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Abstract

Background: In exploring the time course of a disease to support or generate biological hypotheses, the shape of
the hazard function provides relevant information. For long follow-ups the shape of hazard function may be
complex, with the presence of multiple peaks. In this paper we present the use of a neural network extension of
the piecewise exponential model to study the shape of the hazard function in time in dependence of covariates.
The technique is applied to a dataset of 247 renal cell carcinoma patients from a randomized clinical trial.

Results: An interaction effect of treatment with number of metastatic lymph nodes but not with pathologic T-
stage is highlighted.

Conclusions: Piecewise Exponential Artificial Neural Networks demonstrate a clinically useful and flexible tool in
assessing interaction or time-dependent effects of the prognostic factors on the hazard function.
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Background
Many analyses of survival data in controlled clinical tri-
als aim to study the effect of therapeutic strategies ac-
counting for prognostic factors, leaving the shape of
the baseline hazard function undefined (Cox model).
On the other hand the pattern of the hazard function,
describing the disease dynamics, may provide a relevant
role for a deeper insight of the treatment effect during
time suggesting or supporting clinical hypotheses.
When long follow-up is available, the shape of hazard
function may be complex, for example with a multi-
peak pattern.
In addition to the adjusted analysis of treatment effect,

it is usual to perform an exploratory evaluation of

treatments effects in subgroups of patients characterized
by combinations of covariate categories. The aim is to
suggest a possible better targeting of the therapeutic
strategies to be confirmed by further studies. From the
modeling point of view, interactions of treatment and
covariates are needed. For a deeper investigation some
high order interactions could be considered which are
difficult to be modeled explicitly. Accordingly, suffi-
ciently flexible techniques are needed for an adequate
estimation. One of the proposed approaches is the GLM
implementation of the piecewise exponential [1], where
the smoothing of the hazard function is performed by
splines.
In this paper we illustrate the use of the extension of

the piecewise exponential model by neural networks,
the Piecewise Exponential Artificial Neural Networks
(PEANN, [2]). In comparison with the GLM and splines
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approach, PEANN does not require the explicit model-
ing of the interaction and/or linearity effects of covari-
ates, which in lack of clinical-biological hypotheses of
the phenomenon is a strong advantage. Furthermore,
the complex architecture of neural networks, with their
theoretically proved approximating properties [3],
allows in principle greater flexibility in comparison to
splines.
We consider here the application of PEANN to a

renal cancer dataset, already examined by Kaplan-
Meier estimator and Cox regression model in [4]. To
avoid the rigidity of proportional hazard hypothesis of
Cox model in studying the effect of covariates and
further to obtain the shape of the hazard function,
neural network can be a convenient choice. As
suggested by the CONSORT Statement [5] for the
analysis of randomized clinical trials, inference on
treatment effects was performed by 95% confidence
intervals.

Methods
In the piecewise exponential model [6] the time range is
subdivided into a number of intervals in which the haz-
ard function is supposed to be constant. By adopting
splines, it is possible to smooth the time dependence of
the hazard function over the time intervals. Usually Gen-
eralized Linear Models (GLMs) with Poisson error are
adopted for inference.
We have proposed [2] to model the hazard func-

tion h(t; x) as a function of time and the covariates
vector x by artificial neural networks, which repre-
sent a flexible tool successfully adopted to flexibly
model the dependence on continuous and categorical
covariates.
The hazard function is modeled by means of the fol-

lowing feed-forward artificial neural network:

h t; xð Þ ¼ exp β 2ð Þ
0 þ

XH

k¼1

zkβ
2ð Þ
k

 !
;

where

zk ¼ logis β 1ð Þ
0k þ

Xp

l¼1

xlβ
1ð Þ
lk þ tβ 1ð Þ

pþ1;k

 !
;

exp and logis stand for the exponential and the logistic
function respectively, and the β’s represent unknown
coefficients.
This net is composed of three layers: an input layer

with p covariates xl and t, an intermediate layer with H
hidden units zk and finally the single output unit h.
Moreover a constant unit set to 1 “feeds” every non-
input unit.

To estimate the coefficients β’s the following error
function is minimized:

E ¼ − logLþ λ
XH
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where the first term is the negative log-likelihood and
the second term is a quadratic penalty [3]. The likeli-
hood for N subjects is [6]:

L ¼
YN

i¼1

YJ i

j¼1

h t j; xi
� �dij

exp h t j; xi
� �

τij
� � ;

where dij = 1 if the i-th subject has the event in the j-th
interval and 0 otherwise, τij is the follow-up time for the
i-th subject in the j-th interval, Ji the index of the last
interval in which the i-th subject is still under observa-
tion, xi the covariate vector for the i-th subject, and tj
the midpoint of the j-th interval.
The effect of the penalization is that of increasing the

performance of the optimization routines and of pre-
venting over fitting. The decay parameter λ controls the
trade-off between smoothness and fitting to the data.
Minimization of the error function was performed by
the quasi-Newtonian algorithm BFGS with analytical
gradient.
The flexibility of the neural networks depends on both

the number of hidden units and the decay parameter.
One strategy to select the model is to recur to cross-
validation. We randomly assigned the subjects to one of
ten subsets of about the same size (tenfold cross-
validation). Excluding each subset at a time, ten nets
were fitted on the remaining nine subsets; each net was
initialized with different starting values for the parame-
ters. The following criterion was thus computed:

CV ¼ 1
XN

i¼1

J i

XN

i¼1

XJ i
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dij logĥ
−m ið Þð Þ
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−ĥ
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� �
;

where ĥ
ð−mðiÞÞ

indicates the average over the ten hazard
functions estimated excluding the subset m(i) in which
the i-th subject falls. Based on Bayesian consideration
[3], it is suggested for the decay parameter an

Table 1 Cross validation scores. Ten-fold cross-validation scores
obtained by averaging over ten fits for various values of the
number of hidden units (H) and of the decay parameter

Decay parameter H = 3 H = 6 H = 9

0.001 0.1595 0.3089·103 0.6267·106

0.005 0.1601 0.3324 0.1205·103

0.02 0.1601 0.1725 0.2081

0.1 0.1589 0.1596 0.1596

Fornili et al. BMC Bioinformatics 2018, 19(Suppl 7):186 Page 24 of 154



explorative range of 10− 3 - 10− 1. In performing both
cross validation and estimations, the averaging over fits
obtained from different initial values for the parameters
has been suggested [7].
For inference confidence intervals can be based on

nonparametric bootstrap. To consider inference on co-
variate effects, percentiles confidence intervals for log
hazard ratios have been obtained using 2000 bootstrap
samples, conditional to the number of hidden units and
the decay parameter value selected from cross validation.
The confidence intervals were computes as follows: for

each of 2000 bootstrap samples, an hazard estimate was
computed as the average over ten nets initialized with
the final coefficient values of previous fitted nets used
for estimation; the 2.5 and 97.5 percentiles of the distri-
bution of the 2000 hazard estimates were pointwise
computed with bias correction [8].
For an application, we considered a data set [4] on a

randomized controlled clinical trial comparing adjuvant
interferon alpha-2b and simple observation without
interferon in patients with Robson stages II and III renal
cell carcinoma. Time from radical nephrectomy to the
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Fig. 1 Hazards and log hazard ratio for the two treatments. Left panel: Adjusted hazard function estimates for interferon (solid lines) and control
(dashed lines). Right panel: Adjusted log hazard ratio (solid) with 95% bootstrap confidence intervals (dotted). The reference log HR = 0 (thin grey
line) is also reported
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Fig. 2 Hazards and log hazard ratios for the two treatments by lymph nodes. Top panels: Adjusted hazard function estimates for interferon (solid
lines) and control (dashed lines) groups for the three lymph nodes categories. Bottom panels: Adjusted log hazard ratio (solid lines) with 95%
bootstrap confidence intervals (dotted lines). The reference log HR = 0 (thin grey line) is also reported
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occurrence of local or distant metastasis as first event
(event-free survival) was considered. The median follow-
up was 62 months. Among the 123 treated patients
there were 51 relapses, while among the 124 control
patients 38 relapses occurred. In the analysis, besides
time and treatment, the following covariates were
considered: tumor grade, categorized as G1-G2 or
G3-G4; pathologic T stage, categorized as pT2, pT3a
or pT3b; metastatic lymph nodes, categorized as pN0,
pN1 or pN2-pN3. For PEANN follow-up was trun-
cated at 72 months and time range was subdivided
into three months intervals. The 95% pointwise confi-
dence intervals were calculated on the log hazard ra-
tio of interferon versus controls.
To describe the relationship between the PEANN-

estimated cumulative incidence at 6 years and the covar-
iates, we have resorted to CART regression tree [9]. As
results of the tree in terms of log cumulative hazard
were superimposable to those obtained in terms of event
cumulative incidence at six years we report the latter re-
sults because of their better interpretability.

All the routines for the analysis were written in R v.3.
3.2 language.

Results
To select the structure of the network, a ten-fold cross
validation was applied considering 3, 6 and 9 hidden
units and penalty coefficients 0.001, 0.005, 0.02 and 0.1.
The scores of the cross validation criterion (Table 1)
show a better performance in correspondence to 3 hid-
den units and a decay parameter equal to 0.1, which we
therefore used.
We then considered a neural network with time, treat-

ment, tumor grade, pathologic T stage and metastatic
lymph nodes using the average over the ten fits obtained
from different initial choice of parameters. Figure 1 illus-
trates the adjusted hazard function estimates for inter-
feron and controls.
Adjusted hazard functions are calculated as weighted

average of the individual estimates, with weights propor-
tional to the number of individuals at each level of co-
variates [10]. The trend of the hazard function for both
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Fig. 3 Hazards for the two treatments by lymph nodes and pathologic T stage. Adjusted hazard function estimates for interferon (solid lines) and
control (dashed lines) groups cross-classifying by lymph nodes and pathologic T stage
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groups shows a monotone decrease. The 95% bootstrap
confidence interval of the log hazard ratio in time is in
agreement with the non-significance of the difference
between the two treatment groups according to the log-
rank test observed in [4].
To investigate the possible interaction between treatment

and lymph nodes, highlighted in [4], the average estimated
hazard for these subgroups have been obtained (Fig. 2).
The fitted curves seem to agree with the interaction,

with a protective role of interferon in the pN2-pN3 cat-
egory. Based on the bootstrap confidence intervals, there
is evidence of a harmful effect of interferon in patients
with pN0 stage at the beginning of the follow-up time
till about 24 months while, on the contrary, a potential
protective effect appears to be present for patients with
pN2-pN3 tumors.
Interactions among treatment, lymph nodes and

pathological T stage are explored by multipanel condi-
tioning plots of the hazard functions (Fig. 3) and of the

log hazard ratios of the interferon vs. the control group
(Fig. 4).
While it was evident the interaction with pN, an inter-

action between pT and pN is not apparent. Based on
confidence intervals, it can be observed a significant
harmful effect of interferon before 24 months for patient
with pN0 and pT3b tumors. On the contrary, the pro-
tective effect of interferon is significant over the entire
follow-up time for patients with pN2-pN3 and with ei-
ther pT2 or pT3a tumors.
As regards the relationship between the PEANN-

estimated six years cumulative incidence and clinical
characteristics, regression tree structure (Fig. 5) suggests
the presence of complex interactions patterns among
treatment and covariates. In particular, in patients with
pN2-pN3 interferon shows a lower incidence with re-
spect to controls. An opposite behavior is shown for
those pN0 patients who have G1-G2 or G3-G4 and pT2
or pT3b.
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Fig. 4 Log hazard ratios for the two treatments by lymph nodes and pathologic T stage. Adjusted log hazard ratios estimates for interferon (solid
lines) and control (dashed lines) cross-classifying by lymph nodes and pathologic T stage. The reference log HR = 0 (thin greyline) is also reported.
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Discussion
The shape of the hazard function may be of great clin-
ical interest to support clinical-biological hypotheses or
to plan follow-up visits. As the number of prognostic
factors considered is ever increasing, statistical ap-
proaches able to model non-linear, non-additive and
time-dependent effects of the covariates on the hazard
function should be investigated. We proposed to recur
to neural networks as flexible non-linear extension of
GLMs for survival data [11, 12]. Even in controlled clin-
ical trials, for which classical survival regression tech-
niques are routinely applied for treatment evaluation,
neural networks can be useful to explore potential com-
plex interactions between treatment and covariates, aim-
ing to suggest clinical targeting hypotheses.
A critical aspect is the representation of model results.

We resorted to multipanel conditioning plots to evaluate
the possible different behavior of the hazard function
and hazard ratio in different combinations of variables
categories. Though, this approach does not allow the as-
sessment of treatment effect for more than two covari-
ates at a time. A possibility is to resort to a “rule-
extraction” approach that we simplified using a regres-
sion tree.
The present application allowed to investigate sec-

ond order interaction with a time-dependent effect,
which was not considered in the previous Cox regres-
sion analysis because of its complexity [4]. Although
the confidence intervals obtained are quite wide due
to the limited sample size, a qualitative interaction
was observed with different treatment effects in pN/
pT subgroups of patients. It must be taken in account
that the nonparametric bootstrap confidence intervals that
we adopted do not make distributional assumptions but

are not the most efficient ones. Possibly more suitable ap-
proaches useful for neural networks could be investigated.
The regression tree was used only for exploratory aims
and a complex interaction pattern is suggested by the re-
sults. For inference purposes confidence intervals should
be calculated for the cumulative incidence in each leaf of
the regression tree. Nevertheless even larger confidence
intervals are expected because of the limited number of
patients for each terminal node.
The smoothing of the shape of the hazard function

in dependence on treatment and covariates can be
useful to understand the mode of action of the treat-
ments. Neural networks could be also associated to a
classical analysis as an exploratory tool. The trad-
itional use of neural networks is only for exploratory
purposes without the application of inferential proce-
dures. The advantages of neural networks is mainly
linked to the flexibility of the predictor that does not
need the explicit joint modeling of the effect of co-
variates, which could be complex and unpredictable
in the absence of prior knowledge. Recent develop-
ments suggest using bootstrap to obtain confidence
intervals, providing further appeal to this technique.

Conclusions
Artificial neural networks are not usually adopted to
analyze data from clinical trials where survival analysis is
needed. Nonetheless PEANN, flexibly modeling the
shape of the hazard function, allows to investigate time-
dependent treatment effectsin subsets corresponding to
covariates combinations without prior specification of
the model predictor structure. The application to a ran-
domized controlled trial on renal carcinoma has shown
how PEANN, together with regression trees, permits the
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identification of potential interactions to be explored by
further studies on the differential treatment effect as a
function of patient clinico-pathological characteristics.
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