 
nomodulatory effects of NSCs (Fig. 1) [70–77]. Different ap- 
proaches can be combined to further enhance their effects. 

Nevertheless, additional studies are needed to precisely 
understand the molecular mechanisms that regulate cell 
survival after transplantation. Among the mechanisms that 
were identified, the hypoxic response cascade and Akt 
pathways appeared crucial. Moreover, the increased thera- 
peutic effects of different preconditioning strategies seem 
to be due to the increased capacity of NSCs to produce and 
secrete neurotrophic molecules, further highlighting the 
importance of paracrine factors and the microenvironment 
in stem cell engraftment. 

Hopefully, future studies on NSC transplantation will 
exploit these engineering techniques in the quest for a more 
stable and effective cellular graft. A better under- standing 
of the pathways involved in cellular homeostasis and in the 
cellular response to environmental insults, such as those 
leading to neurodegeneration, may suggest further potential 
targets for manipulation, with the aim of counteracting the 
cytotoxic mechanisms of neurodegener- ative diseases. 
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