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Abstract

We present Buchberger Theory and Algorithm of Gröbner bases for multivari-
ate Ore extensions of rings presented as modules over a principal ideal domain.
The algorithms are based on Möller Lifting Theorem.

In her 1978 Bachelor’s thesis [54] Zacharias discussed how to extend Buchberger
Theory [7, 8, 10] from the case of polynomial rings over a field to that of polynomials
over a Noetherian ring with suitable effectiveness conditions.

In the meantime a similar task was performed in a series of papers — Kandri-Rody–
Kapur [21] merged the rewriting rules behind Euclidean Algorithm with Buchberger’s
rewriting, proposing a Buchberger Theory for polynomial rings over Euclidean do-
mains; Pan [40] studied Buchberger Theory for polynomial rings over domains intro-
ducing the notions of strong/weak Gröbner bases — which culminated with [35].

Such unsorpassed paper, reformulating and improving Zacharias’ intuition, gave
efficient solutions to compute both weak and strong Gröbner bases for polynomial rings
over each Zacharias ring, with particolar attention to the PIR case. Its main contribution
is the reformulation of Buchberger test/completion (“a basis F is Gröbner if and only
if each S-polynomial between two elements of F reduces to 0”) in the more flexible
lifting theorem (“a basis F is Gröbner if and only if each element in a minimal basis of
the syzygies among the leading monomials lifts, via Buchberger reduction, to a syzygy
among the elements of F”). The only further contribution to this ultimate paper is the
survey [6] of Möller’s results which reformulated them in terms of Szekeres Theory
[51].

The suggestion of extending Buchberger Theory to non-commutative rings which
satisfy Poincaré-Birkhoff-Witt Theorem was put forward by Bergman [5], effectively
applied by Apel–Lassner [3, 4] to Lie algebras and further extended to solvable polyno-
mial rings [22, 23], skew polynomial rings [16, 17, 18] and to other algebras [1, 11, 26,
27] which satisfy Poincaré-Birkhoff-Witt Theorem and thus, under the standard inter-
pretation of Buchberger Theory in terms of filtration/graduations [2, 30, 33, 50, 29, 12],
have the classical polynomial ring as associated graded rings.
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In particular Weispfenning [53] adapted his results to a generalization of the Ore
extension [39] proposed by Tamari [52]; then Weispfenning’s construction was gener-
alized by his student Pesch [41, 42], introducing the notion of iterative Ore extension
with commuting variables

R := R[Y1;α1, δ1][Y2;α2, δ2] · · · [Yn;αn, δn], R a domain;

the concept has been called Ore algebra in [13] and is renamed here as multivariate
Ore extension (for a different and promising approach to Ore algebras see [24]).

Bergman’s approach and most of all extensions are formulated for rings which are
vector spaces over a field; in our knowledge the only instances in which the coeffi-
cient ring R is presented as a D-module over a domain D (or at least as a Z-module)
are Pritchard’s [43, 44] extension of Möller Lifting Theory to non-commutative free
algebras and Reinert’s [45, 46] deep study of Buchberger Theory on Function Rings.

Following the recent survey on Buchberger-Zacharias Theory for monoid rings
R[S] over a unitary effective ring R and an effective monoid S [32], we propose here
a Möller–Pritchard lifting theorem presentation of Buchberger-Zacharias Theory and
related Gröbner basis computation algorithms for multivariate Ore extensions. The
twist w.r.t. [32] is that there R[S] coincides with its associated graded ring; here R, its
associated graded ring

G(R) := R[Y1;α1][Y2;α2] · · · [Yn;αn]

and the commutative polynomial ring R[Y1, · · · ,Yn] coincide as sets and as left R-
modules, but, as rings, they have different multiplications.

We begin by recalling Ore’s original theory [39] of non-commutative polynomials
R[Y], relaxing the original assumption that R is a field to the case in which R is a domain
(Section 1.1) and Pesch’s constructions of multivariate Ore extensions (Section 1.2)
and graded multivariate Ore extensions (Section 1.3), focusing on the arithmetics of
the main Example 14

R := R[Y1;α1][Y2;α2] · · · [Yn;αn],R := Z[x] αi(x) := cixei , ci ∈ Z \ {0}, ei ∈ N \ {0}.

Next, we introduce Buchberger Theory in multivariate Ore extensions recalling the
notion of term-orderings (Section 2.1), definition and main properties of left, right, bi-
lateral and restricted Gröbner bases (Section 2.2) and Buchberger Algorithm for com-
puting canonical forms in the case in which R is a skew field (Section 2.3).

We adapt to our setting Szekeres Theory [51] (Section 3), Zacharias canonical rep-
resentation with related algorithm (Section 4) and Möller Lifting Theorem (Section 5).

The next Sections are the algorithmic core of the paper: we reformulate for multi-
variate Ore extensions over a Zacharias ring R

– Möller’s algorithm for computing the required Gebauer–Möller set (id est the
minimal basis of the module of the syzygies among the leading monomials) for
Buchberger test/completion of left weak bases (Section 6.1);

– Möller’s reformulation, requiring only l.c.m. computation in R for the case in
which R is a (Zacharias) PID (Section 6.2) or a (Zacharias) PIR (Section A);
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– still in the case in which R is a PID (Section 6.3) or a PIR (Section A), Möller’s
completion of a left weak basis to a left strong one;

– Gebauer–Möller criteria [19] for producing a Gebauer–Möller set (Section 6.4);

– Kandri-Rody–Weispfenning completion [22] of a left weak basis for producing
a bilateral one (Section 7.1);

– Weispfenning’s [53] restricted completion (Section 7.2);

– as a technical tool required by Weispfenning’s restricted completion, how to pro-
duce right Gebauer–Möller sets (Section 7.3).

Finally, we reverse to a theoretical survey summarizing the structural theorem for
the case in which R is a Zacharias PID (Section 8), specializing to our setting Spear’s
Theorem [49, 29] (Section 9) and extending to it Lazard’s Structural Theorem [25]
(Section 10).

In an appendix we discuss, as far as it is possible, how to extend this theory and
algorithms to the case in which R is a PIR (Section A).

1 Recalls on Ore Theory

1.1 Ore Extensions
Let R be a not necessarily commutative domain; Ore [39] investigated under which
conditions the (left) R-module R := R[Y] of all the formal polynomials is made a ring
under the assumption that the multiplication of polynomials shall be associative and
both-sided distributive and the limitation imposed by the postulate that the degree of a
product shall be equal to the sum of the degree of the factors.

It is clear that, due to the distributive property, given two “monomials” bYr, aY s ∈

R, a, b ∈ R, it suffices to define the product bYr · aY s ∈ R or even more specifically,
to define the product Y · r, r ∈ R; this necessarily requires the existence of maps α, δ :
R→ R such that

Y · r = α(r)Y + δ(r) for each r ∈ R;

Ore calls α(r) the conjugate and δ(r) the derivative of r.
Under the required postulate clearly we have

1. for each r ∈ R, α(r) = 0 =⇒ r = 0,

so that α is injective.
It is moreover sufficient to consider, for each r, r′ ∈ R, the relations

α(r + r′)Y + δ(r + r′) = Y · (r + r′) = Y · r + Y · r′ =
(
α(r) + α(r′)

)
Y + δ(r) + δ(r′),

α(rr′)Y + δ(rr′) = Y · (rr′) = (Y · r) · r′ = α(r)α(r′)Y + α(r)δ(r′) + δ(r)r′,

and, if R is a skew field, and r , 0,

Y = (Y · r) · r−1 = α(r)α(r−1)Y + α(r)δ(r−1) + δ(r)r−1,

to deduce that
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2. α is a ring endomorphism;

3. the following conditions are equivalent:

(a) for each d ∈ R \ {0} exists c ∈ R \ {0} : Y · c = dY + δ(c), α(c) = d;

(b) α is a ring automorphism;

4. δ is an α-derivation of R id est an additive map satisfying1

δ(rr′) = α(r)δ(r′) + δ(r)r′ for each r, r′ ∈ R;

5. if R is a skew field, then each r ∈ R \ {0} satisfies

α(r−1) = (α(r))−1 , δ(r−1) = − (α(r))−1 δ(r)r−1;

6. Im(α) ⊂ R is a subring, which is an isomorphic copy of R;

7. R1 := {r ∈ R : r = α(r)} ⊂ R is a ring, the invariant ring of R;

8. R0 := {r ∈ R : δ(r) = 0} ⊂ R is a ring, the constant ring of R;

9. {r ∈ R : Y · r = rY} = R0 ∩ R1.

10. If R is a skew field, such are also Im(α), R1 and R0.

11. Denoting Z := {z ∈ R : zr = rz for each r ∈ R} the center of R, we have

{r ∈ R : f · r = r f for each f ∈ R} = R0 ∩ R1 ∩ Z.

Moreover, if we consider two polynomials f (Y), g(Y) ∈ R \ {0},

f = aYm + f0, g = bYn +g0, a, b ∈ R\{0},m, n ∈ N, f0, g0 ∈ R, deg( f0) < m, deg(g0) < n,

we have
f · g = aαm(b)Ym+n + h(Y), deg(h) < m + n;

since α is injective, b , 0 =⇒ α(b) , 0 =⇒ αm(b) , 0 and since R is a domain it
holds αm(b) , 0 , a =⇒ aαm(b) , 0 =⇒ f · g , 0. As a consequence

12. R is a domain.

Definition 1. R with the ring structure described by conditions 1, 2, 4 above is called
an Ore extension and is denoted R[Y;α, δ].

Remark 2 (Ore). In an Ore extension R[Y;α, δ], denoting S = 〈α, δ〉 the free semigroup
over the alphabet {α, δ} and, for each d ∈ N and i ∈ N, 0 ≤ i ≤ d, Sd,i the set of the

(
d
i

)
words in S of length d in which occur i instances of α and d − i instances of δ in an
arbitrary order, we have

Yd · r =

d∑
i=0

∑
τ∈Sd,i

τ(r)Y i

1Whence, setting r = r′ = 1, δ(1) = 0.
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for each d ∈ N; for instance

Y3 · r = α3(r)Y3 + δ3(r)
+

(
α2δ(r) + αδα(r) + δα2(r)

)
Y2

+
(
αδ2(r) + δαδ(r) + δ2α(r)

)
Y.

In particular, for f (Y) =
∑n

i=0 aiYn−i and g(Y) =
∑m

i=0 biYm−i in R we have

g(Y) f (Y) =

n+m∑
i=0

ciYn+m−i with c0 = b0α
m(a0) and ci =

i∑
a=0

ba

i−a∑
b=0

∑
τ∈Sm−a,i−a−b

τ(ab).

Remark 3 (Ore). Under the assumption that α is an automorphism (cf. 3.), each poly-
nomial

∑n
i=1 aiY i ∈ R can be uniquely represented as

∑n
i=1 Y iāi for proper values āi ∈ R.

In fact we have ax = xα−1(a) − δ(α−1(a)) from which we can deduce inductively
proper expressions

axn = xnα−n(a) +

n∑
i=1

(−1)ixn−iσin(a),

for σin(a) ∈ R, properly defined (similarly to what done for τ ∈ Sd,i, but using the
derivative and the inverse of the conjugate [39]).

ut

1.2 Multivariate Ore Extensions
Let R be a not necessarily commutative domain.

Definition 4. An iterative Ore extension is a ring (whose multiplication we denote ?)
defined as

R := R[Y1;α1, δ1][Y2;α2, δ2] · · · [Yn;αn, δn]

where, for each i > 1, αi is an endomorphism and δi an αi-derivation of the iterative
Ore extension

Ri−1 := R[Y1;α1, δ1] · · · [Yi−1;αi−1, δi−1].

As proved by Pesch in [41], it is possible to extend αi to an endomorphism of R
and δi to an αi-derivation in R, by setting αi(Y j) = Y j and δi(Y j) = 0 for each i ≤ j ≤ n.

A multivariate Ore extension (or: Ore algebra [13]; or: iterative Ore extension with
commuting variables [41, 42]) is an iterative Ore extension which satisfies

– α jδi = δiα j, for each i, j, i , j,

– αiα j = α jαi, δiδ j = δ jδi for i < j ≤ n,

– α j(Yi) = Yi, δ j(Yi) = 0 for i ≤ j ≤ n.

Lemma 5 (Pesch). In an iterative Ore extension, for each i < j it holds

Y j ? Yi = YiY j ⇐⇒ α j(Yi) = Yi, δ j(Yi) = 0.
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Proof. For each i < j, we have Y j ? Yi = α j(Yi)Y j + δ j(Yi). ut

Since in this paper we are interested in iterative Ore extensions for which Y j ? Yi =

YiY j, by the previous Lemma 5, we can say that the maps αi, δi are relevant only on the
elements of R, so sometimes we will restrict them to R.

Lemma 6 (Pesch). An iterative Ore extension is a multivariate Ore extension iff Y j ?
Yi = YiY j for each i < j.

Proof. In fact, using Lemma 5 for each r ∈ R, we have

Y j ? Yi ? r = Y j ? (αi(r)Yi + δi(r))
= α j (αi(r)Yi + δi(r)) Y j + δ j (αi(r)Yi + δi(r))

= α jαi(r)YiY j + α jδi(r)Y j + δ j (αi(r)Yi) + δ jδi(r)
= α jαi(r)YiY j + α jδi(r)Y j + δ jαi(r)Yi + δ jδi(r)

and (by symmetry)

YiY j ? r = Yi ? (α j(r)Y j + δ j(r))
= αiα j(r)YiY j + δiα j(r)Y j + αiδ j(r)Yi + δiδ j(r).

ut

Thus the R-module structure of a multivariate Ore extension can be identified with
that of the polynomial ring R[Y1, . . . ,Yn] over its natural R-basis

T := {Ya1
1 · · · Y

an
n : (a1, . . . , an) ∈ Nn}, R � R[T ] = SpanR{T }.

We can therefore denote αYi := αi, δYi := δi for each i and, iteratively,

ατYi := αταi, δτYi := δτδi, for each τ ∈ T .

Remark that a multivariate Ore extension is not an algebra; in fact, if we define, for
τ = Yd1

1 · · · Y
dn
n and t = Ye1

1 · · · Y
en
n such that τ | t(

t
τ

)
:=

(
e1

d1

)
· · ·

(
en

dn

)
,

we have

t ? r = αt(r)t +
∑
τ∈T
τ|t,τ,t

(
t
τ

)
δ t
τ
ατ(r)τ, for each t ∈ T and r ∈ R.

We can define, for each t ∈ T , a map

θt : R→ R, θt(r) =
∑
τ∈T
τ|t,τ,t

(
t
τ

)
δ t
τ
ατ(r)τ,

so that t ? r = αt(r)t + θt(r) for each t ∈ T and each r ∈ R.
Such maps αt and θt satisfy properties analogous of those of Ore’s conjugate and

derivative:
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Lemma 7. With the present notation, for each t ∈ T , we have

1. for each r ∈ R, αt(r) = 0 =⇒ r = 0,

2. αt is a ring endomorphism;

3. the following conditions are equivalent:

(a) for each d ∈ R \ {0} exists c ∈ R \ {0} : Y ? c = dY + θt(c), αt(c) = d;

(b) αt is a ring automorphism;

4. θt is an αt-derivation of R;

5. if R is a skew field, then each r ∈ R \ {0} satisfies

αt(r−1) = (αt(r))−1 , θt(r−1) = − (αt(r))−1 θt(r)r−1;

6. Im(αt) ⊂ R is a subring, which is an isomorphic copy of R.

We further have

7. if each αi is an automorphism, also each αt, t ∈ T , is such. ut

1.3 Associated graded Ore Extension
Following the notation of 1.2 we give the following

Definition 8. A multivariate Ore extension

R[Y1;α1, δ1][Y2;α2, δ2] · · · [Yn;αn, δn]

where each δi is zero, will be called a graded Ore extension (or: Ore extension with
zero derivations [41, 42]) and will be denoted

R := R[Y1;α1][Y2;α2] · · · [Yn;αn].

ut

Lemma 9. In a multivariate graded Ore extension,

– since it is an Ore algebra, the αs commute,

– and t ? r = αt(r)t for each t ∈ T and r ∈ R.

Remark 10. Note that, since multivariate Ore extensions coincide, as left R-modules,
with the classical polynomial rings R[Y1, . . . ,Yn] and so have the same R-basis, namely
T , they can share with the polynomial rings their standard T -valuation [51, 30, 2, 33]
[31, §24.4,24.6]. This justifies the definition below.

Definition 11. Given an Ore extension R := R[Y1;α1, δ1][Y2;α2, δ2] · · · [Yn;αn, δn] the
corresponding graded Ore extension G(R) := R[Y1;α1][Y2;α2] · · · [Yn;αn] is called its
associated graded Ore extension. ut
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Example 12.

1. The first non obvious example of Ore extension was proposed in 1948 by D.Ta-
mari [52] in connection with the notion of “order of irregularity” introduced by
Ore in [38]; it consists of the graded Ore extension

R := R[Y;α], R = Q[x] where α : R→ R : x 7→ x2.

2. Such construction was generalized by Weispfenning [53] who introduced the
rings

R := R[Y;α], R = Q[x] where α : R→ R : x 7→ xe, e ∈ N

3. and extended by Pesch [41] to his iterated Ore extensions with power substitution

R := R[Y1;α1][Y2;α2] · · · [Yn;αn], R = Q[x]

where αi : R→ R : x 7→ xei , ei ∈ N.

4. An Ore extension where α is invertible is discussed in [28]:

R := R[S ;α],R = Q[D1,D2,D3]

where
α : R→ R : f (D1,D2,D3) 7→ f (D2 + 2D1,D3,−D1)

whose inverse is

α−1 : R→ R : f (D1,D2,D3) 7→ f (−D3,D1 + 2D3,D2).

ut

Note that, while as R-modules R and G(R) coincide both with the polynomial ring
P = R[Y1, . . . ,Yn], the three rings have, in general, different arithmetics; we will denote
? the multiplication of R and ∗ those of G(R).

Example 13. The ring of Example 12.1.

R := R[Y;α], R = Q[x] where α : R→ R : x 7→ x2

is an Ore extension which is graded.
Since the map

δ : Q[x]→ Q[x] : xi 7→

2i−1∑
h=i

xh

is an α-derivation, S := R[Y;α, δ] is an Ore extension of which R is the associated
graded Ore extension. ut

In the following example, we define a nontrivial class of algebras, which will be
used to illustrate our theory and algorithms.
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Example 14. Since in Buchberger-Zacharias Theory, from an algorithmic point of view,
one is interested only on the associated graded rings and thus the rôle of derivates is
irrelevant, we illustrate the results for the Ore extensions with the zero-derivatives

R := R[Y1;α1][Y2;α2] · · · [Yn;αn], R = Z[x],

with αi(x) := cixei , ci ∈ Z \ {0}, ei ∈ N \ {0}.
If we denote γ the map

γ : N × N \ {0} → N, (a, e) 7→
a−1∑
i=0

ei =
1 − ea

1 − e

where the last equality holds for e , 1, we have Ya
i ∗ xb = cbγ(a,ei)

i xea
i bYa

i .
Note that

γ(b, e) + ebγ(a, e) =

b−1∑
i=0

ei +

a−1∑
i=0

eb+i =

a+b−1∑
i=0

ei = γ(a + b, e). (1-a)

Since α j(αi(x)) = ciα j(xei ) = cic
ei
j xeie j and αi(α j(x)) = c jαi(xe j ) = c jc

e j

i xeie j , then
R is a graded Ore extension if and only if

cic
ei
j xeie j = α j(αi(x)) = αi(α j(x)) = c jαi(xe j ) = c jc

e j

i xeie j

id est
cei−1

j = ce j−1
i . (1-b)

We thus have
(

n
2

)
relations among the n coefficients ci. In particular we need to partition

the indices as

{1, . . . , n} = E t O t S , E = {i : 2 | ei},O = {i : 2 - ei > 1}, S = {i : ei = 1}.

If I := O t E = ∅ then each such equations are the trivial equality 1 = 1 and thus
all ci are free. The situation is completely different when I := O t E , ∅; in fact,

– for i ∈ S necessarily ci = ±1;

– if a prime p divides at least a c j, j ∈ I, then it divides each ci, i ∈ I.

As regards the sign of ci we can say that

– if E , ∅ then

– ci is positive for each i ∈ S ∪ O,

– the sign of ci, i ∈ E, is undetermined but all the ci, i ∈ E, have the same
sign;

– if E = ∅ then the sign of ci, i ∈ S ∪ O is undetermined.

For instance
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– for e1 = e4 = 1, e2 = 5, e3 = 3 we have S = {1, 4},O = {2, 3}, E = ∅ and

c4
1 = c0

2, c
2
1 = c0

3, c
0
1 = c0

4, c
2
2 = c4

3, c
0
2 = c4

4, c
0
3 = c2

4,

whence c1 = ±1, c4 = ±1, c2 = ±c2
3;

– for e1 = e4 = 1, e2 = 2, e3 = 3 we have S = {1, 4},O = {3}, E = {2}, and

c1 = c0
2, c

2
1 = c0

3, c
0
1 = c0

4, c
2
2 = c3, c0

2 = c4, c0
3 = c2

4,

whence c1 = c4 = 1, c3 = c2
2 > 0;

– for e1 = 1, e2 = 2, e3 = 3, S = {1} E = {2}, O = {3}. Suppose c2 = 6, so both
the primes 2 and 3 divide c2. From c1 = c0

2, c2
1 = c0

3, c2
2 = c3 we get c1 = 1 and

c3 = 36. We notice that 2 | c3 and 3 | c3, but neither 2 nor 3 divide c1;

– for e1 = e4 = 1, e2 = 4, e3 = 8 we have S = {1, 4}, E = {2, 3},O = ∅ and

c3
1 = c0

2, c
7
1 = c0

3, c
0
1 = c0

4, c
7
2 = c3

3, c
0
2 = c3

4, c
0
3 = c7

4.

whence c1 = c4 = 1, c2 = χ3, c3 = χ7, c2c3 > 0, for some χ ∈ Z \ {0}.

As regards the values |ci|, 1 ≤ i ≤ n, setting

ρ :=
n∑

j=1

(e j − 1) =
∑
j∈I

(e j − 1), χ := ρ

√√ n∏
j=1

|c j| ∈ N \ {0},

we have
|c j| = χe j−1 for each j ∈ {1, ...., n}. (1-c)

In fact, since if a prime p divides at least a c j, j ∈ I, then it divides each ci, i ∈ I, we
can express each |ci|, i ∈ I, as |ci| = pai,1

1 · · · p
ai,h

h where p1, · · · , ph are the prime factors
of the squarefree associate

√
χ = p1 · · · ph of χ.

We have

|ci|
e j−1 = |c j|

ei−1 =⇒ pai(e j−1) = pa j(ei−1) =⇒ ai(e j − 1) = a j(ei − 1)

whence ai = a j ⇐⇒ ei = e j and ai > a j ⇐⇒ e j < ei.
Thus the cis with minimal ei minimalize also all ai,l, 1 ≤ l ≤ h.
We moreover have a j,l =

ai,l(e j−1)
(ei−1) , 1 ≤ l ≤ h.

Therefore
∏n

j=1 |c j| =
∏

j∈I |c j| =
∏n

j=1
∏h

l=1 pa j,l

l =
∏h

l=1 p
ai,l

∑n
j=1(e j−1)

ei−1

l =
∏h

l=1 p
ai,lρ
ei−1

l
whence

χ := ρ

√√ n∏
j=1

|c j| =

h∏
l=1

p
ai,l

ei−1

l =

h∏
l=1

p
a j,l

e j−1

l

and (1-c).
The formula (1-c) allows to reformulate (1-b) as

|c j|
ei−1 = |ci|

e j−1 = χ(ei−1)(e j−1). (1-d)
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Note that we have

χ(eai
i −1)(e

a j
j −1) = χ(ei−1)γ(ai,ei)(e j−1)γ(a j,e j) = |ci|

(e j−1)γ(ai,ei)γ(a j,e j) = |ci|
(e

a j
j −1)γ(ai,ei)

= |c j|
(ei−1)γ(ai,ei)γ(a j,e j) = |c j|

(eai
i −1)γ(a j,e j)

and

|ci|
γ(ai,ei)|c j|

eai
i γ(a j,e j) = |ci|

e
a j
j γ(ai,ei)|c j|

γ(a j,e j) = χeai
i e

a j
j −1. (1-e)

Now we explain how to deduce a general formula for the product of two “monomi-
als” in this context.

To avoid cumbersome and useless case-to-case studies, let us simply assume ci > 0
for each i; under this restricted assumption, a series of inductive arguments allows to
deduce

Yi ∗ xα = cαi xαei Yi, (2-a)

Ya j

j ∗ xb0 = cb0γ(a j,e j)
j xb0e

a j
j Ya j

j . (2-b)

Substituing c j = χe j−1 and ci = χei−1 we get

cb0γ(a j,e j)
j c

b0e
a j
j γ(ai,ei)

i = χb0(e
a j
j eai

i −1), (2-c)

Yai
i Ya j

j ∗ xb0 = cb0γ(a j,e j)
j c

b0e
a j
j γ(ai,ei)

i xb0e
a j
j eai

i Yai
i Ya j

j = χb0(e
a j
j eai

i −1)xb0e
a j
j eai

i Yai
i Ya j

j . (2-d)

In conclusion

(axa0 Ya1
1 · · · Y

an
n ) ∗ (bxb0 Yb1

1 · · · Y
bn
n ) = abχb0((∏n

i=1 eai
i )−1)xa0+b0

∏n
i=1 eai

i Ya1+b1
1 · · · Yan+bn

n .
(2-e)

Note that associativity is verified by[(
axa0 Ya1

1 · · · Y
an
n

)
∗
(
bxb0 Yb1

1 · · · Y
bn
n

)]
∗
(
dxd0 Yd1

1 · · · Y
dn
n

)
=

[
abχb0((∏n

i=1 eai
i )−1)xa0+b0

∏n
i=1 eai

i Ya1+b1
1 · · · Yan+bn

n

]
∗
(
dxd0 Yd1

1 · · · Y
dn
n

)
= abdχb0((∏n

i=1 eai
i )−1)+d0

((∏n
i=1 eai+bi

i

)
−1

)
xa0+b0

∏n
i=1 eai

i +d0
∏n

i=1 eai+bi
i Ya1+b1+d1

1 · · · Yan+bn+dn
n

and (
axa0 Ya1

1 · · · Y
an
n

)
∗
[(

bxb0 Yb1
1 · · · Y

bn
n

)
∗
(
dxd0 Yd1

1 · · · Y
dn
n

)]
=

(
axa0 Ya1

1 · · · Y
an
n

)
∗

[
bdχd0

((∏n
i=1 ebi

i

)
−1

)
xb0+d0

∏n
i=1 ebi

i Yb1+d1
1 · · · Ybn+dn

n

]
= abdχd0

((∏n
i=1 ebi

i

)
−1

)
+
(
b0+d0

(∏n
i=1 ebi

i

))
((∏n

i=1 eai
i )−1)xa0+

(
b0+d0

∏n
i=1 ebi

i

)∏n
i=1 eai

i

n∏
i=1

Yai+bi+di
i

= abdχb0((∏n
i=1 eai

i )−1)+d0

((∏n
i=1 eai+bi

i

)
−1

)
xa0+b0

∏n
i=1 eai

i +d0
∏n

i=1 eai+bi
i Ya1+b1+d1

1 · · · Yan+bn+dn
n .

ut
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2 Buchberger Theory
In this section, R is a not necessarily commutative domain and R a multivariate Ore
extension.

2.1 Term ordering
For each m ∈ N, the free R-module Rm – the canonical basis of which will be denoted
{e1, . . . , em} – is an (R,R)-bimodule with basis the set of the terms

T (m) := {tei : t ∈ T , 1 ≤ i ≤ m}.

If we impose on T (m) a total ordering <, then each f ∈ Rm has a unique represen-
tation as an ordered linear combination of terms t ∈ T (m) with coefficients in R:

f =

s∑
i=1

c( f , ti)ti : c( f , ti) ∈ R \ {0}, ti ∈ T (m), t1 > · · · > ts.

The support of f is the set supp( f ) := {t | c( f , t) , 0}.
W.r.t. < we denote T( f ) := t1 the maximal term of f , lc( f ) := c( f , t1) its leading

coefficient and M( f ) := c( f , t1)t1 its maximal monomial.
If we denote, following [45, 46], M(Rm) := {ctei | c ∈ R \ {0}, t ∈ T , 1 ≤ i ≤ m}, for

each f ∈ Rm \ {0}, the unique finite representation above can be reformulated

f =
∑

τ∈supp( f )

mτ, mτ = c( f , τ)τ,

as a sum of elements of the monomial set M(Rm).
Fixed a term ordering ≺ on T a ≺-compatible term ordering < on T (m) is a well-

ordering on T (m) which satisfies

ω1 ≺ ω2 =⇒ ω1t < ω2t, tω1 < tω2 for each t ∈ T (m), ω1, ω2 ∈ T .

From now on, we suppose < compatible with a given term ordering ≺ on T .
While a multivariate Ore extension does not satisfy commutativity between terms

and coefficients,
t ? r = rt for each r ∈ R \ {0}, t ∈ T (m),

it however satisfies

M(t ? r) = αt(r)t, for each r ∈ R \ {0}, t ∈ T (m); (3)

moreover, while R is not a monoid ring under the multiplication ?, so that in particular
we cannot claim τ ? ω ∈ T for τ, ω ∈ T , however τ ? ω satisfies

T(τ ? ω) = τ ◦ ω (4)

where we have denoted ◦ the (commutative) multiplication of T ; similarly, for n ∈
M(Rm) and ml,mr ∈ M(R) = {ct : c ∈ R\{0}, t ∈ T }we have M(ml?n?mr) = ml∗n∗mr.

In conclusion
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Corollary 15. If ≺ is a term ordering on T and < is a ≺-compatible term ordering on
T (m), then, for each l, r ∈ R and f ∈ R(m),

1. M(l ? f ) = M(M(l) ? M( f )) = M(l) ∗M( f );

2. M( f ? r) = M(M( f ) ? M(r)) = M( f ) ∗M(r);

3. M(l ? f ? r) = M(M(l) ? M( f ) ? M(r)) = M(l) ∗M( f ) ∗M(r).

4. T(l ? f ) = T(l) ◦ T( f );

5. T( f ? r) = T( f ) ◦ T(r);

6. T(l ? f ? r) = T(l) ◦ T( f ) ◦ T(r).

2.2 Gröbner Bases
Consider a term ordering on T (m), compatible with a term ordering on T ; with a slight
abuse of notation we denote both of them by <.

For any set F ⊂ Rm, we call IL(F), IR(F), I2(F) the left (resp. right, bilateral)
module generated by F, and

– T{F} := {T( f ) : f ∈ F} ⊂ T (m);

– M{F} := {M( f ) : f ∈ F} ⊂ M(Rm).

– TL(F) := {T(λ ? f ) : λ ∈ T , f ∈ F} = {λ ◦ T( f ) : λ ∈ T , f ∈ F} ⊂ T (m);

– ML(F) := {M(aλ ? f ) : a ∈ R \ {0}, λ ∈ T , f ∈ F} = {m ∗M( f ) : m ∈ M(R), f ∈
F} ⊂ M(Rm);

– TR(F) := {T( f ? ρ) : ρ ∈ T , f ∈ F} = {T( f ) ◦ ρ : ρ ∈ T , f ∈ F} ⊂ T (m);

– MR(F) := {M( f ? bρ) : b ∈ R \ {0}, ρ ∈ T , f ∈ F} = {M( f ) ∗ n : n ∈ M(R), f ∈
F} ⊂ M(Rm);

– T2(F) := {T(λ? f?ρ) : λ, ρ ∈ T , f ∈ F} = {λ◦T( f )◦ρ : λ, ρ ∈ T , f ∈ F} ⊂ T (m);

– M2(F) := {M(aλ ? f ? bρ) : a, b ∈ R \ {0}, λ, ρ ∈ T , f ∈ F} = {m ∗M( f ) ∗ n :
m, n ∈ M(R), f ∈ F} ⊂ M(Rm).

Following an intutition by Weispfenning [53] we further denote

– IW (F) the restricted module generated by F,

IW (F) := SpanR(a f ? ρ : a ∈ R \ {0}, ρ ∈ T , f ∈ F),

– TW (F) := TR(F),

– MW (F) := {M(a f ?ρ) : a ∈ R \ {0}, ρ ∈ T , f ∈ F} = {aM( f ) ∗ρ : a ∈ R \ {0}, ρ ∈
T , f ∈ F} ⊂ M(Rm).
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If R is a skew field, for each set F ⊂ Rm we have

ML(F) = M{IL(M{F})} = IL(M{F}) ∩M(Rm),
MR(F) = M{IR(M{F})} = IR(M{F}) ∩M(Rm),
M2(F) = M{I2(M{F})} = I2(M{F}) ∩M(Rm),

MW (F) = M{IW (M{F})} = IW (M{F}) ∩M(Rm).

(5)

Notation 16. From now on, in order to avoid cumbersome notation and boring repeti-
tions, we will drop the subscripts when it will be clear of which kind of module (left,
right, bilateral, restricted) we are discussing. As a consequence, the four statements of
(5) will be summarized as

M(F) = M{I(M{F})} = I(M{F}) ∩M(Rm).

Similarly, we formulate a (left, right, bilateral, restricted) definition simply either
for the left or for the bilateral case leaving to the reader the task to convert to the other
cases.

For instance condition (ii) below is stated for the bilateral case; it would be refor-
mulated:

left case for each f ∈ I(F) there are g ∈ F, a ∈ R\{0}, λ ∈ T such that M( f ) = aλ∗M(g) =

M(aλ ? g),

right case for each f ∈ I(F) there are g ∈ F, b ∈ R\{0}, ρ ∈ T such that M( f ) = M(g)∗bρ =

M(g ? bρ),

restricted case for each f ∈ I(F) there are g ∈ F, a ∈ R\{0}, ρ ∈ T such that M( f ) = aM(g)∗ρ =

M(ag ? ρ),
ut

The conditions in (5) imply that, if R is a skew field, the following conditions are
equivalent and can be naturally chosen as definition of Gröbner bases:

1. M(I(F)) = M{I(F)} = M{I(M{F})} = I(M{F}) ∩M(Rm),

2. for each f ∈ I(F) there is g ∈ F such that M(g) |M( f ).

But in general between these statements there is just the implication (2) =⇒ (1).
Thus [40], there are two alternative natural definitions for the concept of Gröbner

bases:

– a stronger one which satisfies the following equivalent conditions:

(i). for each f ∈ I(F) there is g ∈ F such that M(g) |M( f ),

(ii). for each f ∈ I(F) there are g ∈ F, a, b ∈ R \ {0}, λ, ρ ∈ T such that
M( f ) = aλ ∗M(g) ∗ bρ = M(aλ ? g ? bρ),

(iii). M(I(F)) = M{I(F)} = M(F);

– and a weaker one which satisfies the following equivalent conditions:
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(iv). for each f ∈ I(F) there are gi ∈ F, ai, bi ∈ R \ {0}, λi, ρi ∈ T for which,
denoting τi := T(gi), one has

– T( f ) = λi ◦ T(gi) ◦ ρi for each i, and lc( f ) =
∑

i aiαλi (lc(gi))αλiτi (bi)

– M( f ) =
∑

i aiλi ∗M(gi) ∗ biρi =
∑

i M(aiλi ? gi ? biρi);

(v). M(I(F)) = M{I(F)} = M{I(M{F})} = I(M{F}) ∩M(Rm);

if moreover R is a skew field M(F) = M{I(M{F})} so that conditions (i-v) above
are all equivalent and are also equivalent to

(vi). T( f ) = λ ◦ T(g) ◦ ρ for some g ∈ F, λ, ρ ∈ T .

Example 17. Let us now specialize the ring of Example 14 to the case

n = 3, e1 = 2, e2 = 3, e3 = 4, χ = 5, c1 = 5, c2 = 52, c3 = 53

and remark that

axa0 Ya1
1 Ya2

2 Ya3
3 ∗ bxb0 Yb1

1 Yb2
2 Yb3

3 = ab5b0(2a1 3a2 4a3−1)xa0+b02a1 3a2 4a3 Ya1+b1
1 Ya2+b2

2 Ya3+b3
3 .

As a consequence, for each (b0, b1, b2, b3), ( j0, j1, j2, j3) ∈ N4, b, j ∈ Z

jx j0 Y j1
1 Y j2

2 Y j3
3 ∈ IL(bxb0 Yb1

1 Yb2
2 Yb3

3 )

if and only if

a1 := j1 − b1 ≥ 0, a2 := j2 − b2 ≥ 0, a3 := j3 − b3 ≥ 0, a0 := j0 − b02a1 3a2 4a3 ≥ 0 (6)

and b5b0(2a1 3a2 4a3−1) | j.
Note that if we set y := 5x then for each (b1, b2, b3), ( j1, j2, j3) ∈ N3 and b(y), j(y) ∈

Z[y] ⊂ R
j(y)Y j1

1 Y j2
2 Y j3

3 ∈ IL(b(y)Yb1
1 Yb2

2 Yb3
3 )

if and only if, not only (6) but also b(y2a1 3a2 4a3 ) | j(y).

Definition 18. Let I ⊂ Rm be a (left, right, bilateral, restricted) module and G ⊂ I.

– G will be called

– a (left, right, bilateral, restricted) weak Gröbner basis (Gröbner basis for
short) of I if

M{I} = M(I) = M{I(M{G})} = I(M{G}) ∩M(Rm),

id est if G satisfies conditions (iv-v) w.r.t. the module I = I(G); in particular
M{G} generates the (left, right, bilateral, restricted) module M(I) ⊂ Rm;

– a (left, right, bilateral, restricted) strong Gröbner basis of I if for each f ∈ I
there is g ∈ G such that M(g) | M( f ), id est if G satisfies conditions (i-iii)
w.r.t. the module I = I(G).
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– We say that f ∈ Rm \ {0} has

– a left Gröbner representation in terms of G if it can be written as f =∑u
i=1 li ? gi, with li ∈ R, gi ∈ G and T(li) ◦ T(gi) ≤ T( f ) for each i;

– a left (weak) Gröbner representation in terms of G if it can be written as
f =

∑µ
i=1 aiλi ? gi, with ai ∈ R \ {0}, λi ∈ T , gi ∈ G and λi ◦ T(gi) ≤

T( f ) for each i;

– a left (strong) Gröbner representation in terms of G if it can be written as
f =

∑µ
i=1 aiλi ? gi, with ai ∈ R \ {0}, λi ∈ T , gi ∈ G and

T( f ) = λ1 ◦ T(g1) > λi ◦ T(gi) for each i;

– a right Gröbner representation in terms of G if it can be written as f =∑u
i=1 gi ? ri, with ri ∈ R, gi ∈ G and T(gi) ◦ T(ri) ≤ T( f ) for each i;

– a right (weak) Gröbner representation in terms of G if it can be written as
f =

∑µ
i=1 gi ? biρi, with bi ∈ R \ {0}, ρi ∈ T , gi ∈ G and T(gi) ◦ ρi ≤ T( f )

for each i;

– a right (strong) Gröbner representation in terms of G if it can be written as
f =

∑µ
i=1 gi ? biρi, with bi ∈ R \ {0}, ρi ∈ T , gi ∈ G and

T( f ) = T(g1) ◦ ρ1 > T(gi) ◦ ρi for each i;

– a bilateral (weak) Gröbner representation in terms of G if it can be written
as f =

∑µ
i=1 aiλi ? gi ? biρi, with ai, bi ∈ R \ {0}, λi, ρi ∈ T , gi ∈ G and

λi ◦ T(gi) ◦ ρi ≤ T( f ) for each i;

– a bilateral (strong) Gröbner representation in terms of G if it can be written
as f =

∑µ
i=1 aiλi ? gi ? biρi, with ai, bi ∈ R \ {0}, λi, ρi ∈ T , gi ∈ G and

T( f ) = λ1 ◦ T(g1) ◦ ρ1 > λi ◦ T(gi) ◦ ρi for each i.

– a restricted (weak) Gröbner representation in terms of G if it can be written
as f =

∑µ
i=1 aigi ? ρi, with ai ∈ R \ {0}, ρi ∈ T , gi ∈ G and T(gi) ◦ ρi ≤ T( f )

for each i;

– a restricted (strong) Gröbner representation in terms of G if it can be
written as f =

∑µ
i=1 aigi ? ρi, with ai ∈ R \ {0}, ρi ∈ T , gi ∈ G and

T( f ) = T(g1) ◦ ρ1 > T(gi) ◦ ρi for each i.

– For f ∈ Rm \ {0}, F ⊂ Rm, an element h := NF( f , F) ∈ Rm is called a

– (left, right, bilateral, restricted) (weak) normal form of f w.r.t. F, if

f − h ∈ I(F) has a weak Gröbner representation in terms of F, and
h , 0 =⇒ M(h) < M{I(M{F})};

– (left, right, bilateral, restricted) strong normal form of f w.r.t. F, if

f − h ∈ I(F) has a strong Gröbner representation in terms of F, and
h , 0 =⇒ M(h) < M(F). ut
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Proposition 19. (cf. [45, 46]) For any set F ⊂ Rm \ {0}, among the following condi-
tions:

1. f ∈ I(F) ⇐⇒ it has a (left, right, bilateral, restricted) strong Gröbner repre-
sentation f =

∑µ
i=1 aiλi ? gi ? biρi in terms of F which further satisfies

T( f ) = λ1 ◦ T(g1) ◦ ρ1 > · · · > λi ◦ T(gi) ◦ ρi > · · · ;

2. f ∈ I(F) ⇐⇒ it has a (left, right, bilateral, restricted) strong Gröbner repre-
sentation in terms of F;

3. F is a (left, right, bilateral, restricted) strong Gröbner basis of I(F);

4. f ∈ I(F) ⇐⇒ it has a (left, right, bilateral, restricted) weak Gröbner represen-
tation in terms of F;

5. F is a (left, right, bilateral, restricted) Gröbner basis of I(F);

6. f ∈ I(F) ⇐⇒ it has a (left, right) Gröbner representation in terms of F;

7. for each f ∈ Rm \ {0} and any (left, right, bilateral, restricted) strong normal
form h of f w.r.t. F we have f ∈ I(F) ⇐⇒ h = 0;

8. for each f ∈ Rm \ {0} and any (left, right, bilateral, restricted) weak normal form
h of f w.r.t. F we have f ∈ I(F) ⇐⇒ h = 0;

there are the implications

(1) ⇔ (2) ⇒ (4) ⇔ (6)
t m m v

(7) ⇐ (3) ⇒ (5) ⇒ (8)

If R is a skew field we have also the implication (4) =⇒ (2) and as a consequence
also (5) =⇒ (3).

Proof. The implications (1) =⇒ (2) =⇒ (4) ⇐⇒ (6), (3) =⇒ (5), (2) =⇒ (3)
and (4) =⇒ (5) are trivial.

(3) =⇒ (1): for each f ∈ I2(F), by assumption, there are elements g ∈ F,m =

aλ, n = bρ ∈ M(R) such that M( f ) = M(m ? g ? n). Thus T( f ) = T(m ? g ? n) =

λ ◦ T(g) ◦ ρ and, denoting f1 := f − m ? g ? n, we have T( f1) < T( f ) so the claim
follows by induction, since < is a well ordering.

(5) =⇒ (4): similarly, for each f ∈ I2(F) by assumption there are elements
gi ∈ F,T(gi) := τieli , mi = aiλi, ni = biρi ∈ M(R) such that

– T( f ) = T(λi ? gi ? ρi) = λi ◦ τi ◦ ρieli for each i,

– lc( f ) =
∑

i aiαλi (lc(gi))αλiτi (bi).

17



It is then sufficient to denote f1 := f −
∑

i mi ? gi ? ni in order to deduce the claim by
induction, since T( f1) < T( f ) and < is a well ordering.

(4) =⇒ (2): let f ∈ I2(F) \ {0}; (4) implies the existence of g ∈ F, λ, ρ ∈ T , such

that T( f ) = λ ◦T(g) ◦ ρ. Then setting f1 := f − lc( f )
(
αλ (lc(g))

)−1
λ ? g? ρ we deduce

the claim by induction, since T( f1) < T( f ) and < is a well ordering.
(3) =⇒ (7) and (5) =⇒ (8): either

– h = 0 and f = f − h ∈ I(F) or

– h , 0, M(h) < M(I(F)), h < I(F) and f < I(F).

(7) =⇒ (2) and (8) =⇒ (4): for each f ∈ I(F), its normal form is h = 0 and
f = f − h has a strong (resp.: weak) Gröbner representation in terms of F.

ut

Proposition 20. (Compare [31, Proposition 22.2.10]) If F is a (weak, strong) Gröbner
basis of I := I(F), then the following holds:

1. Let g ∈ Rm be a (weak, strong) normal form of f w.r.t. F. If g , 0, then

T(g) = min{T(h) : h − f ∈ I(F)}.

2. Let f , f ′ ∈ Rm \ I be such that f − f ′ ∈ I. Let g be a (weak, strong) normal form
of f w.r.t. F and g′ be a (weak, strong) normal form of f ′ w.r.t. F. Then

– T(g) = T(g′) =: τ and

– lc(g) − lc(g′) ∈ Iτ := {lc( f ) : f ∈ I,T( f ) = τ} ∪ {0} ⊂ R.

Proof.

1. Let h ∈ Rm be such that h − f ∈ I; then h − g ∈ I and M(h − g) ∈ M{I}. If
T(g) > T(h) then M(h − g) = M(g) < M{I}, giving a contradiction.

2. The assumption implies that f − g′ ∈ I so that, by the previous result, T(g) ≤
T(g′). Symmetrically, f ′ − g ∈ I and T(g′) ≤ T(g). Therefore T(g) = T(g′) = τ;
moreover, either

– T(g − g′) < τ and M(g) = M(g′) so that lc(g) = lc(g′) or

– T(g− g′) = τ and M(g− g′) = M(g)−M(g′) =
(
lc(g)− lc(g′)

)
τ; thus, since

g − g′ ∈ I, lc(g) − lc(g′) ∈ Iτ.
ut

2.3 Canonical forms (skew field case)
If R := K is a skew field, for any set F ⊂ Rm we denote N(F) the (left, right, bilateral,
restricted) order module N(F) := T (m) \ T(F) and K[N(F)] the (left, right, bilateral,
restricted) K-module K[N(F)] := SpanK(N(F)).
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Figure 1: Canonical Form Algorithms

(g,
∑µ

i=1 ciλi ? gi) := LeftCanonicalForm( f ,G)

where
G is the left Gröbner basis of the left module I ⊂ Rm,
f ∈ Rm, g ∈ K[N(I)], ci ∈ K \ {0}, λi ∈ T , gi ∈ G,
f − g =

∑µ
i=1 ciλi ? gi is a left strong Gröbner representation in terms

of G,
T( f − g) = λ1 ◦ T(g1) > λ2 ◦ T(g2) > · · · > λµ ◦ T(gµ).

h := f , i := 0, g := 0,

While h , 0 do
%% f = g +

∑i
j=1 c jλ j ? g j + h,

%% T( f − g) ≥ T(h);

%% i > 0 =⇒ T( f −g) = λ1◦T(g1) > λ2◦T(g2) > · · · > λi◦T(gi) > T(h);

If T(h) ∈ TL(G) do
Let λ ∈ T , γ ∈ G : λ ◦ T(γ) = T(h)
• i := i + 1, ci := lc(h)αλ (lc(γ))−1 , λi := λ, gi := γ, h := h− ciλigi.

Else
%% T(h) ∈ N(I)
g := g + M(h), h := h −M(h)
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Definition 21. For any (left, right, bilateral, restricted) module I ⊂ Rm, the order
module N(I) := T (m) \ T{I} is called the escalier of I.

We easily obtain the notion, the properties and the computational algorithm (Fig-
ure 1 and Remark 25 ) of (left, right, bilateral, restricted) canonical forms:

Lemma 22. (cf. [31, Lemma 22.2.12]) Let I ⊂ Rm be a (left, right, bilateral, restricted)
module. If R = K is a skew field and denoting A the (left, right, bilateral, restricted)
module A := Rm/I it holds

1. Rm � I ⊕ K[N(I)];

2. A � K[N(I)];

3. for each f ∈ Rm, there is a unique

g := Can( f , I) =
∑

t∈N(I)

γ( f , t, <)t ∈ K[N(I)]

such that f − g ∈ I.

Moreover:

(a) Can( f1, I) = Can( f2, I) ⇐⇒ f1 − f2 ∈ I;

(b) Can( f , I) = 0 ⇐⇒ f ∈ I.

4. For each f ∈ Rm, f − Can( f , I) has a (left, right, bilateral, restricted) strong
Gröbner representation in terms of any Gröbner basis.

Definition 23. (cf. [31, Definition 22.2.13]) For each f ∈ Rm the unique element

g := Can( f , I) ∈ K[N(I)]

such that f − g ∈ I will be called the (left, right, bilateral, restricted) canonical form of
f w.r.t. I. ut

Corollary 24. (cf. [31, Corollary 22.3.14]) If R = K is a skew field, there is a unique
set G ⊂ I such that

– T{G} is an irredundant basis of T(I);

– for each g ∈ G, lc(g) = 1;

– for each g ∈ G, g = T(g) − Can(T(g), I).

G is called the (left, right, bilateral, restricted) reduced Gröbner basis of I. ut

Remark 25. As regards Figure 1, we remark that the corresponding algorithm in the
right, bilateral and restricted cases can be obtained from the one stated above via trivial
modifications. The only nontrivial part is the one marked with • in the algorithm, which
respectively becomes:

• Left: i := i + 1, ci := lc(h)αλ (lc(γ))−1 , λi := λ, gi := γ, h := h − ciλigi;
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• Right: i := i + 1, di := α−1
T(γ)

(
lc(h) lc(γ)−1

)
, ρi := ρ, gi := γ, h := h − gi ? diρi;

• Bilateral: i := i + 1, ci := lc(h)αλ (lc(γ))−1 , λi := λ, ρi := ρ, gi := γ, h :=
h − ciλi ? gi ? ρi;

• Restricted: i := i + 1, ci := lc(h) lc(γ)−1, ρi := ρ, gi := γ, h := h − cigi ? ρi.

Note that the algorithm described for right canonical forms is assuming that each
αi is an automorphism; alternatively we can assume that R is given as a right R-module
in which case the theory can be developed symmetrically.

3 Szekeres Theory
In this section, R is a non necessarily commutative domain and R a multivariate Ore
extension.

Let I ⊂ Rm be a (left, bilateral) module; if we denote for each τ ∈ T (m), Iτ the
additive group

Iτ := {lc( f ) : f ∈ I,T( f ) = τ} ∪ {0} ⊂ R,

I := {Iτ : τ ∈ T (m)} and, for each ideal a ⊂ R , Ta and La the sets

Ta := {τ ∈ T (m) : Iτ ⊇ a} ⊂ T (m) and La := {τ ∈ T (m) : Iτ = a} ⊂ T (m),

we have

1. for each τ ∈ T (m), Iτ ⊂ R is a left ideal;

2. for each ideals a, b ⊂ R, a ⊂ b =⇒ Ta ⊃ Tb;

3. Ta =
⊔
b⊇a

Lb, La = Ta \
⋃
b%a

Tb;

4. for terms τ, ω ∈ T (m), τ | ω =⇒ Iτ ⊂ Iω;

5. for each ideal a ⊂ R, Ta ⊂ T (m) is a semigroup module. ut

If R is a skew field, the situation is quite trivial: for any ideal I we have

I = {(0),R},TR = LR = T(I),T(0) = T (m), L(0) = T (m) \ T(I).

Szekeres notation is related with a pre-Buchberger construction of “canonical” ide-
als for the case of polynomial rings R[Y1, . . . ,Yn] over a PID R.

In connection recall that [14, 15] a not necessarily commutative ring R is called a
(left, right, bilateral) Bézout ring if every finitely generated (left, right, bilateral) ideal
is principal and is called a Bézout domain if it is both a Bézout ring and is a domain,
and remark that, if R is a noetherian (left, bilateral) Bézout ring, then for each τ ∈ T (m),
there is a value cτ ∈ R satisfying Iτ = I(cτ).
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Definition 26. With the present notation, we call Szekeres ideal each ideal Iτ ⊂ R,
Szekeres level each set La ⊂ T (m) and Szekeres semigroup each semigroup Ta ⊂ T (m).

Finally, if R is a noetherian left Bézout ring we call Szekeres generator each value
cτ ∈ R satisfying Iτ = IL(cτ).

Note that if R is a noetherian Bézout ring, we have,

ω | τ =⇒ cτ |L αλ(cω) for each λ, ρ ∈ T s.t. τ = λ ◦ ω ◦ ρ.

Proposition 27 (Szekeres). [51] Let R be a noetherian left Bézout ring and I ⊂ Rm be
a (left, bilateral) module. Denote

T :=
{
τ ∈ T (m) s.t. cτ < I(αλ(cω), ω ∈ T (m), λ, ρ ∈ T , τ = λ ◦ ω ◦ ρ)

}
⊂ T (m)

and fix, for each τ ∈ T, any element fτ ∈ I such that2 M( fτ) = cττ.
Then the basis S w := { fτ s.t. τ ∈ T} is a left/bilateral weak Gröbner basis of I.

Proof. For each f ∈ I, denoting τ := T( f ) we have lc( f ) ∈ IL(cτ) and lc( f ) = dcτ for
suitable d ∈ R \ {0}. Thus if τ ∈ T we have M( f ) = dM( fτ); if, instead, τ < T there
are suitable di, ∈ R \ {0}, ωi ∈ T ⊂ T (m), λi, ρi ∈ T for which λi ◦ ωi ◦ ρi = τ and
cτ =

∑
i diαλi (cωi ) so that

M( f ) = dcττ = d

∑
i

diαλi (cωi )λi ◦ ωi ◦ ρi


=

∑
i

(ddiλi) ·
(
cωiωi

)
· ρi

=
∑

i

(ddiλi) ∗M( fωi ) ∗ ρi.

ut

Remark 28. Remark that in the case in which each endomorphism ατ, τ ∈ T
(m), is an

automorphism, we can consider also right modules I to which we can associate

Iτ = {lc( f ) : f ∈ I,T( f ) = τ} ∪ {0}

which are right ideals themselves; in fact if we represent f ∈ Rm as (see Remark 3)
f =

∑n
i=1 Y iāi and we denote τI the right ideal

τI := {c ∈ R : τc ∈M{I}} ∪ {0} ⊂ R

then Iτ is the right ideal ατ(τI).
However, in this setting, Szekeres Theory can be built more easily by considering

the ideals τI obtained through the right representation of Remark 3 and adapting to
them the results reported above.

Remark that if an endomorphism ατ is not invertible, in general Iτ is not an ideal
but just an additive group.

Finally note that for restricted modules, one applies verbatim, the classical Szek-
eres theory and substitute in the results above each instance of αλ(cω), τ = λ ◦ ω ◦ ρ
with cω, τ = ω ◦ ρ. ut

2Of course for the extreme case Iτ = (0) so that cτ = 0, we have fτ := 0.
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Example 29. In the Ore extension

R := R[Y;α],R = Z2[x] where α : R→ R : x 7→ x2

we can consider, as a left module, the two-sided ideal I2(x) = IL{xY i : i ∈ N}; we thus
have

Iτ = I(x) ⊂ R for each τ ∈ {Y i, i ≥ 0},

so that, setting a := I(x) ⊂ R, it holds I = {a},Ta = La = {Y i : i ∈ N}, and S w = {xY i :
i ∈ N} is both a weak and a strong Gröbner basis of IL(x).

For the right ideal IR(xY) the sets Iτ are not ideals; we have, e.g.

IY i = {xφ(xei
)|φ(x) ∈ Z2[x]}.

4 Zacharias canonical representation
Let R,R be two rings such that R is also a left R-module.
Following Zacharias approach to Buchberger Theory [54], if each module I ⊂ Rm

has a groebnerian property, necessarily the same property must be satisfied at least
by the modules I ⊂ Rm ⊂ Rm and thus such property in Rm can be used to devise
a procedure granting the same property in Rm. The most elementary application of
Zacharias approach is the generalization of the property of canonical forms from the
case in which R = K is a skew field to the general case: all we need is an effective
notion of canonical forms for modules in R:

Definition 30 (Zacharias). [54] A ring R is said to have canonical representatives if
there is an algorithm which, given an element c ∈ Rm and a (left, bilateral, right) module
J ⊂ Rm, computes a unique element Rep(c, J) such that

– c − Rep(c, J) ∈ J,

– Rep(c, J) = 0 ⇐⇒ c ∈ J.

The set
Rep(J) := {Rep(c, J) : c ∈ Rm} � Rm/J

is called the canonical Zacharias representation of the module Rm/J. ut

Remark that, for each c, d ∈ Rm and each module J ⊂ Rm, we have

c − d ∈ J ⇐⇒ Rep(c, J) = Rep(d, J).

Using Szekeres notation for a (left, right, bilateral) module I ⊂ Rm we obtain

– the partition T (m) = L(I) t R(I) t N(I) of T (m) where

– N(I) := L(0) = {ω ∈ T (m) : Iω = (0)},

– L(I) := LR = {ω ∈ T (m) : Iω = R},

– R(I) :=
{
ω ∈ T (m) : Iω < {(0),R}

}
;
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– the canonical Zacharias representation

Rep(I) :=
{
Rep(c, I) : c ∈ Rm

}
=

⊕
a∈I

⊕
τ∈La

Rep(a)τ

=
⊕
τ∈T (m)

Rep(Iτ)τ � Rm/I

of the module Rm/I.

If R has canonical representatives and there is an algorithm (cf. Definition 40 (c),
(e)) which, given an element c ∈ Rm and a (left, right, bilateral) module J ⊂ Rm com-
putes the unique canonical representative Rep(c, J), an easy adaptation of Figure 1
allows to extend, from the field coefficients case to the Zacharias ring [54, 32] coeffi-
cients case, the notion of canonical forms, the algorithm (Figure 2 and Remark 32) for
computing them and their characterizing properties:

Lemma 31. If R has canonical representatives, also R has canonical representatives.
With the present notation and denoting, for a (left, right, bilateral) module I ⊂ Rm,

A the (left, right, bilateral) module A := Rm/I it holds:

1. Rm � I ⊕ Rep(I);

2. A � Rep(I);

3. for each f ∈ Rm, there is a unique (left, right, bilateral) canonical form of f

g := Can( f , I) =
∑
a∈I

∑
τ∈La

γ( f , τ, I, <)τ ∈ Rep(I), γ( f , τ, I, <) ∈ Rep(Iτ),

such that

– f − g ∈ I,

– γ( f , τ, I, <) = Rep(γ( f , τ, I, <), Iτ) ∈ Rep(Iτ), for each τ ∈ T (m).

Moreover:

(a) Can( f1, I) = Can( f2, I) ⇐⇒ f1 − f2 ∈ I;

(b) Can( f , I) = 0 ⇐⇒ f ∈ I;

4. for each f ∈ Rm, f −Can( f , I) has a (left, right, bilateral) (weak, strong) Gröbner
representation in terms of any (weak, strong) Gröbner basis. ut

Remark 32. As regards Figure 2, we remark that the corresponding algorithm in the
right and bilateral cases can be obtained from the one stated above via trivial modi-
fications. The only nontrivial part is the one marked with • in the algorithm, which
respectively becomes:

• Left: c − γ =
∑ν

i=µ+1 aiαλi (lc(gi)), T(g) = λi ◦ T(gi), µ < i ≤ ν, h := h −∑ν
i=µ+1 aiλi ? gi, µ := ν;
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Figure 2: Canonical Form Algorithms

(g,
∑µ

i=1 aiλi ? gi) := LeftCanonicalForm( f , F)

where

R := R[T ], R a ring with canonical representatives,
f ∈ Rm, F is the left Gröbner basis of the left module I ⊂ Rm,
g := Can( f , I) ∈ Rep(I), ai ∈ R \ {0}, λi ∈ T , gi ∈ F,
f − g =

∑µ
i=1 aiλi ? gi is a left weak Gröbner representation in terms of F,

h := f , µ := 0, g := 0

While h , 0 do

Let cτ := M(h), γ := Rep(c, Iτ)
h := h − γτ, g := g + γτ,
If c , γ, let gi ∈ F, λi ∈ T , ai ∈ R \ {0} :
• c − γ =

∑ν
i=µ+1 aiαλi (lc(gi)), T(g) = λi ◦ T(gi), µ < i ≤ ν, h := h −∑ν

i=µ+1 aiλi ? gi, µ := ν

• Right: c − γ =
∑ν

i=µ+1 lc(gi)bi, T(g) = T(gi) ◦ ρi, µ < i ≤ ν, h := h −
∑ν

i=µ+1 gi ?

α−1
T(gi)

(bi)ρi, µ := ν;

• Bilateral: c − γ =
∑ν

i=µ+1 aiαλi (lc(gi)), T(g) = λi ◦ T(gi) ◦ ρi, µ < i ≤ ν, h :=
h −

∑ν
i=µ+1 aiλi ? gi ? ρi, µ := ν.

5 Möller’s Lifting Theorem
Let R be a not necessarily commutative domain and R be a multivariate Ore extension.

5.1 Valuation
5.1.1 Left (right) case

The validity of Corollary 15 allows to intoduce the groebnerian terminology and, as in
the standard theory of commutative polynomial rings over a field [31, § 21.1-2] or a
Zacharias ring [54], the ability of imposing a T (m)-valuation on modules over R and its
associated graded Ore extension S := G(R) (see Remark 10).

The only twist w.r.t. the classical theory is that there the ring was coinciding with
its associated graded ring; here they coincide as sets and as left R-modules, but as rings
have two different multiplications.

Consequently, denoting by ? the one of R and by ∗ the one of S, given a finite basis

F := {g1, . . . , gu} ⊂ Rm, gi = M(gi) − pi =: ciτieli − pi,

25



with respect to the module M := IL(F) ⊂ Rm we need to consider the morphisms

sL : Su → Sm : sL

 u∑
i=1

hiei

 :=
u∑

i=1

hi ∗M(gi),

SL : Ru → M ⊂ Rm : SL

 u∑
i=1

hiei

 :=
u∑

i=1

hi ? gi,

where the symbols {e1, . . . , eu} denote the common canonical basis of Su and Ru which,
as R-modules, coincide.

We can then consider

– the T (m)-valuation v : Ru → T (m) defined, for each σ :=
∑u

i=1 hiei ∈ Ru \ {0}, by

v(σ) := max
<
{T(hi ? gi)} = max

<
{T≺(hi) ◦ T<(gi)} = max

<
{T≺(hi) ◦ τieli } =: δε

under which we further have Su = G(Ru);

– the corresponding leading form LL(σ) :=
∑

h∈H M(hh)eh ∈ Su – which is T (m)-
homogeneous of T (m)-degree v(σ) = δε – where

H :=
{
j : T<(h j ? g j) = T≺(h j) ◦ τ jel j = δε = v(σ)

}
.

For each set S ⊂ Ru, we denote LL{S } := {LL(g) : g ∈ S } ⊂ Su.

5.1.2 Bilateral case

Considering R as a left R-module, the adaptation of Möller lifting theorem to the bilat-
eral case requires a few elementary adaptations; given a finite set

F := {g1, . . . , gu} ⊂ Rm, gi = M(gi) − pi =: ciτieli − pi,

and the bilateral module M := I2(F), denote

R̂ := {a ∈ R : ah = a ? h = h ? a, for each h ∈ R}

the commutative subring R̂ ⊂ R of R consisting of the elements belonging to the center
of R and remark that the subring of R generated by 1R is a subring of R̂ and that R̂ is
also a subring of the center of the associated graded Ore extension S of R.

Considering both the R-bimodule R ⊗R̂ Rop and the S-bimodule S ⊗R̂ Sop, which,
as sets, coincide, we impose on the bilateral R-module

(
R ⊗R̂ Rop)u, whose canonical

basis is denoted {e1, . . . , eu} and whose generic element has the shape∑
i

aiλie`i biρi, ai, bi ∈ R \ {0}, λi, ρi ∈ T , 1 ≤ `i ≤ u,

the T (m)-graded structure given by the valuation v :
(
R ⊗R̂ Rop)u

→ T as

v(σ) := max
<
{T(λi ? g`i ? ρi)} = max

<
{λi ∗ T(g`i ) ∗ ρi} = max

<
{λi ◦ τ`i ◦ ρiel`i } =: δε
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for each
σ :=

∑
i

aiλie`i biρi ∈
(
R ⊗R̂ Rop)u

\ {0}

so that
G

((
R ⊗R̂ Rop)u)

=
(
G

(
R ⊗R̂ Rop))u

=
(
S ⊗R̂ Sop)u

and its corresponding T (m)-homogeneous leading form is

L2(σ) :=
∑
h∈H

ahλhe`h bhρh ∈
(
S ⊗R̂ Sop)u

where H := { j : λ j ◦ τ` j ◦ ρ jel` j
= v(σ) = δε}; we also denote, for each set S ⊂(

R ⊗R̂ Rop)u,
L2{S } := {L2(g) : g ∈ S } ⊂

(
S ⊗R̂ Sop)u .

We can therefore consider the morphisms

s2 :
(
S ⊗R̂ Sop)u

→ Sm : s2

∑
i

aiλie`i biρi

 :=
∑

i

aiλi ∗M(g`i ) ∗ biρi,

S2 :
(
R ⊗R̂ Rop)u

→ Rm : S2

∑
i

aiλie`i biρi

 :=
∑

i

aiλi ? g`i ? biρi.

5.1.3 Restricted case

In order to deal with restricted modules, we need simply to adapt and simplify the
bilateral case.

Thus, we consider both the left R-modules R ⊗ Rop and R ⊗ Sop, which, as sets,
coincide, we impose on the bilateral R-module (R ⊗ Rop)u, whose canonical basis is
denoted {e1, . . . , eu} and whose generic element has the shape∑

i

aie`iρi, ai ∈ R \ {0}, ρi ∈ T , 1 ≤ `i ≤ u,

the T (m)-graded structure given by the valuation v : (R ⊗ Rop)u → T as

v(σ) := max
<
{T(g`i ? ρi)} = max

<
{T(g`i ) ∗ ρi} = max

<
{τ`i ◦ ρiel`i } =: δε

for each
σ :=

∑
i

aie`iρi ∈
(
R ⊗R̂ Rop)u

\ {0}

so that
G

((
R ⊗ Rop)u)

=
(
G

(
R ⊗ Rop))u

=
(
R ⊗ Sop)u

and its corresponding T (m)-homogeneous leading form is

LW (σ) :=
∑
h∈H

ahe`hρh ∈
(
R ⊗ Sop)u
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where H := { j : τ` j ◦ ρ jel` j
= v(σ) = δε}; we also denote, for each set S ⊂ (R ⊗ Rop)u,

LW {S } := {LW (g) : g ∈ S } ⊂
(
R ⊗ Sop)u .

We can therefore consider the morphisms

sW :
(
R ⊗ Sop)u

→ Sm : sW

∑
i

aie`iρi

 :=
∑

i

aiM(g`i ) ∗ ρi,

SW :
(
R ⊗ Rop)u

→ Rm : SW

∑
i

aie`iρi

 :=
∑

i

aig`i ? ρi.

5.2 Lifting Theorem
Definition 33. With the notation above

– for a (left, right, bilateral, restricted) R-module N, a set B ⊂ N is called a (left,
right, bilateral, restricted) standard basis if

I(L{B}) = I(L{N});

– for each h ∈ N a representation

h =
∑

i

li ? gi : li ∈ R, gi ∈ B,

is called a left standard representation in R in terms of B iff

v(h) ≥ v(li ? gi) = T(li) ◦ T(gi) for each i;

– for each h ∈ N a representation

h =
∑

i

gi ? ri : ri ∈ R, gi ∈ B,

is called a right standard representation in R in terms of B iff

v(h) ≥ v(gi ? ri) = T(gi) ◦ T(ri) for each i;

– for each h ∈ N a representation

h =
∑

i

aiλi ? g`i ? biρi : ai, bi ∈ R \ {0}, λi, ρi ∈ T , g`i ∈ B,

is called a bilateral standard representation in R in terms of B iff

v(h) ≥ v(λi ? g`i ? ρi) = λi ◦ v(g`i ) ◦ ρi, for each i;
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– for each h ∈ N a representation

h =
∑

i

aig`i ? ρi : ai ∈ R \ {0}, ρi ∈ T , g`i ∈ B,

is called a restricted standard representation in R in terms of B iff

v(h) ≥ v(g`i ? ρi) = v(g`i ) ◦ ρi, for each i;

– if u ∈ ker(s) is T (m)-homogeneous and U ∈ ker(S) is such that u = L(U), we
say that u lifts to U, or U is a lifting of u, or simply u has a lifting;

– a (left, right, bilateral, restricted) Gebauer–Möller set for B is anyT (m)-homogeneous
basis of ker(s);

– for each T (m)-homogeneous element σ ∈ Ru, we say that SL(σ) has a left quasi-
Gröbner representation in terms of B if it can be written as SL(σ) =

∑u
i=1 li ? gi

with v(σ) > T(li ? gi) = T(li) ◦ T(gi) for each i.

– for each T (m)-homogeneous element σ ∈ Ru, we say that SR(σ) has a right
quasi-Gröbner representation in terms of B if it can be written as SR(σ) =∑u

i=1 gi ? ri with v(σ) > T(gi ? ri) = T(gi) ◦ T(ri) for each i.

– for each T (m)-homogeneous element σ ∈
(
R ⊗R̂ Rop)u, we say that S2(σ) has a

bilateral quasi-Gröbner representation in terms of B if it can be written as

S2(σ) =
∑

i

aiλi ? g`i ? biρi : ai, bi ∈ R \ {0}, λi, ρi ∈ T , g`i ∈ B

with v(σ) > λi ◦ T(g`i ) ◦ ρi for each i.

– for each T (m)-homogeneous element σ ∈
(
R ⊗R̂ Rop)u, we say that SW (σ) has a

restricted quasi-Gröbner representation in terms of B if it can be written as

SW (σ) =
∑

i

aig`i ? ρi : ai ∈ R \ {0}, ρi ∈ T , g`i ∈ B

with v(σ) > T(g`i ) ◦ ρi for each i. ut

Remark 34. Note that each left Gröbner representation of SL(σ) in terms of B gives
also a left quasi-Gröbner representation since T(li) ◦ T(gi) ≤ T(SL(σ)) < v(σ); on the
other side, a left quasi-Gröbner representation grants only T(li) ◦ T(gi) < v(σ) but not
necessarily T(li) ◦ T(gi) ≤ T(SL(σ)), since in principle we could have T(SL(σ)) <
T(li) ◦T(gi) < v(σ) so that we don’t necessarily obtain a left Gröbner representation of
the S-polynomial SL(σ).

This relaxation was introduced by Gebauer and Möller in their reformulation of
Buchberger Theory for polynomial rings over a field [19]; in that setting, it allowed
to better remove useless S-pairs and thus granted a more efficient reformulation of the
algorithm; in the more general setting we are considering now, viz polynomials over
rings, it becomes essential also for a smooth reformulation of the theory.

ut
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Remark 35. Observe that if σ :=
∑u

j=1 h je j ∈ ker(SL) then denoting

δε := v(σ) and H :=
{
j, 1 ≤ j ≤ u : T(h j) ◦ T(g j) = δε

}
,

its leading form LL(σ) :=
∑u

j=1 d jλ je j ∈ Su is T (m)-homogeneous of T (m)-degree
v(σ) := δε ∈ T (m), satisfies

– 0 , d j ⇐⇒ j ∈ H and M(h j) = d jλ j,

–
∑u

j=1 d jλ j ∗M(g j) =
∑

j∈H(d jλ j) ∗ (c jτ jel j ) =
(∑

j∈H

(
d jαλ j (c j)

)
·
(
λ jτ j

))
ε = 0,

–
∑

j∈H d jαλ j (lc(g j)) = 0 and λ j ◦ T(g j) = δε for each j ∈ H , so that in particular

– ε = el j for each j ∈ H,

and belongs to ker(sL).

Adapting Remarks 34 and 35 as done for Definition 33, one can obtain the analo-
gous remarks for the right, bilateral and restricted case.

Theorem 36 (Möller-Pritchard; Lifting Theorem). [35]
With the present notation and denotingGM(F) any Gebauer–Möller set for F ⊂ R,

the following conditions are equivalent:

1. F is a Gröbner basis of I(F);

2. f ∈ I(F) ⇐⇒ f has a Gröbner representation in terms of F;

3. for each σ ∈ GM(F), the S-polynomial S(σ) has a quasi-Gröbner representa-
tion;

4. each σ ∈ GM(F) has a lifting lift(σ);

5. each T (m)-homogeneous element u ∈ ker(s) has a lifting lift(u).

Proof.
We prove the statement only in the bilateral case, leaving to the reader the adapta-

tions to the right, left and restricted cases.

(1) =⇒ (2) Let f ∈ I(F); by assumption

M( f ) =

µ∑
i=1

aiλi ∗M(g`i ) ∗ biρi

where
∑µ

i=1 aiλie`i biρi ∈
(
S ⊗R̂ Sop)u is T (m)-homogeneous of T (m)-degree T( f ).

Therefore g := f −
∑µ

i=1 aiλi ? g`i ? biρi ∈ I(F) and T(g) < T( f ).

Thus, the claim follows by induction since < is a well-ordering.

(2) =⇒ (3) S2(σ) ∈ I(F) and T(S2(σ)) < v(σ).
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(3) =⇒ (4) Let

S2(σ) =

µ∑
i=1

aiλi ? g`i ? biρi, v(σ) > λi ◦ τ`i ◦ ρiel`i

be a bilateral quasi-Gröbner representation in terms of F; then

lift(σ) := σ −

µ∑
i=1

aiλie`i biρi

is the required lifting of σ.

(4) =⇒ (5) Let u :=
∑

i aiλie`i biρi ∈
(
S ⊗R̂ Sop)u , λi ◦ τ`i ◦ ρiel`i = v(u), be a T (m)-

homogeneous element in ker(s2) of T (m)-degree v(u).

Then there are λσ, ρσ ∈ T , aσ, bσ ∈ R \ {0}, for which

u =
∑

σ∈GM(F)

aσλσ ∗ σ ∗ bσρσ, λσ ◦ v(σ) ◦ ρσ = v(u).

For each σ ∈ GM(F) denote

σ̄ := σ − lift(σ) = L2(lift(σ)) − lift(σ) :=
µσ∑
i=1

aiσλiσe`iσbiσρiσ ∈
(
R ⊗R̂ Rop)u

and remark that λiσ ◦ τ`iσ ◦ ρiσel`iσ ≤ v(σ̄) < v(σ) and S2(σ̄) = S2(σ).

It is sufficient to define

lift(u) :=
∑

σ∈GM(F)

aσλσ ? lift(σ) ? bσρσ, and ū :=
∑

σ∈GM(F)

aσλσ ? σ̄ ? bσρσ

to obtain

lift(u) = u − ū,L2(lift(u)) = u,S2(ū) = S2(u),S2(lift(u)) = 0.

(5) =⇒ (1) Let g ∈ I(F), so that there are λi, ρi ∈ T , ai, bi ∈ R \ {0}, 1 ≤ `i ≤ u, such
that σ1 :=

∑µ
i=1 aiλie`i biρi ∈

(
R ⊗R̂ Rop)u satisfies

g = S2(σ1) =

µ∑
i=1

aiλi ? g`i ? biρi.

Denoting H := {i : λi ◦ T(g`i ) ◦ ρi = λi ◦ τ`i ◦ ρiel`i = v(σ1)}, then either

– v(σ1) = T(g) so that, for each i ∈ H, M(aiλi ? M(g`i ) ? biρi) = aiλi ∗

M(g`i ) ∗ biρi and

M(g) =
∑
i∈H

aiλi ∗M(g`i ) ∗ biρi ∈M{I2(M{F})},

and we are through, or
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– T(g) < v(σ1), in which case 0 =
∑

i∈H aiλi ∗M(g`i ) ∗ biρi = s2(L2(σ1)) and
the T (m)-homogeneous element L2(σ1) ∈ ker(s2) has a lifting

U := L2(σ1) −
ν∑

j=1

a jλ je` j b jρ j ∈
(
R ⊗R̂ Rop)u

with
ν∑

j=1

a jλ j ? g` j ? b jρ j =
∑
i∈H

aiλi ? g`i ? biρi and λ j ◦ τ` j ◦ ρ jel` j
< v(σ1)

so that g = S2(σ2) and v(σ2) < v(σ1) holds for

σ2 :=
∑
i<H

aiλie`i biρi +

ν∑
j=1

a jλ je` j b jρ j ∈
(
R ⊗R̂ Rop)u

and the claim follows by the well-orlderedness of <.
ut

Theorem 37 (Janet—Schreyer). [20, 47, 48]
With the same notation the equivalent conditions (1-5) imply that

6. {lift(σ) : σ ∈ GM(F)} is a standard basis of ker(S).

Proof. (4) =⇒ (6) Let σ1 :=
∑µ

i=1 aiλie`i biρi ∈ ker(S2) ⊂
(
R ⊗R̂ Rop)u .

Denoting H := {i : λi ◦ τ`i ◦ ρiel`i = v(σ1)}, we have

L2(σ1) =
∑
i∈H

aiλie`i biρi ∈ ker(s2)

and there is a T (m)-homogeneous representation

L2(σ1) =
∑

σ∈GM(F)

aσλσ ∗ σ ∗ bσρσ, λσ ◦ v(σ) ◦ ρ = v(σ1)

with λσ, ρσ ∈ T , aσ, bσ ∈ R \ {0}.

Then

σ2 := σ1 −
∑

σ∈GM(F)

aσλσ ? lift(σ) ? bσρσ

= σ1 −
∑

σ∈GM(F)

aσλσ ? (σ − σ̄) ? bσρσ

= σ1 − L2(σ1) +
∑

σ∈GM(F)

aσλσ ? σ̄ ? bσρσ

=
∑
i<H

aiλie`i biρi

+
∑

σ∈GM(F)

µσ∑
i=1

((
aσαλσ (aiσ)

)
· (λσ ◦ λiσ)

)
e`iσ

((
biσαρiσ (bσ)

)
· (ρiσ ◦ ρσ)

)
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satisfies both σ2 ∈ ker(S2) and v(σ2) < v(σ1); thus the claim follows by induc-
tion.

ut

Example 38. Let us consider the ring of Example 17 and three elements f1, f2, f3 ∈ R
with

M( f1) = (5x − 1)Y1Y2
2 Y2

3 ,M( f2) = (5x − 1)Y2
1 Y2Y2

3 ,M( f3) = (5x − 1)Y2
1 Y2

2 Y3.

Under the natural T -pseudovaluation on R3, an element

σ :=
(
αYα1

1 Yα2
2 Yα3

3 , βYβ1
1 Yβ2

2 Yβ3
3 , γYγ1

1 Yγ2
2 Yγ3

3

)
∈ S3 (7)

is homogeneous of T -degree Ya+2
1 Yb+2

2 Yc+2
3 iff

α1 − 1 = β1 = γ1 =: a, α2 = β2 − 1 = γ2 =: b, α3 = β3 = γ3 − 1 =: c.

Let us now specialize ourselves to the case a = b = c = 0 and consider the Z[x]-
module of the homogeneous syzygies of T -degree Y2

1 Y2
2 Y2

3 ; setting y = 5x, (7) is a
syzygy in ker(sL) iff

0 = sL(σ)
= αY1 ∗M( f1) + βY2 ∗M( f2) + γY3 ∗M( f3)
=

(
α(y2 − 1) + β(y3 − 1) + γ(y4 − 1)

)
Y2

1 Y2
2 Y2

3 .

A minimal left Gebauer-Möller set consists of

σ1 := (−(y2 + y + 1)Y1, (y + 1)Y2, 0) and σ2 := (−(y2 + 1)Y1, 0,Y3).

In fact a generic syzygy (7) satisfies

α(y + 1) + β(y2 + y + 1) + γ(y2 + 1)(y + 1) = 0

so that (y+1) | β and setting β = (y+1)δ we have α = −δ(y2 +y+1)−γ(y2 +1) whence

σ :=
((
−δ(y2 + y + 1) − γ(y2 + 1)

)
Y1, (y + 1)δY2, γY3

)
= δσ1 + γσ2.

Remark 39. We can consider also the homogeneous syzygy of T -degree Y2
1 Y2

2 Y2
3

σ3 := (0,−(y2 + 1)(y + 1)Y2, (y2 + y + 1)Y3) = −(y2 + 1)σ1 + (y2 + y + 1)σ2.

Moreover, since

1 = (y2 + y + 1) − y(y + 1) = (y3 + y2 + y + 1) − y(y2 + y + 1)

setting
ςA := (−yY1,Y2, 0) ∈ S3, ςB := (0,−yY2,Y3) ∈ S3

we have
sL(ςA) = sL(ςB) = (y − 1)Y2

1 Y2
2 Y2

3 ;

note that
ςA − ςB := (−yY1, (y + 1)Y2,−Y3) = σ1 − σ2 ∈ ker(sL).

ut
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Example 38 (cont.). Setting now τ := Ya
1 Yb

2 Yc
3 and z := y2a3b4c

, for the syzygy (7) we
have

0 = sL(σ)
= ατY1 ∗M( f1) + βτY2 ∗M( f2) + γτY3 ∗M( f3)
=

(
ατ ∗ (y2 − 1) + βτ ∗ (y3 − 1) + γτ ∗ (y4 − 1)

)
Y2

1 Y2
2 Y2

3 .

=
(
α(z2 − 1) + β(z3 − 1) + γ(z4 − 1)

)
Y2

1 Y2
2 Y2

3τ

whence
α = −δ(z2 + z + 1) − γ(z2 + 1), β = (z + 1)δ

and
σ := δτ ∗ σ1 + γτ ∗ σ2.

Thus, {σ1, σ2} is a minimal basis of ker(sL).

6 Gröbner basis Computation for Multivariate Ore Ex-
tensions of Zacharias Domains

We recall the definition of Zacharias ring [54], [31, §26.1], [32].

Definition 40. A ring R with identity is called a (left) Zacharias ring if it satisfies the
following properties:

(a). R is a noetherian ring;

(b). there is an algorithm which, for each c ∈ Rm, C := {c1, . . . ct} ⊂ Rm \ {0}, allows
to decide whether c ∈ IL(C) in which case it produces elements di ∈ R : c =∑t

i=1 dici;

(c). there is an algorithm which, given {c1, . . . ct} ⊂ Rm \ {0}, computes a finite set of
generators for the left syzygy R-module

{
(d1, · · · , dt) ∈ Rt :

∑t
i=1 dici = 0

}
.

Note that [35] for a ring R with identity which satisfies (a) and (b), (c) is equivalent
to

(d). there is an algorithm which, given {c1, . . . cs} ⊂ Rm \ {0}, computes a finite basis
of the ideal

IL({ci : 1 ≤ i < s}) : IL(cs).

If R has canonical representatives, we improve the computational assumptions of
Zacharias rings, requiring also the following property:

(e). there is an algorithm which, given an element c ∈ Rm and a left module J ⊂ Rm,
computes the unique canonical representative Rep(c, J). ut

If R is a left Zacharias domain, the three algorithms proposed by Möller [35] for
computing Gröbner bases in the polynomial ring over R can be easily adapted to multi-
variate Ore extensions of Zacharias domains, provided that each αi, and therefore each
ατ, is an automorphism.
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6.1 First algorithm
Still considering a finite basis

F := {g1, . . . , gu} ⊂ Rm, gi = M(gi) − pi =: ciτieli − pi,

of the module M := IL(F) and denoting

– H(F) := {{i1, i2, . . . , ir} ⊆ {1, . . . , u} : li1 = · · · = lir };

– for each H := {i1, i2, . . . , ir} ∈ H(F),

– εH := eli1 = · · · = elir ,

– τH := lcm (τi : i ∈ H) ,

– for each I ⊂ H,

– τH,I := τH
τI

,

– αH,I : R→ R the morphism ατH,I ;
3

– T(H) := τHεH ,

and, if R is a PID,

– cH := lcm(αH,i(ci) : i ∈ H),

– µ(H) := cHτH and

– M(H) = cHT(H) = cHτHεH = µ(H)εH;

– T := {T(H) : H ∈ H(F)};

– for any m = δε ∈ T,

– for each i, 1 ≤ i ≤ u, ti(m) :=

 δ
τi

if T(gi) | m,
1 otherwise;

– v(m) = (v(m)1, . . . , v(m)u) ∈ Ru the vector such that

v(m)i :=

αti(m)(lc(gi)) if T(gi) | m,
0 otherwise;

– C(m) ⊂ Ru a finite basis of the syzygy module

SyzL (v(m)1, . . . , v(m)u) :=

(d1, . . . , du) ∈ Ru :
u∑

i=1

div(m)i = 0

 ;

– S (m) := {(d1t1(m), . . . , dutu(m)) : (d1, . . . , du) ∈ C(m)};

– S(F) :=
⋃

m∈T S (m);

– S′(F) ⊂ S(F) any subset satisfying
3If I = {i} we will write αH,i and τH,i instead of αH,I and τH,I .
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– for each σ ∈ S(F) \ S′(F) exist σ j ∈ S
′(F), d j ∈ R, τ j ∈ T , such that

σ =
∑

j d jτ j ∗ σ j;

– R(F) := {
∑

i mi ? gi : (m1, . . . ,mu) ∈ S′(F)} ,

we have that (cf. [35], [31, Theorem 26.1.4])

Lemma 41. S(F) is a left Gebauer–Möller set for F.

Proof. Let us consider a generic T (m)-homogeneus element

σ :=
u∑

i=1

aiλiei ∈ Ru \ {0},

with ai ∈ R, λi ∈ T , v(σ) := τε, and ai , 0 =⇒ λiτi = τ, ε = eli , and assume that it is
a left syzygy in ker(sL).

Denoting I := {i ≤ u : ai , 0} and setting m := δε := lcm{T(gi) : i ∈ I} | v(σ),
there is υ ∈ T : υδ = τ. With the present notation we also have δ = ti(m)τi; thus
υti(m)τi = υδ = λiτi and λi = υti(m). We also have

0 =

u∑
i=1

aiαλi (lc(gi))

so that

0 = α−1
υ

 u∑
i=1

aiαλi (lc(gi))

 =

u∑
i=1

α−1
υ (ai)αti(m)(lc(gi))

and (α−1
υ (a1), . . . , α−1

υ (au)) ∈ SyzL(v(m)1, . . . , v(m)u).
Therefore, if we enumerate as

(d11, . . . , d1u), . . . , (dv1, . . . , dvu)

the elements of a basis of C(m) and we denote s j :=
∑u

i=1 d jiti(m)ei, 1 ≤ j ≤ v, those of
S (m), we have (α−1

υ (a1), . . . , α−1
υ (au)) =

∑v
j=1 b j(d j1, . . . , d ju) for suitable b j ∈ R and

σ =

u∑
i=1

aiλiei

=

u∑
i=1

aiυti(m)ei

=

u∑
i=1

υ ∗ α−1
υ (ai)ti(m)ei

= υ ∗

u∑
i=1

v∑
j=1

b jd jiti(m)ei

=

v∑
j=1

αυ(b j)υ ∗

 u∑
i=1

d jiti(m)ei


=

v∑
j=1

αυ(b j)υ ∗ s j.
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ut

Corollary 42. The following holds:

1. S′(F) is a left Gebauer–Möller set for F.

2. F is a left Gröbner basis of the module it generates iff each h ∈ R(F) has a left
Gröbner representation in terms of F. ut

Example 43. If we consider the ring of Example 17 as a left Z[x]-module endowed
with the Γ-pseudovaluation, Γ = {Ya1

1 Ya2
2 Ya3

3 : (a1, a2, a1) ∈ N3}, we obtain a similar
solution as the one described in Example 38 .

Expressing each M( fi) as M( fi) = lc( fi)T( fi), according Zacharias approach we
need to compute a syzygy basis in Z[x] among αY1 (lc( f1)) = (y2 − 1), αY2 (lc( f2)) =

(y3 − 1) and αY3 (lc( f3)) = (y4 − 1); the natural solutions (−(y2 + y + 1), (y + 1), 0),
(−(y2 − 1), 0, 1) produce σ1 and σ2.

Example 44. Let us now specialize the ring of Example 14 to the case

n = 3, e1 = e2 = e3 = 1, c1 = 20, c2 = 6, c3 = 15,

and let us consider four elements f1, f2, f3, f4 ∈ R with

M( f1) = xY1Y3
2 Y2

3 ,M( f2) = x2Y2
1 Y2Y2

3 ,M( f3) = xY2
1 Y3

2 Y3,M( f4) = xY2
1 Y2

2 Y2
3 .

We have
T = {Y1Y3

2 Y2
3 ,Y

2
1 Y2Y2

3 ,Y
2
1 Y2

2 Y2
3 ,Y

2
1 Y3

2 Y3,Y2
1 Y3

2 Y2
3 },

and
m (t1(m), . . . , t4(m)) v(m)
Y1Y3

2 Y2
3 (1, 0, 0, 0) (x, 0, 0, 0)

Y2
1 Y2Y2

3 (0, 1, 0, 0) (0, x2, 0, 0)
Y2

1 Y2
2 Y2

3 (0,Y2, 0, 1) (0, 62x2, 0, x)
Y2

1 Y3
2 Y3 (0, 0, 1, 0) (0, 0, x, 0)

Y2
1 Y3

2 Y2
3 (Y1,Y2

2 ,Y3,Y2) (20x, 64x2, 15x, 6x),

Denoting

b(1, 3) := (−3Y1, 0, 4Y3, 0),
b(2, 4) := (0,−Y2, 0, 62x),
b(3, 4) := (0, 0,−2Y3, 0, 5Y2)

we have S (Y2
1 Y2

2 Y2
3 ) = {b(2, 4)} and, since

Y2 ∗ b(2, 4) = (0,−Y2
2 , 0, 6

2Y2 ∗ x) = (0,−Y2
2 , 0, 6

3xY2)

we can take S (Y2
1 Y3

2 Y2
3 ) = {b(1, 3),Y2 ∗ b(2, 4), b(3, 4)}; thus

S′ := {b(1, 3), b(2, 4), b(3, 4)}

is the required Gebauer–Möller set. ut
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6.2 Second algorithm
Möller [35] proposed also an (essentially equivalent) alternative computation: for any
s, 1 ≤ s ≤ u, let us consider the syzygy module

Ss :=

(h1, . . . , hs) :
s∑

i=1

hi ? M(gi) = 0

 ⊂ Rs

and let us compute S(F) = Su by inductively extending Ss−1 to Ss, the inductive seed
being S1 = ∅.

A direct application of the property (d) of a Zacharias ring allows to compute a
Gebauer-Möller set via

Definition 45. A subset H ⊂ {1, . . . , s} ∩ H(F), s ≤ u, is said to be

maximal for a term δε ∈ T (m) if H = {i, 1 ≤ i ≤ s : τi | δ, eli = ε},

basic if s ∈ H and H is maximal for T(H).

For a basic subset H ⊂ {1, . . . , s} ∩ H(F), denote H× := H \ {s}.
For any

ds ∈ IL({αH,i(ci) : i ∈ H×}) : IL(αH,s(cs)),

a syzygy associated to H and ds is a T (m)-homogeneous syzygy∑
i∈H×

di
τH

τi
ei + ds

τH

τs
es ∈ Ss

where di ∈ R are suitable elements for which dsαH,s(cs) = −
∑

i∈H× diαH,i(ci). ut

Theorem 46 (Möller). [35] With the present notation, denoting

– {A1, . . . , Aµ} a T (m)-homogeneous basis of Ss−1,

– H the set of all basic subsets H ⊂ {1, . . . , s} ∩ H(F),

– {d1H , . . . , drH H} a basis of the ideal IL({αH,i(ci) s.t. i ∈ H×}) : IL(αH,s(cs)) for
each basic subset H ∈ H ,

– D jH ∈ Rs a syzygy associated to H and d jH , for each basic subset H ∈ H and
each j, 1 ≤ j ≤ rH ,

the set {A1, . . . , Aµ} ∪ {D jH : H ∈ H , 1 ≤ j ≤ rH} is a T (m)-homogeneous basis of Ss.

Proof. Let S := (d1λ1, . . . , dsλs) ∈ Ss, ds , 0, be a T (m)-homogeneous element of
T (m)-degree δε and let

K := {i, 1 ≤ i ≤ s : di , 0};

since by T (m)-homogeneity, τi | δ and eli = ε for each i ∈ K, we have T(K) | δε; we
also have di = 0 for each i < K and λiτi = δ, eli = ε for each i ∈ K.
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For the set H := {i, 1 ≤ i ≤ s : τi | τK , eli = εK} clearly we have τH | τK and K ⊆ H
so that τH | τK | δ; we also have εH = εK = ε. Moreover ds , 0 implies s ∈ K ⊆ H so
that H is basic. Since (d1λ1, . . . , dsλs) ∈ Ss, setting υ := δ

τH
, we have

0 =

s∑
i=1

diλi ∗M(gi) =
∑
i∈H

di
δ

τi
∗ ciτiε =

∑
i∈H

diαλi (ci)

 δε
so that

∑
i∈H diαλi (ci) = 0,

∑
i∈H α

−1
υ (di)αH,i(ci) = 0, whence

α−1
υ (ds)αH,s(cs) ∈ IL(αH,i(ci) : i ∈ H×) and α−1

υ (ds) ∈ IL(αH,i(ci) : i ∈ H×) : IL(αH,s(cs)).

Therefore, for suitable u j, α−1
υ (ds) =

∑rH
j=1 u jd jH and S −

∑rH
j=1 αυ(u j)υ∗D jH ∈ Ss−1.

ut

Example 47. If we consider the ring of Example 17 as a left Z[x]-module endowed
with the Γ-pseudovaluation, Γ = {Ya1

1 Ya2
2 Ya3

3 : (a1, a2, a1) ∈ N3}, we obtain a similar
solution as the one described in Example 38 .

Expressing each M( fi) as M( fi) = lc( fi)T( fi), according Zacharias approach we
need to compute a syzygy bases in Z[x] among αY1 (lc( f1)) = (y2 − 1), αY2 (lc( f2)) =

(y3 − 1) and αY3 (lc( f3)) = (y4 − 1); the natural solutions (−(y2 + y + 1), (y + 1), 0),
(−(y2 + 1), 0, 1) produce σ1 and σ2.

Example 48. In Example 44, the basic elements are the following:

H T(H) fH

s = 1 {1} Y1Y3
2 Y2

3 f1
s = 2 {1} Y1Y3

2 Y2
3 f1

{2} Y2
1 Y2Y2

3 f2
{1, 2} Y2

1 Y3
2 Y2

3 f{1,2} = 4xY2
1 Y3

2 Y2
3 ,

s = 3 {1} Y1Y3
2 Y2

3 f1
{2} Y2

1 Y2Y2
3 f2

{3} Y2
1 Y3

2 Y3 f3
{1, 2, 3} Y2

1 Y3
2 Y2

3 f{1,2,3} = xY2
1 Y3

2 Y2
3 ,

s = 4 {1} Y1Y3
2 Y2

3 f1
{2} Y2

1 Y2Y2
3 f2

{3} Y2
1 Y3

2 Y3 f3
{2, 4} Y2

1 Y2
2 Y2

3 f{2,4} = f4
{1, 2, 3, 4} Y2

1 Y3
2 Y2

3 f{1,2,3,4} = f{1,2,3}.

ut

Corollary 49. Assuming that the Zacharias domain R is a principal ideal domain and
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denoting4, for each i, j, 1 ≤ i < j ≤ u, eli = el j ,

b(i, j) :=
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j}, j(c j)

lcm(τi, τ j)
τ j

e j

−
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j},i(ci)

lcm(τi, τ j)
τi

ei,

B(i, j) :=
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j}, j(c j)

lcm(τi, τ j)
τ j

? g j

−
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j},i(ci)

lcm(τi, τ j)
τi

? gi

we have that {b(i, j) : 1 ≤ i < j ≤ u, eli = el j } is a left Gebauer–Möller set for F, so
that F is a left Gröbner basis of M iff each B(i, j), 1 ≤ i < j ≤ u, eli = el j , has a left
weak Gröbner representation in terms of F. ut

Proof. Since, for any basic subset H ⊂ {1, . . . , s} ∩ H(F) we have

I({α{i,s},i(ci) : i ∈ H×}) : I(α{i,s},s(cs)) =
⊕

(I(α{i,s},i(ci)) : I(α{i,s},s(cs)))

= I

(
lcm(α{i,s},i(ci), α{i,s},s(cs))

α{i,s},s(cs)

)
and b(i, s) is the syzygy associated to {i, s} and lcm(α{i,s},i(ci),α{i,s},s(cs))

α{i,s},s(cs)
. ut

Example 50. In Example 44, we obtain the following redundant Gebauer–Möller set
(see Example 63)

(i, j) lcm
(
α{i, j},i(ci), α{i, j}, j(c j)

)
lcm(τi, τ j) b(i, j)

(1, 2) 64 · 5x2 Y2
1 Y3

2 Y2
3 (−2234xY1, 5Y2

2 , 0, 0)
(1, 3) 60x Y2

1 Y3
2 Y2

3 (−3Y1, 0, 4Y3, 0)
(2, 3) 64 · 5x2 Y2

1 Y3
2 Y2

3 (0, −5Y2
2 , 3324xY3, 0)

(1, 4) 60x Y2
1 Y3

2 Y2
3 (−3Y1, 0, 0, 10Y2)

(2, 4) 62x2 Y2
1 Y2

2 Y2
3 (0, −Y2, 0, 62x)

(3, 4) 30x Y2
1 Y3

2 Y2
3 (0, 0, −2Y3, 5Y2)

ut

Corollary 51. Assuming that the Zacharias domain R is a principal ideal domain and
that each αi is an automorphism denoting, for each i, j, 1 ≤ i < j ≤ u, eli = el j ,

b(i, j) := e jα
−1
τ j

(
lcm(ci, c j)

c j

)
lcm(τi, τ j)

τ j
− eiα

−1
τi

(
lcm(ci, c j)

ci

)
lcm(τi, τ j)

τi

B(i, j) := g j ? α
−1
τ j

(
lcm(ci, c j)

c j

)
lcm(τi, τ j)

τ j
− gi ? α

−1
τi

(
lcm(ci, c j)

ci

)
lcm(τi, τ j)

τi

4Remember that α{i, j}, j = ατ for τ =
lcm(τi ,τ j)

τ j
.
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we have that {b(i, j) : 1 ≤ i < j ≤ u, eli = el j } is a right Gebauer–Möller set for F, so
that F is a right Gröbner basis of M iff each B(i, j), 1 ≤ i < j ≤ u, eli = el j , has a right
weak Gröbner representation in terms of F. ut

6.3 Third algorithm: from weak to strong Gröbner basis
As regards strong Gröbner bases, we consider a left Zacharias PID. In this case, we
have

Definition 52. A set C ⊂ Rm is called a completion of F, if, for each subset H ⊂ H(F)
which is maximal for T(H), it contains an element fH ∈ I(F) which satisfies

1. T( fH) = T(H) = τHεH ,

2. lc( fH) = cH = gcd
(
αH,i(lc(gi)) : i ∈ H

)
,

3. fH has a left Gröbner representation in terms of F.

Algorithm 53 (Möller). A completion of F can be inductively computed by mimicking
the construction of Theorem 46 as follows: the result being trivial if #F = 1, we can
assume to have already obtained a completion C(F×) of F× = {g1, . . . , gs−1}, s ≤ u;
for each maximal subset H ⊂ {1, . . . , s}, if s < H we can take as fH the corresponding
element in C(F×). If instead s ∈ H, then H× is maximal in F× for T(H×) and τH× | τH;
thus there is a corresponding element fH× in C(F×); let us compute the values s, t, d ∈ R
such that

αH,H× (lc( fH× ))s + αH,s(lc(gs))t = gcd(αH,H× (lc( fH× )), αH,s(lc(gs))) = d

and define fH := s τH
τH×

? fH× + t τH
τs
?gs which satisfies M( fH) = dT(H) = dτHεH so that

1. T( fH) = T(H) = τHεH ,

2. lc( fH) = gcd(αH,H× (lc( fH× )), αH,s(lc(gs))) = gcd
(
αH,i(lc(gi)) : i ∈ H

)
= d,

3. it is sufficient to substitute fH× with its left Gröbner representation, to obtain the
required Gröbner representation of fH . ut

Proposition 54 (Möller). With the present notation and under the assumption that R
is a principal ideal domain, the following conditions are equivalent:

1. F is a left Gröbner basis of M;

2. a completion of F is a strong left Gröbner basis of M.

Proof.

(1) =⇒ (2) Let f ∈ M and let f =
∑u

i=1 hi ? gi be a left Gröbner representation;
denoting H := { j : T(h j?g j) = T( f ) =: τε} we have τH | τ, εH = ε. Thus, setting
υ j := τ

τ j
, ω j := τH

τ j
for each j and λ := τ

τH
we have

lc( f ) =
∑

j∈H lc(h j)αυ j (lc(g j))
=

∑
j∈H lc(h j)αλαω j (lc(g j)) ∈ I

(
αλαω j (lc(g j)) : j ∈ H

)
= αλ

(
I
(
αω j (lc(g j)) : j ∈ H

))
= αλ(I(cH))
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so that αλ(lc( fH)) = αλ(cH) | lc( f ) and lc( f ) = dαλ(lc( fH)) with d ∈ R. In
conclusion we have M( f ) = dλ ∗M( fH).

(2) =⇒ (1) Let f ∈ M and let f =
∑

K⊂H(F)
cKτK fK be a strong left Gröbner repre-

sentation of it in terms of a completion of F; it is sufficient to substitute each
fK with a left Gröbner representation of it in terms of F to obtain the required
representation.

ut

Example 55. In Example 38, we finally have (see Remark 39)

f{1,2} = f{1,3} = f{1,2,3} = sL(ςA) = sL(ςB) = (y − 1)Y2
1 Y2

2 Y2
3 .

ut

Example 56. In Example 44 the strong Gröbner basis (see Example 48) is

{ f1, f2, f3, f4, f{1,2,3,4}}

since

gcd(α{1,2},{1}(lc( f1)), α{1,2},2(lc( f2))) = gcd(αY1 (x), αY2
2
(x)) = gcd(20x, 36x) = 4x

gcd(α{1,2,3},{1,2}(lc( f{1,2})), α{1,2,3},3(lc( f3))) = gcd(α1(4x), αY3 (x)) = gcd(4x, 15x) = x.

Similarly, f{2,4} = f4 follows trivially from

gcd(α{2,4},{2}(lc( f2)), α{2,4},4(lc( f4))) = gcd(αY2 (x2), α1(x)) = gcd(36x2, x) = x.

ut

6.4 Useless S-pairs and Gebauer-Möller sets
Let us still assume that the Zacharias domain R is a principal ideal domain and we
will use freely notations as M(i),M(i, j),M(i, j, k), 1 ≤ i, j, k ≤ u, instead of M({i}),
M({i, j}), M({i, j, k}), introduced in 6.1; we can then easily apply to the present setting
the reformulation and improvement by Gebauer–Möller [19] of Buchberger Criteria
[9]. However, we must be aware that, in this context, there is no chance of reformulat-
ing Buchberger’s First Criterion.

Remark 57. In fact, for F ⊂ P = R[Y1, . . . ,Yn] and I(F) an ideal of P, we should at
least require that

M(i) ∗M( j) = M( j) ∗M(i) = M(i, j)

id est not only lcm(τi, τ j) = τi ◦ τ j = τ j ◦ τi which is trivially true but also

lcm(ατ j (ci), ατi (c j)) = c jατ j (ci) = ciατi (c j).

This essentially requires ci | ατ j (ci) and c j | ατi (c j) whence ατ j = Id; this suggests
that Buchberger’s First Criterion hardly can be applied.

Note that the proof which considers the trivial sysygies gig j − g jgi = 0 holds only
in the classical polynomial ring case. ut
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Definition 58. A useful S-pair set for F is any subset

GM ⊂ S(u) =
{
{i, j}, 1 ≤ i < j ≤ u, eli = el j

}
such that {b(i, j) : {i, j} ∈ GM} is a Gebauer–Möller set for F.

Corollary 59. With the present notation, under the assumption that R is a principal
ideal domain, F is a left Gröbner basis of the left module M iff, denotingGM a useful S-
pair set for F, each S-polynomial B(i, j), {i, j} ∈ GM, has a left Gröbner representation
in terms of F.

Proof. By definition {b(i, j) : {i, j} ∈ GM} is a Gebauer–Möller set for F so that, by
Theorem 36, F is a Gröbner basis of M iff each S-polynomial B(i, j), {i, j} ∈ GM, has a
Gröbner representation in terms of F. ut

If we moreover define,

– for each i, j : 1 ≤ i, j ≤ u, eli = el j ,

– c(i, j) = lcm(α{i, j},i(ci), α{i, j}, j(c j)),

– τ(i, j) = lcm(τi, τ j),

– µ(i, j) = c(i, j)τ(i, j),

– and for each i, j, k : 1 ≤ i, j, k ≤ u, eli = el j = elk ,

– c(i, j, k) = lcm(α{i, j,k},{i, j}(c(i, j)), α{i, j,k},{i,k}(c(i, k)), α{i, j,k};{ j,k}(c( j, k))),

– τ(i, j, k) = lcm(τi, τ j, τk),

– µ(i, j, k) = c(i, j, k)τ(i, j, k)

and we impose on the set

S(u) :=
{
{i, j}, 1 ≤ i < j ≤ u, eli = el j

}
the ordering ≺ defined by

{i1, j1} ≺ {i2, j2} ⇐⇒


τ(i1, j1) < τ(i2, j2) or
τ(i1, j1) = τ(i2, j2), j1 < j2 or
τ(i1, j1) = τ(i2, j2), j1 = j2, i1 < i2,

(8)

we obtain

Definition 60. An S-element b(i, j), 1 ≤ i < j ≤ u, eli = el j , and the related S-pair {i, j}
are called redundant if either

(a). exists k > j, elk = eli = el j such that

µ(i, j, k) = µ(i, j); µ(i, k) , µ(i, j) , µ( j, k)

(b). or exists k < j, elk = eli = el j : µ(k, j) | µ(i, j) , µ(k, j). ut

43



Lemma 61 (Möller). The following holds

1. for each i, j, k : 1 ≤ i, j, k ≤ u, eli = el j = elk , it holds

µ(i, j, k)
µ(i, k)

b(i, k) −
µ(i, j, k)
µ(i, j)

b(i, j) +
µ(i, j, k)
µ(k, j)

b(k, j) = 0.

2. R :=
{
b(i, j), 1 ≤ i < j ≤ u, eli = el j and not redundant

}
is a useful S-element set.

3. Let G := {g1, . . . , gs}, s ≤ u, and let

GM∗ ⊂ {{i, j}, 1 ≤ i < j < s, eli = el j }

be a useful S-pair set for G∗ = {g1, . . . , gs−1}.

Let M := {µ( j, s) : 1 ≤ j < s, el j = els } and let M
′
⊂ M be the set of the elements

µ := µ( j, s) ∈ M such that there exists µ( j′, s) ∈ M : µ( j′, s) | µ( j, s) , µ( j′, s).

For each µ := M( j, s) ∈ M \M
′

let iµ, 1 ≤ iµ < s, be such that µ = M(iµ, s). Then

GM := GM∗ ∪ {{iµ, s} : µ ∈ M \ M
′
}

is a useful S-pair set for G.

Proof. 1. (cf. [31, Lemma 25.1.4]) One has

µ(i, j, k)
µ(i, k)

∗ b(i, k) −
µ(i, j, k)
µ(i, j)

∗ b(i, j) +
µ(i, j, k)
µ(k, j)

∗ b(k, j)

=
µ(i, j, k)
µ(i, k)

∗

(
µ(i, k)
µ(k)

ek −
µ(i, k)
µ(i)

ei

)
−

µ(i, j, k)
µ(i, j)

∗

(
µ(i, j)
µ( j)

e j −
µ(i, j)
µ(i)

ei

)
+

µ(i, j, k)
µ(k, j)

∗

(
µ(k, j)
µ( j)

e j −
µ(k, j)
µ(k)

ek

)
=

(
µ(i, j, k)
µ(k)

ek −
µ(i, j, k)
µ(i)

ei

)
−

(
µ(i, j, k)
µ( j)

e j −
µ(i, j, k)
µ(i)

ei

)
+

(
µ(i, j, k)
µ( j)

e j −
µ(i, j, k)
µ(k)

ek

)
= 0

2. (cf. [31, Lemma 25.1.8]) In order to prove the claim by induction, it is sufficient
to show that, for each redundant {i, j}, 1 ≤ i < j ≤ u, eli = el j =: ε, there are

– {i1, j1}, . . . , {iρ, jρ}, . . . , {ir, jr}, 1 ≤ iρ < jρ ≤ u, eliρ = el jρ
= ε,

– elements t1, . . . , tr ∈ T ,
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– and coefficients c1, . . . cr ∈ R \ {0}

such that

– b(i, j) =
∑
ρ cρtρ ∗ b(iρ, jρ);

– τ(i, j) = tρ ◦ τ(iρ, jρ), for each ρ;

– {iρ, jρ} ≺ {i, j}.

In order to show this, we only need to consider the representation

b(i, j) =
µ(i, j, k)
µ(i, k)

∗ b(i, k) +
µ(i, j, k)
µ(k, j)

∗ b(k, j)

and to prove that
{i, k} ≺ {i, j} � {k, j};

this happens (according to the two cases of the definition) because

(a) τ(i, k) | τ(i, j, k) = τ(i, j) , τ(i, k) implies {i, k} ≺ {i, j} and the same argu-
ment proves { j, k} ≺ {i, j};

(b) the same argument as that above proves { j, k} ≺ {i, j}, while {i, k} ≺ {i, j}
because τ(i, k) ≤ τ(i, j) and k < j.

3. (cf. [31, Lemma 25.1.9]) Let i < s, eli = els =: ε, µ := µ(i, s). Then:

– if there exists µ′ ∈ M such that µ(iµ′ , s) = µ′ | µ(i, s) , µ′, then since
iµ′ < s, {i, s} is redundant;

– if i = iµ then {im, s} ∈ GM;

– if i , iµ then b(i, s) =
µ(i,iµ,s)
µ(i,iµ) b(i, iµ) − b(iµ, s).

ut

Corollary 62. With the present notation, under the assumption that R is a principal
ideal domain, F is a left Gröbner basis of M iff each S-polynomial B(i, j), with b(i, j) ∈
R, has a left Gröbner representation in terms of F. ut

Example 63. In connection with Lemma 61 we have

(i, j, k) c(i, j, k) µ(i, j, k) b(i, j, k)
(1, 2, 3) 64 · 5x2 Y2

1 Y3
2 Y2

3 b(1, 2) − 2233xb(1, 3) + b(2, 3) = 0,
(1, 2, 4) 64 · 5x2 Y2

1 Y3
2 Y2

3 b(1, 2) − 2233xb(1, 4) + 5Y2 ∗ b(2, 4) = 0,
(1, 3, 4) 60x Y2

1 Y3
2 Y2

3 b(1, 3) − b(1, 4) + 2b(3, 4) = 0.
(2, 3, 4) 64 · 5x2 Y2

1 Y3
2 Y2

3 b(2, 3) − 5Y2 ∗ b(2, 4) + 63b(3, 4) = 0.

.

Note that we obviously [20, 34] have also

b(1, 2, 3) − b(1, 2, 4) + 2233xb(1, 3, 4) − b(2, 3, 4).

Thus the redundant elements are b(2, 3) via 1 or 4, b(1, 2) via 4 and b(1, 4) via 3.
But, as it is well-known, it is more efficient (at least for storing considerations) the

algorithm sketched in Lemma 61.3 which
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for s = 2 stores (1, 2),

for s = 3 stores (1, 3),

for s = 4 removes (1, 2) and stores (2, 4) and (3, 4).

Thus the Gebauer-Möller set is still

{b(1, 3), b(2, 4), b(3, 4)}

while

b(1, 4) = b(1, 3) + 2b(3, 4),
b(2, 3) = 5Y2 ∗ b(2, 4) + 63b(3, 4),
b(1, 2) = 2233xb(1, 4) − 5Y2 ∗ b(2, 4).

ut

7 Weispfenning Completions for Bilateral Gröbner ba-
sis for Multivariate Ore Extensions of Zacharias Do-
mains

7.1 Kandri-Rody–Weispfenning completion
Let R be a not necessarily commutative domain and R a multivariate Ore extension.

The most efficient technique for producing bilateral Gröbner bases G := I2(F) in a
noetherian Ore extension is Kandri-Rody–Weispfenning completion [22]. Iteratively:

– Repeat

– Compute a left-Gröbner basis G of the ideal IL(F);

– for each g ∈ G, 1 ≤ i ≤ n, compute the normal form NF(g ? Yi, IL(F)) of
g ? Yi w.r.t. G;

– set H := {NF(g ? Yi, IL(F)), g ∈ G, 1 ≤ i ≤ n}, F := G ∪ H

until H = {0}.

The rationale of the algorithm is

Lemma 64 (Kandri-Rody–Weispfenning). For G ⊂ R the following conditions are
equivalent:

1. IL(G) = I2(G);

2. for each τ ∈ T and each g ∈ G, g ? τ ∈ IL(G);

3. for each i, 1 ≤ i ≤ n, and each g ∈ G, g ? Yi ∈ IL(G).
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Proof.

(1) =⇒ (2) ⇐⇒ (3) is trivial.

(2) =⇒ (1) B2(G) := {λ ? g ? ρ : λ, ρ ∈ T , g ∈ G} is an R-linear basis of I2(G) and
satisfies

B2(G) = {λ ? (g ? ρ) : λ, ρ ∈ T , g ∈ G} ⊆ {λ ? h : λ ∈ T , h ∈ IL(G)} ⊆ IL(G).
ut

7.2 Weispfenning: Restricted Representation and Completion
We remark that a generic ring R can be effectively given as a quotient of a free monoid
ring R := Z〈v〉 over Z and the monoid 〈v〉 of all words over the alphabet v modulo a
bilateral ideal I, so, in this section, R = R/I.

We must restrict ourselves to the case in which < is a sequential term-ordering, id
est for each τ ∈ T , the set {ω ∈ T : ω < τ} is finite.

Lemma 65. [53] Let

F := {g1, . . . , gu} ⊂ Rm, gi = M(gi) − pi =: ciτieli − pi;

set Ω := max<{T(gi) : 1 ≤ i ≤ u}.
Let M be the bilateral module M := I2(F) and IW (F) the restricted module

IW (F) := SpanR(a f ? ρ : a ∈ R \ {0}, ρ ∈ T , f ∈ F).

If every f ? αυ(v), f ∈ F, v ∈ v, υ ∈ T , υ < Ω, has a restricted representation in
terms of F w.r.t. a sequential term-ordering <, then every f ? r, f ∈ F, r ∈ R, has a
restricted representation in terms of F w.r.t. <.

Proof. We can wlog assume r =
∏ν

i=1 vi, vi ∈ v and prove the claim by induction on
ν ∈ N.

Thus we have a restricted representation in terms of F

f ?

 ν−1∏
i=1

vi

 =
∑

j

d jgi j ? ρ j, τi j ◦ ρ j ≤ T( f ),

whence we obtain

f ?
ν∏

i=1

vi = f ?
ν−1∏
i=1

vi ? vν =
∑

j

d jgi j ? ρ j ? vν =
∑

j

d jgi j ? αρ j (vν)ρ j

and since ρ j < T( f ) ≤ Ω each element gi j ?αρ j (vν) can be substituted with its restricted
representation whose existence is granted by assumption. ut

Lemma 66. [53] Under the same assumption, if, for each g j ∈ F, both Yi ? g j, 1 ≤ i ≤
n, and each g j ? αυ(v), v ∈ v, υ ∈ T , υ < Ω, have a restricted representation in terms
of F w.r.t. <, then IW (F) = M.
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Proof. It is sufficient to show that, for each f ∈ IW (F), both each Yi ? f ∈ IW (F), 1 ≤
i ≤ n, and each f ? v ∈ IW (F), v ∈ v.

By assumption f =
∑

j d jgi j ? ρ j, d j ∈ R \ {0}, ρ j ∈ T , 1 ≤ i j ≤ u, so that

Yi ? f =
∑

j

αi(d j) ? (Yi ? gi j ) ? ρ j and f ? v =
∑

j

d j(gi j ? αρ j (v)) ? ρ j;

by assumption each Yi?gi j has a restricted representation in terms of F; for the Lemma
above, also each gi j ? αρ j (v) has a restricted representation in terms of F. ut

Corollary 67. [53] Let

F := {g1, . . . , gu} ⊂ Rm, gi = M(gi) − pi =: ciτieli − pi.

Let M be the bilateral module M := I2(F) and IW (F) the restricted module

IW (F) := SpanR(a f ? ρ : a ∈ R \ {0}, ρ ∈ T , f ∈ F).

F is the bilateral Gröbner basis of M iff

1. denotingGM(F) any restricted Gebauer–Möller set for F, each σ ∈ GM(F) has
a restricted quasi-Gröbner representation in terms of F;

2. for each g j ∈ F, both Yi ? g j, 1 ≤ i ≤ n and each g j ?αυ(v), v ∈ v, υ ∈ T , υ < Ω,
have a restricted representation in terms of F w.r.t. <.

7.3 Gebauer-Möller sets for Restricted Gröbner bases
In this section we assume, as in section 6.4, that the Zacharias domain R is a principal
ideal domain; R is intended to be a multivariate Ore extension.

It is clear from Corollary 67 that the computation of a Gröbner basis can be ob-
tained via Weispfenning’s completion, provided that we are able to produce restricted
Gebauer-Möller sets; to do so, we need only to properly reformulate the results of
Section 6.4.

We begin by remarking [12] that for each monomial cτ ∈ M(R) the function g 7→
cg ? τ distributes, thus we can define a multiplication � : R × R→ R by setting

ciτi � c jτ j := cic jτ jτi = c jciτiτ j =: c jτ j � ciτi

which of course is commutative and thus, granting the trivial syzygy

gi � g j = g j � gi

allows to recover Buchberger First Criterion.
As a consequence, we can reformulate the notion of restricted Gröbner representa-

tion:

– we say that f ∈ Rm \ {0} has a restricted Gröbner representation in terms of G
if it can be written as f =

∑u
i=1 li � gi, with li ∈ R, gi ∈ G and T(li) ◦ T(gi) ≤

T( f ) for each i.
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Let us denote, for each i, j, 1 ≤ i < j ≤ u, eli = el j ,

bW (i, j) :=
lcm(ci, c j)

c j
e j

lcm(τi, τ j)
τ j

−
lcm(ci, c j)

ci
ei

lcm(τi, τ j)
τi

=
M(i, j)
M( j)

� e j −
M(i, j)
M(i)

� ei ∈ ker(sW ),

BW (i, j) :=
lcm(ci, c j)

c j
g j ?

lcm(τi, τ j)
τ j

−
lcm(ci, c j)

ci
gi ?

lcm(τi, τ j)
τi

=
M(i, j)
M( j)

� g j −
M(i, j)
M(i)

� gi

and let us explicitly assume that

– for each g j ∈ F, both Yi ? g j, 1 ≤ i ≤ n, and each g j ?αυ(v), v ∈ v, υ ∈ T , υ < Ω,
have a restricted representation in terms of F w.r.t. <.

Lemma 68 (Buchberger’s First Criterion). If m = 1, id est F ⊂ R and IW (F) is an ideal
of R, then

M(i) �M( j) = M(i, j) ⇐⇒ lcm(τi, τ j) = τiτ j and lcm(ci, c j) = cic j

=⇒ NFW (BW (i, j), F) = 0.

Proof. We will prove that BW (i, j) has a restricted Gröbner representation in terms of
F; thus the result will follow by the equivalence (4)⇐⇒ (8) in Proposition 19.

Remark that

pi := gi −M(i) =
∑

l

ciltil and p j := g j −M( j) =
∑

k

c jkt jk

satisfy T(pi) < T(gi), T(p j) < T(g j).
Then it holds:

0 = gi � g j − g j � gi = M(i) � g j + pi � g j −M( j) � gi − p j � gi,

and

BW (i, j) :=
M(i, j)
M( j)

� g j −
M(i, j)
M(i)

� gi = M(i) � g j −M( j) � gi = p j � gi − pi � g j.

There are then two possibilities: either

– M(p j) �M(gi) , M(pi) �M(g j) in which case

T(BW (i, j)) = max(T(p j) ◦ T(gi),T(pi) ◦ T(g j))

and
BW (i, j) = p j � gi − pi � g j =

∑
k

c jkgi ? t jk −
∑

l

cilg j ? til

is a restricted Gröbner representation;
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– or M(p j) �M(gi) = M(pi) �M(g j), T(BW (i, j)) < T(p j) ◦ T(gi) = T(pi) ◦ T(g j),
in which case BW (i, j) = p j � gi − pi � g j would not be a Gröbner representation.

But the latter case is impossible: in fact, from

lcm(T(gi),T(g j)) | T(pi) ◦ T(g j) = T(p j) ◦ T(gi) < T(g j) ◦ T(gi)

we deduce lcm(T(gi),T(g j)) , T(g j) ◦T(gi) and T(i, j) , T(i) ◦T( j) contradicting the
assumption M(i, j) = M(i) �M( j). ut

Definition 69. Denote

Cu :=


{
{i, j} : M(i) �M( j) = M(i, j)

}
if M is an ideal

∅ otherwise.

A useful S-pair set for F is any subset

GM ⊂ S(u) =
{
{i, j}, 1 ≤ i < j ≤ u, eli = el j

}
such that {b(i, j) : {i, j} ∈ GM ∪ Cu} is a Gebauer–Möller set for F.

Corollary 70. With the present notation, under the assumption that R is a principal
ideal domain, F is a Gröbner basis of M iff, denoting GM a useful S-pair set for F,
each S-polynomial BW (i, j), {i, j} ∈ GM, has a Gröbner representation in terms of F.

Proof. By definition {bW (i, j) : {i, j} ∈ GM ∪ Cu} is a Gebauer–Möller set for F so that,
by Theorem 36, F is a Gröbner basis of M iff each S-polynomial BW (i, j), {i, j} ∈ GM∪
Cu has a Gröbner representation in terms of F.

The claim is a direct consequence of Buchberger’s First Criterion which states that
for each {i, j} ∈ Cu, BW (i, j) has a weak Gröbner representation in terms of F. ut

Definition 71. An S-element b(i, j), 1 ≤ i < j ≤ u, eli = el j , and the related S-pair {i, j}
are called redundant if either

(a). exists k > j, elk = eli = el j such that

M(i, j, k) = M(i, j); M(i, k) , M(i, j) , M( j, k),

(b). or exists k < j, elk = eli = el j : M( j, k) |M(i, j) , M( j, k). ut

Lemma 72 (Möller). The following holds

1. for each i, j, k : 1 ≤ i, j, k ≤ u, eli = el j = elk , it holds

c(i, j, k)
c(i, k)

b(i, k)∗
τ(i, j, k)
τ(i, k)

−
c(i, j, k)
c(i, j)

b(i, j)∗
τ(i, j, k)
τ(i, j)

+
c(i, j, k)
c(k, j)

b(k, j)∗
τ(i, j, k)
τ(k, j)

= 0.

2. R :=
{
b(i, j), 1 ≤ i < j ≤ u, eli = el j and not redundant

}
is a useful S-element set.
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3. Let G := {g1, . . . , gs}, s ≤ u, and let

GM∗ ⊂ {{i, j}, 1 ≤ i < j < s, eli = el j }

be a useful S-pair set for G∗ = {g1, . . . , gs−1}.

Let M := {M( j, s) : 1 ≤ j < s, el j = els } and let M
′
⊂ M be the set of the elements

µ := M( j, s) ∈ M such that either

– there exists M( j′, s) ∈ M : M( j′, s) |M( j, s) , M( j′, s) or

– (in case M is an ideal) there exists iµ, 1 ≤ iµ < s :

M(iµ) �M(s) = M(iµ, s) = µ.

For each µ := M( j, s) ∈ M \M
′

let iµ, 1 ≤ iµ < s, be such that µ = M(iµ, s). Then

GM := GM∗ ∪ {{iµ, s} : µ ∈ M \ M
′
}

is a useful S-pair set for G.

Proof. The proof is an adaptation of the one given in Lemma 61. ut

Corollary 73. With the present notation, under the assumption that R is a principal
ideal domain, F is a restricted Gröbner basis of M iff

1. each S-polynomial BW (i, j), {i, j} ∈ R, has a restricted Gröbner representation
in terms of F;

2. for each g j ∈ F, both Yi ? g j, 1 ≤ i ≤ n and each g j ?αυ(v), v ∈ v, υ ∈ T , υ < Ω,
have a restricted representation in terms of F w.r.t. <.

ut

8 Structural Theorem for Multivariate Ore Extensions
of Zacharias PIDs

Theorem 74 (Structural Theorem). Let R be a left Zacharias principal ideal domain,
R := R[Y1, . . . ,Yn] a multivariate Ore extension of R, < a term-ordering, M ⊂ Rm a left
module generated by a basis F := {g1, . . . , gu} ⊂ M, M(gi) = ciτieli , C(F) a completion
of F, R := {B(i, j), 1 ≤ i < j ≤ u, eli = el j and not redundant}.

Then the following conditions are equivalent:

(1). F is a left Gröbner basis of M;

(1s). C(F) is a left strong Gröbner basis of M;

(2). B(F) := {λg : λ ∈ T , g ∈ F} is a Gauss generating set [31, Definition 21.2.1];

(3). f ∈ M ⇐⇒ it has a left Gröbner representation in terms of F;
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(4). f ∈ M ⇐⇒ it has a left strong Gröbner representation in terms of C(F);

(5). for each f ∈ Rm \ {0} and any normal form h of f w.r.t. F, we have

f ∈ M ⇐⇒ h = 0;

(5s). for each f ∈ Rm \ {0} and any strong normal form h of f w.r.t. C(F), we have

f ∈ M ⇐⇒ h = 0;

(6). for each f ∈ Rm\{0}, f −Can( f ,M) has a strong Gröbner representation in terms
of C(F);

(7). each B(i, j) ∈ R has a weak Gröbner representation in terms of F;

(8). for each element σ of a Gebauer–Möller set for F, the S-polynomial SL(σ) has
a left quasi-Gröbner representation in terms of F.

Proof.

(1) ⇐⇒ (1s) is Proposition 54;

(1) ⇐⇒ (2) is trivial;

(1) ⇐⇒ (5) ⇐⇒ (3) is Proposition 19;

(1s) ⇐⇒ (4) ⇐⇒ (5s) is Proposition 19;

(1) =⇒ (6) is the content of Section 6.3;

(6) =⇒ (4) because for each f ∈ M,Can( f ,M) = 0;

(1) ⇐⇒ (7) is Corollary 49;

(1) ⇐⇒ (3) ⇐⇒ (8) is Theorem 36.
ut

9 Spear’s Theorem
For Gröbner bases in a ringA given as quotient

Π : Q := Z〈Z1, . . . ,Zn〉� A � Q/I, I := ker(Π),

of a free assocative algebra, a general approach is to directly apply Spear’s Theorem
[49] [31, Proposition 24.7.3] [29], which, though not a tool for computation, can be
helpful in order to understand the structure ofA.

For the present setting, denoting

– fi j := Y jYi − α j(Yi)Y j − δ j(Yi), 1 ≤ i < j ≤ n,

– C := { fi j : 1 ≤ i < j ≤ n},
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– I := I2(C)

and for each m ∈ N,

– {e1, . . . , em} the canonical basis of Rm,

– C(m) := { fi jι := fi jeι : 1 ≤ i < j ≤ n, 1 ≤ ι ≤ m},

we have the presentation

R = Q/I,I := ker(Π),Π : Q := R〈Y1, . . . ,Yn〉� R

and, for each free R-module Rm,m ∈ N, the projection Π extends to the canonical
projections, still denoted Π,

Π : Qm � Rm, ker(Π) = Im = I2(C(m)).

Thus denoting

– F := {g1, . . . , gu} ⊂ Rm, gi = M(gi) − pi =: ciτieli − pi,

– M ⊂ Rm the module M := I2(F),

– M′ := Π−1(M) = M + Im ⊂ Qm,

we can reformulate Spear’s result as

Lemma 75. [29, Lemma 12] Assume F ⊂ M′ is a Gröbner basis of M′ and denote

F̄ := {Can(g,Im) : g ∈ F,T(g) < T(I(m))} ⊂ R[Y1, . . . ,Yn]m

where Can(g,Im) denotes the canonical form of g ∈ Qm w.r.t. C(m) so that in particular
g = Π(g) for each g ∈ F̄.

Then F̄ tC(m) is a Gröbner basis of M′.

Theorem 76 (Spear). [29, Theorem 13] With the present notation, the following holds:

1. if F is a reduced Gröbner basis of M′, then

{g ∈ F : g = Π(g)} = {Π(g) : g ∈ F,T(g) < T(I(m))}
= F ∩ R[Y1, . . . ,Yn]m

is a reduced Gröbner basis of M;

2. if F ⊂ R[Y1, . . . ,Yn]m, so that in particular Π( f ) = f for each f ∈ F, is the
Gröbner basis of M, then F tC(m) is a Gröbner basis of M′.

3. Assume each m′ ∈ M′ has a Gröbner representation in terms of F ⊂ M′.

Set
F̄ := {Can(g,Im) : g ∈ F, g < Im} ⊂ R[Y1, . . . ,Yn]m

where Can(g,Im) ∈ R[Y1, . . . ,Yn]m denotes the canonical form of g ∈ Qm w.r.t.
C(m) so that in particular g = Π(g) for each g ∈ F̄.

Then each m ∈ M has a Gröbner representation in terms of F̄.
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4. if F ⊂ R[Y1, . . . ,Yn]m, so that in particular Π( f ) = f for each f ∈ F, is such that
each m ∈ M has a Gröbner representation in terms of F, then each m′ ∈ M′ has
a Gröbner representation in terms of F tC(m).

Corollary 77. [29, Corollary 14] With the present notation and considering

– the bilateral R-module
(
R ⊗R̂ Rop)u with canonical basis {e1, . . . , eu},

– the bilateral Q-module
(
Q ⊗R̂ Q

op)|F|+m|G| with canonical basis

{e1, . . . , eu} t {ei jι : 1 ≤ i < j ≤ n, 1 ≤ ι ≤ m},

– the projections S2 :
(
R ⊗R̂ Rop)|F| → Rm : S2(ei) = gi, 1 ≤ i ≤ u, and

– Ŝ2 :
(
Q ⊗R̂ Q

op)|F|+m|C|
→ Qm :

Ŝ2(ei) = gi, 1 ≤ i ≤ u, Ŝ2(ei jι) = fi jι, 1 ≤ i < j ≤ n, 1 ≤ ι ≤ m,

– the map
Π̄ :

(
Q ⊗R̂ Q

op)|F|+m|C|
→

(
R ⊗R̂ Rop)|F|

(where each λ, ρ ∈ R〈Y1, ...,Yn〉, a, b ∈ R \ {0})

Π̄

∑
i

aiλieibiρi +
∑
i jι

ai jιλi jιei jιbi jιρi jι

 =
∑

i

aiΠ(λi)eibiΠ(ρi),

if Σ ⊂
(
Q ⊗R̂ Q

op)|F|+m|C| is a bilateral standard basis of ker(Ŝ2), then Π̄(Σ) is a bilateral
standard basis of ker(S2).

10 Lazard Structural Theorem for Ore Extensions over
a Principal Ideal Domain

Let D be a commutative principal ideal domain, R := D[Y;α, δ] be an Ore extension
and I ⊂ R be a bilateral ideal.

Let F := { f0, f1, . . . , fk} be a reduced minimal strong bilateral Gröbner basis of I
ordered so that

deg( f0) ≤ deg( f1) ≤ · · · ≤ deg( fk)

and let us denote, for each i, ci := lc( fi), ri ∈ D \ {0} and pi ∈ R the content5 and
the primitive part of fi so that fi = ri pi; denoting P := p0 the primitive part of f0 and
Gk+1 := rk ∈ D \ {0} the content of fk we have

Theorem 78. With the present notation, for each i, 0 < i ≤ k, there is Hi ∈ R, d(i) :=
deg(Hi) and Gi ∈ D \ {0} such that

5Defined here as the greatest common divisor of the coefficients of fi in the principal ideal domain D .
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– f0 = G1 · · ·Gk+1P,

– f j = G j+1 · · ·Gk+1H jP, 1 ≤ j ≤ k,

and

1. 0 < d(1) < d(2) < · · · < d(k);

2. Gi ∈ D, 1 ≤ i ≤ k + 1, is such that ci−1 = Gici

3. P = p0 (the primitive part of f0 ∈ R);

4. Hi ∈ R is a monic polynomial of degree d(i), for each i;

5. Hi+1 ∈ (G1 · · ·Gi,G2 · · ·GiH1, . . . ,G j+1 · · ·GiH j, . . . ,GiHi−1,Hi) for all i.

6. ri = Gi+1 · · ·Gk+1.

Proof. Let P and Gk+1 be, resp., the greatest common right divisor of {p0, . . . , pk} in R
and the greatest common divisor of {r0, . . . , rk} inD; since a set {g0, . . . , gk} is a minimal
strong Gröbner basis if and only if the same is true for {rg0g, . . . , rgkg}, r ∈ D, g ∈ R,
we can left divide by Gk+1 and right divide by P and assume wlog that P = Gk+1 = 1
and that both the greatest common right divisor of {p0, . . . , pk} and the greatest common
divisor of {r0, . . . , rk} are 1.

Setting d(i) := deg( fi) and ν(i) := d(i + 1) − d(i) for each i, by assumption we have
d(i) ≤ d(i + 1).

If d(i) = d(i + 1), let us define

h := bi fi + bi+1 fi+1 ∈ I

where c, bi, bi+1 ∈ D are such that bici + bi+1ci+1 = c, c being the greatest common
divisor of ci and ci+1, so that cYd(i+1) = M(h) ∈ M(I); this implies the existence of j
such that M( f j) |M(h) |M( fi+1) contradicting minimality; thus d(i) < d(i+1) and this,
in turn, implies (1) since d(i) = d(i) − deg(P).

Both fiYν(i) and fi+1 are in the ideal and have degree d(i + 1).
Therefore, for c, bi, bi+1 ∈ D such that bici + bi+1ci+1 = c, c being the greatest

common divisor of ci and ci+1, h := bi fiYd(i+1)−d(i) + bi+1 fi+1 ∈ I, so that cYd(i+1) =

M(h) ∈ M(I) and M( f j) | M(h) for some j. If ci+1 , c, necessarily deg( f j) < deg( fi+1)
whence j < i + 1 and M( f j) | M(h) | M( fi+1) getting a contradiction. As a conclusion
ci = Gi+1ci+1, for some Gi+1 ∈ D and (2).

Since Gi+1 fi+1 − fiYν(i) is a polynomial of degree less than d(i + 1) which reduces
to zero by the Gröbner basis, it follows that

Gi+1 fi+1 ∈ I( f0, . . . , fi) for each i, 0 ≤ i < k;

thus, inductively we obtain

p0 |R f j for each j ≤ i =⇒ p0 |R f j for each j ≤ i + 1.
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Also

ci |L f j for each j ≤ i =⇒ Gi+1ci+1 = ci |L Gi+1 fi+1

=⇒ ci+1 |L f j for each j ≤ i + 1.

Therefore, the assumptions that the greatest common right divisor of {p0, . . . , pk}

and the greatest common divisor of {r0, . . . , rk} are 1 imply that p0 = ck = 1 proving
(3); thus in particular f0 = c0 so that c0 | f0 and this is sufficient to deduce, by the
inductive argument, that each ci left-divides fi and therefore coincides with ri.

Inductively we obtain

ri lc(P) = ci = Gi+1ci+1 = Gi+1ri+1 lc(P) = Gi+1 · · ·Gk+1 lc(P)

thus proving (6); defining Hi the polynomial s.t. ciHiP = fi for all i we have lc(Hi) = 1
(proving (4)), d(i) + deg(P) = deg( fi) and Gi+1 fi+1 ∈ ( f0, . . . , fi) which proves (5)
dividing out Gi+1 · · ·Gk+1. ut

A The PIR case
While an understandable timor restrained us to violate Ore’s tabu requiring degree
preservation of product, it is well-known that Zacharias–Möller results are naturally
stated for polynomials over PIRs and the restriction to PIDs is unnatural; we therefore
sketch here the few modifications to the theory which are required in order to adapt it
to Ore extensions R over a PIR R.

The first delicate adaptation is required by formula (4); the natural solution is due
to Gateva [16, 17, 18] who considered valuation over the semigroup with zero T ∪ {o}
instead of T setting

◦ : N × N→ N ∪ {o} : u ◦ v =

T(u ? v) u ? v , 0
o u ? v = 0.

Her theory however applies only to domains.
Thus in order to extend Corollary 15 we need to reformulate it as

Corollary 15. If ≺ is a term ordering on T and < is a ≺-compatible term ordering on
T (m), then, for each l, r ∈ R and f ∈ R(m),

1. M(l ? f ) = M(M(l) ? M( f )) provided lc(l) lc( f ) , 0;

2. M( f ? r) = M(M( f ) ? M(r)) provided lc( f ) lc(r) , 0;

3. M(l ? f ? r) = M(M(l) ? M( f ) ? M(r)) provided lc(l) lc( f ) lc(r) , 0.

4. T(l ? f ) ≤ T(l) ◦ T( f ) equality holding provided that lc(l) lc( f ) , 0;

5. T( f ? r) ≤ T( f ) ◦ T(r) equality holding provided that lc( f ) lc(r) , 0;

6. T(l? f ?r) ≤ T(l)◦T( f )◦T(r) equality holding provided that lc(l) lc( f ) lc(r) , 0.
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As regards Gröbner basis computation we remark that the first and the third algo-
rithms (Section 6.1 and 6.3 ) apply verbatim also in the PIR case; in the algorithm in
fact we have {i} ∈ H(F) for each i, 1 ≤ i ≤ u and thus each m := T(gi) ∈ T is treated by
the algorithm which (if the basis is minimal) produces also the annihilator syzygy

(d1, . . . , du) ∈ SyzL(v(m)1, . . . , v(m)u), d j :=

a j if j = i
0 otherwise

where we denote, for each i ≤ u, ai ∈ R the annihilator of I(ci).
In the second algorithm (Section 6.2) the inductive seed becomes

S1 = {b ∈ R : b lc(g1) = 0} = I(a1) ⊂ R,

and, for each s, 1 < s ≤ u, {s} is basic for T(gs) provided the basis is minimal.
Therefore

Corollary 49. Assuming that the Zacharias ring R is principal and denoting, for each
i, j, 1 ≤ i < j ≤ u, eli = el j ,

b(i, j) :=
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j}, j(c j)

lcm(τi, τ j)
τ j

e j

−
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j},i(ci)

lcm(τi, τ j)
τi

ei,

B(i, j) :=
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j}, j(c j)

lcm(τi, τ j)
τ j

? g j

−
lcm

(
α{i, j},i(ci), α{i, j}, j(c j)

)
α{i, j},i(ci)

lcm(τi, τ j)
τi

? gi

a(i) := aiei

A(i) := ai ? gi,

we have that
{b(i, j) : 1 ≤ i < j ≤ u, eli = el j } ∪ {a(i), i ≤ u}

is a left Gebauer–Möller set for F, so that F is a left Gröbner basis of M iff each B(i, j),
1 ≤ i < j ≤ u, eli = el j , and each A(i), i ≤ u, have a left weak Gröbner representation
in terms of F. ut

Corollary 51. Assuming that the Zacharias ring R is principal and that each αi is an
automorphism denoting, for each i, j, 1 ≤ i < j ≤ u, eli = el j ,

b(i, j) := e jα
−1
τ j

(
lcm(ci, c j)

c j

)
lcm(τi, τ j)

τ j
− eiα

−1
τi

(
lcm(ci, c j)

ci

)
lcm(τi, τ j)

τi

B(i, j) := g j ? α
−1
τ j

(
lcm(ci, c j)

c j

)
lcm(τi, τ j)

τ j
− gi ? α

−1
τi

(
lcm(ci, c j)

ci

)
lcm(τi, τ j)

τi

a(i) := eiα
−1
τi

(ai),

A(i) := gi ? α
−1
τi

(ai),
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we have that
{b(i, j) : 1 ≤ i < j ≤ u, eli = el j } ∪ {a(i), i ≤ u}

is a right Gebauer–Möller set for F, so that F is a right Gröbner basis of M iff each
B(i, j), 1 ≤ i < j ≤ u, eli = el j , and each A(i), i ≤ u, have a right weak Gröbner
representation in terms of F.

Proposition 54 (Möller). With the present notation and under the assumption that R
is a principal ideal ring, the following conditions are equivalent:

1. F is a left Gröbner basis of M;

2. a completion of F is a strong left Gröbner basis of M.

Buchberger’s First Criterion, for the PIR case, is stated as

If F ⊂ P and I(F) is an ideal of P, it holds

M(i)M( j) = M(i, j) ⇐⇒ lcm(τi, τ j) = τiτ j, lcm(ci, c j) = cic j

=⇒ NF(B(i, j), F) = 0.

Corollary 59. With the present notation, under the assumption that R is a principal
ideal ring, F is a left Gröbner basis of the left module M iff, denoting GM a useful
S-pair set for F, each S-polynomial B(i, j), {i, j} ∈ GM, and each A(i), 1 ≤ i ≤ u, have
a left Gröbner representation in terms of F.

Corollary 62. With the present notation, under the assumption that R is a principal
ideal ring, F is a left Gröbner basis of M iff each S-polynomial B(i, j), {i, j} ∈ R, and
each A(i), 1 ≤ i ≤ u, has a left Gröbner representation in terms of F.

Corollary 73. With the present notation, under the assumption that R is a principal
ideal ring, F is a restricted Gröbner basis of M iff

1. each S-polynomial BW (i, j), {i, j} ∈ R, and each A(i), 1 ≤ i ≤ u, has a restricted
Gröbner representation in terms of F;

2. for each g j ∈ F, both Yi ? g j, 1 ≤ i ≤ n and each g j ? αυ(v), v ∈ v, υ ∈ T , υ <
T(g j), have a restricted representation in terms of F w.r.t. <.

Finally we remark that a Lazard Structural Theorem for Ore Extensions over a
Principal Ideal Domain can be easily obtained by adapting the result given by Norton–
Sălăgean [36, 37], [31, § 33.3] for polynomial rings.
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bras of Solvable Type, J. Symb. Comp. 9 (1990), 1–26

[23] Kredel, H. Solvable Polynomial rings Dissertation, Passau (1992)

[24] LaScala R., Levandovskyy V. Skew Polynomial Rings, Gröbner bases and the
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Comp. 6 (1988), 345–359
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