
Some polynomial special cases for the Minimum Gap Graph
Partitioning Problem

Maurizio Bruglieri1, Roberto Cordone2, Isabella Lari3, Federica Ricca3, Andrea Scozzari4
1 Politecnico di Milano

maurizio.bruglieri@polimi.it
2 Università degli Studi di Milano

roberto.cordone@unimi.it
3 Sapienza Università di Roma

{isabella.lari,federica.ricca}@uniroma1.it
4 Università degli Studi Niccolò Cusano, Roma

andrea.scozzari@unicusano.it

Abstract

We study various polynomial special cases for the problem of partitioning a vertex-
weighted undirected graph into p connected subgraphs with minimum gap between the
largest and the smallest vertex weight.

Keywords : Graph partitioning, min-sum gap optimization, min-max gap optimization.

1 Introduction

The Minimum Gap Graph Partitioning Problem (MGGPP) is a graph partitioning problem [1]
introduced in [2]. Let G = (V,E) be an undirected connected graph, wv an integer weight
coefficient defined on each vertex v ∈ V , and p ≤ |V | a positive integer. Given a vertex
subset U ⊆ V , we denote by mU = minu∈U wu and MU = maxu∈U wu the minimum and
maximum weight in U , respectively, and define the gap of U as γU = MU − mU (if U is a
singleton, γU = 0). The MGGPP consists in partitioning G into p vertex-disjoint connected
subgraphs Gr = (Vr, Er), r = 1, . . . , p. We consider also the nondegenerate problem (MG-
GPPnd), in which all subgraphs must have at least two vertices. The min-sum version of
both problems minimizes the sum of all gaps fMS =

∑p
r=1 γVr

, while the min-max version
minimizes fMM = maxr=1,...,p γVr

. The MGGPP is related to uniform graph partitioning [4]
which has applications, for example, in agriculture (divide a land into parcels with small height
difference [7]) and in social network analysis.

The computational complexity and the approximability of the MGGPP are studied in [2].
A Tabu Search metaheuristic and a Mixed Integer Linear Programming (MILP) formulation
for the min-sum version are proposed in [3]. We note that the min-max MGGPP can be seen
as a special case of the following more general graph partitioning problem. Given a graph G
and a n × n matrix of dissimilarities between any pair of vertices, find a partition of G into
p connected components that minimizes the maximum dissimilarity of a pair of vertices in
the same component. This problem is NP-complete even on star graphs [5]. However, the
min-max MGGPP might be easier because the dissimilarity for any given pair of vertices u
and v is computed as |wu − wv|.

In this paper, we investigate some polynomial cases of the MGGPP concerning special graph
topologies, such as paths, spiders, stars, caterpillars and complete graphs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187987126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Polynomial cases
First of all, we introduce two useful properties of the MGGPP (but not of the MGGPPnd):

P1. the optimal value does not increase as the number p of components increases;

P2. given a partition π in p components with maximum gap equal to γ, another partition π′
with p′ > p components and a gap less than or equal to γ always exists.

These properties hold for both objectives, because a singleton with zero gap can always be
disconnected from a subgraph, increasing the number of components, but not the objective
value. On the basis of the above properties we are able to solve the min-max MGGPP by a
binary search over all the O(n2) possible values γ of the optimal maximum gap, that correspond
to the differences between pair of vertices’ weights. Therefore, we can follow an approach based
on the solution of a polynomial number of instances of the following auxiliary problem.

Definition 1 (Feasibility problem) Find, if any, a connected partition of G having the mini-
mum number q of components and such that each component has gap at most γ.

If q is greater than p, the value of γ must be increased; otherwise it must be decreased. At
the end of the binary search, the partition having the maximum q ≤ p is considered and in
case q < p, a partition in exactly p components with the same gap value is found by further
dividing some components of the partition until p components are obtained. The binary search
requires a pre-sorting of the O(n2) possible values of γ implying an overall time complexity of
O(n2 log n). This complexity can be reduced as follows. First sort the weights of the vertices,
in O(n log n); then consider implicitly the ordered matrix of the differences between weights
and apply the O(n) time procedure for finding the kth smallest value in a n×n matrix of reals
with sorted rows and columns [6]. With this approach the whole solution procedure requires
O(n log n+TF (G) log n) time, where TF (G) is the time for solving the feasibility problem. We
apply this approach to paths and spiders.

2.1 Paths

If G is a path, we assume its vertices to be numbered progressively considering an arbitrary
direction along the path: P = {v1, . . . , vn}. Every feasible solution is a partition into p vertex-
disjoint subpaths. Hence, the problem requires to identify and remove p− 1 edges from G.

Theorem 1 When G is a path, the min-max MGGPP can be solved in O (n log n) time.

Proof : For a given value γ, we find a partition of P into the minimum number of components
such that the gap is less than or equal to γ by scanning P and removing some edges. Starting
from one end vertex of P , say v1, edge (vi−1, vi) is removed as soon as a vertex vi is found such
that |wvi − wvj | > γ for at least one vertex vj in the current subpath. This procedure is then
repeated starting from vertex vi. Exploiting the general binary search approach the overall
time complexity is O (n log n). �

For the other versions, the following theorem provides a polynomial approach.

Theorem 2 When G is a path, all versions of the MGGPP can be solved in O
(
n2p

)
time.

Proof : (Sketch) We build an auxiliary directed graph with a source node u0, p nodes
uj,1, . . . , uj,p for each vertex vj of V , an arc from u0 to each node uj,1 and an arc (ui,r−1, uj,r)
for each pair of vertices vi and vj with i < j and for r = 2, . . . , p. The arcs correspond to
candidate subpaths and their costs to the corresponding gaps. Therefore, the optimum of the
MGGPP on G is equal to the minimum cost of a path from u0 to un,p on the auxiliary graph.
Since the graph is acyclic, this problem can be solved in O

(
n2p

)
. �

2.2 Spiders
A spider is a tree with at most one vertex of degree at least 3.

Theorem 3 When G is a spider, the min-max MGGPP can be solved in O(n log2 n) time.

Proof : We apply the procedure described in Theorem 1 to each of the d paths connecting the
leaves of G to the root (the only vertex of degree d ≥ 3), visiting G bottom-up. Let P1, . . . , Pd

be the last formed components in the partitions of such paths. We try to merge as many
subpaths as possible so that their gap is ≤ γ by first ordering them w.r.t. their maximum
and minimum vertex weights in O (n log n), and then checking the feasibility of the component
under construction with a data structure that scans all the ordered minima and maxima in
linear time. Considering the time required by the binary search, the overall time complexity
is O(n log2 n). �

2.3 Stars
A star is a connected graph with at most one vertex of degree at least 2.

Theorem 4 When G is a star, the MGGPP admits only degenerate solutions, and can be
solved in O (n log n) time.

Proof : Any solution is a partition of the star where p− 1 components are leaves (singletons)
and one component contains all the other vertices. An O(n log n) time algorithm can be
obtained as follows: i) sort the leaves by nonincreasing weights; ii) visit the leaves according
to such an ordering to detect a non-singleton component with minimum gap. �

2.4 Caterpillars
A caterpillar is a tree formed by a central path with n′ vertices and n′′ leaves attached to it.

Theorem 5 When G is a caterpillar, the MGGPP can be solved in O
(
n3p2 log n

)
time; the

MGGPPnd in O
(
n2p

)
time.

Proof : The MGGPPnd amounts to partitioning the central path {v1, . . . , vn′}. We build an
auxiliary graph similar to that used in Theorem 2. An arc represents a feasible subgraph, i.e., a
portion of the central path and all the attached leaves. Its cost is the gap of the subgraph. The
optimal min-sum or min-max path from u0 to un′p identifies the optimal solution. Building
the auxiliary graph, the cost function and detecting the optimal path take O

(
n2p

)
.

In the general case, the leaves can be isolated from the central path, but the auxiliary graph
can be modified accordingly, i.e. introducing also arcs between non consecutive layers. Each
arc represents a central subgraph including a portion of the central path and possibly some
leaves, plus some isolated leaves. The cost of an arc is the gap of the central subgraph. For each
arc, we determine the central subgraph with minimum gap adapting the O (n log n) algorithm
used to solve the MGGPP on stars. The optimal min-sum or min-max path from u0 to un′p

identifies the optimal solution. Detecting the optimal path takes O
(
n2p2), but computing the

arc costs requires an overall O
(
n3p2 log n

)
time. �

2.5 Complete graphs
In this case, the connectivity constraint is trivially satisfied. We sort the vertices by nonde-
creasing weights and rename them so that i < j ⇒ wvi ≤ wvj . Then, we can restrict the search
for the optimum to the solutions in which for every pair of subgraphs the vertices of one strictly
precede the vertices of the other. In fact, every other feasible solution can be transformed into
a non-worsening one of this family: for each pair of vertex subsets V ′ and V ′′ violating this
condition, merge the two subsets and split the result in two, assigning the first |V ′| elements to
the first subset and the last |V ′′| elements to the second. Given the path that visits all vertices
in nondecreasing weight order, the optimal solution can be detected as in Theorems 1 and 2.
However, the vertex ordering allows more efficient algorithms for some cases.

Theorem 6 When G is a complete graph, the min-sum MGGPP can be solved in O (n log n)
time. The min-sumMGGPPnd can be solved in O

(
min

(
n
√
n log γV , n

2 log n, n2p
))

time, where
γV is the gap of the whole graph.

Proof : Thanks to the ordering of the vertex weights, partitioning the auxiliary path into p
subpaths of minimum total gap is equivalent to selecting p− 1 edges such that the sum of the
weight differences between their extreme vertices is maximum. This can be done by saving in
a max-heap the weight differences between adjacent vertices and extracting from it the p − 1
largest differences. The dominating time is given by the weight ordering.

In the nondegenerate case, it is forbidden to select two consecutive edges. The problem
reduces to the search for a maximum weight matching of cardinality p − 1 on the path. The
Enhanced Capacity Scaling algorithm solves the problem in O (n

√
n log γV) time, while a re-

duction to the minimum cost flow problem solves it in O
(
n2 log n

)
time. Finally, the algorithm

of Theorem 2 solves it in O
(
n2p

)
time. �

3 Conclusions and perspectives
Table 1 summarizes the special cases discussed in this paper: “NA” marks the non applicable
cases (stars admit only degenerate solutions), “?” marks the open cases.

min-max min-sum
Topology MGGPP MGGPPnd MGGPP MGGPPnd
Stars O(n log n) NA O(n log n) NA
Paths O(n log n) O(n2p) O(n2p) O(n2p)
Spiders O(n log2 n) ? ? ?
Caterpillars O(n3p2 log n) O(n2p) O(n3p2 log n) O(n2p)
Complete O(n log n) O(n2p) O(n log n) O(min(n

√
n log γV , n

2 log n, n2p))

TAB. 1: Summary of the computational complexity results

References
[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, eds. Graph Partitioning and

Graph Clustering, v. 588 of Contemporary Mathematics. AMS, 2013.

[2] M. Bruglieri, R. Cordone Partitioning a graph into minimum gap components. Electronic
Notes in Discrete Mathematics, vol. 55: 33–36, 2016.

[3] M. Bruglieri, R. Cordone, V. Caurio A metaheuristic for the minimum gap Graph Parti-
tioning Problem. Proceedings of CTW2017, pp. 23–26, Cologne, Germany, June 6-8 2017.

[4] I. Lari, J. Puerto, F. Ricca, A. Scozzari Partitioning a graph into connected components
with fixed centers and optimizing cost-based objective functions or equipartition criteria.
Networks, vol. 67: 69–81, 2016.

[5] M. Maravalle, B. Simeone, R. Naldini Clustering on trees. Computational Statistics &
Data Analysis, vol. 24: 217–234, 1997.

[6] A. Mirzaian, E. Arjomandi Selection in X+Y and matrices with sorted rows and columns.
Information Processing Letters, vol. 20: 13–17, 1985.

[7] Li Xiao, Li Hongpeng, Niu Dongling, Wang Yan, and Liu Gang. Optimization of GNSS-
controlled land leveling system and related experiments. Transactions of the Chinese So-
ciety of Agricultural Engineering, 31(3):48–55, 2015.

