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1. Introduction 

Fossil tracks and trackways provide evidence of locomotory behavior in extinct organisms and their analysis adds significantly to 

the study of biomechanical performance in fossil limbed vertebrates (tetrapods). Tracks are complex structures that result from the 

physical interaction between the trackmaker and the substrate (e.g. Manning, 2004). During ground contact (i.e. footfall) and during 

recovery, any movement of the foot that involves contact with the sediment is recorded as a footprint plus a whole range of 

extramorphologies. Type and amount of anatomical details preserved by this complex of tracks and extramorphologies result from 

locomotor dynamics (e.g. digit scratches, tail drags). They thus can only be investigated after filtering out the effects of the substrate 

physical properties (e.g. moisture content) and the uncertainties related to the behavior and identity of the trackmaker (e.g. substrate-

related or gait-controlled differences can be misinterpreted as producer-related). Herein are described a series of trackways from the 

Pizzo del Diavolo outcrop (Lower Permian, Bergamo, north Italy) that includes many morphological variants of tracks related to 

preservational and behavioral variation, exceptionally recorded on single trackways (i.e. compound trace sensu Pickerill and 

Narbonne, 1995) produced by a single track-maker. 

Comparison with living tetrapod anatomy and mechanics constitute the most parsimonious approach to interpret past behaviors, 

in particular when no detailed studies on the appendicular anatomy and mechanics in the fossil group are available. Locomotor 

studies on living amphibians (Ashley-Ross and Bechtel, 2004; Ijspeert et al., 2007; Ashley-Ross et al., 2009) and analysis of their 

trackways left on different types of substrate (McKee, 1947; Peabody, 1959; Brand, 1979; Fichter, 1982, 1983; Brand, 1996) 

provide useful tools to understand the relationships between the kinematics of locomotion and preservation styles of fossil 

trackways. By integrating these approaches, a new model for locomotor kinematics in Early Permian amphibians is derived, 

providing a reference for interpreting transitional land-to-water trackways. 

 Exceptionally preserved Early Permian tetrapod trackways from the Orobic Basin (Central–Western Southern Alps) offer 

a unique opportunity to investigate in detail locomotion in fossil vertebrates that lived on continental European 

landmasses. Herein are reported the results of a study on several tetrapod trackways that display a large variety of 

behavioral, gait and substrate related extramorphologies. They clearly document the transition from terrestrial–underwater 

walking to swimming and are assigned to the compound ichnotaxon Batrachichnus C Lunichnium. The use of the “C” 

symbol is here introduced for the first time as nomenclatural indication of a Compound trace. Producers were probably 

small-sized temnospondyl or lepospondyl (microsaurs) amphibians. Comparisons with living urodelan anatomy and 

mechanics provide evidence for conservatism of locomotor mechanics in evolutionary history among amphibians. The 

derived model for locomotor kinematics in Early Permian amphibians provides a reference for interpreting transitional 

land-to-water trackways. The shift from walking to swimming behavior in early tetrapods, as in extant urodelan 

amphibians, is described as a complex balance between different dynamics. 
. 



   

2. Geology of the study area 

The Lower Permian succession of the Southern Alps is represented by an array of continental deposits resting on the Variscan 

basement: volcanic, alluvial and palustrine–lacustrine deposits occur in distinct, tectonically-driven basins (Orobic Basin, Collio 

Basin, Tione Basin, Tregiovo Basin, the Forni-Avoltri Basin and the Pramollo Basin; Cassinis and Perotti, 1994; Perotti, 1999; 

Cassinis et al., 1988; Cassinis, 2007). The stratigraphic architecture of the deposits preserved in these basins is diverse, reflecting 

different depositional settings and tectonic evolution in each of the Early Permian basins of the Southern Alps. Due to the scarce 

paleontologic content, deposition in these basins is generally constrained by radiometric data, which indicate a timetransgressive 

deposition from about 283 to about 270 Ma (Schaltegger and Brack, 1999; Marocchi et al., 2008). The Lower Permian succession 

of the Southern Alps is very poor in skeletal remains of fossil vertebrates while tetrapod tracks are widespread (Geinitz, 1869; 

Curioni, 1870; Dozy, 1935; Haubold, 1971; Ceoloni et al., 1987; Conti et al., 1991; Haubold, 1996; Conti et al., 1997; Santi, 1999; 

Cassinis et al., 2000; Nicosia et al., 2000; Gianotti et al., 2001; Nicosia et al., 2001; Santi and Krieger, 2001; Gianotti et al., 2002; 

Arduini et al., 2003; Santi, 2003, 2005; Avanzini et al., 2007, 2008; Bernardi and Avanzini, 2011). 

The study area belongs to the Orobic Basin (Lombardy, N Italy), one of the largest Permian basins of the Southern Alps (Cadel 

et al., 1996). In this basin the lithostratigraphic subdivision historically followed that of the Collio Basin, but major differences in 

the facies distribution and vertical evolution led to the revision of the lithostratigraphic nomenclature (Boriani and Bini, 2012; 

Jadoul et al., 2012). As a consequence the term Collio Formation was replaced in the Orobic sector by a new lithostratigraphic 

nomenclature better describing the sedimentary succession. The sedimentary succession between the Variscan Basement and the 

unconformably overlaying Verrucano Lombardo Formation is now referred to as the Laghi Gemelli Group (Fig. 1), which is 

subdivided into two overlying formations: the Cabianca Volcanite (below) mainly constituted by pyroclastic flows (Lower Collio 

Formation Auct.; Cadel et al., 1996; Berra and Felletti, 2011), and the Pizzo del Diavolo Formation (above), consisting mostly of 

continental clastics with minor intercalations of ignimbritic flows and tuffs (Upper Collio Formation Auct.; Cadel et al., 1996; 

Berra and Felletti, 2011). The evolution of this succession was controlled by volcanic and tectonic activity (De Sitter and De Sitter-

Koomans, 1949; Casati and Gnaccolini, 1967; Cadel et al., 1996; Cassinis et al., 2000; Berra and Felletti, 2011), both recorded by 

the facies distribution. 

The Pizzo del Diavolo Formation (Berra and Felletti, 2011), more than 1000 m thick, consists of a complex association of 

continental deposits, ranging from coarse conglomerates at the fault-controlled borders of the basin to thick sandstone bodies and, 

more distally, dark pelites with local intercalations of microbial carbonates. Volcanic activity is reduced and documented by tuff 

layers (up to a few tens of meters thick) occurring at different stratigraphic levels. The Pizzo del Diavolo Formation is covered by 

the Late Permian Verrucano Lombardo (Lopingian according to Boriani and Bini, 2012), with a low-angle angular unconformity. 

According to facies distribution and associations, the Pizzo del Diavolo Formation is subdivided into three main lithozones 

(Berra and Felletti, 2011) which can be easily separated in the southern part of the basin: the lowermost is composed of 

conglomerates passing laterally to sandstones and distally to silt and shales (Lower Lithozone), the middle part is pelitic, with 

carbonates (Pelitic Lithozone) while the uppermost one is represented by alternating sandstone, pelites and volcanic flows (Upper 

Lithozone) (Berra and Felletti, 2011; see also Casati and Gnaccolini, 1967; Cadel et al., 1996; Sciunnach, 2001). The finegrained 

facies of these three lithozones are commonly characterized by the preservation of abundant reptiles and amphibian tracks, that 

have been mainly reported from the middle–upper portion of the unit (Conti et al., 1999; Nicosia et al., 2000; Santi and Krieger, 

2001; Ronchi et al., 2005; Berra and Felletti, 2011; Boriani and Bini, 2012; Jadoul et al., 2012). The described trackways come 

from a loose block of heterolithic deposits consisting mostly of fine-grained sandstones and siltstone–shale, deriving from the 

northern slope of the valley, where the presence of trackways was documented by Ronchi et al. (2005). The facies are typically 

characterized by parallel to ripple laminations, indicating sedimentation by low-energy currents on flat depositional surfaces. The 

presence of abundant mud cracks and vertebrate trackways indicates the episodic flooding of the depositional surface. 

Sedimentological evidence suggests that deposition occurred close to the depocentral area of the basin, where episodic floods 

delivered fine-grained sediments and provided waters for the development of ephemeral shallow lakes. This facies is typical of the 

upper part of the “Lower Lithozone” of the Pizzo del Diavolo Formation, so that the stratigraphic position of the blocks containing 

the vertebrate trackways can be confidently assessed. 

3. Material and methods 

The herein described material is constituted by nine trackways (PD-1 to PD-9; Fig. 2) with up to six consecutive couples of manual 

and pedal imprints, exclusively preserved as concave epireliefs (sensu Leonardi, 1987). All the trackways were outlined on transparent 

acetate following standard operating procedures (Leonardi, 1987). Kinematic study of the described trackways is based on analysis 



   

of the following published videos: Taricha torosa (Ashley-Ross and Bechtel, 2004; Ashley-Ross et al., 2009; available at 

http://www.wfu.edu/~rossma/ Ashley-Ross_Lab/Newt_Movies.html), Pleurodeles waltlii (Ijspeert et al., 2007 supplemental material; 

available at http://birg2.epfl. ch/movies/full/mov/salam_robot/1138353s1.mov). 

4. Ichnotaxonomic issues 

The here-described tetrapod tracks are characterized by different morphologies that in most cases intergrade along the same 

trackway. These types of tracks, resulting from different behaviors of a single producer are known in the literature as compound 

traces (Sarjeant, 1979; Pickerill and Narbonne, 1995; Bertling et al., 2006; Minter et al., 2007; Buatois and Mángano, 2011). The 

producer making compound traces adopts different, subsequent locomotor styles resulting in distinct morphologies usually found 

separately (Buatois and Mángano, 2011). The typical example of a compound trace is the transition between invertebrate locomotion 

and resting traces (e.g. Cruziana and Rusophycus; Crimes, 1970; Mángano et al., 1996). Compound trace fossils have been classified 

at both the ichnogeneric and ichnospecific ranks (Pickerill and Narbonne, 1995). 

In invertebrate ichnology, compound specimens are widely reported in the ichnological literature (e.g. Pickerill, 1994; Pickerill 

and Narbonne, 1995; Rindsberg and Martin, 2003) but the same cannot be said for vertebrate ichnology. Nevertheless, in both cases 

the naming of compound tracks is problematic and controversial. Most authors agree to avoid synonymization of ichnotaxon 

previously found separately to avoid losing information (Sarjeant, 1979; Pickerill and Narbonne, 1995; Bertling et al., 2006; Minter 

et al., 2007). Sarjeant (1979) stated that a name applied to a particular structure should not be applied to another structure of a 

dissimilar type. 

Pickerill and Narbonne (1995, p. 67) reinforced this concept and suggested the use of a simple classification made by both 

ichnotaxon names in which the first ichnotaxon is linked to the second by “with”, or “intergrading with”. In this hybrid nomenclature, 

the predominant component (N50%) is represented by the primary descriptor, while the secondary subsidiary element is represented 

by the secondary name; furthermore they considered the approach valid both at the ichnogeneric and the ichnospecies rank. Bertling 

et al. (2006) affirmed that intergradation of traces belonging to different ichnogenera representing distinct 

http://www.wfu.edu/~rossma/Ashley-Ross_Lab/Newt_Movies.html
http://www.wfu.edu/~rossma/Ashley-Ross_Lab/Newt_Movies.html
http://www.wfu.edu/~rossma/Ashley-Ross_Lab/Newt_Movies.html
http://birg2.epfl.ch/movies/full/mov/salam_robot/1138353s1.mov
http://birg2.epfl.ch/movies/full/mov/salam_robot/1138353s1.mov
http://birg2.epfl.ch/movies/full/mov/salam_robot/1138353s1.mov
http://birg2.epfl.ch/movies/full/mov/salam_robot/1138353s1.mov
http://birg2.epfl.ch/movies/full/mov/salam_robot/1138353s1.mov


   

slope. 

producer behavior would not imply synonymization; nevertheless, they suggest the adoption of a new name only when the whole 

compound structure represents a recurrent pattern of behavior. Minter et al. (2007) suggested that specimens demonstrating 

intergrading between two ichnotaxa can be used to justify synonymy only when the morphological variation between them is minor 

(i.e. resulting from minor behavioral or preservational variation); intergradations between different morphologies, related to major 

behavioral variation, such as feeding traces and resting traces or walking and swimming tracks, cannot be synonymized, because a 

single name or additional names would lead to the loss of information. Minter et al. (2007) thus suggested to maintain the names of 

trace fossils that commonly occur as isolated specimens uniting them by using the multiplication “×” symbol (e.g. Cruziana × 

Rusophycus). 

 

Fig. 1. View of the Early Permian succession at the Pizzo del Diavolo. The inferred stratigraphic position of the studied block is indicated by the parenthesis on the right. VUC; Cabianca Volcanite, 

lPDV: lower lithozone of the Pizzo del Diavolo Formation; uPDV: upper lithozone of the Pizzo del Diavolo Formation. Faults are continuous lines, stratigraphic boundaries in dotted lines. The arrow 

points to the position of the studied block. Below: geological map of the upper Brembo valley, with the position of the studied block (star), fallen from the northern 



   

We agree with previous authors that synonymization should be avoided and with Minter et al.'s (2007) (and, previously with 

Pickerill and Narbonne, 1995) suggestion of indicating both names. However, we consider the use of the multiplication symbol 

contrary to the rules of the international codes on nomenclature (International Commission on Zoological Nomenclature, 1999; 

Brickell et al., 2009; McNeill et al., 2012). The “×” symbol, as acknowledged by Minter et al. (2007), is already used to indicate a 

hybrid (e.g. Agrostis × Polypogon) as formalized in the International Code of Nomenclature for algae, fungi, and plants (McNeill et 

al., 2012). We acknowledge that Minter et al. (2007) used this symbol to avoid proposing a new one, however this contrasts with the 

aim of the nomenclature codes, which are meant to formalize univocal and unequivocal names, terms and symbols in biology. Experts 

of other fields aside from ichnology might erroneously interpret the “×” symbol as used to indicate hybrids vs. compound traces, and 

botanists could even be misled in their research. For the description of compound traces is therefore proposed the use of both (two, 

or more) names of the trace fossils that may be found isolated, but indicating their relation by connecting them with the symbol “C”, 

standing for “Compound trace” (e.g. Batrachichnus C Lunichnium). To our best knowledge, this formula has never been used in 

previous official nomenclatural acts and is therefore available, unique and unequivocal. Other more intuitive symbols, such as the “+” 

are in use in graft-chimera names (e.g. Crataegus + Mespilus) for cultivated plants (Brickell et al., 2009). 

5. Systematic paleontology 

Ichnogenera Batrachichnus Woodworth, 1900 C Lunichnium Walter, 1983 

Type ichnospecies. Batrachichnus salamandroides (Geinitz, 1861); Lunichnium rotterodium Walter, 1983. Figs. 2, 3, 4, 5, 6, 7, 

8. 

 

Fig. 2. Overview of the studied track-bearing surface, outlining the nine tetrapod trackways. 



   

5.1. Referred material 

The described material occurs on a surface of an erratic boulder found at the foot of the south-western side of the Pizzo del 

Diavolo Mt. (Orobic Alps, Lombardy, N Italy). The track-bearing surface was photographically reproduced and traced on acetate 

layer. The original drawing is housed at the MUSE — Museo delle Scienze, Trento (I). Main parameters of tracks and trackways 

are shown in Table 1. 

 

5.2. Description 

Tracks of quadrupedal tetrapods with tetradactyl manus and pentadactyl pes with short and blunt digits. Pes is slightly larger than 

manus (Fig. 4A). 

Manual imprints are plantigrade and exhibit four slender digit traces with an increase in digit length from I to III; digit IV is about 

as long as or slightly shorter than II. Digit group I–III is separated from digit IV that diverges outward (Fig. 4A). Digits I–III could 

be distally bent inward, while digit IV is outward oriented. The total divergence of digits is 85°. Manus can show elongated digit 

marks or curved digit scratches. 

Pedal imprints are clearly plantigrade and when complete show five short digit traces (Fig. 4A). The proximal margin, when 

preserved, is broad. In some tracks only four digits and a broad sole pad are preserved. Digits II–IV are grouped, with digit IV 

probably the longest or as long as digit III. Digit V is placed somewhat posteriorly and laterally. The total divergence when digits are 

splayed is 45°. 

Manual and pedal prints are equidistant from the midline of the trackway. Manual prints are usually anterior to pedal prints. 

Manus–pes distance is constant through the whole length of the trackway. Manus and pes prints point forward. In some cases both 

manual and pedal imprints have their long axis and the elongated digit traces pointed inwardly on the left side and outwardly on the 

right side. 

 

The studied trackways display several extramorphological variants. Both fore and hind limb tracks can show few anatomical 

details, essentially represented by elongated digit marks, somewhat outwardly 

 

Fig. 3. Batrachichnus C Lunichnium trackways, Lower Permian, Orobic Alps (Northern Italy). A. The studied slab, with focus on trackways PD-2 and PD-3. B. Close-up view of trackway PD-5, showing 

irregular and curved digit scratches on either side of the trackway. A clear tail drag occurs along the midline. 



   

 

 
Fig. 4. Sketches of the trackways PD-3 (A), PD-9 (B) and PD-4 (C), preserving anatomical details of both fore and hind limbs. 
Fig. 5. Sketches of the trackways PD-5 (A) and PD-8 (B). Footprints and tail drags are substituted by curved digit marks and parallel scratches drawing discontinuous arcs. 



   

 

Fig. 6. Sketches of the trackway PD-2, subdivided into three portions (A, B, C), showing a sequence indicative of an increasing water-content of the trampled surface. 

oriented, with the sole pad rarely or not preserved (Figs. 4B, 5, 6). The manual imprint, when visible, is represented by paired and 

outwardly curved digit traces and its morphology strongly varies, displaying paired and curved outward digit traces, grossly pear-

shaped, wider at its base and tapering or bifurcating distally into two-toed scratch marks curved outwards. 

The pedal imprints of most of the trackways consist entirely of digit impression, revealing two, three or four parallel and 

elongated digit marks, curved outward (Figs. 4B, 5A, C). Digit lengths decrease from internal to external digits. The heel may be 

narrow or elongated and anteriorly bi-, tri- or quadrifurcate into sub-parallel and outwardly curved elongated digit scratches (Figs. 

5A, 6A, 7B). 

Manus and pes couples sometimes cannot be easily distinguished. Tracks display different morphologies varying from sub-

elliptical to pear-shaped; they are elongated, wider proximally with blunt or elongated digit traces (Figs. 4B, 5B, 7A, B, C). 

Trackways may show a progressively wider gauge, with tracks only represented by discrete curvilinear imprints, with two–three 

elongated and parallel digit grooves that draw discontinuous arcs with alternate symmetry on the two opposite sides (Fig. 5B). 

Continuous to discontinuous body or tail drag may occur along the midline (width = 0.40–0.70 cm). It is represented by a narrow 

straight to slightly sinuous medial impression, essentially made of single or paired scratch marks (Figs. 4B, 5A, B, 6A–C, 7A–C). 

5.3. Remarks 

The best-preserved manual tracks exhibit four digital impressions (PD-3 Fig. 4A). Batrachichnus Woodworth, 1900 and 

Limnopus Marsh, 1894 (Haubold, 1996) are Early Permian ichnogenera with a four-toed manus, with evident separation between 

digit group I–III and digit IV (Haubold et al., 1995). Batrachichnus is characterized by pace angulation of 80°–90° that could 

exceed 100° and 110° for the 



   

 

Fig. 7. Sketches of the trackways PD-6 (A, B) and PD-7 (C, D). Manual and pedal imprints are discontinuously preserved, exhibiting sub-elliptical or elongated morphologies, in some cases with clear 

anatomical details (digit traces). The tail drag is nearly continuous and sinuous. 

pes while in Limnopus it ranges from 70° to 96° (Haubold, 1970, 1971; Haubold et al., 1995). In these ichnogenera, pes length usually 

ranges from 20 to 40 mm (Haubold et al., 1995), but in Limnopus can be up to 135 mm (Tucker and Smith, 2004). In Limnopus, the 

pedal imprint is usually positioned close behind the manual imprint and both manual and pedal imprints are generally short and 

rounded distally. 



   

Some authors (e.g. Voigt et al., 2011) have considered the two ichnogenera as end-members of a continuous morphological 

spectrum (named Plexus Batrachichnus - Limnopus), thus questioning the status of the morphs as separate ichnotaxa. Tucker and 

Smith (2004) proposed that Batrachichnus should be reduced to subgeneric rank within Limnopus. This proposal was recently rejected 

by Lucas et al. (2011), who continue to consider Batrachichnus and Limnopus as separate ichnogenera. Batrachichnus salamandroides 

(Geinitz, 1861) is a common ichnospecies in the Lower Permian deposits of the Orobic and Trompia basins (Conti et al., 1997; Santi 

and Krieger, 2001); it was recently noted also in the Tregiovo basin (Avanzini et al., 2008). If compared with the tracks from the 

Lower Permian of the Orobic basin, assigned by Santi and Krieger (2001) to B. salamandroides, only a gross similarity in the trackway 

pattern and parameters can be appreciated, those being badly preserved and incomplete. Some characters recognized in the footprints 

of studied trackways (PD-1, PD-6, PD-7) match those figured and described by Haubold et al. (1995, Fig. 6, NMMNH P-23298) and 

Hunt et al. (1995, Fig. 2E, NMMNH P-23277) from the Hueco Formation (Robledo Mountains, New Mexico). They were ascribed 

to Batrachichnus delicatulus (Lull, 1918) considered by many authors equivalent to B. salamandroides (e.g. Lucas et al., 2005, 2011). 

The tracks from the Robledo Mountains are often coupled with a sinuous tail drag, lack clear anatomical details but display concave 

outwardly curved scratches. 

All the trackways display different morphologies likely related to physical properties of the substrate and to the locomotor behavior 

of the producer. Some trackways from the Pizzo del Diavolo Formation are characterized by discrete to continuous, curved imprints; 

they are wider posteriorly and can bifurcate anteriorly with alternate symmetry. These characters are typically observed in the 

 

Fig. 8. Details and interpretive drawing of trackway PD-2 (A) and PD-7 (B) referred to as Batrachichnus C Lunichnium. 



   

ichnogenus Lunichnium, erected by Walter (1983) on Lower Permian material of south-east Germany. Lunichnium rotterodium 

Walter, 1983 (p. 166, pl. 8, Fig. 7; pl. 9, Fig. 1) consists of paired sets of curved elements, concave outwards that bifurcate and 

alternate on either side of the trackway. Walter (1983) interpreted Lunichnium as an arthropod swimming trackway. Turek (1989), 

on the basis of specimens from the Upper Carboniferous of the western Czech Republic, reinterpreted Lunichnium as a swimming 

trace of a temnospondyl amphibian and distinguished two different morphotypes that may intergrade gradually one into another: i) 

Type A, made of a continuous and sinuous trackway bounded by a pair of sinusoidal grooves, that can bifurcate in alternate segments 

of the trackway; ii) Type B, consisting of discontinuous S-shaped prints that bifurcate and reconverge, forming an acute angle with 

the trackway midline. Turek (1989) also erected two new ichnospecies: Lunichnium gracile (Pls. 74 and 75 and Figs. 6 and 8) and 

Lunichnium anceps (Fig. 7B,C). Lunichnium gracile is characterized by narrow trackways (width 4–5 mm) interrupted by resting 

traces with impressions of limbs or of the whole body. Lunichnium anceps is characterized by a wider trace (width 10–14 mm), and 

also preserve different impressions of feet along the discontinuous trackway (“Type B” sensu Turek, 1989). Keighley and Pickerill 

(1997) questioned the two new ichnospecies of Turek (1989) and proposed to synonymize them with Undichna bina Anderson, 1976, 

a fish-swimming fossil trail. Minter and Braddy (2006), in their revision of the ichnospecies L. rotterodium, rejected this 

interpretation, being both L. gracile and L. anceps clearly different from U. bina for the presence of limb and body impressions along 

the trackway. Nevertheless Minter and Braddy (2006) considered the ichnospecies L. gracile and L. anceps as end members of a 

continuum and suggested to synonymize them with L. rotterodium, that can thus form continuous and sinuous trackways with 

associated manual, pedal 
Table 1 
Main parameters of studied footprints and trackways (in cm and degrees). Ichnological abbreviations: FL: footprint length, FW: footprint width; PL: pace length: SL: stride length; PA: pace angulation; 

TL: trackway length. TW: trackway width. 

 Couples Manus FL Manus FW  Manus PL  Manus SL Manus PA 

PD-1 – 3.30 0.80  –  – 98° 

PD-2 – 1.85 0.92  –  – – 

PD-3 6 1.30 1.10  7.40–8.50  7.60–9.60 80° 

PD-4 8 1.10 0.74  3.33  5.10–5.50 100°–104° 

PD-5 - – –  –  – – 

PD-6 5 1.48–1.60 0.74  7.40–8.50  7.60–9.60 80° 

PD-7 – – –  –  – – 

PD-8 – – –  –  – – 

PD-9 – 0.74 0.55  –  4.00–5.00 70° 

 Pes FL 
(cm) 

Pes FW 
(cm) 

Pes PL 
(cm) 

Pes SL 
(cm) 

 Pes PA 
(°) 

TL TW 

PD-1 3.33–4.07 1.10–1.30 – –  95°–114° 130 4.40–5.50 

PD-2 4.00 0.90 – –  79°–84° 170 3.70–5.20 

PD-3 1.48 1.30 5.50–8.10 7.00–8.10  64°–76° 90 4.80–7.40 

PD-4 1.29 0.48 3.33 4.80–5.10  100° 9.25 3.00 

PD-5 – – – –  – 82,5 4.0–5.0 

PD-6 1.48 1.30 5.50–8.10 7.00–8.00  79°–81° 125 – 

PD-7 2.9 1.10 – –  77°–79° 120 4.00–4.80 

PD-8 – – – –  65°–100° 80 3.33–5.96 

PD-9 1.10 0.50 3.70–4.40 –  60°–86° 30 3.00–3.40 

 



   

or body impressions. The trackway of L. rotterodium can also preserve a slightly sinuous medial impression, as testified by the 

specimens from the Lower Permian of New Mexico (Fig. 5 of Minter and Braddy, 2006). 

Minter and Braddy (2006) proposed also a new combination Lunichnium westerbengensis (Schweigert, 2001) for Undichna 

westbergensis, originally attributed by Schweigert to a “crossopterygian”fish. In their proposal they considered the pattern of paired 

prints with alternate symmetry more similar to Lunichnium than to Undichna, and maintained L. westerbergensis distinct from L. 

rotterodium for its larger width (about 100 mm). 

Trackways PD-5 (Fig. 5A) and PD-9 (Fig. 4B) show some striking similarities, respectively with the specimens assigned to 

Lunichnium westerbergensis Schweigert (2001) and Lunichnium anceps Turek, 1989. Trackway PD-5 comprises sets of discrete, 

discontinuous and parallel tracks, concave outwards and with alternate symmetry; PD-9 is characterized, especially in its last 

portion, by discontinuous and alternate S-shaped grooves. 

The proximal portion of trackway PD-2 (Fig. 6A) closely resembles the trackway assigned to Lunichnium rotterodium from the 

Lower Permian of New Mexico (specimen NMMNH P4000; Fig. 5 of Minter and Braddy, 2006). The pedal imprint shows an 

elongate heel trace and it anteriorly bi-, tri- or quadrifurcate into subparallel and outwardly curved elongated digit traces. The 

smaller manual imprint also curves concavely outwards and can show digit traces. A slightly sinuous medial impression occurs 

along this portion of the trackway. 

Finally the trackway PD-8 (Fig. 5B) show a clear example of how Batrachichnus could intergrade into Lunichnium along the 

same trackway. In the first portion manual and pedal imprints are testified by narrow and sub-elliptical ichnites and a continuous 

slightly sinuous medial impression occur along the trackway. In the second portion tracks display different morphologies varying 

from sub-elliptical to pyriform with blunt or elongated digit traces and a fairly straight medial impression. At the beginning of the 

third portion, pes and manus tracks display clear elongated digit marks, slightly curved outward. The last portion of the trackway 

PD-8 shows a progressively wider gauge. Tracks are represented only by two–three elongated and parallel digit grooves that draw 

discontinuous arcs and have alternate symmetry. 

The described tracks, therefore, show a variety of morphs ranging from Batrachichnus to Lunichnium both in individual tracks 

and along a single trackway. Lunichnium is similar to Batrachichnus even if Batrachicnus shows clear and distinct pes–manus 

couples, while Lunichnium is mainly represented by continuous to discontinuous digit traces. According to Minter and Braddy 

(2006), Lunichnium could be regarded as an extramorphological variant of Batrachichnus, and interpreted as an amphibian 

swimming trace. Here is thus provided support to the existence of a Batrachichnus–Lunichnium continuum intergrading from one 

to another along the same trackway and documenting the transition from walking, to submerged-walking and swimming. 

6. Identification of the trackmaker 

Footprint length (FL) and gleno-acetabular distance (GAD) have been used as proxies for extrapolating the body length of the 

producer. Given an average FL of b2 cm, and a GAD of 5.5 cm, the total length of the producer must have been less than 10 cm. 

Possible producers of the Pizzo del Diavolo trackways are conservatively non-amniote tetrapods, among them, small amphibians 

and reptiliomorphs (embolomeres). During the Early Permian, amphibians were represented by temnospondyls and lepospondyls 

(microsaurs and nectrideans). The number of digits of the manus excludes reptiliomorphs (embolomeres) and nectrideans as possible 

candidates because both have five digits in the manus (Carroll, 1987; Bossy and Milner, 1998). The attribution is thus limited to small 

or juvenile temnospondyls and small salamander- to lizard-like microsaurs, both characterized by four manual digits (for a complete 

discussion see also Haubold, 1970, 1971; Hunt et al., 1995; Haubold, 1996, 2000; Braddy et al., 2003; Voigt et al., 2011). 

Among known Early Permian temnospondyls miniaturization occurred in branchiosaurids and amphibamids (both Dissorophidea), 

primarily known in central and southern Europe from the Germanic basin (Werneburg and Schneider, 2006; Anderson et al., 2008) 

and Sardinia (Werneburg et al., 2007). 

The microsaurs, the largest group of lepospondyls known from Carboniferous and Early Permian localities of Europe and North 

America, were mainly terrestrial in habits (Carroll and Gaskill, 1978). 

7. Analysis of locomotion 

To interpret and determine locomotion dynamics in the studied trackways, we used a survey of locomotor performance across a 

range of urodelan amphibians. Comparison has been made also by slow motion analysis of two published videos (see Section 3. 

Material and methods). Salamanders have been chosen since they are the closest postural model for early tetrapods among extant taxa 

(Schaeffer, 1941; Edwards, 1977, 1989; Ashley-Ross and Bechtel, 2004; Ijspeert et al., 2007; Ashley-Ross et al., 2009). 

When tracks are impressed on a faintly wet substrate, as in trackways PD-3, PD-4, and PD-9, anatomical details of both manus 

and pes are thoroughly preserved (Figs. 4A–C). In this condition the amphibian walked using a stepping gait, in which diagonally 



   

opposed limbs are moved together like present-day salamanders (Ashley-Ross and Bechtel, 2004; Ashley-Ross et al., 2009). Other 

trackways, impressed on wetter substrates, show a variety of extramorphologies, such as digit elongations and sinusoidal digit 

scratches. In trackways PD-1, PD-2, PD-5, PD-6 the elongated toe marks that curve concavely outward probably result from the toes 

dragging when the knee/elbow is flexing and the foot is lifted to go into the swing phase of the stride (Figs. 2, 5A, 7A–C). This type 

of track has been produced during terrestrial walking on a water-saturated substrate (see Brand, 1996 for a comparison). The sinuous 

scratches on the medial portion of trackway PD-2 are thus probably due to dragging of the tail or underside of the body. 

Although trackways PD-1, PD-2, PD-5, PD-6, and PD-7 show sequences indicative of more water-saturated conditions, trackway 

PD-8 shows a unique pattern. This trackway exhibits a transition between distinct, plantigrade tracks (i.e. footfalls) with tail drag 

mark, to elongated and curved toe marks and sigmoidal digit scratches without tail mark. In our interpretation, at the beginning of 

trackway PD-8, the small amphibian is walking on a muddy substrate but, along the trackway, it moves toward shallow water (Fig. 

5B). While entering the water, the body is progressively buoyed up, as testified by the absence of tail mark and clear tracks (i.e. 

footfalls). During this transition, locomotor mechanics, especially for the hind limbs, changes. Analysis of Pleurodeles waltlii moving 

from ramp into water and from water to ramp (Ijspeert et al., 2007, supplemental material) shows that extant salamanders perform a 

behavior similar to that deduced from the trackways (Figs. 8, 9). When walking on land, at the beginning of the step cycle (i.e. the 

kick-off phase sensu Thulborn and Wade, 1989) the hind limbs are directly dragged toward the front. On the contrary, when 

Pleurodeles walks into the water (Fig. 9), during the kick-off phase, the hind-limbs are firstly adducted and drawn toward the rear and 

then toward the front, leading to two arcs: the toes draw firstly a narrow arc with the concave side facing outward and then are lifted 

to go into the swing phase, drawing an arc with the concave side facing toward the midline. In the first phase, the feet rotate counter-

clockwise in the case of the left hind limb and then slip backward and inward. This movement is probably triggered by the initial 

undulation of the body when the animal effectively begins to move into water and perfectly matches the features observed in the 

studied trackways (Figs. 7, 8). During the cycle, the toes of the fore limbs possibly touched the substrate, slipping backward as the 

limbs are drawn toward the rear but these scratches were then probably obliterated by the marks left by the hind limbs. The very last 

portion of the trackway likely record the animal's attempts to continue to walk in the deepening water; due to the buoyant support of 

the water, it was unable to reach the substrate with more than the toes, which slip and are drawn backward through the soft muddy 

surface in a shallow arc pattern as the humerus and femur are retracted. The scratch marks end when the animal finally loses purchase 

completely and begins to swim, possibly with the limbs held back against the body as seen in extant urodelans (Ashley-Ross and 

Bechtel, 2004; Ijspeert et al., 2007; Ashley-Ross et al., 2009). 

The here proposed interpretation of the transition between the stance and recovery phases differs from that of Minter and Braddy 

(2006): in interpreting an amphibian swimming trace assigned to Lunichnium rotterodium (NMMNH P4000), the elongated digit 

marks that curve concavely outward were interpreted as having been produced during the period of suspension as the animal drifted 

forwards during the pause before the recovery phase. This implies that the limbs where held downward and passively scratched the 

surface. Extant salamanders show that active movements characterize the transition 



   

 

Fig. 9. Transition between submerged walking and swimming. Limb kinematics of living urodelan amphibians (A), reconstructed from video analysis, and its comparison with that of Early Permian 

amphibians (B), deduced from the trackway PD-8. The resting hind limb is highlighted with the black color. 

between the two phases and no pause exists (Ashley-Ross and Bechtel, 2004; Ijspeert et al., 2007; Ashley-Ross et al., 2009). 

Turek (1989) described some intergrading specimens between swimming in the water and walking on a lake bottom attributed to 

an amphibian producer. Nevertheless the here described trackway PD-8 is probably the first unequivocal specimen documenting 

the full walking on land to swimming transition. Its features can thus be compared with published trackways that have been 

interpreted as documenting various “stages” of the transition. Braddy et al. (2003), for example, provided a bivariate plot of the 

pace angulation against the trackway width/ stride for 20 different specimens assigned to Batrachichnus delicatulus from the Lower 

Permian of the Robledo Mountains. The authors recognized a continuum of morphologies that was interpreted as a trend from 

walking to swimming. High pace angulation (140°) and low values of the trackway width/stride ratio (0.35) were considered 

evidence for swimming behavior. On the other hand, pace angulation of about 65° and trackway width/stride ratio of 1.1 were 

thought to be indicative of a walking gait. The same plot has been calculated for the heredescribed trackway PD-8 (Fig. 10). The 

observed trend appears to be opposite to that described by Braddy et al. (2003). Moving from terrestrial walking to submerged 

walking the pace angulation decreases and the trackway width/stride ratio increase. We acknowledge that different trackmakers 

may produce different patterns, nevertheless we highlight that our analysis differs from that performed by Braddy et al. (2003) in 

being based on a single, continuous trackway. 

 



   

 

Fig. 10. Plot of pace angulation against trackway width/stride of trackway PD-8 from the Lower Permian of the Orobic Alps. Moving from terrestrial walking to submerged walking, Early Permian 

small temnospondyls–lepospondyls lowered their pace angulation and shortened the stride. 

8. Conclusion 

The Early Permian trackways from the Southern Alps provide insights into the locomotor behavior of extinct small-sized 

temnospondyls or salamander-like lepospondyls (microsaurs). Several extramorphologies, suggested to be behavioral and 

substrate-controlled, were recognized along the studied trackways. All the trackways are assigned to the compound ichnogenus 

Batrachichnus C Lunichnium, testifying to the passage from walking to swimming. The use of the connector “C” is proposed here 

as a new nomenclatural form to describe “Compound traces”. Interpretation of the trackways and reconstruction of locomotor 

dynamics of the trackmaker was performed using filmed sequences of living urodelans moving from ramp into water. Their analysis 

revealed that Early Permian amphibians performed locomotor behaviors similar to those of extant salamanders. All features 

exhibited by the fossil trackways can be interpreted by comparison with the kinematics of their extant nearest relatives. We therefore 

provide evidence for conservatism of locomotor mechanics in amphibian evolution. 

Trackways impressed on wet substrates preserve anatomical details of both fore and hind limbs and result from a sprawling gait, 

in which diagonally opposed limbs are moved together. In a terrestrial environment, during the kick-off phase, the hind limbs are 

directly dragged toward the front. Trackways interpreted as sequences toward more water-saturated substrates or shallow water 

conditions show that distinct footfalls and tail drags are substituted by curved digit marks and parallel scratches drawing 

discontinuous arcs. During submerged walking, hindlimb kinematics change: hindlimbs are firstly adducted and drawn toward the 

rear and then toward the front. This kinematic pattern is probably due to the initial undulation of body and tail when the animal 

effectively begins to move into water. 

The here described continuous trackways show that in moving from terrestrial walking to submerged walking, Early Permian 

small temnospondyls lowered their pace angulation and soon began to use body and tail undulations for propulsion. This shows 

that the shift from walking to swimming behavior in early tetrapods, as in extant urodelan amphibians, was not a discrete change, 

but a complex balance between different dynamics. 
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