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Abstract

Multivariate discrete data arise in many fields (statistical quality control, epidemiol-
ogy, failure and reliability analysis, etc) and modeling such data is a relevant task. Here
we consider the construction of a bivariate model with discrete Weibull margins, based on
Farlie-Gumbel-Morgenstern copula, analyze its properties especially in terms of attain-
able correlation, and propose several methods for the point estimation of its parameters.
Two of them are the standard one-step and two-step maximum likelihood procedures; the
other two are based on an approximate method of moments and on the method of propor-
tion, which represent intuitive alternatives for estimating the dependence parameter. A
Monte Carlo simulation study is presented, comprising more than one hundred artificial
settings, which empirically assesses the performance of the different estimation techniques
in terms of statistical properties and computational cost. For illustrative purposes, the
model and related inferential procedures are fitted and applied to two datasets taken from
the literature, concerning failure data, presenting either positive or negative correlation
between the two observed variables. The applications show that the proposed bivariate
discrete Weibull distribution can model correlated counts even better than existing and
well-established joint distributions.

Keywords: Farlie-Gumbel-Morgenstern copula, method of moments, Monte Carlo
simulation, Pearson’s correlation, two-step maximum likelihood

1 Introduction

In many scientific fields, researchers are concerned with multivariate random variables
(r.v.s). Although quantities measured on a continuous scale are more frequent, never-
theless multivariate count data often arise in several contexts (statistical quality control,
epidemiology, failure and reliability analysis, etc). Such data are frequently modelled
through the multivariate normal distribution or some multivariate exponential distribu-
tion, which however, being continuous r.v.s, fit the data hardly adequately; or through a
multivariate Poisson model, which would require the data to have marginal means almost
equal to the marginal variances. There are several forms of alternative multivariate dis-
crete distributions defined and studied in the literature: for an extensive account of these
distributions, we refer the reader to the early books by [13, 19], and references therein.
Various methods have been proposed for constructing alternative multivariate r.v.s, see
the excellent review in [31]. Methods and issues related to the construction of bivariate
discrete distributions, which are disseminated in the literature, have been reviewed in [21];
for more recent proposals, see e.g. [16, 22]. Whereas the construction of multivariate dis-
tributions based on the definition of their joint probability mass or density function poses
some difficulties and often results in practical limitations, for example, in the range of
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possible pairwise correlations; the specification via the marginal distributions and a cop-
ula function that provides the dependence structure, is much more straightforward. The
main advantage provided by using copula-based models is indeed that the selection of
an appropriate model for the dependence among the margins, represented by the copula,
can proceed independently from the choice of the marginal distributions, resulting in a
great flexibility. Copulas (see [25]) nowadays are widely used for modeling correlated
continuous data, whereas the literature on copulas used for discrete data is more limited.
Recently, however, some papers (see, e.g., [26, 11]) discussed the modeling of multivariate
count data based on copulas and highlight possible pitfalls and challenges [27].

In this work we consider the discrete Weibull distribution as an alternative to the
Poisson r.v. for modelling count data. It is a two-parameter distribution derived as a
discrete counterpart of the popular continuous Weibull model and can reveal itself to be
more flexible than Poisson. It was employed by Englehardt and Li [7] in a correlated ran-
dom multiplicative growth model for microbial counts in water; more recently, Englehardt
[8] showed that the discrete Weibull distribution can model products of autocorrelated
causes, generated via copula. In [3], a procedure for generating correlated discrete Weibull
variables linked via a Gaussian copula was described, with an assigned correlation matrix.
In [5], a bivariate model with discrete Weibull margins and Farlie-Gumbel-Morgenstern
(FGM) copula was suggested. The FGM copula is a dependence structure particularly
interesting since i) it allows for either positive or negative dependence ii) it has an analyt-
ically closed-form and simple expression iii) it is easy to simulate iv) its unique parameter
has a straightforward relationship with the linear correlation coefficient. In this work,
we reclaim this model, through an in-depth examination of its properties, with special
attention at conditional distributions, correlation range, and estimation issues.

The rest of the paper is structured as follows: in the next section, the discrete Weibull
distribution is introduced and its features briefly described. Section 3 presents and dis-
cusses the FGM copula and introduces the new bivariate discrete Weibull model, with a
special focus on conditional distributions and Pearson’s correlation. In Section 4, proce-
dures for parameter estimation of the model are suggested. Section 5 outlines a Monte
Carlo simulation study that assesses the statistical properties of the different estimation
techniques of Section 4. Section 6 considers two real datasets that are fitted by the bi-
variate discrete Weibull model. The final section concludes the paper with some remarks
and future research perspectives.

2 The type I discrete Weibull distribution

The discrete Weibull distribution was introduced by Nakagawa and Osaki [24] as a discrete
counterpart of the continuous Weibull distribution and is usually referred to as “type I
discrete Weibull distribution”. Two other models built as discrete analogues were pro-
posed later by Stein and Dattero [33] (type II discrete Weibull) and Padgett and Spurrier
[28] (type III discrete Weibull). For the model proposed by Nakagawa and Osaki [24], the
cumulative distribution function (c.d.f.) is

F (x; q, β) = 1− q(x+1)β ; x ∈ N0, (1)
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with 0 < q < 1 and β > 0, and consequently the expression of its probability mass
function is:

p(x; q, β) = qx
β − q(x+1)β x ∈ N0. (2)

This distribution, differently from the two alternative ones, retains the expression of the
c.d.f. of the continuous Weibull model. Hereafter, we will denote it simply as “discrete
Weibull” distribution or model.

Note that the first parameter q in (2) has an easy and nice interpretation: since P (X =
0) = 1 − q, it represents the probability of a positive value. As to the second parameter
β, it does not possess an equally nice interpretation. However, it has been shown that the
hazard function, or failure rate – for discrete r.v.s defined as r(x) = p(x)/(1−F (x)) – is an
increasing function if β > 1, a decreasing function if β < 1, a constant function if β = 1;
note that in the latter case the discrete Weibull distribution reduces to the geometric
distribution with success probability 1 − q. Figure 1 displays the p.m.f. (limited to the
values x = 0, 1, . . . , 10) for several combinations of q and β. Here the role of β, for a fixed
value of q, is a bit clearer: larger values of β lead to less dispersed distributions, with
most of the probability mass concentrated on the first integer values; conversely, smaller
values of β lead to more dispersed distributions, with a thicker right tail.

Figure 1: Probability mass function of the discrete Weibull distribution for several values’
combinations of its parameters q and β
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The discrete Weibull distribution can be used for modelling the number of shocks,
cycles, runs a component or structure can overcome before failing, or the number of
periods (e.g., days, weeks, etc.) it successfully works until failure (discrete lifetimes). More
generally, it can virtually model any type of count data. In fact, contrary to the Poisson
r.v., which cannot adequately model counts whose variance exceeds the mean, the discrete
Weibull r.v. can model both underdispersed and overdispersed data (see Englehardt and
Li [7], Barbiero [3]). This distribution can also handle count data presenting an excess
of zeros, which arise in many physical situations (see Englehardt and Li [7], Englehardt
[8]). With regard to the issues related to point and interval estimation of its parameters,
one can refer to Khan and Khalique and Abouammoh [12], Kulasekera [15], Barbiero
[4]. The discrete Weibull model is implemented in the R environment [30] through the
package DiscreteWeibull [2], which comprises several functions computing the p.m.f.,
the c.d.f., the quantile function, the first and second moments, and implementing the
pseudo-random generation and sample estimation.
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3 Modelling correlated discrete Weibull r.v.s via the

FGM copula

In this section, we formally introduce the bivariate discrete Weibull distribution based
on the FGM copula, by defining its c.d.f. and then deriving the expression of its p.m.f.,
conditional distributions, and Pearson’s correlation.

3.1 The model

The FGM copula [10] possesses an easy analytical expression. For the dimension 2, it is
given by

C(u1, u2; θ) = u1u2[1 + θ(1− u1)(1− u2)], (u1, u2) ∈ [0, 1]2 (3)

with −1 ≤ θ ≤ +1, and it can be seen as a “perturbation” of the independence copula
Π(u1, u2) = u1u2 via its parameter θ. The bivariate FGM copula allows for a moderate
level of linear correlation; it can be shown that Pearson’s rho between the two uniform
components is ρ(U1, U2) = θ/3. This is quite interesting since not all the bivariate cop-
ulas can deal with both negative and positive dependence: for example, the well-known
Gumbel and Clayton copulas only allow positive dependence. Given the constraint on θ,
the linear correlation between the two FGM copula margins is bounded in [−1/3, 1/3].

Let consider two r.v.s X1 and X2 with c.d.f.s F1 and F2, respectively. A bivariate
random vector (X1, X2), having marginal distributions F1 and F2 and FGM copula C
with parameter θ as in Eq. (3), can be constructed defining the bivariate joint c.d.f.

F (x1, x2; θ) = C(F1(x1), F2(x2)) = F1(x1)F2(x2) [1 + θ(1− F1(x1))(1− F2(x2))] , (4)

with (x1, x2) belonging to the support of (X1, X2).
If X1 and X2 are discrete r.v.s with p.m.f. p1(x1) and p2(x2), respectively, recalling

that for a bivariate r.v. defined on non-negative integers we have

p(x1, x2) = F (x1, x2)− F (x1 − 1, x2)− F (x1, x2 − 1) + F (x1 − 1, x2 − 1),

the bivariate p.m.f. of (X1, X2) can be recovered from (4) as

p(x1, x2; θ) = p1(x1)p2(x2) {1 + θ [1 + p1(x1)− 2F1(x1)] [1 + p2(x2)− 2F2(x2)]} . (5)

If F1 and F2 are the c.d.f.s of a discrete Weibull r.v., Fi(x; qi, βi) = 1−q
(x+1)βi

i , i = 1, 2,
then a FGM copula-based bivariate discrete Weibull r.v. is generated. The bivariate joint
c.d.f. (4) takes the form

F (x1, x2; q1, β1, q2, β2, θ) =
[

1− q
(x1+1)β1

1

] [

1− q
(x2+1)β2

2

] [

1 + θq
(x1+1)β1

1 q
(x2+1)β2

2

]

,

with (x1, x2) ∈ N
2
0, and the bivariate p.m.f. (5) is then given by

p(x1, x2; q1, β1, q2, β2, θ) =

(

q
x
β1
1

1 − q
(x1+1)β1

1

)(

q
x
β2
2

2 − q
(x2+1)β2

2

)

·
[

1 + θ

(

q
x
β1
1

1 + q
(x1+1)β1

1 − 1

)(

q
x
β2
2

2 + q
(x2+1)β2

2 − 1

)]

. (6)
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We must remark that due to the discrete nature of the two margins, the parameter θ in
(6) is now allowed to span a wider range than that corresponding to the FGM copula
in (3). Following [6, 29], we have in fact that

−1 ≤ θ ≤ min {1/q1, 1/q2} . (7)

For more details on the FGM copula, and its extension, combining discrete margins,
see [29].

3.2 Conditional distributions and simulation

For two discrete r.v.s X1 and X2 linked by the FGM copula, recalling Eqs. (2) and (5),
the conditional distribution of X2 given X1 = x1 is

p2|1(x2|x1) =
p(x1, x2)

p(x2)
= p2(x2) {1 + θ [1 + p1(x1)− 2F1(x1)] [1 + p2(x2)− 2F2(x2)]} .

(8)
For the bivariate discrete Weibull distribution, (8) reduces to:

p2|1(x2|x1) =

(

q
x
β2
2

2 − q
(x2+1)β2
2

)[

1 + θ

(

q
x
β1
1

1 + q
(x1+1)β1
1 − 1

)(

q
x
β2
2

2 + q
(x2+1)β2
2 − 1

)]

.

(9)
As an example, let us consider two discrete Weibull r.v.s with marginal parameters q1 =
q2 = 0.9 and β1 = β2 = 1.2, linked by a FGM copula with parameter θ = ±1/2; the
corresponding conditional distributions of X2 given X1 = 1 are plotted in Figure 2, along
with the marginal distribution p2(x2). We note that for θ = 1/2, the first five integer
values of the conditional distribution have each a larger probability than in the marginal
distribution (θ = 0), whereas the values greater than 4 have smaller probabilities. The
opposite holds for θ = −1/2.

By using (9), the conditional expected value of X2 given X1 = x1 can be derived as
follows:

E(X2|X1 = x1) = E(X2) + θ ·
[

q
(x1+1)β1

1 + qx1
β1

1 − 1
]

{

∞
∑

x2=0

x2

[

q
x
β2
2

2 − q
(x2+1)β2

2

]

+

−
∞
∑

x2=0

x2

[

qx2
β2

2 − q
(x2+1)β2

2

]

[

2− q
x
β2
2

2 − q
(x2+1)β2

2

]

}

= E(X2) + θ ·
[

q
(x1+1)β1
1 + qx1

β1

1 − 1
]

{

E(X2)− 2E(X2) +

∞
∑

x2=0

x2

[

q
2x

β2
2

2 − q
2(x2+1)β2
2

]

}

= E(X2) + θ ·
[

q
(x1+1)β1

1 + qx1
β1

1 − 1
]

[E(Y2)− E(X2)] ,

where Y2 is a discrete Weibull r.v. with parameters q22 and β2, which implies that E(Y2)−
E(X2) < 0 for any (q2, β2). Values of E(X2|X1 = x1) can be computed numerically.
For the example above, when θ = 0.5, we have that E(X2|X1 = 1) = 4.721, whereas
E(X2) = 5.641.

Given the symmetric nature of the FGM copula, analogous results hold for the distri-
bution of X1 given X2 = x2.
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Figure 2: Conditional distributions p2|1(x2|x1 = 1) for bivariate discrete Weibull r.v. with
FGM copula with θ = ±0.5 compared to the marginal distribution p2(x2)
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The simulation of this bivariate discrete distribution is straightforward: one can resort
to the general algorithm for the FGM copula sketched in [19, p.185] and inverse transform
sampling, when −1 ≤ θ ≤ 1. If θ > 1, an appropriate modification has to be made, but
the rationale remains the same: first, sample x1 from the marginal p.m.f. p1, and then
sample x2 from the conditional p.m.f. p2|1. The steps of the algorithm, which works for
any consistent value of θ, are the following:

1. Simulate two independent uniform r.v.s in (0, 1), V1 ∼ Unif(0, 1) and V2 ∼ Unif(0, 1);

2. Set U1 = V1 and let X1 = F−1
1 (U1);

3. Set U2 = 2V2/(a + b), where a = 1 + θ(1 − p1(X1) − 2F1(X1 − 1)) and b =

[a2 − 4(a− 1)V2]
1/2

. Let X2 = F−1
2 (U2);

where the generalized inverse of the discrete Weibull cdf (1) is F−1
i (u) =

⌈

(

log(1−u)
log qi

)1/βi

⌉

−
1. Pseudo-random simulation can then be easily implemented, by employing the R package
DiscreteWeibull [2], which provides, among all, random generation of the univariate
discrete Weibull distribution.

3.3 Pearson’s correlation

As anticipated, Pearson’s correlation between the two uniform components of the FGM
copula with parameter θ is given by θ/3; one may be interested in determining Pearson’s
correlation between two non-uniform (discrete) r.v.s linked by the FGM copula. We know,
this is one of its drawbacks, that Pearson’s correlation does not depend only on the copula
linking the two distributions, but also on the margins themselves; so, in general, it differs
from θ/3. Reference [32] showed that if the margins are absolutely continuous, Pearson’s
correlation cannot exceed 1/3.

Let us consider two discrete r.v.s X1 and X2 with c.d.f.s F1 and F2, respectively,
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defined on N0 or in any subset thereof. Then, recall the formula for Pearson’s ρ:

ρx1x2
=

E(X1X2)− E(X1)E(X2)
√

Var(X1)Var(X2)

where E(X1X2) =
∑

i

∑

j ijp(i, j), with p(i, j) given by Eq. (5), E(X1) =
∑

i ip1(i), and

Var(X1) =
∑

i(i − E(X1))
2p1(i), with p1 being the marginal p.m.f. of X1, and similarly

for X2; the sum over i (j) extends over the entire support of X1 (X2). Then Pearson’s
correlation coefficient between the discrete margins X1 and X2 of the model (5) can be
easily computed, since the numerator of the expression for the correlation coefficient is

E(X1X2)− E(X1)E(X2) = θ
∑∑

ijp1(i)p2(j)[1 + p1(i)− 2F1(i)][1 + p2(j)− 2F2(j)]

= θ
∑

i

ip1(i)[1 + p1(i)− 2F1(i)]
∑

j

jp2(j)[1 + p2(j)− 2F2(j)]

so that for assigned margins, the ratio between the correlation coefficient ρ of the two
r.v.s and the copula parameter θ is a constant (i.e. independent from θ). In other terms,
the relationship between ρ and θ is linear, with null intercept and an angular coefficient
depending on the two margins.

Table 1 reports the minimum and maximum attainable values of Pearson’s correlation
coefficient when we consider two discrete Weibull r.v.s linked through the FGM copula,
for several marginal parameters’ combinations. They are obtained letting θ take the
minimum and maximum value, respectively, of its range (7). These values are computed
numerically and are affected by the approximation error since the support of the discrete
Weibull r.v. is infinite and there are no closed-form analytical expression for its moments.
The only exception is when β1 = β2 = 1, i.e., when the two margins are geometrically
distributed; in this case, the minimum attainable linear correlation can be analytically

calculated as ρmin = −
√
q1

1 + q1
·

√
q2

1 + q2
(which can never be smaller than −1/4); whereas

the maximum attainable linear correlation is ρmax =

√
q1

1 + q1
·

√
q2

1 + q2
·min {1/q1, 1/q2}. In

fact, in this case, it can be easily shown that E(X1) = q1/(1− q1), V(X1) = q1/(1− q1)
2,

and E(X1X2)− E(X1)E(X2) = θ
q1q2

(1− q1)(1 + q1)(1− q2)(1 + q2)
.

For example, if we consider two discrete Weibull r.v.s with parameters q1 = 0.7,
β1 = 0.8, and q2 = 0.9 and β2 = 1.2, the minimum correlation coefficient attainable
through the FGM copula-based bivariate model is about−0.238, the maximum correlation
coefficient is 0.264. Note that relying on Table 1, the maximum value of ρ can exceed the
value 1/3 (this fact occurs for “small” values of qi and “large”values of βi), differently from
what happens with bivariate continuous distribution with the FGM dependence structure.

4 Estimation

Much less straightforward than simulation, is the estimation of parameters of the pro-
posed bivariate discrete Weibull model. We consider a bivariate random sample of size
n, xxx1, . . . ,xxxn (with xxxi = (x1i, x2i), i = 1, . . . , n) of non-negative integers, which we as-
sume has been drawn by the bivariate discrete Weibull r.v. We illustrate several possible
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Table 1: Minimum and maximum Pearson correlation ρ for the bivariate discrete Weibull
r.v. of (6), for several combinations of the marginal parameters

q 0.5 0.7 0.9
β 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

0.5

0.8 -0.191 -0.206 -0.215 -0.199 -0.215 -0.225 -0.201 -0.218 -0.229
0.383 0.413 0.429 0.284 0.308 0.321 0.223 0.243 0.254

1 -0.222 -0.231 -0.214 -0.232 -0.242 -0.217 -0.235 -0.247
0.444 0.462 0.306 0.331 0.346 0.241 0.262 0.274

1.2 -0.240 -0.223 -0.241 -0.252 -0.225 -0.245 -0.256
0.481 0.318 0.345 0.360 0.250 0.272 0.285

0.7

0.8 -0.206 -0.224 -0.233 -0.209 -0.227 -0.238
0.295 0.319 0.333 0.232 0.252 0.264

1 -0.242 -0.253 -0.226 -0.246 -0.257
0.346 0.361 0.251 0.273 0.286

1.2 -0.264 -0.236 -0.257 -0.269
0.377 0.262 0.285 0.299

0.9

0.8 -0.211 -0.229 -0.240
0.235 0.255 0.267

1 -0.249 -0.261
0.277 0.290

1.2 -0.274
0.304

methods for estimating the parameters q1, β1, q2, β2, and θ. We will start from the most
standard method (maximum likelihood), which should reveal the most efficient but also
the most computationally demanding, and then move to easier, but also presumably less
efficient, techniques. Estimation of this bivariate discrete model inherits all the drawbacks
related to the estimation of copulas for count data, see [11].

4.1 Full maximum likelihood

The log-likelihood function has the usual expression:

logL(q1, β1, q2, β2, θ;xxx1, . . . ,xxxn) =

n
∑

i=1

log p(x1i, x2i;ηηη), (10)

with ηηη denoting the parameter vector (q1, β1, q2, β2, θ) and p(x1i, x2i;ηηη) from (2). The
“full maximum likelihood method” simply consists in maximizing the log-likelihood func-
tion of Eq. (10) with respect to all the five parameters simultaneously, incorporating the
constraints on the parameters’ values:

η̂ηη = argmax
ηηη

logL(ηηη;xxx1, . . . ,xxxn).

This task can be performed numerically; under the R environment, it can be implemented
using appropriate functions (e.g. optim). Deriving the asymptotic variances of the full
maximum likelihood estimators is an arduous task, because of the complex form of the
p.m.f. in (2) and the unavailability of closed-form expressions for its expected value and
variance.
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4.2 Two-step maximum likelihood

The method, largely used in many other situations for copula estimation, see [17], consists
in computing first the maximum likelihood estimates of the two discrete Weibull margins
independently:

(q̂j, β̂j) = argmax
qj ,βj

logLj(qj , βj; xj1, . . . , xjn) =
n

∑

i=1

log pj(xji; qj, βj) j = 1, 2 (11)

(one can use the function estdweibull in the DiscreteWeibull package) and then max-
imize the log-likelihood of Eq. (10) with respect to θ only, with the four marginal com-
ponents of the ηηη parameter vector substituted by their corresponding MLEs of Eq. (11).
Note that for univariate samples consisting of only 0s and 1s the maximum-likelihood
procedure is inapplicable [4].

4.3 Marginal maximum likelihood plus approximate method of

moments

This method estimates the marginal parameters and the copula parameter separately. The
former are computed as (independent) maximum likelihood estimates for the two discrete
Weibull distributions (as for the two-step maximum likelihood method, Eq. (11)). The
latter is computed resorting to the known relationship existing between the θ parameter of
the FGM copula and Spearman’s rank correlation (holding whenX1 andX2 are continuous
r.v.s, see e.g. [20, p.213]:

ρS(X1, X2) =
θ

3
. (12)

If one compute a sample estimate of ρS (e.g. the sample rank correlation), ρ̂S, then an
estimate of θ can be computed as

θ̂M = 3ρ̂S. (13)

Of course, while this method may produce reliable estimates when X1 and X2 are con-
tinuous r.v.s, nothing can be said when they are discrete: in this case, Eq. (12) does not
hold exactly.

Alternatively, one can consider Kendall’s tau τ(X1, X2): for the FGM copula linking
two continuous r.v.s, the following relationship holds [20, p.213]:

τ(X1, X2) =
2θ

9
. (14)

If one compute a sample estimate of τ , τ̂ , then an estimate of θ can be computed as
θ̂′M = 9τ̂ /2.

Note that although the estimate provided for θ by Eq. (12) (or Eq. (14)) is very easy
to compute, it may be “not feasible”, i.e., may fall outside the valid range for θ.

4.4 Method of proportion

The original method of proportion we propose here is itself a two-step method. First,
we compute the estimates of the marginal parameters of the two r.v.s X1 and X2 inde-
pendently, by resorting to the univariate method of proportion (see [12, 15, 4]). Thus we
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obtain the estimates
q̂i,P = 1− p̂0i, i = 1, 2, (15)

where p̂0i is the sample rate of zeros of Xi;

β̂i,P = log [log(q̂i,P − p̂1i)/ log(q̂i,P )] / log(2),

where p̂1i is the sample rate of ones of Xi. Then the copula parameter θ can be estimated
by observing that

F (0, 0) = P (X1 = 0, X2 = 0) = (1− q1)(1− q2)[1 + θq1q2]

and then, substituting to q1 and q2 the corresponding estimates in (15), we derive an easy
estimate for the copula parameter θ, by taking into account the proportion of (0, 0) pairs
in the sample, denoted by p̂00:

θ̂P =

(

p̂00
(1− q̂1,P )(1− q̂2,P )

− 1

)

/(q̂1,P q̂2,P ). (16)

Thus, according to this method, all the five parameters can be computed through analyti-
cal expressions. However, some caution is needed. First, as known (see, for example, [4]),
some samples may be not able to provide (univariate) estimates for the q and β marginal
parameters: this happens if either (univariate) sample does not contain at least a 0 and
at least a 1. Secondly, even when this first issue is overcome, the estimate of θ of Eq. (16)
that can be then calculated may be “not feasible”, i.e., may fall outside the valid range
for θ.

Estimating θ by equating the probability of a double zero to the sample proportion of a
double zero (p̂00) does not represent the only possible choice: ideally, we can use any joint
cumulative probability F (x1, x2), (x1, x2) ∈ N

2
0 and equate it to the corresponding sample

cumulative frequency F̂ (x1, x2). The choice of (0, 0) is just the one providing the simplest
expression for θ̂P and also the most natural, since the marginal parameters qi and βi are
estimated on the basis of the sample proportions of zeros for the two empirical marginal
distributions. As an example, equating the joint (1, 1) probability to the corresponding
sample rate, we would get

θ̂∗P =





F̂11

(1− q̂2
β̂
1,P

1,P )(1− q̂2
β̂
2,P

2,P )
− 1



 /(q̂2
β̂
1,P

1,P · q̂2
β̂
2,P

2,P )

5 A Monte Carlo study

In order to study the behaviour of the parameters’ estimators in terms of biasedness and
variability, one would like to obtain their expectations and variances. Finding these means
and variances is almost impossible, especially for methods involving maximum likelihood,
which provide estimates in a numerical form only. Therefore, we study numerically the
expressions for expected values and variances with a Monte Carlo simulation study. We
consider several representative combinations of the five parameters characterizing the bi-
variate discrete Weibull distribution; in particular, for the sake of simplicity, we consider
all the “reasonable” and “consistent” combinations arising from the following choice of
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parameters: θ = −0.9,−0.6;−0.3; 0; +0.3,+0.6,+0.9,+1.2 (thus leading to negative, null
or positive dependence between the margins); q1, q2 = 0.5; 0.7; 0.9; β1, β2 = 0.8; 1.2. “Rea-
sonable” here means that given the symmetrical nature of the problem, if the combination
corresponding to the parameter vector ηηη = (q1, β1, q2, β2, θ) is considered, the combination
associated to the “symmetrical” parameter vector ηηη∗ = (q2, β2, q1, β1, θ) will be skipped.
“Consistent” means that the value of θ should satisfy the constraint of Eq. (7); this leads
to exclude the combinations where θ = 1.2 and either q1 or q2 is equal to 0.9. This means
that 21 × 7 + 10 = 157 combinations for ηηη are eventually considered. For each of these
artificial settings, the Monte Carlo simulation study is performed by generating 1, 000
samples of size n = 100, using the algorithm given in Section 3. For each sample, the four
types of estimators of q1, q2, β1, β2 and θ, described in Section 4, are calculated. Since
the actual evaluation of τ̂ for large n is time consuming (in comparison with ρ̂S), among
the two moment method’s estimators of Section 4.3, only the estimator (13) is considered.

Then, over the 1, 000 simulations, the means, ˆ̄θ, and standard deviations, sd(θ̂), of these
estimates are obtained.

Here we report only the results related to the estimates of the dependence parameter θ,
which are expected to be the most meaningful, since the copula parameter is intuitively
the most difficult to be estimated. We will discuss the performance of the estimators
comparatively, underlying how the parameter values (of θ itself and the other marginal
parameters) affect it. Results are reported in Tables 2–9.
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Table 2: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = 1.2 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

1.218 0.395
M 1.034 0.281
TSML 1.195 0.314
ML 1.202 0.318
P

q = 0.5,
β = 1.2

1.222 0.394 1.222 0.394
M 1.025 0.278 1.016 0.275
TSML 1.198 0.316 1.201 0.318
ML 1.205 0.319 1.208 0.322
P

q = 0.7,
β = 0.8

1.222 0.429 1.222 0.429 1.209 0.504
M 1.095 0.269 1.085 0.269 1.153 0.259
TSML 1.172 0.241 1.172 0.243 1.172 0.214
ML 1.179 0.244 1.178 0.245 1.179 0.217
P

q = 0.7,
β = 1.2

1.223 0.429 1.223 0.429 1.210 0.503 1.210 0.503
M 1.087 0.266 1.078 0.266 1.143 0.256 1.133 0.256
TSML 1.174 0.239 1.174 0.241 1.172 0.212 1.172 0.212
ML 1.181 0.241 1.180 0.243 1.181 0.214 1.180 0.214

12



Table 3: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = 0.9 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2 q = 0.9, β = 0.8 q = 0.9, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

0.916 0.404
M 0.776 0.293
TSML 0.898 0.336
ML 0.903 0.338
P

q = 0.5,
β = 1.2

0.917 0.402 0.917 0.402
M 0.768 0.293 0.762 0.293
TSML 0.899 0.339 0.901 0.344
ML 0.903 0.341 0.905 0.346
P

q = 0.7,
β = 0.8

0.912 0.443 0.911 0.443 0.908 0.501
M 0.821 0.285 0.812 0.285 0.866 0.282
TSML 0.896 0.300 0.895 0.303 0.893 0.276
ML 0.901 0.302 0.899 0.305 0.898 0.279
P

q = 0.7,
β = 1.2

0.912 0.440 0.912 0.440 0.913 0.502 0.913 0.502
M 0.815 0.282 0.807 0.282 0.860 0.281 0.854 0.281
TSML 0.898 0.300 0.897 0.301 0.894 0.276 0.895 0.278
ML 0.903 0.302 0.902 0.304 0.900 0.279 0.901 0.281
P

q = 0.9,
β = 0.8

0.931 0.641 0.931 0.641 0.869 0.839 0.869 0.839 0.921 1.459
M 0.833 0.286 0.827 0.285 0.878 0.281 0.871 0.280 0.892 0.280
TSML 0.863 0.250 0.865 0.252 0.870 0.236 0.870 0.237 0.871 0.229
ML 0.866 0.250 0.868 0.252 0.873 0.237 0.874 0.238 0.873 0.231
P

q = 0.9,
β = 1.2

0.931 0.642 0.931 0.642 0.869 0.840 0.869 0.840 0.919 1.460 0.919 1.460
M 0.830 0.285 0.825 0.283 0.876 0.281 0.869 0.280 0.888 0.281 0.888 0.280
TSML 0.861 0.250 0.864 0.250 0.869 0.237 0.868 0.237 0.869 0.229 0.869 0.230
ML 0.865 0.250 0.868 0.251 0.872 0.237 0.872 0.238 0.872 0.230 0.873 0.230
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Table 4: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = 0.6 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2 q = 0.9, β = 0.8 q = 0.9, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

0.615 0.412
M 0.519 0.306
TSML 0.600 0.352
ML 0.602 0.354
P

q = 0.5,
β = 1.2

0.611 0.410 0.611 0.410
M 0.511 0.304 0.507 0.302
TSML 0.597 0.354 0.600 0.356
ML 0.600 0.356 0.602 0.358
P

q = 0.7,
β = 0.8

0.605 0.455 0.605 0.455 0.607 0.505
M 0.549 0.301 0.543 0.301 0.579 0.295
TSML 0.600 0.330 0.601 0.334 0.598 0.301
ML 0.603 0.332 0.604 0.336 0.601 0.304
P

q = 0.7,
β = 1.2

0.602 0.452 0.602 0.452 0.607 0.502 0.607 0.502
M 0.543 0.298 0.537 0.299 0.574 0.294 0.571 0.290
TSML 0.601 0.329 0.600 0.334 0.598 0.303 0.601 0.302
ML 0.604 0.332 0.603 0.336 0.602 0.305 0.604 0.305
P

q = 0.9,
β = 0.8

0.630 0.676 0.630 0.676 0.576 0.810 0.576 0.810 0.613 1.400
M 0.558 0.304 0.554 0.303 0.587 0.296 0.582 0.294 0.597 0.298
TSML 0.597 0.317 0.600 0.319 0.596 0.291 0.596 0.291 0.596 0.285
ML 0.600 0.319 0.602 0.321 0.598 0.292 0.598 0.292 0.598 0.287
P

q = 0.9,
β = 1.2

0.629 0.676 0.629 0.676 0.577 0.809 0.577 0.809 0.616 1.399 0.616 1.319
M 0.556 0.303 0.551 0.303 0.585 0.296 0.581 0.293 0.595 0.298 0.592 0.298
TSML 0.596 0.317 0.597 0.320 0.595 0.292 0.595 0.291 0.595 0.287 0.594 0.289
ML 0.599 0.318 0.599 0.321 0.597 0.293 0.598 0.292 0.598 0.289 0.597 0.290
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Table 5: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = 0.3 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2 q = 0.9, β = 0.8 q = 0.9, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

0.313 0.415
M 0.262 0.309
TSML 0.301 0.353
ML 0.303 0.355
P

q = 0.5,
β = 1.2

0.313 0.415 0.313 0.415
M 0.259 0.308 0.255 0.305
TSML 0.302 0.357 0.300 0.358
ML 0.303 0.358 0.301 0.359
P

q = 0.7,
β = 0.8

0.308 0.457 0.308 0.457 0.303 0.502
M 0.277 0.307 0.273 0.305 0.293 0.306
TSML 0.302 0.334 0.301 0.336 0.301 0.315
ML 0.303 0.336 0.302 0.337 0.302 0.316
P

q = 0.7,
β = 1.2

0.308 0.457 0.308 0.457 0.303 0.502 0.303 0.502
M 0.275 0.306 0.271 0.304 0.290 0.305 0.286 0.305
TSML 0.303 0.336 0.302 0.338 0.302 0.317 0.300 0.320
ML 0.304 0.338 0.303 0.339 0.303 0.318 0.301 0.321
P

q = 0.9,
β = 0.8

0.316 0.692 0.317 0.690 0.279 0.815 0.279 0.815 0.258 1.286
M 0.281 0.307 0.277 0.304 0.296 0.307 0.292 0.307 0.300 0.306
TSML 0.303 0.330 0.303 0.330 0.301 0.310 0.300 0.314 0.299 0.303
ML 0.305 0.331 0.304 0.331 0.303 0.312 0.301 0.315 0.300 0.305
P

q = 0.9,
β = 1.2

0.316 0.692 0.316 0.692 0.279 0.815 0.279 0.815 0.258 1.286 0.258 1.286
M 0.279 0.307 0.276 0.305 0.294 0.306 0.290 0.307 0.298 0.306 0.298 0.307
TSML 0.302 0.331 0.302 0.332 0.300 0.311 0.298 0.314 0.297 0.304 0.298 0.305
ML 0.303 0.332 0.303 0.334 0.301 0.313 0.300 0.316 0.299 0.305 0.300 0.306
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Table 6: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = 0 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2 q = 0.9, β = 0.8 q = 0.9, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

0.006 0.412
M 0.002 0.308
TSML 0.002 0.357
ML 0.002 0.358
P

q = 0.5,
β = 1.2

0.006 0.412 0.006 0.412
M 0.002 0.306 0.001 0.306
TSML 0.001 0.359 0.000 0.363
ML 0.001 0.361 0.000 0.364
P

q = 0.7,
β = 0.8

-0.003 0.462 -0.003 0.462 0.003 0.497
M 0.002 0.311 0.001 0.309 0.004 0.307
TSML 0.003 0.342 0.001 0.345 0.004 0.319
ML 0.003 0.344 0.001 0.346 0.004 0.320
P

q = 0.7,
β = 1.2

-0.003 0.462 -0.003 0.462 0.003 0.497 0.003 0.497
M 0.003 0.311 0.001 0.309 0.005 0.307 0.004 0.307
TSML 0.004 0.346 0.002 0.348 0.004 0.322 0.004 0.325
ML 0.004 0.348 0.002 0.350 0.004 0.323 0.004 0.326
P

q = 0.9,
β = 0.8

-0.016 0.718 -0.014 0.715 -0.029 0.786 -0.029 0.786 -0.021 1.169
M 0.001 0.311 0.000 0.308 0.004 0.309 0.003 0.309 0.004 0.308
TSML 0.003 0.336 0.002 0.336 0.004 0.315 0.003 0.318 0.003 0.308
ML 0.003 0.337 0.002 0.338 0.003 0.316 0.003 0.319 0.003 0.310
P

q = 0.9,
β = 1.2

-0.016 0.718 -0.016 0.718 -0.029 0.786 -0.029 0.786 -0.021 1.169 -0.021 1.169
M 0.000 0.310 -0.001 0.308 0.002 0.308 0.002 0.308 0.003 0.308 0.004 0.308
TSML 0.001 0.336 0.000 0.338 0.002 0.315 0.002 0.318 0.002 0.309 0.002 0.310
ML 0.002 0.338 -0.001 0.340 0.002 0.317 0.002 0.319 0.002 0.311 0.002 0.311
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Table 7: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = −0.3 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2 q = 0.9, β = 0.8 q = 0.9, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

-0.293 0.405
M -0.254 0.298
TSML -0.293 0.341
ML -0.294 0.343
P

q = 0.5,
β = 1.2

-0.293 0.405 -0.293 0.405
M -0.252 0.297 -0.249 0.299
TSML -0.293 0.343 -0.292 0.348
ML -0.294 0.344 -0.293 0.349
P

q = 0.7,
β = 0.8

-0.304 0.454 -0.304 0.454 -0.301 0.483
M -0.269 0.302 -0.266 0.303 -0.281 0.303
TSML -0.292 0.327 -0.292 0.332 -0.291 0.312
ML -0.294 0.328 -0.293 0.333 -0.292 0.313
P

q = 0.7,
β = 1.2

-0.304 0.454 -0.304 0.454 -0.301 0.483 -0.301 0.483
M -0.266 0.302 -0.263 0.303 -0.279 0.303 -0.278 0.303
TSML -0.292 0.332 -0.292 0.337 -0.291 0.315 -0.292 0.318
ML -0.294 0.333 -0.293 0.338 -0.292 0.317 -0.293 0.319
P

q = 0.9,
β = 0.8

-0.334 0.699 -0.334 0.699 -0.310 0.723 -0.310 0.723 -0.315 1.055
M -0.274 0.303 -0.272 0.304 -0.286 0.304 -0.286 0.304 -0.292 0.304
TSML -0.293 0.322 -0.293 0.326 -0.292 0.307 -0.293 0.309 -0.293 0.301
ML -0.294 0.323 -0.294 0.328 -0.293 0.308 -0.294 0.310 -0.295 0.303
P

q = 0.9,
β = 1.2

-0.334 0.699 -0.334 0.699 -0.310 0.723 -0.310 0.723 -0.315 1.055 -0.315 1.055
M -0.275 0.302 -0.272 0.303 -0.287 0.304 -0.286 0.304 -0.293 0.304 -0.292 0.304
TSML -0.295 0.323 -0.295 0.327 -0.293 0.308 -0.294 0.310 -0.295 0.302 -0.295 0.303
ML -0.297 0.324 -0.296 0.328 -0.294 0.309 -0.295 0.311 -0.296 0.304 -0.297 0.304
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Table 8: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = −0.6 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2 q = 0.9, β = 0.8 q = 0.9, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

-0.595 0.409
M -0.511 0.292
TSML -0.575 0.304
ML -0.577 0.305
P

q = 0.5,
β = 1.2

-0.595 0.409 -0.595 0.409
M -0.506 0.292 -0.500 0.291
TSML -0.574 0.306 -0.572 0.309
ML -0.576 0.307 -0.574 0.309
P

q = 0.7,
β = 0.8

-0.606 0.451 -0.606 0.451 -0.600 0.457
M -0.540 0.295 -0.533 0.293 -0.571 0.294
TSML -0.576 0.292 -0.574 0.294 -0.578 0.276
ML -0.578 0.292 -0.577 0.295 -0.580 0.277
P

q = 0.7,
β = 1.2

-0.606 0.451 -0.606 0.451 -0.600 0.457 -0.600 0.457
M -0.535 0.295 -0.529 0.293 -0.566 0.294 -0.560 0.296
TSML -0.576 0.296 -0.574 0.298 -0.578 0.280 -0.577 0.285
ML -0.578 0.297 -0.576 0.299 -0.580 0.280 -0.579 0.285
P

q = 0.9,
β = 0.8

-0.630 0.696 -0.630 0.696 -0.595 0.644 -0.595 0.644 -0.596 0.909
M -0.549 0.296 -0.543 0.295 -0.579 0.294 -0.574 0.296 -0.589 0.293
TSML -0.577 0.289 -0.576 0.291 -0.579 0.274 -0.579 0.279 -0.582 0.270
ML -0.579 0.290 -0.578 0.292 -0.582 0.274 -0.581 0.280 -0.585 0.272
P

q = 0.9,
β = 1.2

-0.630 0.696 -0.630 0.696 -0.595 0.644 -0.595 0.644 -0.596 0.909 -0.596 0.909
M -0.549 0.295 -0.543 0.294 -0.579 0.293 -0.574 0.296 -0.589 0.293 -0.588 0.292
TSML -0.579 0.289 -0.577 0.291 -0.581 0.274 -0.580 0.279 -0.583 0.271 -0.583 0.272
ML -0.581 0.290 -0.579 0.291 -0.583 0.275 -0.582 0.280 -0.586 0.272 -0.586 0.273
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Table 9: Simulation results: Monte Carlo expected value and standard deviation of the four estimators for the θ parameter presented
in Section 4, with θ = −0.9 and n = 100. Abbreviations: P=method of proportion, M=two-step maximum likelihood plus moment
method; TSML=two-step maximum likelihood; ML=full maximum likelihood

q = 0.5, β = 0.8 q = 0.5, β = 1.2 q = 0.7, β = 0.8 q = 0.7, β = 1.2 q = 0.9, β = 0.8 q = 0.9, β = 1.2

ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂) ˆ̄θ sd(θ̂)
P

q = 0.5,
β = 0.8

-0.892 0.404
M -0.769 0.275
TSML -0.817 0.222
ML -0.819 0.222
P

q = 0.5,
β = 1.2

-0.892 0.404 -0.892 0.404
M -0.761 0.278 -0.753 0.282
TSML -0.814 0.226 -0.813 0.232
ML -0.816 0.225 -0.814 0.232
P

q = 0.7,
β = 0.8

-0.906 0.449 -0.906 0.449 -0.907 0.430
M -0.813 0.279 -0.803 0.282 -0.859 0.277
TSML -0.822 0.214 -0.819 0.219 -0.829 0.200
ML -0.824 0.213 -0.821 0.218 -0.832 0.199
P

q = 0.7,
β = 1.2

-0.906 0.449 -0.906 0.449 -0.907 0.430 -0.907 0.430
M -0.806 0.279 -0.796 0.282 -0.852 0.278 -0.846 0.277
TSML -0.820 0.216 -0.817 0.221 -0.828 0.202 -0.827 0.201
ML -0.823 0.216 -0.819 0.221 -0.830 0.202 -0.829 0.200
P

q = 0.9,
β = 0.8

-0.931 0.669 -0.931 0.669 -0.904 0.576 -0.904 0.576 -0.917 0.647
M -0.826 0.280 -0.817 0.283 -0.872 0.277 -0.865 0.276 -0.885 0.273
TSML -0.823 0.213 -0.821 0.217 -0.829 0.198 -0.829 0.198 -0.832 0.192
ML -0.826 0.212 -0.824 0.217 -0.832 0.198 -0.832 0.197 -0.835 0.192
P

q = 0.9,
β = 1.2

-0.931 0.669 -0.931 0.669 -0.904 0.576 -0.904 0.576 -0.917 0.647 -0.917 0.647
M -0.826 0.279 -0.816 0.282 -0.871 0.276 -0.865 0.276 -0.884 0.273 -0.882 0.273
TSML -0.824 0.212 -0.821 0.217 -0.830 0.198 -0.830 0.198 -0.833 0.193 -0.833 0.193
ML -0.826 0.212 -0.824 0.216 -0.833 0.198 -0.832 0.197 -0.836 0.192 -0.836 0.193
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Figure 3: Boxplots displaying the MC empirical distribution of the θ sample estimators
for q1 = 0.7, q2 = 0.5, β1 = β2 = 1.2, θ = 0.6, n = 100. The horizontal line indicates
θ = 0.6. For each boxplot, a black filled square indicates the Monte Carlo average of the
corresponding estimator distribution. Abbreviations: P=method of proportion, M=two-
step maximum likelihood plus moment method; TSML=two-step maximum likelihood;
ML=full maximum likelihood
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It is apparent that the method of proportion is the least efficient amongst the four
estimators of θ. Indeed, it is sometimes the least biased, but has always by far the largest
standard deviation, thus producing the largest root mean square error. This was some-
what expected, since as in the univariate case (see [4]), this method discards most of the
information contained in the sample, being based only on the rates of 0s and 1s in the
data. Moreover, the percentage of samples leading to non-feasible estimates (not reported
here for each single scenario) is often non-negligible. Note that the estimates of θ derived
through the method of proportion (see Eq. (16)) depends on the two marginal frequencies
of 0s and on the bivariate sample frequency of double 0s. But the corresponding proba-
bilities do not depend on the β parameters, so the Monte Carlo mean of θ̂ is a function
of θ, q1 and q2 only, and is independent from the two β’s. This is easily confirmed by the
simulation results which also show that even the standard deviation of θ̂ does not depend
on β’s, but only on q’s, θ itself and n. In particular, the standard deviation, for a fixed θ,
increases when the q’s increase; for fixed values of the marginal parameters, the standard
deviation does not possess a clear trend with respect to θ.

As for the estimator obtained through the method of moment, we can note that the bias
is usually negative for θ > 0 and positive for θ < 0, and, for a fixed value of θ, in absolute
value it tends to diminish when q increases and tends to 1, and - fixed q - when β is smaller;
fixed q’s and β’s, it tends to increase as the absolute value of θ increases. Thus, for a fixed
θ, the smallest value of the bias is obtained for the scenario q1 = q2 = 0.9, β1 = β2 = 0.8.
The standard deviation, for a fixed θ, tends to slightly decrease by increasing q, whereas
it is quite stable with β; it tends to diminish as the absolute value of θ increases, for a
fixed combination of q’s and β’s; this means that “extreme” values of θ (1.2 and −0.9, in
our study) are those yielding the smallest variability, for a given marginal setting.

The estimators obtained through the full maximum likelihood and two-step maximum
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likelihood methods have a very similar behaviour. In terms of bias, the former would
be preferable to the latter, except when θ = 0.3. In terms of variability, the latter is
better than the former for most scenarios. The bias magnitude is negligible for θ =
−0.3, 0, 0.3, 0.6; it becomes not entirely insignificant for the remaining values of θ, and
in particular for θ = −0.9. For a fixed θ, the biases increase in absolute value when the
q’s get close to the smallest value here considered (0.5) and is practically independent
from βi. Looking for example Table 9, with q1 = q2 = 0.5 and β1 = β2 = 0.8, the Monte
Carlo mean of the TSML and ML estimators of θ are −0.817 and −0.819, whereas the
“true” value of θ is −0.9. As for their standard deviations, they do not depend on θ
heavily, and for a fixed θ they decrease with q, and once q is fixed, they slightly increase
with β’s. The corresponding root mean square error (which is not reported here for the
sake of brevity) almost always turns out to be smaller - even if to a barely detectable
extent - for the full maximum likelihood estimator. The “price” to pay is the greater
computational cost. Although the full maximization of the log-likelihood function can be
computationally demanding (however, in the order few seconds), however it did not raise
particular convergence problems, under any of the examined scenarios. The TSML and
ML estimators of θ are overall almost always better than the estimator derived through
the method of moments. For most scenarios they have a far smaller absolute bias (even
if their variance may be slightly larger); for a few other scenarios, they have a slightly
larger absolute bias, which is however compensated by a far smaller variance; so that,
in terms of root mean square error the maximum likelihood estimators are preferable
to the method of moments. The only exception is when θ is zero (i.e., the margins are
independent): in this case, the method of moment can be considered the best performer.
See Table 6: for q1 = 0.9, β1 = 1.2, q2 = 0.5, β2 = 0.8, we have that the method of
moment’s estimator of θ is practically unbiased, with standard deviation 0.310, whereas
the TSML and ML estimators have bias 0.001 and 0.002, and standard deviation 0.336
and 0.338, respectively.

Figure 3 displays the Monte Carlo empirical distribution of the four estimators of θ
for another of the examined settings. From this boxplot, it is apparent that the estimator
derived by the method of proportion presents the largest variability, although it is almost
unbiased, and is characterized by the presence of several “outliers”, which can even fall
outside the admissible range for θ. The method of moments yields a less variable estima-
tor which however presents a non-negligible bias. The one-step and two-step maximum
likelihood methods produce estimators with a very similar distribution, with negligible
bias and a variability a bit larger than that of the moment estimator.

6 Application to real data

In this section, we fit the bivariate discrete Weibull model to two real datasets taken
from the literature and derive the parameter estimates through each of the methods
described in Section 4. The computations have been carried out by developing appropriate
code in the R environment and by using the available DiscreteWeibull package, and in
particular the estdweibull function, with the option method=’’ML’’ (for the two-step
maximum likelihood method and the marginal maximum likelihood plus approximate
method of moments) or method=’’P’’ (for the proportion method). The two datasets
are characterized by a positive (the first) and negative (the second) correlation coefficient
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between the two observed count variables.

6.1 Bivariate data with positive dependence

In this section, we apply the proposed bivariate discrete Weibull distribution to model a
dataset studied in Kocherlakota and Kocherlakota [13], taken from Arbous and Kerrich
[1] and reported in Table 10. The authors studied accidents among 122 experienced
shunters. Here, x1 represents the number of accidents in 6-year period from 1937-1942,
and x2 represents the number of accidents in 5-year period from 1943-1947.

Table 10: Dataset from Kocherlakota and Kocherlakota [13]

x1, x2 0 1 2 3 4 5 6 7
0 21 13 4 2 0 0 0 0 40
1 18 14 5 1 0 0 0 1 39
2 8 10 4 3 1 0 0 0 26
3 2 1 2 2 1 0 0 0 8
4 1 4 1 0 0 0 0 0 6
5 0 1 0 1 0 0 0 0 2
6 0 0 0 1 0 0 0 0 1

50 43 16 10 2 0 0 1 122

Summary statistics for the dataset are provided below:

x̄1 = 1.270 x̄2 = 0.984 var(x1) = 1.640 var(x2) = 1.311 ρ̂ = 0.283.

Note that both x1 and x2 present overdispersion (the variance is greater than the mean)
and then Poisson margins would not fit the univariate distributions adequately. Note also
that the Pearson’s correlation is (moderately) positive.

If we fit the bivariate discrete Weibull model, the parameter estimates, derived through
each of the methods presented in Section 4, are those displayed in Tables 11 and 12.
Note that the four methods provide similar estimates for each marginal parameter; more
importantly, the estimates of the two marginal β parameters are all greater than 1 (the
two univariate distribution are estimated to present both an increasing failure rate). The
estimates of the copula parameter θ derived through the full and two-step maximum
likelihood methods are very close to +1; the estimates by the moment method and, more
apparently, the method of proportion are smaller.

To test the null hypothesis H0: “The data come from the bivariate discrete Weibull
model” against the alternative H1: “The data do not come from the bivariate discrete

Table 11: Parameter estimates for Arbous and Kerrich [1] data

method,estimate q1 β1 q2 β2 θ
P 0.672 1.392 0.590 1.446 0.708
M 0.671 1.402 0.578 1.311 0.859

TSML 0.671 1.402 0.578 1.311 0.957
ML 0.678 1.414 0.585 1.319 0.961
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Table 12: MLEs, standard errors and p-values for Arbous and Kerrich [1] data

Parameter Estimate Std. error p-value
q1 0.678 0.040 ≈ 0
β1 1.414 0.120 ≈ 0
q2 0.585 0.043 ≈ 0
β2 1.319 0.117 ≈ 0
θ 0.961 0.277 0.0005

Weibull model”, we employ the asymptotic chi-squared goodness-of-fit test, based on the
statistic

χ2 =
∑

i

∑

j

(nij − n∗
ij)

2

n∗
ij

, (17)

where nij is the observed frequency of (i, j) ∈ N
2
0, n

∗
ij its theoretical analogue. Under H0,

χ2 is asymptotically distributed as a chi squared r.v. with r−e−1, where r is the number
of cells, e the number of estimated parameters.

After properly pooling the cells in the theoretical frequency table built by using the
MLEs of the parameters (in order to get aggregated frequencies greater than 5; see Ta-
ble 13), we compute the chi-square statistic, with 12− 5− 1 = 6 degrees of freedom, and
we get χ2 = 5.49, with a corresponding p-value equal to 0.483. Hence, it is reasonable to
claim that the fit is good.

Additionally, we computed the value of the likelihood-ratio-test statistic, given by

λ = 2
∑

i

∑

j

nij log

(

nij

np̂ij

)

(18)

which - based on the same cells pooling as before - equals 6.02, with a corresponding
p-value of 0.421.

The χ2 goodness-of-fit statistic for the bivariate geometric distribution in [14], although
computed over a different cell grouping, returns a p-value of 0.08481, thus indicating a
worse fit.

Table 13: Expected joint frequency distribution and cell aggregation for the computation
of the chi-squared statistic for the first dataset.

x1, x2 0 1 2 3 4 5 6 7
0 22,53 11,42 3,70 1,14 0,36 0,11 0,03 0,01
1 16,65 12,64 6,20 2,55 0,93 0,31 0,09 0,04
2 7,20 8,25 4,97 2,22 0,84 0,28 0,09 0,03
3 2,73 4,20 2,77 1,28 0,48 0,16 0,05 0,02
4 1,00 1,81 1,24 0,58 0,22 0,07 0,02 0,01
5 0,35 0,69 0,48 0,22 0,09 0,03 0,01 0,00
6 0,17 0,34 0,24 0,11 0,04 0,01 0,00 0,00
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Table 14: Bivariate distribution of the data taken from [23]: number of flight aborts by
109 aircrafts in two consecutive periods

x1 \ x2 0 1 2 3 4
0 34 20 4 6 4 68
1 17 7 0 0 0 24
2 6 4 1 0 0 11
3 0 4 0 0 0 4
4 0 0 0 0 0 0
5 2 0 0 0 0 2

59 35 5 6 4 109

Table 15: Parameter estimates for Mitchell and Paulson [23] data

method,estimate q1 β1 q2 β2 θ
P 0.376 0.926 0.459 1.348 -0.442
M 0.379 0.977 0.450 1.120 -0.401

TSML 0.379 0.977 0.450 1.120 -0.635
ML 0.371 0.965 0.459 1.133 -0.655

6.2 Bivariate data with negative dependence

The data, considered in Mitchell and Paulson [23] and reported in Table 14, consist of the
number of aborts by 109 aircrafts in two (first = x1, second = x2) consecutive 6 months
of a 1-year period. Summary statistics for the dataset are provided below:

x̄1 = 0.624 x̄2 = 0.725 var(x1) = 1.024 var(x2) = 1.062 ρ̂ = −0.161

Note that both x1 and x2 present overdispersion and then, as for the dataset discussed in
the previous section, Poisson margins would not fit the univariate distributions adequately.
Note also that Pearson’s correlation is (moderately) negative. Mitchell and Paulson [23]
used a new bivariate negative binomial distribution derived by convoluting a bivariate
geometric distribution to model the data.

If we fit the bivariate discrete Weibull model, we obtain the parameter estimates,
derived through each of the methods presented in Section 4, displayed in Table 15. Note
that all the β1 estimates are smaller than 1, indicating a decreasing failure rate for x1, and
all the β2 estimates are greater than 1, conversely indicating an increasing failure rate for
x2. The method of proportion provides estimates for the two β parameters that are slightly
different from those derived through the other methods. On the contrary, the values of
the q1 estimates (and q2 as well) are very close to each other. As to the estimate of the
dependence parameter θ, the full maximum likelihood and two-step maximum likelihood
methods return quite similar negative values (−0.655 and −0.635); the proportion method
and the two-step method based on Spearman’s correlation return two similar negative
values (−0.442 and −0.401) which are considerably smaller – in absolute value – than the
other two.

The maximum value of the loglikelihood function, computed at the MLEs, is ℓmax =
−243.966; the corresponding value of the Akaike Information Criterion is AIC = 497.932.
Focusing on the (full) MLEs, we have that all the parameters are significant except for the
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Table 16: MLEs, standard errors and p-values for Mitchell and Paulson [23] data

Parameter Estimate Std. error p-value
q1 0.371 0.046 ≈ 0
β1 0.965 0.118 ≈ 0
q2 0.459 0.047 ≈ 0
β2 1.133 0.121 ≈ 0
θ -0.655 0.405 0.106

copula parameter, whose p-value is 10.6% (see Table 16). We note that also in [9], where
a bivariate generalized Poisson distribution was fitted to the same dataset, the association
parameter of the model was the only one that turned out to be non-significant. In terms
of AIC, the bivariate discrete Weibull model has a better fit than the bivariate Poisson,
the bivariate negative binomial, and the bivariate generalized Poisson distributions [9, 34].
If we want to provide an absolute measure of goodness-of-fit, as we did in the previous

section, we can easily derive the theoretical joint p.m.f. and the expected joint frequency
table (based on the MLEs). To test the null hypothesis H0: “The data come from the
bivariate discrete Weibull model” against the alternative H1: “The data do not come
from the bivariate discrete Weibull model”, we employ again the asymptotic chi-squared
goodness-of-fit test, based on the statistic of Eq. (17). Since n = 109, this statistic can
be usefully employed for assessing whether the bivariate discrete Weibull model fits the
data adequately. If we proceed and collapse adjacent cells, ensuring that every expected
frequency is greater than 5 (in order to apply the asymptotic results satisfactorily), we
can choose the aggregations of Table 17 and the chi-squared statistic takes the value 7.13,
whose corresponding p-value (the degrees of freedom are 9 − 5 − 1 = 3) is 0.068, which
means that at the 5% level we accept the null hypothesis that the data come from a
bivariate discrete Weibull model. The value of the likelihood-ratio-test statistic Eq. (18),
computed on the same cell grouping, is 7.32, with a corresponding p-value of 0.062. Again,
at a 5% significance level, the hypothesis H0 would be accepted.

Table 17: Expected joint frequency distribution and cell aggregation for the computation
of the chi-squared statistic for the second dataset.

x1 \ x2 0 1 2 3 ≥ 4
0 32.97 20.71 9.26 3.62 2.00
1 15.33 6.08 2.15 0.76 0.40
2 6.38 2.14 0.66 0.22 0.11
3 2.58 0.81 0.23 0.07 0.04
4 1.04 0.32 0.09 0.03 0.01

≥ 5 0.70 0.21 0.06 0.02 0.01

7 Conclusions

A bivariate count model, with discrete Weibull margins and the FGM copula has been
proposed. It allows for moderate levels of positive and negative linear correlation, whose
relationship with the dependence parameter θ and the marginal parameters has been
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examined. Its simulation is straightforward and easily implemented in the R statistical
environment. Sample estimation of its parameters can be performed via standard meth-
ods or ad hoc procedures (moment method and method of proportion) which are less
efficient but lead to analytical expressions for θ̂. The relative efficiency of the proposed
estimators are also investigated through a Monte Carlo study, which reveals potential
practical pitfalls of each procedure. Applications to real datasets have shown that this
new distribution can fit count data even better than existing models (e.g., bivariate geo-
metric, negative binomial or Poisson models). Further research will address generalization
of this distribution taking into account extensions of the FGM copula able to enlarge the
range of attainable values for Pearson’s correlation.
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