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Abstract. In this short survey, we review the current status of fractal-based techniques
and their application to the solution of inverse problems for ordinary and partial differential
equations. This involves an examination of several methods which are based on the so-called
Collage Theorem, a simple consequence of Banach’s Fixed Point Theorem, and its extensions.

1. Introduction
In this paper, we review the current state of the art of “fractal-based methods” of solving inverse
problems for ordinary and partial differential equations. This intent of this survey paper is to
summarize, and for some readers introduce, a collection of so-called “Collage Methods” to the
inverse problems community. The approach is different, but not necessarily better, than those
employed by the majority of people working in inverse problems.

In the context of the work reviewed in this paper, we consider the direct problem to be the
determination of the solution to a completely prescribed differential equation, including known
initial conditions and/or boundary conditions. On the other hand, we consider the inverse
problem to be estimation of values of the parameters, or perhaps a subset thereof, in a system of
differential equations, based on some information about the solution, e.g., observed data values.

The literature is rich in papers studying ad hoc methods to address ill-posed inverse
problems by minimizing a suitable approximation error along with utilizing some regularization
techniques [20, 40, 44, 45, 46, 48]. Some of the approaches, for example in [48], without any
rigorous justification actually perform the same minimization that is justified by the collage
theorem; the references in this survey paper additionally list some publications by others
who recognize that they are using the collage theorem and/or developing new related results
[2, 1, 13, 14, 15, 37, 38, 41, 43, 43, 47].

http://creativecommons.org/licenses/by/3.0
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2. Inverse problem of approximation by fixed points of contraction mappings
Most “fractal-based” methods are based on the use of contraction mappings on appropriate
metric spaces. (By “appropriate”, we mean appropriate to the application of concern.) It is
therefore helpful if we provide some brief mathematical preliminaries.

In what follows, we shall let (X, d) denote a complete metric space. (For example, X could
be a set of functions defined over an interval [a, b] ⊆ R, e.g., the set L2[a, b] of square-integrable
functions on [a, b], and d the corresponding metric on that space.)

Definition 1 (Contraction mapping) Let T : X → X be a mapping on a complete metric
space (X, d). Then T is said to be contractive if there exists a constant c ∈ [0, 1) such that
d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X.

Generally, the smallest such c ∈ [0, 1) for which the above inequality holds true is known
as the contraction factor of T . We now come to what is perhaps the most famous theorem
regarding contraction maps on metric spaces and certainly central to fractal-based methods.

Theorem 1 (Banach Fixed Point Theorem [3]) Let T : X → X be a contraction mapping on
X with contraction factor c ∈ [0, 1). mapping on X. Then,

(i) There exists a unique element x̄ ∈ X, the fixed point of T , for which T x̄ = x̄.

(ii) Given any x0 ∈ X, if we form the iteration sequence xn+1 = T (xn), then xn → x̄, i.e.,
d(xn, x̄)→ 0 as n→∞. In other words, the fixed point x̄ is globally attractive.

We consider the following general class of inverse problems:

Let (X, d) be a complete metric space and a “target” element x ∈ X that we wish to
approximate. Given an ε > 0, can we find a contraction mapping T : X → X with
fixed point x̄ ∈ X such that d(x̄, x) < ε?

Very briefly, the original motivation for this formulation was fractal image coding [16, 6, 39].
When an image x is approximated by the fixed point x̄ of a contractive “fractal transform” T ,
the amount of computer memory required to store the parameters which define T is generally
much less than that required to store x. Instead of storing or transmitting x, one stores or
transmit T , from which x̄, an approximation to x can be generated via iteration. The result:
fractal image compression.

Given the complicated nature of fractal transforms, however, the determination of optimal
mappings T by minimizing the approximation error d(x̄, x) is intractable. An enormous
simplification is achieved by means of the following simple consequence of Banach’s Theorem,
known in the literature as the Collage Theorem.

Theorem 2 (“Collage Theorem” [5, 4]) Let (X, d) be a complete metric space and T : X → X
a contraction mapping with contraction factor c ∈ [0, 1). Then for any x ∈ X,

d(x, x̄) ≤ 1

1− cd(x, Tx), (1)

where x̄ is the fixed point of T .

This permits a reformulation of our original inverse problem as follows,

Given an ε > 0, can we find a contraction mapping T : X → X such that d(Tx, x) < δ?
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In an effort to minimize the approximation error d(x̄, x), we now look for contraction maps T
which minimize the so-called collage error d(x, Tx). In other words, we look for maps T which
send the target x as close as possible to itself. We refer to this approach as collage coding [30].

Barnsley and co-workers [5, 4] were the first to see the potential of using the Collage Theorem
for the purpose of image approximation and compression. Most, if not all fractal image coding
methods are based on some kind of block-based collage coding method which follows the strategy
originally presented by Jacquin [18].

A collage coding approach, however, may be applied in other, “nonfractal,” situations where
contractive mappings are encountered, as we describe below. In a practical application, we
consider a family of appropriate contraction mappings Tλ, λ ∈ Λ ⊂ R

n, and try to find the
parameter λ̄ which minimizes the approximation error d(x, x̄λ). The feasible set can be defined
as Λ = {λ ∈ R

n : 0 ≤ cλ ≤ c ≤ C < 1} which guarantees the contractivity of Tλ for any λ ∈ Λ.
(Here, C is a prescribed “cutoff.”) This is perhaps the main difference between our collage
coding approach and Tikhonov regularization (see [45, 46]): In the former, the constraint λ ∈ Λ
guarantees that Tλ is a contraction essentially replacing the effect of the regularization term in
the Tikhonov approach. The collage-based inverse problem described above can be formulated
as an optimization problem as follows,

min
λ∈Λ

d(x, Tλx) . (2)

In general this optimization problems is nonlinear and nonsmooth. The regularity of the
objective function strictly depends on the term d(x, Tλx). In many cases, however, the problem
in (2) can be reduced to a quadratic optimization problem. A number of algorithms can then
be used to solve this problem, including, for example, penalization methods, particle swarm ant
colony techniques, etc..

3. Inverse problems for DEs using the Collage Theorem
The use of the Collage Theorem to solve inverse problems for ODEs was originally proposed in
[21] and developed in many subsequent works including [22, 23, 25, 26, 28]. The initial value
problems (IVPs) studied in these papers had the general form,{

u̇ = f(t, u)
u(0) = u0 .

(3)

Associated with the above IVP is the following Picard integral operator,

(Tu)(t) = u0 +

∫ t

0
f(s, u(s)) ds. (4)

It is well known that the solution to the IVP in (3) is a fixed point of T , i.e.,

Tu = u. (5)

Consider the complete metric space C([−δ, δ]) endowed with the usual d∞ metric and assume
that f(t, u) is Lipschitz in the variable u, that is there exists aK ≥ 0 such that |f(s, u)−f(s, v)| ≤
K|u − v|, for all u, v ∈ R. For simplicity we suppose that u ∈ R but the same consideration
can be developed for the case of several variables. Under these hypotheses T is Lipschitz on the
space C([−δ, δ]× [−M,M ]) for some δ and M > 0.

In the direct or forward problem, as is well known, the above Lipschitz property of f
guarantees the existence of a unique fixed point of T and therefore the solution to (3). (Standard
proof: contractivity of T .) Here, however, we are concerned with the collage-based inverse
problem associated with (3):
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Given a function u(t), find a Picard operator T – as defined by the function f – which
maps u as close as possible to itself.

Theorem 3 [21] The function T satisfies

‖Tu− Tv‖2 ≤ c‖u− v‖2 (6)

for all u, v ∈ C([−δ, δ]× [−M,M ]) where c = δK.

Now let δ′ > 0 be such that δ′K < 1. In order to solve the inverse problem for the Picard
operator in (4) we employ the L2 expansion of the function f . Let {φi} be a basis of functions
in L2([−δ′, δ′]× [−M,M ]) and consider fλ(s, u) =

∑+∞
i=1 λiφi(s, u). Each sequence of coefficients

λ = {λi}+∞i=1 then defines a Picard operator Tλ. Suppose further that each function φi(s, u) is
Lipschitz in u with constant Ki.

Theorem 4 [21] Let K,λ ∈ �2(R). Then

|fλ(s, u)− fλ(s, v)| ≤ ‖K‖2‖λ‖2|u− v| (7)

for all s ∈ [−δ′, δ′] and u, v ∈ [−M,M ] where ‖K‖2 =
(∑+∞

i=1 K
2
i

) 1
2 and ‖λ‖2 =

(∑+∞
i=1 λ

2
i

) 1
2

Given a target solution x, we now wish to minimize the collage distance ‖ u − Tλu ‖2. The
square of the collage distance becomes

Δ2(λ) = ‖u− Tλu‖22 =
∫ δ

−δ

∣∣∣∣∣u(t)− u0 −
∫ t

0

+∞∑
i=1

λiφi(s, u(s))ds

∣∣∣∣∣
2

dt

and the inverse problem can be formulated as

min
λ∈Λ

Δ(λ), (8)

where Λ = {λ ∈ �2(R) : ‖λ‖2‖K‖2 < 1}. To solve this problem numerically, we consider the
first n terms of the L2 basis. In this case, the previous problem can be reduced to:

min
λ∈Λ̃

Δ̃2(λ) =

∫ δ

−δ

∣∣∣∣∣u(t)− u0 −
∫ t

0

n∑
i=1

λiφi(s, u(s))ds

∣∣∣∣∣
2

dt, (9)

where Λ̃ = {λ ∈ R
n : ‖λ‖2‖K‖2 < 1}. This is a classical quadratic optimization problem which

can be solved by means of classical numerical methods.
Let Δ̃n

min be the minimum value of Δ̃ over Λ̃. This is a nonincreasing sequence of numbers

(depending on n). Following the method of [17], it can be shown that lim infn→+∞ Δ̃n
min = 0, i.e.,

the distance between the target element and the unknown solution of the differential equation
can be made arbitrarily small.

In [9, 11, 25] the above approach was extended to consider the case of inverse problems for
random and stochastic differential equations.

4. Inverse problems for PDEs using the Generalized Collage Theorem
We now review an extension of the Collage Theorem, the Generalized Collage Theorem, and
show how it can be used to solve inverse problems for families of PDEs.
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4.1. Elliptic equations
Consider the following variational equation,

a(u, v) = φ(v), v ∈ H. (10)

where φ(v) and a(u, v) are linear and bilinear maps, respectively, both defined on an Hilbert
space H. Let 〈·〉 denote the inner product in H, ‖u‖2 = 〈u, u〉 and d(u, v) = ‖u − v‖, for all
u, v ∈ H. The existence and uniqueness of solutions to this kind of equation are provided by the
classical Lax-Milgram representation theorem [12]: Let H be a Hilbert space and φ a bounded
linear nonzero functional, i.e., φ : H → R. Also suppose that a(u, v) is a bilinear form on H×H
which satisfies the following conditions:

(i) There exists a constant M > 0 s.t. |a(u, v)| ≤M‖u‖‖v‖ for all u, v ∈ H,

(ii) There exists a constant m > 0 s.t. |a(u, u)| ≥ m‖u‖2 for all u ∈ H.

Then there is a unique vector u∗ ∈ H such that φ(v) = a(u∗, v) for all v ∈ H.
The inverse problem may now be viewed as follows. Suppose that we have an observed

solution u and a given (restricted) family of bilinear functionals aλ(u, v), λ ∈ R
n. We now seek

to find “optimal” values of λ.
Suppose that we have a given Hilbert space H, a “target” element u ∈ H and a family of

bilinear functionals aλ. Then by the Lax-Milgram theorem, there exists a unique vector uλ such
that φ(v) = aλ(uλ, v) for all v ∈ H. We would like to determine if there exists a value of the
parameter λ such that uλ = u or, more realistically, such that ‖uλ − u‖ is small enough. The
following theorem will be useful for the solution of this problem.

Theorem 5 (Generalized Collage Theorem) [27] Suppose that aλ(u, v) : F ×H ×H → R is a
family of bilinear forms for all λ ∈ F and φ : H → R is a given linear functional. Let uλ denote
the solution of the equation aλ(u, v) = φ(v) for all v ∈ H as guaranteed by the Lax-Milgram
theorem. Given a target element u ∈ H then

‖u− uλ‖ ≤ 1

mλ
F (λ), (11)

where
F (λ) = sup

v∈H, ‖v‖=1
|aλ(u, v)− φ(v)|. (12)

In order to ensure that the approximation uλ is close to a target element u ∈ H, we can, by
the Generalized Collage Theorem, try to make the term F (λ)/mλ as close to zero as possible.
The appearance of the mλ factor complicates the procedure as does the factor 1/(1 − c) in
standard collage coding, i.e., Eq. (1). If infλ∈F mλ ≥ m > 0 then the inverse problem can be
reduced to the minimization of the function F (λ) on the space F , that is,

min
λ∈F

F (λ). (13)

Next sections show that, under the condition infλ∈F mλ ≥ m > 0, our approach is stable.
Following our earlier studies of inverse problems using fixed points of contraction mappings, we
shall refer to the minimization of the functional F (λ) as a “generalized collage method.”

Now let 〈ei〉 ⊂ H be a basis of the Hilbert space H, not necessarily orthogonal, so that each
element v ∈ H can be written as v =

∑
i αiei. It can easily be proved that

inf
λ∈F

‖u− uλ‖ ≤ 1

m
sup

v∈H, ‖v‖=1

[∑
i

α2
i

]
inf
λ∈F

[∑
i

|aλ(u, ei)− φ(ei)|2
]
. (14)
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Let Vn =< e1, e2, . . . , en > be the finite dimensional vector space generated by ei, Vn ⊂ H.
Given a target u ∈ H, let ΠVnu the projection of u on the space Vn and consider the following
problem: find uλ ∈ Vn such that ‖ΠVnu− uλ‖ is as small as possible. We have

‖ΠVnu− uλ‖ ≤
M

m

[∑
i

|aλ(u, ei)− φ(ei)|2
]
, (15)

where M = maxv=
∑n

i=1 αiei∈Vh,‖v‖=1

∑n
i=1 α

2
i , so that the problem has been reduced to the

following minimization problem,

inf
λ∈F

‖ΠVnu− uλ‖ ≤
M

m
inf
λ∈F

n∑
i=1

|aλ(u, ei)− φ(ei)|2 = M

m
(Fn(λ))

2. (16)

Example 1: We consider

−∇ · (κ(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ω = {0 < x, y < 1} (17)

u(x, y) = 0, (x, y) ∈ ∂Ω.
Multiply (17) by a test function v(x, y) ∈ H = H1

0 ([0, 1]
2), the Hilbert space built with all L2

functions that have a weak derivative in L2, integrate over Ω̄, and apply Green’s first identity,
with n̂ denoting the outward unit normal to ∂Ω, to get the equation a(u, v) = φ(v), with

a(u, v) =

∫∫
Ω
κ∇v · ∇u dA and φ(v) =

∫∫
Ω
fv dA. (18)

Now, consider the inverse problem of recovering an estimate of the diffusivity κ(x, y) given
f(x, y) and a set of values of the solution u inside Ω. Using (16), we solve the inverse problem
by minimizing Fn(λ). To produce a specific example, we set

κtrue(x, y) = 2 + 8xy2(1− x) and u(x, y) = x(1− x) sin(πy) ∈ H1
0 ([0, 1]

2).

We determine f(x, y) from (17). We use the 49 data values u
(

i
8 ,

j
8

)
, i, j = 1, .., 7. The grid

of data points induces a finite element basis for V7,7 ⊂ H, within which we seek to recover an
estimate of the 49 basis coefficients for κ. Minimization of Fn(λ) produces a κ(x, y) satisfying
‖κ(x, y) − κtrue(x, y)‖2 = 0.0128. Figure 1 presents the graphs of κtrue(x, y) and the recovered
κ(x, y).

4.2. Parabolic equations
Consider the following abstract formulation of a parabolic equation,{ 〈 ddtu, v〉 = ψ(v) + a(u, v)

u(0) = f ,
(19)

where H is a Hilbert space, ψ : H → R is a linear functional, a : H ×H → R is a bilinear form
and f ∈ H is an initial condition. The inverse problem for the above equation consists of finding
an approximation of the coefficients and parameters starting from a sample of observations of
a target u ∈ H. To do this, we consider a family of bilinear functionals aλ and let uλ be the
solution to { 〈 ddtuλ, v〉 = ψ(v) + aλ(uλ, v)

u0 = f .
(20)

We wish to determine if there exists a value of the parameter λ such that uλ = u or, more
realistically, such that ‖uλ − u‖ is sufficiently small. To this end, Theorem 6 states that the
distance between the target solution u and the solution uλ of (20) can be reduced by minimizing
a functional which depends on parameters.
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(a) z = κtrue(x, y) (b) z = κ(x, y) (c) Isotherms of u(x, y)

Figure 1. (a-b) The graphs of κtrue(x, y) and the recovered κ(x, y) in Example 1. (c) Isotherms
of u(x, y) on the perforated domain in Example 2.

Theorem 6 [11] Let u : [0, T ]→ L2(D) be the target solution which satisfies the initial condition
in (19) and suppose that d

dtu exists and belongs to H. Suppose that aλ(u, v) : F ×H ×H → R

is a family of bilinear forms for all λ ∈ F . We have the following result:

∫ T

0
‖u− uλ‖Hdt ≤ 1

m2
λ

∫ T

0

(
sup
‖v‖=1

〈
d

dt
u, v

〉
− ψ(v)− aλ(u, v)

)2

dt , (21)

where uλ is the solution of (20) s.t. uλ(0) = u(0) and uλ(T ) = u(T ).

Whenever infλ∈F mλ ≥ m > 0 then the previous result states that in order to solve the inverse
problem for the parabolic equation (19) one can minimize the following functional,

∫ T

0

(
sup
‖v‖=1

〈
d

dt
u, v

〉
− ψ(v)− aλ(u, v)

)2

dt , (22)

over all λ ∈ F .

4.3. Hyperbolic equations
Let us now consider the following weakly-formulated hyperbolic equation,⎧⎨

⎩
〈 d2
dt2
u, v〉 = ψ(v) + a(u, v)

u(0) = f
d
dtu(0) = g ,

(23)

where ψ : H → R is a linear functional, a : H ×H → R is a bilinear form, and f, g ∈ H are the
initial conditions. As in previous sections, the inverse problem for the above system of equations
is to reconstruct the coefficients starting from a sample of observations of a target u ∈ H. We
consider a family of bilinear functionals aλ and let uλ be the solution to the following problem,⎧⎨

⎩
〈 ddtuλ, v〉 = ψ(v) + aλ(uλ, v)
u0 = f
d
dtu(0) = g .

(24)

We wish to determine if there exists a value of the parameter λ such that uλ = u or, more
realistically, such that ‖uλ−u‖ is sufficiently small. Theorem 7 states that the distance between
the target solution u and the solution uλ of (24) can be reduced by minimizing a functional
which depends on parameters.
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Theorem 7 Let u : [0, T ]→ L2(D) be the target solution which satisfies the initial condition in

(23) and suppose that d2

dt2
u exists and belongs to H. Suppose that there exists a family of mλ > 0

such that aλ(v, v) ≥ mλ‖v‖2 for all v ∈ H. We have the following result:

∫ T

0
‖ut − (uλ)t‖2dt ≤ 1

m2
λ

∫ T

0

(
sup
‖v‖=1

〈
d2

dt2
ut, v

〉
− ψ(v)− a(ut, v)

)2

dt , (25)

where (uλ)t is the solution of (24) s.t. u(0) = (uλ)(0) and u(T ) = (uλ)(T ).

The proof of the theorem follows the same path as that of Theorem 6.

5. Inverse Problems for DEs using a Collage Theorem for Banach spaces
The results presented in the previous two sections have been extended to a wider class of elliptic
equations problems by considering not only Hilbert spaces but also reflexive Banach spaces. Let
us mention that this kind of formulation arises, for instance, when the boundary constraints are
weakly imposed. Details can be found in [7, 8, 31]. The following result presents an extended
version of the Lax–Milgram theorem.

Let N ≥ 1, E, F1, . . . , FN are real vector spaces, a1 : E × F1 −→ R, . . . , aN : E × FN −→ R

are bilinear forms and y∗1 : F1 −→ R, . . . , y∗N : FN −→ R and consider the system,

x ∈ E such that

⎧⎪⎨
⎪⎩

y∗1 = a1(x, ·)
...

y∗N = aN (x, ·) .

If this system admits a solution, then such a solution is unique if and only if, the corresponding
homogeneous problem has one and only one solution. Given a real normed space G, we write
G∗ for its topological dual space.

Theorem 8 [7, 8, 31] Suppose that E is a real reflexive Banach space, N ≥ 1, F1, . . . , FN are
Banach spaces and that a1 : E×F1 −→ R, . . . , aN : E×FN −→ R are continuous bilinear forms.
Then, for all y∗1 ∈ F ∗1 , . . . , y∗N ∈ F ∗N there exists a unique x0 ∈ E such that⎧⎪⎨

⎪⎩
y∗1 = a1(x0, ·)

...
y∗N = aN (x0, ·)

if and only if

x ∈ E and

y∗1 = a1(x0, ·)
...

y∗N = aN (x0, ·)

⎫⎪⎬
⎪⎭ ⇒ x = 0

and there exists ρ > 0 satisfying

(y1, . . . , yN ) ∈ F1 × · · · × FN ⇒ ρ
N∑
k=1

‖yk‖ ≤
∥∥∥∥∥

N∑
k=1

ak(·, yk)
∥∥∥∥∥ .

Moreover, if these equivalent conditions hold and x0 ∈ E is the unique solution, then

‖x0‖ ≤ 1

ρ
max

k=1,...,N
‖y∗k‖.
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The above result implies the following corollary which represents an extended version of the
collage theorem.

Corollary 1 [7] Let E be a real reflexive Banach space, let N ≥ 1, let F1, . . . , FN be Banach
spaces, let y∗1 ∈ F ∗1 , . . . , y∗N ∈ F ∗N and let Λ be a nonempty set such that for all λ ∈ Λ there exist
N continuous bilinear forms a1λ : E × F1 −→ R, . . . , aNλ : E × FN −→ R and ρλ > 0 with

x ∈ E and

y∗1 = a1λ(x0, ·)
...

y∗N = aNλ(x0, ·)

⎫⎪⎬
⎪⎭ ⇒ x = 0

and

(y1, . . . , yN ) ∈ F1 × · · · × FN ⇒ ρλ

N∑
k=1

‖yk‖ ≤
∥∥∥∥∥

N∑
k=1

akλ(·, yk)
∥∥∥∥∥ .

Let us also suppose that for all λ ∈ Λ, xλ ∈ E is the unique solution of the variational system,

x ∈ E and

⎧⎪⎨
⎪⎩

y∗1 = a1λ(x, ·)
...

y∗N = aNλ(x, ·)
.

Then for each x0 ∈ E and for all λ ∈ Λ the inequality,

‖xλ − x0‖ ≤ 1

ρλ
max

k=1,...,N
‖y∗k − akλ(x0, ·)‖ ,

is valid.

Let us observe that if one wants to approximate the solution x0 in the sense of the collage
distance, that is, minimize {‖xλ − x0‖ : λ ∈ Λ}, then according to Corollary 1, it suffices to
minimize {

1

ρλ
max

k=1,...,N
‖y∗k − akλ(x0, ·)‖ : λ ∈ Λ

}
.

If ρ := infλ∈Λ ρλ > 0, then the approximation problem is reduced to{
max

k=1,...,N
‖y∗k − akλ(x0, ·)‖ : λ ∈ Λ

}
.

Some more details about the implementation of the numerical scheme and more numerical
examples that demonstrate the validity of this approach can be found in [7, 8, 31].

6. Inverse Problems for DEs on perforated domains using the Collage Theorem
In this section we review one of the latest applications of the Collage Theorem to the solution of
inverse problems, namely, on perforated or porous media. The results recalled in this section can
be found with more details and applications in [32, 33]. In addition, [34] provides a numerical
exploration for systems of DEs on perforated domains. When a differential equation is formulated
over a porous medium, the term “porous” implies that the state equation is written only in the
solid portion (or matrix) while boundary conditions should be imposed on the entire boundary
of the matrix, including the boundary of the pore space (or holes).

Given a compact and convex set Ω, we denote by ΩB the collection of circular holes
∪m
j=1B(xj , εj) where xj ∈ Ω, εj are strictly positive numbers, and the holes B(xj , εj) are assumed
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to be nonoverlapping and to lie strictly in the interior of Ω. Let ε = maxj εj . and denote by Ωε

the closure of the set Ω\ΩB. In this section, we set H = H1
0 (Ω) and Hε = H1

0 (Ωε).
In [32, 33] we have considered the linear system

Find u ∈ H that satisfies aλ(u, v) = ϕ(v) ∀v ∈ H. (P )

where λ ∈ Λ denotes some parameters of the functionals and the corresponding system on the
domain with holes,

Find u ∈ Hε that satisfies aλ(u, v) = ϕ(v) ∀v ∈ Hε. (Pε)

Our goal is to address the following inverse problem: Given observational data for a solution
to (Pε), estimate λ. Our approach is to use the data in (P ) to estimate λ by establishing
connections between the parameters λ in (P ) and (Pε) for ε small.

Since any function in H1
0 (Ωε) can be extended to be zero-valued over the holes, H1

0 (Ωε) can
be embedded in H1

0 (Ω). Given u, letting Pεu be the projection of u ∈ H1
0 (Ωε) onto H

1
0 (Ω), one

can prove
‖u− Pεu‖H1

0 (Ω) → 0 whenever ε→ 0.

When Neumann boundary conditions are considered, it is still possible to extend a function in
H1

0 (Ωε) to a function of H1
0 (Ω).

Now supposing that there exist positive constants m, M , and μ such that

aλ,ε(u, u) ≥ m‖u‖2 ∀u ∈ Hε (coercivity)

aλ,ε(u, v) ≤ M‖u‖‖v‖ ∀u, v ∈ Hε

φλ,ε(u) ≤ μ‖u‖ ∀u ∈ Hε

means that problem (P ) has a unique solution uλ for each λ ∈ Λ and problem (Pε) has a unique
solution uλε and for each positive ε and each λ ∈ Λ, by the Lax-Milgram type theorem in [31].
Now, we can establish relationships between (P ) and (Pε). For each u ∈ (H1

0 (Ωε)), define

Fε(u, λ) = sup
v∈Hε,‖v‖=1

‖aελ(u, v)− φελ(v)‖ . (26)

The following four results were proved in [32].

Proposition 1 The function F (u, λ) is Lipschitz with Lipschitz constant equal to M .

Proposition 2 The following inequality holds:

‖Pεu− uλε‖Hε ≤
F (u, λ)

m
+
M

m
‖Pεu− u‖H .

Proposition 3 The exists a constant C(ε, u), which depends only on ε and u, such that the
following inequality holds:

F (Pεu, λ) ≤ Fε(Pεu, λ) + C(ε, u) sup
‖v‖=1

‖Pεv − v‖Hε .

The nature of C in Proposition 3 is changed slightly compared to [32], but the same proof works.
Note that the constant C(ε, u) =M‖Pεu‖Hε+μ converges to C(u) =M‖u‖+μ whenever ε→ 0.
We have also corrected an imprecision in the statement of Proposition 4 from [32], with the same
proof working.
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Proposition 4 Let us suppose that, for each fixed u ∈ H1
0 (Ωε), F is lower continuous w.r.t.

λ ∈ Λ. If λε = argminλ∈Λ Fε(Pεu, λ), and λε → λ∗ ∈ Λ then λ∗ = argminλ∈Λ F (u, λ).

Example 2: We consider the model problem (17), replacing the domain Ω by a domain Ωε

that has a number of holes. Using the same κtrue(x, y) = 2 + 8x2y − 8x2y2 and f(x, y) as in
Example 1, we solve the problem numerically on Ωε, using homogeneous Dirichlet boundary
conditions on the interior holes. The isotherms of the solution are depicted in Figure 1(c). As
in the earlier example, we sample this solution at 49 uniformly-distributed points inside Ωε; if a
point lies inside a hole, we obtain no data for that point. Using this data points, we then solve
the inverse problem on the region with no holes, Ω, appealing to Proposition 4. When we seek
a κ of the form κ(x, y) = λ0 + λ1x

2y + λ2x
2y2, we obtain (λ0, λ1, λ2) = (2.704, 7.301,−7.934),

with L2 error 0.479. If we shrink the holes, use Neumann boundary conditions on them, and/or
use more data points, the estimation improves.
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