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∗Università degli Studi di Milano, Department of Computer Science

Email:{sergio.mascetti, nadia.metoui, andrea.lanzi, claudio.bettini}@unimi.it

Received 26 September 2017; received in revised form 2 February 2018 and 26 May 2018; accepted 27 June 2018

Abstract. Cybersecurity Systems (CSSs) play a fundamental role in guaranteeing data confidential-
ity, integrity, and availability. However, while processing data, CSSs can intentionally or unintention-
ally expose personal information to people that can misuse them. For this reason, privacy implica-
tions of a CSS should be carefully evaluated. This is a challenging task mainly because modern CSSs
have complex architectures and components. Moreover, data processed by CSSs can be exposed to
different actors, both internal and external to the organization. This contribution presents a method-
ology, called EPIC, that is specifically designed to evaluate privacy violation risks in cybersecurity
systems. Differently, from other general purpose guidelines, EPIC is an operational methodology
aimed at guiding security and privacy experts with step-by-step instructions from modeling data
exposure in the CSS to the systematical identification of privacy threats and evaluation of their asso-
ciated privacy violation risk. This contribution also shows the application of the EPIC methodology
to the use case of a large academic organization CSS protecting over 15, 000 hosts.
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1 Introduction

Privacy policy makers and data protection authorities all over the world are considering
the impact on privacy of the large amount of identifiable sensitive data that are being col-
lected and processed by public and private organizations. This is mainly the result of the
adoption of new technologies like mobile and pervasive systems, social networks, and big
data analytics, but also the evolution of technologies applied in surveillance and cyberse-
curity systems. An example of regulation activity motivated by these concerns is the EU
General Data Protection Regulation, adopted in May 2016 [37]. While regulations differ in
different countries, some general principles are shared; for example, user informed con-
sent remains a pillar, and de-identification, despite the limits of anonymization techniques,
is still considered a way to avoid or at least mitigate privacy violation risk [17]. Another
shared recommendation to organizations deploying complex automated processes han-
dling large amounts of personal data is to systematically and thoroughly analyze how the
process affects the privacy of the individuals involved and evaluate the risks in order to
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identify appropriate mitigation actions. This analysis is often called Privacy Impact As-
sessment (PIA) and it is in some cases a legal obligation as a necessary component in a
privacy by design approach. However, its value goes beyond the design phase since it is
also highly valuable when evaluating the compliance of already existing systems as well as
when comparing the privacy risks of alternative systems.

Several documents exist guiding the experts in privacy impact assessments, but they usu-
ally consist of high-level guidelines instead of step-by-step instructions, partly motivated
by the fact that they are sector independent. Indeed, the importance of designing secto-
rial PIA methodologies emerge in recent documents by EU data protection authorities [16].
While the interest is currently mostly focused on sectors like healthcare, e-commerce, fi-
nance, and insurance, less attention is paid to cybersecurity systems. These systems handle
large amounts of sensitive information as, for example, the data obtained by monitoring
employees PCs, mobiles and in general the whole organization network traffic [16]. In the
last decade, cybersecurity systems have been increasing their strategic role for the protec-
tion of the IT infrastructure of industries and organizations. The wide adoption of digital
technologies to control even critical infrastructure and the extension of organizational IT
systems to include mobile and IoT devices have increased the attack surface and the impact
that cyber attacks can have. This led to a significant increase in the complexity of cyberse-
curity systems in terms of components, architecture, amount of data being analyzed, and
personnel involved in managing the systems.

The role of CSS with respect to privacy is twofold. On one side, CSS are an essential
tool to prevent privacy violation, e.g., by avoiding unauthorized access to data. On the
other hand, CSS often process a large amount of personal data, e.g., by monitoring network
traffic, and hence they can pose a privacy threat. In general, privacy leaks from CSS can
lead to discrimination in the workplace affecting both the relationships among colleagues
and between the employee and the management, including effects on professional career.
Privacy leaks from CSS can also affect external subjects, e.g., customers, with effects similar
to the ones resulting from the release of private data through different channels. Among
many others, we report some examples of possible problems arising from data leaked in
CSS.

• Blackmailing. Alice works in the security team and has access to the organization’s
email logs; she finds evidence that her colleague Bob has an extramarital affair. Alice
may then blackmail Bob threatening him to pass this information to his wife.

• Discrimination. During a routine inspection on the firewall, Carl discovers that his
colleague David frequently accessed an event listing site known to be popular among
gay people. Carl shares this information with his boss who on this basis discriminates
David at the workplace.

• Identity theft. Eve works for a company that offers a web service. A file uploaded by
a user is marked as ‘suspicious’ by the anti-virus and is then sent to Eve for investi-
gation. The file actually contains Frank’s ID card, credit card, and the SSN. Eve uses
this information to impersonate Frank to gain financial advantage.

While in the above examples there is a direct damage to the person whose privacy is vi-
olated, there is also an indirect impact on the organization running the CSS, which is re-
sponsible for properly handling private data.

An accurate evaluation of privacy violation risks in a cybersecurity system is important
for at least three reasons:
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a) it identifies the gaps with respect to the applicable regulation so that appropriate reme-
diation actions can be taken to achieve compliance;
b) it shows the responsibility of personnel like security, system, and network administra-
tors in terms of personal data access, suggesting role-specific training and screening;
c) it highlights data collection practices that may make employees worry about their pri-
vacy and as a result, it can be an incentive for them to circumvent some of the cybersecurity
mechanisms.

This paper presents the EPIC (Evaluating Privacy violation rIsk in Cybersecurity systems)
methodology, that is composed of four steps and guides a privacy expert, with the collabo-
ration of security experts from the organization running the system, to the identification of
the main privacy threats, and to the assignment of a privacy violation risk value to each of
them. Despite EPIC supports modeling of many aspects related to personal data handling,
it is not intended as a complete PIA methodology, but rather an auxiliary tool specialized
for the type of data exposures that can occur in a CSS. The proposed methodology supports
both qualitative and quantitative risk values, the latter being preferable when it is possible
to quantitatively assess how much a privacy threat would impact on the organization, for
example in terms of monetary loss. The resulting evaluation can be used to prioritize mit-
igation actions to achieve legal compliance as explained in point a) above. Since training,
and more generally trust, in a specific personnel role, is not considered until mitigation task
prioritization, the evaluation is useful for point b) as well. Finally, our methodology can
be used to compare different cybersecurity systems in terms of privacy implications, and
possibly to design new cybersecurity systems that can effectively combine built-in privacy
preserving features with protection from cyber attacks, addressing also point c) above. The
methodology is illustrated through a running example and then applied in a use case con-
sidering the actual cybersecurity system of a large academic organization managing over
15,000 hosts.

The paper is structured as follows. We present an overview of the related work in privacy
and security risk assessment in Section 2. In Section 3 we describe our privacy violation
risk evaluation methodology and explain its three first steps. Section 4 is dedicated to the
fourth step of the methodology dealing with the assignment of risk values and prioritizing
mitigation actions, and Section 5 to the application of the methodology to the selected use
case. We will conclude with a discussion in Section 6.

2 Related Work

A lot of research has been conducted in the last decades on various aspects of privacy,
including the identification of privacy threats related to the use of technology, mitigation
techniques, and methods to evaluate the risk of privacy violations. Considering this last
point, most contributions proposing methodologies to analyze privacy threats mainly fo-
cus on general personal data collected as part of different applications, including e-health,
geo-location apps, social networks, finance, and marketing. To the best of our knowledge,
the only work in the literature that analyses the problem of privacy violations in cybersecu-
rity systems is a survey paper by Toch et al. [39]. The survey proposes a new categorization
of cybersecurity systems that help the privacy analysts to identify the personal data that
these systems may expose to unauthorized parties. Our work builds on this categorization
but takes the proposed analysis to a deeper and more operational level with the main goal
of evaluating and comparing the risk of the identified privacy threats. Our methodology
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considers also aspects like the adversary’s knowledge, the capability to access the data, the
amount of data leaked, the number of users involved, and other factors that determine the
impact of a privacy threat. With respect to the survey that considered also cybersecurity
systems for new ecosystems like mobile and IoT systems, we focus on organizational cy-
bersecurity systems and test our proposed methods in a case study involving the CSS of a
large organization.

In this section, we present the related work in three research directions: formal methods
to measure privacy (Section 2.1), methodologies to assess security threats (Section 2.2) and
methodologies to assess privacy threats (Session 2.3).

2.1 Privacy metrics

Various privacy metrics have been proposed in the literature to estimate the likelihood of
an adversary of learning a private sensitive information when getting access to a given
dataset (i.e., obtaining the identity of an individual and associated sensitive information).
For example, since anonymity prevents privacy violations, several metrics have been pro-
posed to quantify the level of anonymity of a dataset [6, 27, 24]. Extensions of these met-
rics have been proposed to evaluate anonymity in different data sharing contexts including
location-based service requests [2]. However, their value is somehow limited by the prob-
lem of evaluating the adversary’s knowledge which can determine which information can
actually re-identify individuals. When identification cannot be successfully prevented, var-
ious sensitive data obfuscation techniques and related privacy metrics have been proposed.
Some metrics measure the distortion or generalization applied to the data, and hence the
probability of the adversary to infer the actual sensitive information. Other metrics are
based on the notion of indistinguishability with differential privacy metrics [14] being an ex-
ample. A quite comprehensive list of the privacy metrics that have been proposed in the lit-
erature can be found in [40]. Finally, there are valuable attempts to provide guidance in the
application of privacy enhancing technologies (PET), often related to the above-mentioned
metrics1[15].

Some of these metrics (and related PETs) may be applied also in the context of cybersecu-
rity systems; For example, some anonymity metrics may be used to evaluate how anony-
mous is a dataset of security alert logs, and some differential privacy notions may be used
to measure the probability of privacy leak in releasing a statistically perturbed Web site
access log. However, none of them in isolation seems appropriate to measure the gen-
eral privacy violation risks involved in running a cybersecurity system. This is partly due
to the fact that the validity of these metrics is dependent on specific assumptions on the
considered data sharing model while typical cybersecurity systems have many different
components that process and store data, complex architecture and data flows, and data ac-
cess by users with different roles. This complexity calls for a principled but more high-level
approach to privacy threat assessment.

2.2 Security threat assessment methodologies

Before considering privacy assessment methodologies we briefly report some methodolo-
gies adopted for security risk assessment since this is a related and more established field of
investigation. Security threat analysis is a common step in the secure software development
life-cycle. In the literature, we find several tools and methodologies such as the OCTAVE

1https://www.privacypatterns.org/
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method [4], ISRAM [22], and the Common Vulnerability Scoring System (CVSS) [29] only
to cite a few. Among the most widely used, the STRIDE model was proposed by Microsoft
[19] as a security threat identification process, used to assist engineers to consider security
aspects during the development of a software product. This process starts by analyzing
the information flow within a system and then modeling system’s components using Data
Flow Diagrams (DFD); a list of possible security threats is identified for each of the compo-
nents. STRIDE classifies security threats into six categories (Spoofing, Tampering with data,
Repudiation, Information disclosure, Denial of service, and Elevation of privileges). This
model-based analysis has inspired the methodology that we are proposing. Indeed, we
extend the DFD notation to better model the system components and focus on the privacy
threat identification for each component. STRIDE is often used with the threat evaluation
model DREAD to assess security risks [35]. DREAD proposes to rate security threats by
computing a score based on five criteria (Damage, Reproducibility, Exploitability, Affected
users, and Discoverability). This score implicitly expresses the likelihood and severity as-
pects of a security threat. A similar approach is proposed in our methodology for privacy
violation risk assessment.

2.3 Privacy threat assessment methodologies

The first approaches to privacy assessment were mostly in the form of checklists with the
goal of demonstrating legal compliance[7]. Privacy impact assessment (PIA) methodolo-
gies emerged later-on to refine these approaches. Several definitions have been given to
PIA (see [21, 34, 20]). David Wright in [41] defines PIA as a methodology for assessing
the impacts on privacy of a project, and for taking remediation actions to avoid or min-
imize negative impacts. Several governmental bodies such as the CNIL (France), NIST
(USA), ICO (UK) and the EU Art.29 Working Party have proposed various PIA method-
ologies [8, 30, 20, 16]. These guidelines, although very useful to understand the goals of
the assessment, do not guide an organization through the specific steps that should be
performed. Among the works that contribute in this direction, Oetzel and Spiekermann
present a seven steps methodology to support a complete PIA analysis and systematically
match the threats and the appropriate countermeasure [32]. However, their approach only
considers the impact of a privacy threat and not the probability of occurrence of the threat,
which may lead to an incorrect overall risk estimation. Another aspect that has a relevant
impact on the effectiveness of the guidelines is their specialization for a given sector. The
methodologies mentioned above are designed for a generic privacy assessment, and con-
sequently they may not be straightforwardly implemented when addressing the problem
in a specific context. Indeed, the development of sector-specific PIAs is mentioned among
the priorities in recent EU recommendations [16]. We found very few sector-specific ap-
proaches, among which a PIA framework for RFID based applications [11], and a PIA tem-
plate for smart-grid and smart-metering systems [36].

While EPIC at its current stage is not a complete PIA methodology, it is quite comprehen-
sive in considering many aspects related to personal data handling. Regarding the analysis
of type of data and its contribution in risk evaluation, it should be noted that a CSS can
monitor basically whatever goes through the organization network and possibly also all
the operations performed on the computers; differently from an information system where
it is possible to analyze specific types of data based on a database schema, we find mostly
unstructured data in the logs of a CSS. Hence, we adopt the categorization of type of data
proposed in [39], distinguishing, for example, mail and HTTP headers from their associ-
ated body content, and file names from file content. This categorization is then used for the
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evaluation of the data re-identification power, as well as its sensitivity. Note that unstruc-
tured data, like email body content, could contain any kind of information, hence it should
be considered as potentially very sensitive. The computation of a global privacy violation
risk guided by EPIC also includes other aspects of data handling like consent, retention
period, and intervenability. They are considered in Step 4 of the methodology as part of the
compliance impact evaluation.

Besides PIA, other privacy assessment approaches adopted a requirement engineering
perspective to promote the privacy by design principles [12, 31, 26, 13]. Among them, the
closest to our proposal, despite not being specific to cybersecurity systems, is probably
LINDDUN, a privacy threat analysis framework for software-based systems proposed by
Deng et al. [13] and based on the STRIDE model [19]. Privacy threats in LINDDUN are
identified through potential misuse scenarios (i.e., scenarios in which an adversary can
violate privacy requirements upon accessing the data). Unfortunately, the processes of
identification and analysis of misuse scenarios are not specified by the methodology but
rely on the expertise of the analysts. LINDDUN does not provide a risk evaluation support
either. On the contrary, in our approach, we consider as a threat any data disclosure that
can reveal sensitive information about a respondent. Our methodology is specialized for
cybersecurity systems and hence the identification of threats is well guided by security
and privacy factors (e.g., adversaries’ capabilities and knowledge, types of exposed data).
We also propose a domain-specific risk assessment model evaluating the likelihood and
severity of a threat.

3 Methodology

3.1 Overview

The EPIC methodology is organized in four steps as illustrated in Figure 1. The whole
process requires the participation of a team, involving members with different expertise,
namely privacy, and security, as well as personnel of the organization in which the CSS is
deployed. Security experts of the team have a major role in Step 2 while privacy experts
take the lead in Step 3 and Step 4. Step 1 (modeling the CSS) and Step 2 (identifying data
exposures) require the collaboration of personnel of the organization in which the CSS is
deployed. Indeed, information about the actual configuration of the CSS, the processes in-
volved, as well as about the structure of the organization including users, system, network
and security personnel must be acquired. In the following we use the term expert to refer
to a person that contribute to the analysis following the methodology.

3.2 EPIC First Step: Model the cybersecurity system

The first step of the methodology aims to model the specific CSS under investigation. This
step is particularly relevant for two reasons. First, we can expect that some of the experts
involved in the privacy threat modeling process do not have the required knowledge about
the system. For example, privacy experts are not expected to know which are the compo-
nents of the CSS, how data flow in the system and which actors are involved. Second, an ex-
plicit system description helps the experts to collaborate and prevents misunderstandings
among them. In our use-case, this step was completed by members of our team supported
by system and security administrators from the institution running the CSS. Modeling a
CSS as part of Step 1 must include the following aspects.
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Figure 1: Methodology organization in four steps.

• System aspects: overall architecture and control processes.

• Data aspects: data flow and data storage.

• Functional aspects: users, roles, and functional processes.

A well-known formalism to represent data and functional aspects is Data Flow Diagram
(DFD) [5]. This formalism allows us to represent four types of elements (see Figure 2):
data flow is denoted with a full arrow, entities are denoted with a rectangle, storage with
parallel line segments and functional processes (i.e., processes implementing the main sys-
tem functionalities) with a circle. Note that a double circle is used to represent a complex
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process i.e., a single component that represents several functional processes.
In this contribution, we extend DFD (and we call it DFD+) to also account for system

aspects and hence to better detect situations in which data is exposed to an actor. We in-
troduce four additional graphical symbols (see examples in Figure 2); a box represents a
hardware component, an arrow with a small circle represents a physical channel connect-
ing hardware components, a dashed arrow represents control flow and a dashed circle
represents a control process that implements IT controls such as maintenance and security.
In Example 1 we illustrate DFD+ and its use in CSS modeling as required by Step 1.

Example 1. Figure 2 describes an application level firewall. Data flows from the source
entity Network to the destination entity Security administrator. Channel C1 shows how data
flows from Network to the Firewall hardware component. C1 is marked as a physical channel
and it is associated with a label (Network Traffic) that represents the type of data; in this case,
it is the portion of network traffic that should be checked by the CSS. The logical destination
of C1 is the Traffic Filtering process. Upon detecting a security threat, this process sends the
threat description to the data storage DS1. Note the different representation of C2 with
respect to C1 due to the fact that C2 is a logical channel.

From DS1 data flows through the physical channel C3 to another hardware component,
Remote Console, where threat reports are organized for visualization by process P2. Then,
P2 sends this information through physical channel C4 to the security administrator who is
the destination entity and the main actor interacting with the CSS.

In this diagram we also model a secondary actor system administrator interacting with the
hardware machine hosting the CSS (Firewall). The aim of the interaction is Administration
and Maintenance and indeed CP1 is marked with a dashed circle representing a control
process. Similarly, the dashed arrows represent a control flow. Another control process
(CP2) allows the security administrator to manage data storage DS1.

3.3 EPIC Second Step: Identify Data Exposure

The aim of the second step is to systematically identify all possible data exposures, i.e.,
situations in which data is disclosed to a potential adversary. A data exposure (or exposure
for short) is identified by the component that is leaking data and by the adversary that can
access that data; it is also characterized by other attributes that we specify in this section.
Component refers to channels, processes and data storages identified in Step 1.

The term adversary refers to an actor identified in Step 1 as a subject normally interacting
with the CSS or other people, which can either be external adversaries (e.g., a hacker violat-
ing a machine and accessing a data storage) or internal ones (e.g., a network administrator
or other employees). An adversaries table (Table 1) containing a list of adversaries, each
associated with a brief description, needs to be identified at the beginning of this step. In
Table 1 we report this list considering our running example.

While the organization management and owner, in principle, may also be considered as
adversaries, they usually do not have direct access to the system and the risk of them vio-
lating privacy can be easily evaluated by combining the risks computed for the operators
that have direct access, since they are the ones that can take order from them. Moreover,
the risk assessment is performed on their behalf and in their interest. This is similar to IT
security threat modeling: system owners are usually not considered as potential attackers
of their own system.

Step 2 also requires, for each component specified in the model, to identify the set of
adversaries that can acquire data from that component. More specifically the aim is to
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Figure 2: CSS modeling with DFD+ (running example).

Table 1: Adversaries (running example)
Adversary Description
Security administrator Their main tasks are to perform monitoring and investiga-

tion as well as the maintenance and configuration of the
data storage (e.g. add, modify roles and privileges).

System administrator Their tasks include maintenance of the system hosting
the Firewall (e.g., troubleshooting, installing updates soft-
ware/firmware)

Network administra-
tor

Their main task is to ensure the correct functioning of the
network (routing, DNS, etc.).

Other internal adver-
saries

Individuals attempting a nonauthorized access from in-
side the organization network.

External adversaries Individuals attempting a non authorized access from out-
side the organization network.

identify the adversaries that:

• can access data transiting along a channel (either logical or physical) ;

• can read data from a data storage;

• can obtain data from a process, for example by observing the process output or alter-
ing the process behavior.

Clearly, different adversaries need different efforts to obtain data from a component. For
example in the DFD depicted in Figure 2, the Security Administrator has the credentials to
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access data storage DS1, hence the effort is negligible. Vice versa, an external adversary
needs to violate a number of security systems, and resources are required to accomplish
this task (economical, computational, knowledge). In principle, external adversaries may
also obtain data from internal adversaries, and more generally adversaries may collude
with each other. However, as in security threat analysis, we first assume that adversaries
do not collude. More precisely, in our methodology we do not model the effects of collu-
sion between parties but we do model the likelihood of collusion by means of the trust in
an internal adversary. Indeed, the likelihood that an internal actor shares data with other
adversaries (either internal or external) is related to the organization policies, legal agree-
ments, and in general to the level of trust in that actor, which we model in the following
(see Section 4.4).

We model the difference in the effort required to obtain data from a component through
the likelihood of access (La) parameter, that, intuitively, is inversely proportional to the
effort required to access to the component. The likelihood of access only takes into account
the technical difficulties that a given adversary has to face to access a component; it does
not depend on the willingness of the adversary to maliciously access that component or, in
other words, the trust we have on the specific person or in personnel acting under a specific
role (e.g., network administrators). These aspects are considered in Step 4.

We use the following five values for the likelihood of access:

• Negligible: it is technically very difficult for the adversary to access the component
and it is highly unlikely that access can be obtained with a reasonable effort;

• Low: it is technically difficult for the adversary to access the component and a signifi-
cant effort is required;

• Medium: it is technically possible for the adversary to access the component, but this
requires moderate effort;

• High: it is technically easy for the adversary to access the component with a limited
effort;

• Authorized: the adversary is authorized to access the component, hence no effort is
required.

The likelihood of access depends on the security mechanisms (e.g., access control, encryp-
tion) implemented to protect that component. For this reason, for each component, we list
the security mechanisms, together with their details, including, for example, which users
are authorized to access by an access control system. This is called the components security
table (see for example Table 2).

It is also clear that different exposures have different magnitudes and results in leaking
different amount of data. To estimate the exposure magnitude different approaches should
be used, depending on the type of component.

• Exposure magnitude in data storage. The amount of information incoming in the data
storage, as well as the retention period of this information, can help to estimate the
exposure magnitude. For example, if we know that approximately 1, 000 logs are
recorded in a data storage daily and that retention period is 30 days, we can conclude
that the data storage contains about 30, 000 logs.

• Exposure magnitude in channels. When data is exposed through a channel, we should
take into account the data throughput (how much data is transmitted in the unit of
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Table 2: Components security (running example)
Component Authorized users Security

Certified
Security mechanisms

DS1 Security adminis-
trator

YES Encryption, access control, authen-
tication, firewall, NIDS

C3 None YES Firewall, NIDS, private network
P2 Security adminis-

trator
NO Access control, authentication, fire-

wall, NIDS

time) along the channel and an estimation of how long the adversary can listen to the
channel.

• Exposure magnitude in processes. Similarly to channels, we should take into account
how much data the adversary can access. This may depend on how long the adver-
sary can access the process.

The results of Step 2 are reported in the data exposures table (for example Table 3) that
lists, for each combination of components and adversaries, the likelihood of accessing data
from that component by that adversary together with the exposure magnitude. Example 2
illustrates an instance of this process and the result is shown in Table 3 where a brief moti-
vation is also reported for each row. These notes are very important to communicate with
collaborators on the analysis (e.g., security expert) and they are also useful if the analysis
has to be repeated again in the future. The motivation field is used in most of the other ta-
bles we present in our methodology, especially when the assessment relies on the expert’s
subjective judgment.

Note that the two leftmost columns of Table 3 are derived from previous tables (i.e., ad-
versaries table and components security table) while the four columns on the right include
new content. Henceforth we use the following notation: a double line (like between “Ad-
versary” and “Exp.” in Table 3) distinguishes previous content (on the left) from new one
(on the right).

At the end of Step 2 all exposures with a negligible likelihood of access are cleared (e.g.,
those highlighted in Table 3), while the remaining ones are further investigated in Step 3.

Example 2. This example continues from Example 1 and presents the components security
and data exposures tables for three components: DS1, C3, and P2.

From the CSS model, we know that the security administrator can access DS1 and we report
this information in the components security table (Table 2). In this example, it is relevant
to know that the security of DS1 has been certified, which means that a specific auditing,
possibly including penetration attacks, has been performed. We report this information in
the table. Finally, we list the security mechanism adopted to protect DS1: encryption, ac-
cess control, authentication, firewall and NIDS. No user is authorized to access channel C3,
whose security has been certified and that is protected by firewall, NIDS, and a private net-
work. Finally, the security administrator can access P2, whose security has not been certified.
This component is protected by access control, authentication, firewall and NIDS.

Based on the results of the components security table, we now show how to create the data
exposures table considering four adversaries: security administrator, system administrator,
network administrator and external adversary. The result is reported in Table 3.

Since the security administrator has access to the data storage DS1, the likelihood of access is
reported as authorized. Instead, the system administrator is not authorized to access DS1 but
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Table 3: Data exposures (running example)
Cp. Adversary Exp. La Exp.

Magn.
Motivation

D
S1

:T
hr

ea
tL

og

Security ad-
min.

Exp1 Authorized Important
≈ 100k rec

Administrator of the DS (see
DFD)

System
admin.

Exp2 Medium Same as
above

Can access machine but data is
Encrypted

Network ad-
min.

Exp3 Negligible Same as
above

A network admin. has to elude
the network protection bypass
authentication and AC mecha-
nisms and the data is encrypted

Ext. adver-
sary

Exp4 Negligible Same as
above

The adversary has to elude
the network protection, bypass
authentication and AC mecha-
nisms, and the data is encrypted

C
3:

ap
pl

ic
at

io
n

le
ve

lt
hr

ea
ts

Security ad-
min.

Exp5 Negligible Limited ≈
20k rec

Need to bypass network protec-
tion

System
admin.

Exp6 High Same as
above

Can compromise the machine
hosting the Firewall and listen to
channel C3

Network ad-
min.

Exp7 High Same as
above

Have access to the Network
equipment and can listen to
channel C3

Ext. adver-
sary

Exp8 Negligible Very
limited
≤ 5k rec

The adversary has to elude
the network protection, bypass
authentication and AC mecha-
nisms

P2
:T

hr
ea

t
M

on
it

or
in

g Security ad-
min.

Exp9 Authorized Limited ≈
30k rec

Can observe the output of pro-
cess P2

System
admin.

Exp10 Low Same as
above

Should not be able to access, but
security has not been tested

Network ad-
min.

Exp11 Low Same as
above

Same as above

Ext. adver-
sary

Exp12 Low Same as
above

Same as above

TRANSACTIONS ON DATA PRIVACY 11 (2018)



EPIC: a Methodology for Evaluating Privacy Violation Risk in Cybersecurity Systems 251

Table 4: Attributes description (running example)
Name Description Domain Example

IP(out-dst) The destination IP address of outgoing traffic IP addresses 216.58.205.195
IP(in-src) The source IP address of incoming traffic IP addresses 192.30.253.112
IP(in-dst) The destination IP address of incoming traffic IP addresses 132.133.56.45
File A file being transmitted String of

bytes

has access to the physical machine hosting this component. By cracking data encryption
(note in the components security table that DS1 does implement encryption), the system
administrator can obtain data from DS1, hence we associated this a medium likelihood of
access. The effort required by the external adversary is even higher, as he needs to elude the
security protections of the network (firewall, NIDS) to gain access to the machine hosting
DS1, then bypass the authorization and access control mechanisms and decrypt the data.
These security mechanisms have been certified (as reported in Table 2) and hence the like-
lihood of access by the external adversary is marked as negligible. The likelihood of access by
a network administrator is also negligible. Indeed, since DS1 is well configured and security
tested, this adversary has to elude all the security mechanisms and make a considerable
effort in order to gain access to data from DS1.

Regarding C3, no user is authorized to access. Since the component’s security is certified,
we can assign negligible likelihood of access to external adversary. In this case, the security
administrator needs basically the same effort as an external adversary to access C3, so it is
also marked as negligible. The same does not hold for the system administrator, who admin-
isters the firewall machine and hence can listen to channel C3 with high likelihood of access.
The network administrator has access to the network equipment and can attempt to listen to
channel C3, thus the likelihood of access is considered high.

Considering the list of security mechanisms protecting process P3, an unauthorized access
attempt from either system administrator, network administrator, or external adversary is very
unlikely; however, since these mechanisms were not certified we assign low (instead of
negligible) likelihood of access to these adversaries for P3. The likelihood of access for the
security administrator is authorized as he is allowed to observe the output of P3 as part of his
security monitoring tasks.

3.4 EPIC Third Step: Identify Privacy Threats

The objective of Step 3 is to determine whether data leaked in each exposure identified
in Step 2 can potentially lead to a privacy violation. In order to assess this, we need to
take into account what type of data is actually exposed. A given component can expose
heterogeneous data. For instance, DS1 in Example 2 exposes some log records that only
contain the IP address of a user as well as others that also include the file being transmitted
by that user. Another example is reported in Figure 3, showing the user interface of an
application-level firewall (PAN-OS 6.1). The upper part of the figure shows results from
security threat detection based on URLs filtering while the lower part report results from
threat detection based on file filtering and the two tables have different attributes.

We refer to each log record type being exposed as a data content, each composed by a set
of attributes. The attributes description table (for example Table 4). lists all attributes ex-
posed in each data content and reports their name, description, domain and some example
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Figure 3: PAN-OS 6.1 interface to the logs (from Palo Alto Networks live community video
tutorials)

Table 5: Data content identification (running example)
Exposure Data contentExposure Component Adversary La

Exp1
DS1. threat
log

Security ad-
ministrator

Authorized
dc1: IP(out-dst)
dc2: IP(in-src), IP(in-dst)
dc3 : IP(in-src), IP(in-dst), File

Exp7
C3. appli-
cation level
threats

Network ad-
ministrator

High
dc1: IP(out-dst)
dc2: IP(in-src), IP(in-dst)
dc3 : IP(in-src), IP(in-dst), File

Exp12
P2. threat
monitoring

Ext. adver-
sary Low

dc1: IP(out-dst)
dc2: IP(in-src), IP(in-dst)
dc3: IP(in-src), IP(in-dst), File

values. Table 4 shows the attributes description table for our running example.
We then associate each exposure (i.e., component and adversary) with the data contents it

exposes. This is reported in the data content identification table (for example Table 5). that
presents, for each pair of component and adversary derived from the data exposure table,
the likelihood of access (as previously evaluated) and the list of data contents exposed by
that component to that adversary. Table 5 shows an example reporting some selected ex-
posures from Table 3. Note that in Table 5 each data content is exposed by each considered
component to each considered adversary. This is not always the case as it can happen that
two components expose different data contents and that a component exposes different
data contents to different adversaries.

We then evaluate whether a combination of exposure and data content represents a pri-
vacy threat by analyzing how the adversary can discover the association between a sensi-
tive information and an identified respondent. This is clearly related to the semantics of
the data being exposed and on the knowledge accessible to the adversary. We first classify
the attributes according to the following definitions.

• Potentially Sensitive Information (PSI): attribute or set of attributes that can be con-
sidered as sensitive. I.e., the combined values of the attributes in each of these sets
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Table 6: Data content attributes analysis (running example)

Data content ID QID PSI
Attribute Mtv. Attribute Bg. Kowledge Mtv. Attribute Mtv.

dc1: IP(out-
dst)

None . . . None None . . . IP(out-dst) . . .

dc2: IP(in-
src), IP(in-
dst)

None . . . IP(in-dst) List associating IP-
addresses with user-
names

. . . IP(in-src) . . .

dc3 : IP(in-
src), IP(in-
dst), file

None . . . IP(in-dst),
file

List associating IP-
addresses with user-
names

. . . IP(in-src),
file

. . .

reveal sensitive information about the data respondent.

• Identifier (ID): attribute or set of attributes that uniquely identifies a respondent in a
data-set.

• Quasi-Identifier (QID): attribute or set of attributes that, combined with other infor-
mation (including adversary’s background knowledge), can be used to identify the
respondent in a data-set (or to restrict the set of candidate respondents).

The recognition of QIDs and the related assumptions about background knowledge, also
required by most anonymization techniques, is one of the most difficult tasks in privacy
protection [3]; however, it becomes more feasible when considering a restricted domain
with specific types of data content and adversaries, like the one we are considering. Table 6
shows an example of the data content attributes analysis table that reports the attributes
classification for each data content and also describes the expected adversary’s background
knowledge. The privacy expert is also expected to motivate or comment the classification
of each attribute. Note that for sake of brevity we will not report the motivations in the
tables (“Mtv.” columns) but we report them in the text.

Example 3. In Table 6, the attribute IP(out-dst), contained in data content dc1, is classified as
a PSI attribute . In fact, IP(out-dst) is the destination IP address of outgoing traffic/request
(see Table 4); this address can reveal sensitive information about the respondent who sent
the request e.g., in case of HTTP traffic this attribute will reveal the domain name of the
web page visited by the respondent. dc1 contains neither ID attributes nor QID attributes
because IP(out-dst) does not provide any information about the data respondent in the or-
ganization that initiated the communication.

Data content dc2 contains no ID attributes and a QID attribute IP(in-dst) that refers to
the destination IP address of incoming traffic (see Table 4). It is the IP address of a re-
spondent receiving a request or most likely an answer to a request. IP(in-dst) can be used
to re-identify a respondent if the adversary has background knowledge allowing them to
associate an IP address with a user-name. dc2 also contains the PSI attribute IP(in-src).
Similarly to IP(out-dst), IP(in-src) indicates the IP address of a machine answering to a re-
spondent’s request that could be the domain name of a privacy-sensitive website that the
respondent is visiting.

Data content dc3 and dc2 have two attributes in common: IP(in-dst) classified as QID
and IP(in-src) classified as PSI. dc3 contains, in addition, the attribute file classified as QID
because it might contain information that can be used to re-identify a respondent e.g., name
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and surname. file is also considered as a PSI attribute since files are very likely to reveal
sensitive information about the respondents health, a purchase, financial information.

Each combination of exposure and data content is considered a privacy threat if that data
content contains PSI attributes and at least an ID attribute or a QID attribute. For example,
the combination of Exposure Exp 1 and dc2 (see Table 5) is a privacy threat (if the adversary
has the necessary background information), because dc2 contains IP(in-src), which is a QID
and IP(in-dst), which is a PSI.

If for a given combination of exposure and data content, that data content has no ID nor
QID attributes or if it has no PSI attributes, that combination can be cleared as it is not a
privacy threat. For example, {Exp1, dc1}, {Exp7, dc1}, and {Exp12, dc1}, highlighted in
Table 5, are cleared. In fact dc1 (as shown in Table 6) is composed solely by IP addresses of
external machines and contains no ID or QID attributes.

4 EPIC Fourth Step: Evaluate and prioritize privacy threat
risk

In this section, we describe the fourth step of our methodology aimed at measuring the
risk of each privacy threat identified in Step 3. Following a common approach in the field
of IT security, we compute the privacy violation risk as the combination of likelihood of
occurrence of a privacy violation L and its impact I. In the following we first describe how
to measure privacy violation likelihood (Section 4.1), its impact (Section 4.2) and then we
show how to measure risk (Section 4.3). Finally, we show how to prioritize risk mitigation
actions (Section 4.4).

4.1 Privacy violation likelihood

The privacy violation likelihood represents the likelihood that the privacy of any respon-
dent is violated due to the disclosure of a given data content in given data exposure. It
depends on two factors: the likelihood of access (specified for each data exposure in the
third step) and the likelihood that, from the exposed information, the adversary can suc-
cessfully complete the privacy attack.

In order to complete a privacy attack, the adversary needs to associate the sensitive infor-
mation with the respondent’s identity. While in general, this association task may not be
trivial, in the domain that we are considering sensitive attributes most of the time appear in
data logs together with identifying or quasi-identifying information (e.g., IP, MAC address,
UID). Since in this step, we are only considering data contents that contain PSI (the others
have been cleared in Step 3), the likelihood of successfully completing the privacy attack
corresponds to the re-identification likelihood i.e., the likelihood that the data respondent
is re-identified.

We define this likelihood with a qualitative scale, established mainly by analyzing the ID
and QID set of attributes identified in the data content in the previous step and evaluating
which background knowledge the considered adversary may actually have. We provide
the following guidelines and examples to assign re-identification likelihood values (c is the
data content):

• Certain. Data respondents’ identity is explicitly reported in c. Consider, for example,
a company that assigns to each employee an email address in the form name.surname
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and assume that each record in c contains the senders’ email address for outgoing
email. In this case, each log record in c is explicitly identified.

• High. The adversary can discover the data respondents’ identity because (i) the ex-
plicit identity is part of many records in c or (ii) c contains quasi-identifying infor-
mation and the adversary has access to the background information that allows him,
with limited effort, to re-identify the respondents. As an example for case (i), consider
a company in which users can choose their email addresses; c contains the senders’
email address of outgoing emails. In most of the cases, the email address will be in
the form name.surname, so the data respondent can be often identified. As an example
for case (ii), consider that c contains the source IP address of outgoing HTTP connec-
tions, the adversary is the network administrator and he has background information
to map an IP address to the corresponding user’s name.

• Medium. The adversary can discover the data respondents’ identity because (i) the
explicit identity is seldom part of c or (ii) c contains quasi-identifying information and
the adversary can use it, together with background information so that, sometimes
and possibly with an effort, he can re-identify the respondent. As an example for case
(i), consider that c contains the name of a file being transmitted; it is possible, though
rare, that the file name contains the sender’s identity like in the case of a file named
name surname CV. As an example for case (ii) consider that c includes the timestamp
of outgoing HTTP connection; the adversary has access to the physical entrance/exit
logs for the building, so he can infer when a person was in the building, and hence,
in some cases, he can find the identity of the data respondent or at least restrict the
set of possible respondents to a few individuals.

• Low. Explicit identity is not part of c but c contains quasi-identifiers that the adversary
can seldom or with a significant effort exploit to discover the respondent’s identity.
Consider this example: c contains the source IP address of outgoing HTTP connec-
tion. The adversary is the system administrator that, generally, does not know the
association between IP addresses and employees identities. However, when a sys-
tem administrator is asked for help desk support, he can become aware of a static IP
address associated with a given employee, hence being able to re-identify the data
respondent.

• Negligible. Explicit identity is not part of c and any quasi-identifying information in c,
if any, can only be used to re-identify a respondent by using background information
that is unlikely to be available to the adversary. Consider the case in which c contains
the source IP address of outgoing HTTP connections. An external adversary does not
know which user is associated with each IP address, so he cannot re-identify data
respondents, especially if the address is dynamic or masked by a gateway.

The qualitative values for re-identification likelihood and likelihood of access are com-
bined to obtain a qualitative value for the privacy violation likelihood, which is measured
with a 5-values scale from negligible to very-high. Table 7 shows how to compute privacy
violation likelihood given re-identification likelihood and the likelihood of access. The in-
tuition behind Table 7 is that the two input likelihoods are combined with an operation
similar to a product. For example, if one of the two input likelihoods is negligible (this is
intuitively analogous to a zero probability), then the output likelihood is also negligible.

The privacy violation likelihood table (see for example Table 8) lists all privacy threats
and for each of them it reports the likelihood of access (La) (derived from Step 3), the re-
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Table 7: Likelihood matrix defining privacy violation likelihood as a combination of likeli-
hood of access and re-identification likelihood

R
e-

id
en

ti
fic

at
io

n
li

ke
li

ho
od

Certain Negligible Medium High Very-High Very-High
High Negligible Low Medium High Very-High

Medium Negligible Low Medium Medium High
Low Negligible Low Low Low Medium

Negligible Negligible Negligible Negligible Negligible Negligible
Negligible Low Medium High Authorized

Likelihood of Access

identification likelihood (Lrid), that is evaluated according to the five qualitative values de-
fined above, the motivations behind this evaluation and, finally, the value of the privacy
violation likelihood (L) , which is computed according to the likelihood matrix (see Table 7).

Example 4. Table 8 is the privacy violation likelihood table for the privacy threats identified
in the running example in Section 3.4.

The likelihood of access reported in this table was computed in Step 2 (see Table 3). Values
for the re-identification likelihood were defined according to the following reasoning. Let’s
first consider data content dc2, including the IP addresses that an adversary can use to
re-identify a respondent if he can associate it with the user name (either directly or, for
example, by first associating the IP address to the office number and then to the user name).
As observed above, security administrator can know this association in some cases, so the
re-identification likelihood is medium. The network administrator has access to the full list
associating IP-addressed and user names, so the re-identification likelihood is high. Finally,
external adversary cannot associate the IP-address to the user name, so in this case, the re-
identification likelihood is negligible.

Let’s now consider data content dc3. Also, in this case, the IP-address is part of the data
content, so, for each adversary, the re-identification likelihood is at least as high as with
dc2. However, dc3 also contains a file (i.e., file name, file content, etc.) that can some-
times be an explicit identifier or a quasi-identifier. For the security administrator, who is
an internal adversary, the file can often identify the user. For example the security admin-
istrator can re-identify the user even if the file is a document signed with the first name
only; this is possible because the security administrator knows that there is only one person
with that name, or because, from the context, the adversary recognizes the file as coming
from a given office, where there is a single person with that name. For this reason, the
re-identification likelihood is set to high for security administrator. Instead, external adversary
can only re-identify the issuer when the full name is reported in the file and, in some cases,
this might not even be enough, for example for very common full names. For this reason,
the re-identification likelihood is set to medium for this adversary.

4.2 Privacy violation impact severity

A privacy violation has a negative impact on the responsible organization. We model this
by assigning an impact severity (I) value to each privacy threat. The value depends on
three impact factors, defined in the following (Section 4.2.1). Impact severity can be as-
sessed both qualitatively (Section 4.2.2) and quantitatively (Section 4.2.3).
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Table 8: Privacy violation likelihood (running example)

Exposure Data
content La

Lrid LValue Mtv.
Exp1: DS1
Sec. Admin.

dc2 Authorized Medium . . . High
dc3 Authorized High . . . Very-High

Exp2: C3
Net. Admin.

dc2 High High . . . High
dc3 High High . . . High

Exp3: P2
Ext. Adversary

dc2 Low Negligible . . . Negligible
dc3 Low Medium . . . Low

4.2.1 Impact Factors.

To provide an impact severity assessment with as much accuracy as possible we first need
to identify the consequences of a privacy violation, that we call impact factors. They are
summarized in the following list:

• Non-compliance (IC). If data content is exposed in a non-compliant way, then the
organization might incur a certain cost in the form of e.g., non-compliance fines, re-
spondents compensation for loss of their privacy, remediation measures to address
the privacy issues that led to the unlawful leakage. For example, aspects that should
be taken into account to evaluate this impact factor include: whether the respondent
was informed or provided a consent for data processing, if the data was retained
for a period longer than prescribed, and even general intervenability rights like the
possibility of data subjects to rectify or delete their data.

• Failure to meet business agreements (IB). The organization might have agreements with
end-users or other organizations that imply penalties in case of privacy violations.
For example, privacy protection could be part of a service level agreement and the
service provider may be subject to specific penalties in case of privacy loss.

• Reputation Loss (IR). A privacy violation can have an impact on the organization
reputation, that is a commercially valuable asset. Indeed, reputation loss can “erode
the ability of businesses to successfully retain their markets, maximize shareholders
value, raise finance and manage debts, and remain independent” [23].

In the following, we discuss how to assign a qualitative or quantitative value to each
factor. In both cases, there are three aspects that should be taken into account and that we
collectively call violation magnitude.

i) The effect of the privacy violation on the respondent. While the effect of the privacy violation
on the respondent does not have a direct impact on the organization, it is relevant for the
evaluation of the three impact factors listed above. For example, if the privacy violation
discloses a person’s sexual orientation and this results in the person being sentenced (ho-
mosexuality is still illegal in some countries), then the reputation loss for the organization
will be higher than in the case of a privacy violation that has limited impact on the data
respondent. Indeed, as suggested in [9], a privacy violation can be assessed in terms of the
physical, material and moral damage inflicted on the respondent.

ii) The number of respondents. It can be assessed based on the exposure magnitude (see
Section 3.3) and an estimation of how exposed data is distributed among individuals.
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iii) Nature of respondents. There are some categories whose privacy should be particularly
protected (e.g., minors, social minorities) or individuals for whom a privacy violation can
have worse effects than for others (e.g., a politician, a CEO).

By considering these three aspects the expert assigns a qualitative value to the violation
magnitude in the scale: Very limited, Limited, Medium, Important and Very important.

When the experts assign values to the impact factors and to the violation magnitude, they
should also keep track of the motivations behind the assigned values. This is important for
two reasons. First, in order to ease future updates of the privacy evaluation risk. Second,
in order to make it possible to intervene during the remediation phase. For example a
high value may be assigned to IC for improperly following the regulation with respect to
retention period, intervenability or consent. The specific reason should be annotated so that
targeted remediation actions can be taken if required by considering the resulting privacy
violation risk for the considered threat.

4.2.2 Impact Severity: Qualitative Assessment.

With this form of assessment a privacy expert and an organization representative jointly evalu-
ate the severity of each impact factor for each privacy threat and assign a qualitative sever-
ity level to each factor on a 5-levels severity scale (Low, Med-low, Med, Med-high and High).
This evaluation takes into consideration different aspects for each of the three factors. For
example, the non-compliance severity will depend on the measures the organizations de-
ployed in order to be compliant with the regulation or the lack of these measures. It also de-
pends on the violation magnitude; indeed, in case a compensation to the violation victims
is required, the non-compliance severity will scale linearly with the number of respondents
affected. The reputation loss impact may depend on the adversary, on the data handled by
the organization, on insufficient organizational and technical control, and most importantly
by the number of individuals affected. Indeed, reputation loss is likely to scale with the pri-
vacy violation magnitude, not only in terms of number of respondents affected, but also in
terms of the nature of these respondents (e.g., a privacy violation for a social minority, a
celebrity or a political figure will certainly have more reputation impact than other leak-
ages). Finally, the impact of non-fulfillment of business agreements depends on the kind
of data leaked and on the agreements themselves. An example business agreement may be
an SLA (service level agreement) with a cloud provider. SLAs usually specify a minimum
level of data security and privacy. In case of failure to meet those requirements, penalty
fees should be paid to the client as compensation.

After evaluating the impact factors, impact severity is computed as the maximum severity
level of the three factors: I = max(IC , IB , IR). In fact, the five severity levels intuitively
represent significantly different range of values (possibly even different orders of magni-
tude). Thus, the overall impact severity will most likely preserve the range of values of the
highest severity among the considered impact factors.

The results are reported in the qualitative privacy violation impact table (see for example
Table 9) that reports, for each privacy threat, the violation magnitude, the qualitative values
of each impact factor and the resulting qualitative impact severity.

Example 5. Table 9 reports the qualitative privacy violation impact table for a subset of the
privacy threats reported in Example 4.

In the first row, impact severity is low. Indeed, in threat Th1 users are informed that
the IP addresses (both local and remote) are collected for security purposes and might be
processed by the security administrator. For this reason, and because several measures were
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Table 9: Qualitative privacy violation impact (running example)

Exposure Data
content Th Violation

magn.
IC IB IR I

Value Mtv. Value Mtv. Value Mtv. Value Mtv.
Exp1: DS1
Sec. Admin dc2 Th1 Important . . . Low . . . Low . . . Low . . . Low

Exp7: C3
Net. Admin dc2 Th2 Very-

Limited
. . . Med-

high
. . . Low . . . Med-

low
. . . Med-

high
Exp7: C3
Net. Admin dc3 Th3 Very-

Limited
. . . High . . . Low . . . High . . . High

Exp12: P2
Ext. Adver. dc3 Th4 Limited . . . High . . . Low . . . Med-

high
. . . High

taken to avoid privacy violations, the non-compliance impact factor (IC) is evaluated as
low. IB is low because the organization has no business agreements to fulfill. IR is also low
because the impact of this violation on reputation is minimal since a security administrator
is somehow expected to access information about user IP addresses.

Impact severity of Th2 is med-high. Considering Th2, non-compliance impact factor is
quite severe because respondents are not informed that the adversary can access exposed
data (actually, network administrator is not expected to access exposed data). However, vio-
lation magnitude is very limited, because there are few respondents for the exposed data.
This mitigates IC that is evaluated as med-high. IB is low because the organization has no
business agreements. The impact on organization’s reputation I is estimated med-low be-
cause the violation magnitude is very limited and exposed data does not contain particularly
sensitive information (see Table 6 for dc2).

Threat Th3 is similar to Th2 with the difference that in this case, the adversary can also
access files, which in turn can contain any type of data, including those particularly pro-
tected by existing regulations, e.g., health-related information. For this reason both IC and
IR are high, and consequently impact severity is also high.

In threat Th4 a non-authorized person (i.e., an external adversary) has access to cd3 that
includes files. Hence, similarly to Th3, IC is high and consequently impact severity is high.

4.2.3 Impact Severity: Quantitative Assessment.

Another approach to assess impact severity is to quantitatively estimate the economic cost
deriving from a privacy violation. We consider the same three factors as in the qualitative
approach but in this case, we associate each of them with an estimation of the economic
loss.

For example, non-compliance cost includes: (i) the fines that the organization has to pay, (ii)
the cost of remediation actions (both organizational and technical), and (iii) the compensa-
tion to pay to each affected respondent times the number of respondents.

The reputation loss costs are caused by the loss of trust and the degradation of the rela-
tionship between the organization and its partners, employees, investors, customers and
potential future customers. It can be reflected on several levels e.g., turnover of existing
customers, diminished customer acquisition, cumulative abnormal stock returns, decline
of equity value [25]. It can also include the costs of efforts to control the incident disclosure
and reputation repair.
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The failure to meet business agreements cost depends on the existing business agreements
and their nature.

In the case of a quantitative assessment, we compute impact severity of a privacy threat
as the sum of the costs associated to each impact factor: I = IC + IR + IB .

The results are reported in the quantitative privacy violation impact table that is anal-
ogous to the qualitative privacy violation impact table (Table 9) with the only differences
that impact factors and impact severity are reported as quantitative values.

4.3 Privacy violation risk

As mentioned in the beginning of this section, privacy violation risk depends on the pri-
vacy violation likelihood and impact severity. If impact severity is assessed quantitatively,
then we can compute a quantitative privacy violation risk. Otherwise, we provide a quali-
tative privacy violation risk assessment.

4.3.1 Qualitative Evaluation

Table 10: Risk matrix defining qualitative privacy violation risk as a combination of privacy
violation likelihood and impact severity.

Im
pa

ct
se

ve
ri

ty

High Low Medium High High High

Med-
High Low Medium Medium High High

Med. Low Low Medium Medium High

Med-
Low

Low Low Low Medium Medium

Low Low Low Low Low Medium

Negligible Low Medium High Very-
High

Privacy violation likelihood

We define the qualitative privacy violation risk with three levels: low, medium and high.
We combine privacy violation likelihood and impact severity levels according to the risk
matrix (see Table 10). The idea behind Table 10 is that when privacy violation likelihood is
negligible, then we can exclude that the adversary can successfully complete the attack, so
the risk is low. If the privacy violation likelihood is low, then risk is obtained by decreas-
ing the value of the impact severity (e.g., impact severity high results in a medium risk).
Similarly, if the privacy violation likelihood is medium, then risk is obtained by slightly
decreasing the value of the impact severity (e.g., medium-high impact severity results in a
medium risk but high impact severity results in high risk). A high value of privacy violation
likelihood implies that the values of impact severity map to the same value of risk, with the
exception of medium-low and medium-high that are “rounded up” to medium and high risk
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Table 11: Qualitative privacy violation risk (running example)

Th Exposure Data
content L I R

Th1 Exp1: DS1, Sec. admin. dc2 High Low Low
Th2 Exp2: C3, Net. admin. dc2 High Med-low Medium
Th3 Exp2: C3, Net. admin. dc4 High High High
Th4 Exp3: P2, Ext. adversary dc4 Low High Medium

values, respectively. Finally, a very-high privacy violation likelihood results in risk values
that are higher than those of the impact severity (e.g., medium impact severity maps to high
risk).

The qualitative privacy violation risk table (see for example Table 11) reports, for each
privacy threat, the values of privacy violation likelihood and impact severity (that were
previously computed), together with the qualitative risk value that is computed based on
Table 10.

4.3.2 Quantitative Evaluation

In the quantitative approach, we need to convert the qualitative measure of privacy viola-
tion likelihood into a numerical value. We propose the following association: Very-High= 1,
High= 0.75, Medium= 0.5, Low= 0.25 and Negligible= 0. Then, for each privacy threat, we
compute the quantitative privacy violation risk R as the product of the privacy violation
likelihood and of impact severity: R = L · I

The results are then reported in the quantitative privacy violation risk table that is analo-
gous to the qualitative privacy violation risk table (Table 11) with the difference that quan-
titative values are reported for the privacy violation likelihood, for impact severity and
risk.

4.4 Risk mitigation actions prioritization

In the fourth step, after assessing the risk values, we are now interested in defining in which
order the privacy threats should be addressed with mitigation actions. We model this order
with a priority value, a scale of integer values from 1 to 12 where 1 represents the highest
priority.

The priority of a privacy threat depends on two factors: its privacy violation risk and
the trustworthiness of the adversary involved in that privacy threat. Several definitions
of trust have been proposed in the literature (see [28] for a survey). In this paper we con-
sider the trust in an adversary as the organization’s level of confidence about the actor
not attempting to gain non-authorized data access or misusing the data to violate privacy.
This level should be assessed by taking into consideration several aspects, including legal
agreements, specific training on handling personal data, personal characteristics (such as
morality, skills, and behavior [18]), and organizational procedures (e.g., motivational prac-
tices and reward systems). Regarding legal agreements, note that employees with access
to the system usually have to sign such agreements as part of their contract. In EPIC, the
knowledge about these agreements is part of the domain knowledge acquired as input for
the whole methodology (see Figure 1).
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Human factors are receiving increasing attention in the security field. Indeed actors trust
assessment is often included in risk management processes. Some approaches discuss the
trust level as a part of the risk computation [38] whereas others use this level as an indepen-
dent indicator to balance the risk at the decision making stage [1]. It has been observed that
the first approach tends to underestimate or hide the risks involving insider threats [10].
Actually, insiders have a big potential to create threats intentionally (by attempting mali-
cious actions) or unintentionally (through lack of experience and awareness). For this rea-
son the EPIC methodology adopts the second approach, and we do not consider adversary
trustworthiness as a factor in the evaluation of privacy violation risk. The trustworthiness
is rather used to define a priority value.

This approach has a twofold effect. On one side, it provides an effective priority classifi-
cation of threats to act upon. On the other side, it provides an explicit classification of risk
that also takes into account the adversaries’ trustworthiness. This risk estimation will be
useful in the process of deciding and designing what kind of training an actor should have
in preparation to fill a high-risk position and what kind of profiles to select when hiring.

We consider the following four levels of trust.

• Fully trusted: Adversaries are fully trusted if they are trained to deal with personal
data at the CSS level. Their activities with data are monitored by logging mechanisms
and they are accountable for any personal data leakage. They often have very high
privileges allowing them full access to data.

• Trusted: Trusted adversaries are also trained to deal with personal data and their ac-
tivity is monitored. However, they have less responsibility in case of privacy leakage
and have restricted access to the sensitive data.

• Moderately trusted: Actors are moderately trusted if they are trusted at the organiza-
tion level, however, they are not specifically trained to deal with sensitive and per-
sonal information at the CSS level. These actors have often high privileges (e.g., ad-
ministration privileges). They are responsible and accountable for any abuse of their
privileges.

• Untrusted: Adversaries are considered as untrusted if they have no training on how
to deal with private information and no authorizations to access the data.

We propose to use the priority distribution defined by the priority matrix (see Table 12) to
combine privacy violation risk and adversary’s trustworthiness in order obtain each threat
priority. This matrix is designed to give more weight to the risk than to the trust. Priority
of threats with the same risk level decreases (i.e., gets higher values) conversely to the
trust level. In most of the cases, a privacy threat with a lower privacy violation risk than
another is associated with a lower priority, with some exceptions. For example, a privacy
threat with medium risk and untrusted adversary is associated with a priority higher than a
privacy threat with high risk and fully trusted adversary.

The results of this procedure are reported in the prioritized privacy threats table (see for
example Table 13) that indicates, for each privacy threat, its associated privacy violation
risk (previously computed), the adversary trust, and the resulting priority value.

Adversaries that are not fully trusted may also be at risk of sharing data with external ad-
versaries or colluding with other adversaries. While dealing with collusion is not explicitly
taken into account by EPIC, the likelihood of this scenario can be reduced by remediation
actions that include specific legal obligations, and organizational measures like preventing
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Table 12: Priority matrix defining priority as a combination of privacy violation risk and
adversary trust

Adversary trust
Untrusted Moderately Trusted Trusted Fully Trusted

Privacy
violation

risk

High 1 2 3 5
Medium 4 6 7 9
Low 8 10 11 12

the use of personal external storage or the use of any personal device in the CSS control
room.

Table 13: Prioritized privacy violation threats (running example).

Th. Exposure Data
content R

Adversary trust PriorityValue Mtv.
Th1 Exp1: DS1, Sec. admin. dc2 Low Fully Trusted 12
Th2 Exp2: C3, Net. admin. dc2 Medium Moderately

trusted
6

Th3 Exp2: C3, Net. admin. dc3 High Moderately
trusted

2

Th4 Exp3: P2, Ext. adversary dc3 Medium Untrusted 4

Example 6. Table 13 illustrates the priority of threats considered in the previous section.
The first threat Th1 has a low risk level. The adversary is the security administrator that
is fully trusted to access and process the data content dc2 because they are highly trained
to deal with personal data and assume high responsibilities for any potential leakage or
misuse of this data. For these reasons, this threat has the lowest possible priority (12).

In the second and third rows (i.e., Th2 and Th3) the adversary is moderately trusted. Net-
work administrators are trusted within the organization, but they are not authorized to access
dc2 or dc3 nor specifically trained to deal with any private information collected by the CSS.
Consequently, Th2 and Th3 have priority levels 6 and 2, respectively.

In the last threat the adversary is external and hence untrusted. Since risk is medium, ac-
cording to Table 13 priority is 4.

5 Case Study

In this section, we show how to apply the proposed methodology to a real case study
represented by the cybersecurity system protecting the network of an academic institution
including over 15,000 hosts.

5.1 Case Study description

Figure 4 depicts the architecture of a university campus network along with its cyberse-
curity Systems (CCSs). From here on we will refer to the ensemble of these cyber security
systems as UCSS (i.e., University cybersecurity System). The university network is divided
into different network segments located in three geographic areas and connected among
themselves by four main routing devices (R1, . . . , R4).
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Figure 4: Architecture of the University’s cybersecurity System

This network is protected in total by six types of cybersecurity systems: (1) Netflow net-
work collector, (2) Network Intrusion Detection Systems (NIDS), (3) application-level fire-
wall, (4) Security Information and Event Management System (SIEM), (5) cloud antivirus
and (6) security mechanisms built into the routers and in particular (i) Firewall at IP level
and (ii) Virtual Private Network at datalink level.

To identify and assess the privacy impact of UCSS, we run the four steps of the EPIC
methodology for each of these six cybersecurity systems. In the following, we report the
most important results of the analysis focusing on three of them: cloud-based antivirus,
application level firewall and SIEM.

The Cloud antivirus is based on a technology that uses a lightweight software compo-
nent on the protected host while offloading the majority of data analysis to the antivirus
provider’s infrastructure. The goal of the software agent is to identify suspicious files and
send them to the network cloud where multiple antiviruses and behavioral detection en-
gines are applied simultaneously to improve the detection rate. Cloud antivirus can also
use a “retrospective detection” where the cloud detection engine rescan all files already
checked when a new threat is identified. Such technique can improve the detection speed.

Firewall at application level is used to detect threats such as web attacks, exploitation
techniques, malware infections, etc. (Figure 4 shows a single firewall connected to R2 but
there is actually a firewall for each router). To this end, the firewall is able to process a large
spectrum of data types such as: executables, PDFs, emails, multimedia files, etc. The fire-
wall can be also configured to decrypt SSL traffic going to any external websites and it acts
as a forward proxy. Like the other cybersecurity devices, the firewall is also equipped with
a remote console to allow the security team to monitor the security events and investigate
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threats.
The events and threats collected by Netflow, NIDS, application level firewall and routers

are sent to the SIEM for further analysis, which is considered the mastermind of UCSS.
Thanks to its capabilities such as data aggregation, event correlation, and advanced forensic
analytics, this system provides a view on the big picture of potential attacks running under
the network and that the other CSS cannot detect separately. The SIEM has a remote console
allowing interaction between the system and human agents.

5.2 Applying EPIC’s first step: Model UCSS

In this step, we use DFD+ to describe the system, data and UCSS functional aspects.

Cloud Antivirus. Figure 5 describes the data flow in the cloud antivirus. The source en-
tity is an antivirus agent installed on a user’s machine. It collects and sends suspicious
files to an antivirus server through the physical channel C1. This data is processed in P1
to detect potential threats and an action notification is sent back to the agent (e.g., to quar-
antine, to deletion, to consider as a false positive etc.). The detected threats are then sent
through C2 and stored in data storage DS1 from where they can be accessed by a security
administrator from process P2 through the physical channel C4.

Figure 5: Modeling UCSS Antivirus component with DFD+

Application level firewall. Network traffic flowing through the network is filtered by
the firewall, as shown in Figure 6. Process P1 filters, at application level, two kinds of
traffic: threats and traffic events. Threats are detected when network traffic matches threat
patterns and specific information about each threat is sent through C2 and stored in data
storage DS1. Traffic events are security events, which are not considered as a threat but
should be monitored in order to prevent security issues (e.g., a failed login is not considered
a threat unless the number of attempts exceeds a given threshold). Traffic events are stored
in DS2. The remaining traffic (normal traffic) is not logged. Threat logs can be accessed by
two actors namely security administrator and security operator via process P2 hosted on
a remote console. Threat logs transit from the firewall to the remote console through C2.1,
and from the console to the actors machines through C2.1.1 or C2.1.2. The same actors can
access log events via P3 through C3.1 and C3.1.1 or C3.1.2. A security administrator has
direct access to the data storage DS1 and DS2 to fulfill several management tasks, and a
system administrator has access to the firewall machine to perform system administration
and maintenance tasks.
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Figure 6: Modeling UCSS Firewall component with DFD+

SIEM. The SIEM receives security logs from the other cybersecurity systems deployed in
UCSS (Figure 7). Logs data from Netflow, router firewall, application level firewall and
NIDS flow through channels C1.1, C1.2, C1.3 and C1.4, respectively. Data is fed to several
processes (e.g., threat and anomaly detection) that we summarize in the complex process
P1. The threats identified in P1 are sent through C2 and stored in DS1. The security admin-
istrator and the security operator can perform several investigation operations via process
P2 hosted in a remote SIEM console (this also involves channels C3, C3.1 and C3.2). The
system administrator has access to the SIEM machine for administration and maintenance
purposes.

Figure 7: Modeling UCSS SIEM component with DFD+
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5.3 Applying EPIC’s second step: Identify data exposures in UCSS

The goal of this step is to identify and analyze exposures in each component identified
in Step 1. For the sake of space, we report and comment only some of the results of this
second step. We first define the list of potential adversaries, then we study the security
mechanisms implemented in each component, and finally, we assess, for each exposure
and adversary, the exposure magnitude and the likelihood of access.

Adversaries. We reported in Table 1 a reference list of adversaries for a cybersecurity en-
vironment that can be personalized for the specific CSS and organization being considered.
In the UCSS use case, we added the following adversaries: a) security operator: in UCSS the
security team is composed of a security administrator and four security operators; the op-
erators have the same tasks but fewer privileges than the security administrator; b) network
user: this adversary role applies to any individual with approved access to the university’s
network.

Security mechanisms. Table 14 lists only some of the components identified in Step 1,
and for each of them, it reports the list of users that are authorized to access the component
and the security mechanisms that protect the access.

Table 14: UCSS components security
Component Authorized

users
Security mechanisms

antivirus:
C1

N/A Private network, network protection (firewall,
SIEM, NIDS)

Firewall:
DS1

Security admin. Authentication, access control, network protection
(firewall, SIEM, NIDS)

Firewall:
DS2

Security admin. Same as above

SIEM: C1.3 N/A Private network, network protection (firewall,
SIEM, NIDS)

SIEM: P2 Sec. admin, Sec.
Op.

Same as above

Data exposure. For each CSS, we considered all possible pairs of components and adver-
saries, we estimated the likelihood of access and the exposure magnitude. Table 15 reports
some of these combinations. Consider, for example, the antivirus agent, which sends sus-
picious traffic from the local machine to the antivirus server through channel C1 (see Fig-
ure 5). For this component we identify two adversaries that can gain access to data with
non negligible likelihood: the network administrator and a network user. The former has a high
likelihood of access as they have direct access to the router device and consequently to the
non-encrypted traffic between agent and server. Although this adversary has the ability to
listen to the channel for a long period of time, the magnitude of this exposure is quite limited
due to the limited number of antivirus agents sending data through this channel (only sus-
picious data is transmitted). The network user can perform a Man-in-The-Middle (MiTM)
attack on the local network by using techniques like ARP cache poisoning attack [33] whose
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Table 15: UCSS Data exposures

Component Adversary Exp. La
Exposure
magnitude Motivation

Antivirus: C1 Network ad-
min.

Exp1 High Medium . . .

Network
user

Exp2 Low Very limited . . .

Firewall: DS1 Security ad-
min.

Exp3 Authorized Very important . . .

System
admin.

Exp4 Medium Very important . . .

Firewall: DS2 Security ad-
min.

Exp5 Authorized Very important . . .

System
admin.

Exp6 Medium Very important . . .

SIEM: C1.3 Network ad-
min.

Exp7 High Limited . . .

SIEM: P2 Security ad-
min.

Exp8 Authorized Very important . . .

Security op. Exp9 Authorized Very important . . .

main goal is to hijack the communication between two hosts. Such attacks are quite easy to
accomplish, especially in LAN environment where the activation of these defensive mech-
anisms is not possible due to the heterogeneity of the network devices. Since the UCSS
network implements some protection mechanism against those attacks (see Table 14), we
estimate the likelihood of access by network user to be low. In this case, the magnitude of
exposure is very limited because, in addition to the limited amount of transmitted data, this
adversary can only listen to the channel for a limited amount of time.

For the SIEM there are a total of 77 combinations of components and adversaries(i.e., 7
adversaries and 11 components) and for the entire UCSS, the total pairs are about 350. De-
spite the high number, the overall effort of producing the data exposure table (Table 15) is
still reasonable for three main reasons. First, given the results of the previous steps, the
security expert can quickly assess the likelihood of access and the exposure magnitude.
Second, from the component security table (Table 14) it is possible to automatically iden-
tify when the likelihood of access is authorized. Finally, when the likelihood of access is
negligible, there is no need to assess the exposure magnitude.

5.4 Applying EPIC’s third step: Identify privacy threats in UCSS

After identifying the exposures in the previous steps we now assess whether these expo-
sures represent privacy threats. As explained in Section 3.4 we start by listing and describ-
ing the data attributes leaked in the exposures. The eight data attributes that are exposed
in antivirus, firewall and SIEM components2 are described Table 16.

As mentioned in Section 3.4 the data leaked in each exposure is composed by heteroge-
neous types of records (i.e., records with different attributes). For example, exposures from

2The exposures we identified actually leak other privacy neutral attributes (i.e., neither IDs, nor QIDs, nor
PSIs), however for sake of brevity we don’t report them.
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Table 16: UCSS attributes description
Name Description Domain Example values

IP int IP adress (source or destination) of
a machin in the local network

IP Address 192.168.100.32

IP ext External IP adress (source or desti-
nation)

IP Address 8.8.8.8

URL visited sites urls and parameters if
any

URL www.sitename.com/
search?s=parameter

file meta. File name, size, author creation
time etc.

name.pdf, 504kb,
2017-06-06 12:07:10

file A file being transmitted String of bytes
email header Email Object, Sender and Reciver

adresses
smtp header from: to: date: subject:

etc.
email cont. Email Object, Sender and Reciver

adresses
app. name name of the application and proto-

col used
name, protocol
etc.

Thunderbird 52.1.1,
smtp

channel C1 of the antivirus (i.e., Exp1 and Exp2) leak records composed by IP ext, IP int,
file meta, and file. These exposures also leak another type of records composed by IP ext,
IP int, and email headers. In Table 17 3 we call the first type of records data content dc1.3
and the second dc1.6. Other data contents are defined analogously.

As required by the EPIC methodology, we continue our analysis by classifying the at-
tributes of each data content as identifying (ID), quasi-identifying (QID), or potentially
sensitive information (PSI). When an attribute is classified as QID we indicate which back-
ground knowledge may lead to re-identification when joined with the attribute value. The
result is reported in Table 17. As an example for interpreting the table, note that no at-
tribute in dc1.3 is identifying, while there are three attributes that are quasi-identifiers
IP int, file meta, and file. An adversary might be able to re-identify a respondent from the
IP address IP int and knowledge allowing to map this address with the respondent’s iden-
tity. The file meta can contain information about machines and applications. Adversaries
might have knowledge about respondents machines/systems and use this knowledge to
re-identify records with the attribute file meta. The attribute file can contain identifying in-
formation such as respondents names and surnames. The attributes file meta and file are
also potentially sensitive information, along with IP ext, which can disclose e.g., a site vis-
ited by a user.

We can conclude that all data contents reported in Table 17 should be further analyzed
in Step 4 because their exposure is a privacy threat. Indeed, all data contents reported in
Table 17 have at least one attribute marked as PSI and at least one attribute marked as ID
or QID.

3Note that data contents should be identified separately for each exposure, however some exposures in our
example share the same data contents e.g.,( Exp1 and Exp2) or (Exp5 and Exp6). Thus we represent them
together in Table 17.
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Table 17: UCSS data content identification and attributes analysis

Exp. Data
content

ID QID PSI
Att. Mtv. Att. Bg. Knowledge Mtv. Att. Mtv.

E
x
p
1

an
d
E
x
p
2

(A
nt

i-
vi

ru
s.

C
1)

dc1.3 None . . . IP int;
file meta;
file

Mapping between IPs
and user names, or
knowledge about user
machine/system

. . . IP ext;
file meta;
file

. . .

dc1.5 None . . . IP int;
file meta

same as above . . . IP ext; URL;
file meta

. . .

dc1.6 None . . . IP int;
email header

Mapping between IPs
and user names, or
email address and user
names

. . . email header . . .

E
x
p
5

an
d
E
x
p
6

(F
ir

ew
al

l.
D

S2
)

dc2.4 email
header

. . . IP int;
email cont

contains an identifier . . . IP ext;
email header;
email cont

. . .

dc2.8 None . . . IP int;
file meta

Mapping between IPs
and user names or other
knowledge about user
(e.g., HR)

. . . file meta . . .

dc2.9 None . . . IP int;
file meta; file

same as above . . . file meta;
file

. . .

E
x
p
8

an
d
E
x
p
9

(S
IE

M
.P

2)

dc3.1 None . . . IP int Mapping between IPs
and respondent’s iden-
tity

. . . location . . .

dc3.6 None . . . IP int same as above . . . URL,
http content

. . .

dc3.9 None . . . IP int same as above . . . application
name

. . .

5.5 Applying EPIC’s fourth step: Evaluate and prioritize privacy threat
risk in UCSS

EPIC’s fourth step aims at evaluating and prioritizing the privacy threats identified in Step
3. The results of this step for a selected set of threats are reported in Tables 18, 19, 20, and 21.
In the following, we provide some details on how these values were obtained.

5.5.1 Evaluating privacy threats in UCSS

As defined by EPIC, privacy violation risk (Table 20) is evaluated as the combination of
privacy violation likelihood (see Table 18) and impact severity (see Table 19).

Privacy violation risk is high for threat Th1 where a network administrator can access data
content dc1.3 (i.e., IP int, IP ext, files meta and file) from channel C1 that transfers suspicious
data from the antivirus agent installed in the end-user machine to the antivirus server. As
shown in Table 18, privacy violation likelihood is high because this adversary has high like-
lihood of accessing the data and of re-identifying respondents from their IP address. The
violation magnitude is medium since the exposure magnitude is medium (see Table 15) and
the violation can affect only a fraction of respondents. Impact severity (Table 19) is high,
despite the medium violation magnitude, because the non-compliance impact is high and
the impact on reputation is med-high4. The non-compliance impact is high since the adver-

4In our use case since the academic organization does not have any business agreements, the impact factor IB
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Table 18: UCSS privacy violation likelihood

Exposure Data
content Th. La

Lrid LValue Mtv.
Exp1 Antivirus.
C1: Network admin. dc1.3 Th1 High High . . . High

Exp2 Antivirus.
C1: Network user dc1.3 Th2 Low High . . . Low

Exp3 Firewall.
DS2: Security admin. dc2.4 Th3 Authorized Certain . . . Very-

high
Exp4 Firewall.
DS2: System admin. dc2.4 Th4 Medium Certain . . . High

Exp5 SIEM.
P3: Security operator dc3.9 Th5 Authorized Low . . . Medium

Table 19: UCSS qualitative privacy violation impact

Th Exposure Data
content

Violation magn. IC IR IValue Mtv. Value Mtv. Value Mtv.
Th1 Exp1 Antivirus. C1:

Network Admin
dc1.3 Medium . . . High . . . Med-

high
. . . High

Th2 Exp2 Antivirus. C1:
Network user

dc1.3
Very
Limited . . . High . . . High . . . High

Th3 Exp3 Firewall. DS2:
Security Admin

dc2.4 Limited . . . High . . . High . . . High

Th4 Exp4 Firewall. DS2:
System Admin

dc2.4 Limited . . . High . . . High . . . High

Th5 Exp5 SIEM.P3:
Security Operator

dc3.9 Important . . . Low . . . Low . . . Low

Table 20: UCSS qualitative privacy violation risk
Th. Exposure Data

content
L I R

Th1
Exp1 Antivirus.
C1: Network admin. dc1.3 High High High

Th2
Exp2 Antivirus.
C1: Network user dc1.3 Low High Medium

Th3
Exp3 Firewall.
DS2: Security admin. dc2.4 Very-high High High

Th4
Exp4 Firewall.
DS2: System admin. dc2.4 High High High

Th5
Exp5 SIEM.
P3: Security operator dc3.9 Medium Low Low

sary is not allowed to access this kind of data and the respondents (i.e., data owners) are
not aware of and did not give their consent for this access. This threat involves potentially

is low
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very sensitive information (i.e., file content) and leaking this information can seriously af-
fect the organization reputation. However, the magnitude of violation is medium thus the
reputation impact factor is med-high.

In the second threat in Table 20, Th2, the same data content dc1.3 is exposed to a network
user with a medium privacy violation risk. Unlike the network administrator this adversary
can only sniff data from a limited number of respondents belonging to the same Ethernet
segment where the adversary is connected The privacy violation likelihood is low (see Ta-
ble 18) despite the high likelihood of re-identification as this adversary has low likelihood of
access to the data. The re-identification likelihood is high because files exposed in dc1.3 can
contain the identity of the respondent and the adversary may have background informa-
tion about respondents (i.e., office colleagues). Despite the very limited violation magnitude
the impact severity is high (Table 19) as both non-compliance and reputation impacts are
high. Non-compliance impact is high because the adversary is not allowed to access this
kind of data and the respondents are not aware of and did not give their consent for this
access. Despite the very limited violation magnitude, the impact on reputation is also high
because the violation is perpetrated by an internal and nonprivileged adversary and the
leaked data is very sensitive.

Threats Th3 and Th4 (in Table 20) involve respectively the security administrator and system
administrator accessing dc2.4 (i.e., IP int, IP ext, email header, email cont) from data storage
DS2 containing threat logs from the firewall. As shown in Table 18, the privacy violation
likelihood is very-high for the security administrator and high for the system administrator.
The two adversaries have very different likelihood of access but the same re-identification
likelihood. The security administrator has authorized access to the data from DS2 while the
system administrator has physical access to the machine hosting DS2 and can attempt to
gain access to this data content with a medium likelihood of access. Both adversaries have a
certain likelihood of re-identification as dc2.4 contains email headers composed by the name
and surname of the respondent. The exposure magnitude (assessed in Step 2, Table 15) and
the violation magnitude (Table 19) are limited. Application level firewall processes a very
big amount of data but the email cont is very rarely collected and stored by a very limited
number of rules. Despite the limited violation magnitude, impact severity (Table 19) is high
for both adversaries. Non-compliance impact factor is high for a security administrator,
although the respondents provided consent, a policy that allows the organization to sys-
tematically inspect the content of emails is in conflict with the regulation. Non-compliance
impact factor is also high for the system administrator, since he is not supposed to access
that data. In addition, the organization should respect higher security requirements when
processing very sensitive information such as emails and email headers. Reputation loss
impact factor is high for both adversaries due to the sensitivity of email content. Hence,
based on privacy violation likelihood and Impact severity, both Th3 and Th4 have high
privacy violation risk.

The last threat Th5 has low privacy violation risk (Table 20). Th5 involves the exposure of
dc3.9 (IP int, IP ext, application name) from the SIEM process P2 to a security operator. The
privacy violation likelihood is medium, as shown in Table 18. Although this adversary is
authorized to access data from P2, the data content does not allow him to re-identify the re-
spondents without the knowledge of the mapping between IP addresses and respondents
identity. A security operator in UCSS is not very likely to have this kind of information, and
for this reason, the re-identification likelihood is Low. The exposure magnitude (assessed
in Step 2, Table 15) is important since the SIEM collects big amount of data corresponding to
this data content. Impact severity instead is low because both non-compliance and reputa-
tion loss impact factors are low. In fact, the access to data is compliant for this adversary and
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Table 21: UCSS prioritized privacy violation threats

Th. Exposure Data
content R

Adversary trust PriorityValue Mtv.

Th1
Exp1 Antivirus.
C1:Network admin. dc1.3 High Moderately

trusted
. . . 2

Th2
Exp2 Antivirus.
C1: Network user dc1.3 Medium Untrusted . . . 4

Th3
Exp3 Firewall.
DS2: Security admin. dc2.4 High Fully trusted . . . 5

Th4
Exp4 Firewall.
DS2: System admin. dc2.4 High Moderately

trusted
. . . 2

Th5
Exp5 SIEM.P3:
Security operator dc3.9 Low Trusted . . . 11

dc3.9 (mainly the application name) is not very sensitive and contains seldom any sensitive
information.

The complete table reporting qualitative privacy violation risk (like Table 20) for the entire
UCSS system contains several hundred threats. The great majority of these threats emerge
in two CSSs (SIEM and Firewall) while fewer threats emerge in each of the other CSSs. For
example, we identified 24 threats in the antivirus CSS, 8 with high risk, 13 medium, and 3
low.

The identification of these threats in UCSS has a high value for the academic institution,
not only to better understand the privacy implications of the deployed CSS and possibly
mitigate the threats but also to comply with regulation. For example, the new EU General
Data Protection Regulation5 (GDPR) requires to keep detailed “Records of personal data
processing activities” (article 30), and the EPIC’s threat analysis was an excellent tool to
isolate this information for the CSS.

5.5.2 Prioritizing risk mitigation actions in UCSS

We now follow the EPIC methodology in assigning a priority to each threat evaluated in
Table 20 by considering the risk value and the adversary’s trustworthiness.
Th1 and Th4 are the threats with the highest priority (priority equals 2) among the threats

reported in Table 21. Th1 has a high privacy violation risk and the adversary (network
administrator) is moderately trusted. In fact, this adversary is trusted within the organiza-
tion, but not authorized to access data content dc1.3 exposed in Th1. In addition, network
administrators have no training to deal with private information collected by the UCSS.
Threat Th4 is also characterized by a high privacy violation risk and involves the system
administrator as adversary. Similarly to the network administrator, this adversary is moder-
ately trusted because trusted within the organization, but not authorized to access the data
content dc2.4 exposed in Th4.

Threat Th2 follows in priority order (priority equals 4). Th2 contains the same data con-
tent than Th1 (i.e., data content dc1.3) and the data exposures at the origin of these threats
(respectively Exp1 and Exp2 ) were identified for the channel C1 of the antivirus. These

5Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation).
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threats, however, involve different adversaries. The adversary in Th2, the network user,
is untrusted because not authorized to access the data and not trained to manage personal
data. Despite they are less trusted than network administrators (adversary in Th1), Th2 is
assigned a lower priority than Th1 because its privacy violation risk (medium) is lower than
the risk of Th1.

Threat Th3 is similar to Th4 (i.e., same component and same privacy violation risk) but
has a lower priority due to the fact that the adversary (i.e., security administrator) is more
trusted than the system administrator.

Finally, threat Th5 has the lowest priority since it involves a trusted adversary, the security
operator, and it has a low privacy violation risk.

The prioritized list of privacy violation threats has a central role in guiding the mitigation
actions. Considering the UCSS use case, this step of the EPIC methodology highlighted two
benefits. First, it forced the trust analysis of the different actors considered as adversaries,
identifying the higher reliability of security operators with respect to system and network
administrators because of their different training and expertise. Second, considering only
trust, Th2 would be considered at highest priority, while considering only risk Th1, Th3,
and Th4 would be considered before Th2. Only the balanced evaluation of the combination
of the two factors suggests the non-trivial priority order reported in Table 12.

6 Conclusions and Future Work

In this paper, we proposed EPIC, a methodology to identify and evaluate privacy violation
threats resulting from the deployment of an organizational cybersecurity system.

The methodology guides a privacy expert, with the collaboration of the organization’s
security team, through four steps of analysis namely modeling the cybersecurity system,
identifying data exposures, identifying privacy threats and evaluating and prioritizing
these threats.

The privacy risk assessment resulting from the methodology can be used to compare cy-
bersecurity systems in terms of privacy preservation. By considering the trustworthiness
of the adversary together with the privacy violation risk, the methodology also provides a
prioritization of the activities necessary to mitigate the risk of the identified privacy threats.

We refined and validated the methodology by applying it to the actual cybersecurity sys-
tem of a large academic institution reporting some of the analysis and results in the paper.

Two contrasting needs emerged while designing the EPIC methodology: on one side, in
order to increase the accuracy of privacy violation risk assessment, a larger number of as-
pects needs to be modeled and deep evaluations by privacy experts need to be performed.
On the other side, the methodology should be practical: the experts should be able to ap-
ply it to real systems with a reasonable effort and time. Balancing these needs required
us to omit some details or special cases that add complexity to the process, while not al-
ways affecting the evaluation result in the specific context of privacy in CSS. For exam-
ple, in a first attempt to model privacy violation, we explicitly took into account “linking
information” i.e., attributes that can associate several pieces of information to the same
individual. Consider for instance a data log that reports a given sensitive information as-
sociated with pseudo-id 123; another log contains the association between pseudo-id 123
and respondent’s identity. By accessing these two logs the adversary can violate the re-
spondent’s privacy through the “linking information” i.e., pseudo-id 123. EPIC does not
explicitly provide guidance to the experts for analyzing this re-identifying method since,
in our case study, this form of reasoning never disclosed additional privacy threats, while
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adding complexity. Despite we believe that our use case is representative of a large class of
CSS, there may be cases that require a more detailed analysis, including linking. Actually,
linking information is captured by our formal model as a special case of quasi-identifier
(see our definition of quasi-identifier) and can be considered in Steps 3 and 4 of EPIC. More
generally, a technically deeper analysis on specific aspects can be conducted as a second
phase assessment or as part of the remediation for particular privacy threats and system
components.

A natural follow-up to this work would be to guide through the selection and implementa-
tion of privacy protection solutions, including organizational and legal interventions. Re-
garding technical solutions, despite there are several privacy enhancing techniques that
could be applied in this domain, a careful evaluation is required specifically for preserving
data quality and computational efficiency in order not to impact on security protection.
Indeed, some existing privacy enhancing techniques have been shown to reliably protect
privacy, however, they often severely affect the quality of data and come with a substantial
computational overhead. For this reason, we plan to continue our investigation by ana-
lyzing how existing techniques could be effectively adapted and combined, and possibly
design new methods.
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