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Abstract
The reliability of risk measures of financial portfolios

crucially rests on the availability of sound representations
of the involved random variables. The trade-off between
adherence to reality and specification parsimony can find a
fitting balance in a technique that ”adjust” the moments of
a density function by making use of its associated orthog-
onal polynomials. This approach essentially rests on the
Gram-Charlier expansion of a Gaussian law which, allowing
for leptokurtosis to an appreciable extent, makes the result-
ing random variable a tail-sensitive density function.
In this paper we determine the density of sums of leptokurtic
normal variables duly adjusted for excess kurtosis via their
Gram-Charlier expansions based on Hermite polynomials.
The aforesaid density can be properly used to compute some
risk measures such as the Value at Risk and the expected
short fall. An application to a portfolio of financial returns
provides evidence of the effectiveness of the proposed ap-
proach.

Keywords: Gram-Charlier expansion, Value at Risk, Expected
shortfall.
JEL classification: C40, C46, C58, G10, G20.

3



1 Introduction

In the last decades, both the convergence of the financial and in-
surance markets and the evolution of the financial engineering in
pure financial contracts and in new financial-linked insurance con-
tracts, have brought to the fore the importance of an accurate
evaluation of the financial risk. In this connection, the choice of
the appropriate distribution function underlying the measure of
financial risks is a key problem for operators and analyists.
Commonly used statistical models as well as several applications
rests on the assumption that asset returns are by and large nor-
mally distributed. Empirical evidence, has highlighted by many
authors like Mittnik et al. (2000) and Alles and Murray (2010),
provides sound arguments against this hypothesis. As a matter
of fact, it is a well known stylized fact that financial time se-
ries exhibit tails heavier than those of the Normal distribution.
This feature turns out to be of prominent importance in modelling
volatility (Shuangzhe, 2006; Curto et al., 2009) and more in gen-
eral in the evaluation of the risk of portfolios (Szegö, 2004). This
has pushed, on the one hand, to the use of alternative distributions
like the Student t, the Pearson type VII, normal inverse Gaussian,
several stable distributions (see e.g., Mills and Markellos (2008);
Rachev et al. (2010)), and, on the other hand to the development
of approaches aiming at transforming the Gaussian law so as to
meet the desired features (see Gallant and Tauchen (1989, 1993);
Jondeau and Rockinger (2001); Zoia (2010)). This latter approach,
which has the the advantage of allowing for greater flexibility in
fitting empirical distributions, is the one we have followed in this
paper. Recently, Zoia (2010); Bagnato et al. (2015)) has proposed
a method to account for excess kurtosis of a density based on its
polynomial transformation through its associated orthogonal poly-
nomials. In the Gaussian case, these polynomials are the Hermite
ones and the polynomially modified density is known as Gram-
Charlier expansion. This approach is very interesting because it
can be tailored on the specific features of the empirical distribu-

4



tion at hand and can be extended to other distributions besides
the normal one (see Faliva et al. (2016)).
In this paper it is used to obtain the densities of sums of leptokur-
tic normal random variables with same or different kurtosis. After
adjusting these latter with appropriate Hermite polynomials, the
density functions of their sum is obtained. The resulting densities
prove to be more tail-sensitive than an ordinary Gaussian distri-
bution and as such suitable for measuring the well known Value at
Risk. Further, being information on the magnitude of high risks
extremely important, they are also used to compute a coherent
risk measure like the Expected Shortfall.
An application to a portfolio of two international financial indexes
with a data-set window covering the period from January 2009
to December 2014 proves the good performance of these Gram-
Charlier expansions. In accordance with the regulatory framework
the risk measures are evaluated at 97.5% and 99% levels to guar-
antee a prudential approach.
The structure of the paper is as follows. In section 2 we cast
a glance at some standard risk-measures, typically used in the
financial-insurance market. Section 3 explains how to obtain den-
sities which are sums of Gram-Charlier expansions and section
4 gives closed-form expressions of the expected shortfall based on
these distributions. Section 5 provides an application of these den-
sities to a portfolio of financial returns and Section 6 concludes.

2 A glance at risk measures

As is well known, different approaches are available to measure
financial and/or insurance risks (see, for all, Albrecht (2004) and
Dowd and Blake (2006), and the reference quoted therein). De-
scriptive measures based on the moments of a probability distri-
bution give only a partial representation of a risk. To overcome
this problem, often a combination of these measures is taken into
account, as it happens for the mean and standard deviation in
Markowitz portfolio theory or the skewness and kurtosis when
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symmetry and probability concentration in tails are of interest.
Unfortunately, the estimation of the moments of a probability dis-
tribution may be quite sensitive to the sample and, when the mo-
ments are infinite, even impossible.
The standard theory for decision under risks, based on the ex-
pected utility approach, may be of difficult implementation and
sensitive to individual tolerance to risk, due to the choice of the
functional form of the utility function and the evaluation of the
risk attitude parameter.
Risk measures based on quantiles became very popular at the end
of the 1980s, because of their implementation to determine the reg-
ulatory capital requirements of the US commercial banks. Value
at risk based models were introduced in the Basel II agreement
and later used for the calibration of the Solvency Capital Require-
ment, in the Solvency II agreement.
The Value at Risk (V aR) represents the minimum loss within a
certain period of time for a given probability. By denoting with
FX(x) the distribution function of a variable X representing the
loss and with vq = inf{x : FX(x) ≥ q}, q ∈ (0, 1), the quantile
function, then

V aRX(q) = inf{x : FX(x) ≥ q} = F −1
X (q)

In view of fact that V aR is simply the threshold at a given prob-
ability q, that is

V aRX(q) = vq (1)
it doesn’t provide information about the size of the losses beyond
this point of the distribution, while knowing the size of default
is crucial for shareholders, management and regulators. In addi-
tion, V aR is not a coherent risk measure (see Artzner P. (1999))
because of the lack of subadditivity. Being sub-additivity very im-
portant in several financial applications like portfolio optimization,
V aR can discourage diversification. Moreover, V aR estimates re-
sults improper when losses/returns are not normally distributed
and this shortcoming turns out to be very critic in presence of
fat tails. Furthermore V aR-models based on scenarios, typical for
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discrete data series, can exhibit multiple local extrema (see Urya-
sev (2000)).
The interest of financial and insurance managers in tail risks jus-
tifies the introduction of risk measures offering information on the
magnitude of high risks. The Tail Conditional Expectation (TCE)
is defined as

TCEX(q) = E[X|X ≥ vq] (2)
and can be described as the average worst possible loss. The TCE
is not in general a coherent measure of risk, because it can be not
sub-additive. This drawback is evident when dealing with dis-
continuous distributions (for example with portfolios containing
derivatives) when the measure becomes very sensitive to small
changes in the confidence level.
A risk measure that respects the axioms of coherence is the Ex-
pected Shortfall (ES)

ESX(q) =
1
q

(
E[X1{X≥vq}] + vq(P[X ≥ vq]) − (1 − q)

)
(3)

which is in general continuous with respect to the confidence level.
For real-valued random variable with continuous and strictly in-
creasing distribution function and finite mean, the following proves
true (see Acerbi and Tasche (2002))

TCEX(q) = ESX(q) (4)

3 On the distribution of the sum of polynomially-
modified Gaussian variables

In this section we tackle the issue of specifying the density function
of the sum of polynomially-modified (namely Gram-Charlier ex-
pansions of) Gaussian variables assuming independence. We start
by presenting classical results for i.i.d Gaussian variables and then
move to Gram-Charlier expansions either with equal or different
kurtosis corrections. In this work we will take advantage of the
relationships between density and characteristic function. We will
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show in few steps the classical procedure adopted for getting the
density of the sum of two independent standard normal random
variables. The same procedure is extended to an arbitrary number
of variables and then generalized to polynomially-modified densi-
ties of Gram-Charlier type.
Let be Y = X1+X2, where X1 and X2 are i.i.d. random variables.
Then, the density function of Y takes the form

fY (y) = fX(x1) ∗ fX(x2) (5)

where the symbol ∗ denotes convolution. As is well known, the
characteristic function of Y is the product of the characteristic
functions of the parent variables

FY (ω) = FX1(ω)FX2(ω) = F 2
X(ω) (6)

Bearing in mind the Fourier-transform pair√
a

π
e−at2 ↔ e− ω2

4a (7)

and setting a = 1
2 , yields the characteristic function of the stan-

dard normal distribution, that is

FX(ω) = e− ω2
2 . (8)

According to (6), the characteristic function of the sum of two
i.i.d. standard normal is

FY (ω) = e−ω2
. (9)

Likewise, by setting a = 1/4 in (7), the density function of the
sum fY (y) is easily obtained, that is

fy(y) = (4π)−1/2e− y2
4 (10)

The same procedure can be followed to obtain the density function
of the sum of two Gram-Charlier expansions. In this connection
we have the following
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Theorem 1. Let X1 and X2 be i.i.d variables with the following
Gram-Charlier density

fX(x;β) =
(
1 + β

4!p4(x)
) 1√

2π
e− x2

2 (11)

where β is a positive parameter subject to fX(x;β) being non-
negative definite, and

p4(x) = x4 −
(
4
2

)
x4−2 + 3

(
4
4

)
x4−4 = x4 − 6x2 + 3. (12)

is the 4 − th degree Hermite polynomial. The density function of
the sum Y = X1 + X2 is

fY (x1+x2;β) =
(
1 + 1

2

(
β

4!

)
p4

(
y√
2

)
+ 1
16

(
β

4!

)2
p8

(
y√
2

))
1√
4π

e− y2
4

(13)
where

p8(x) = x8 −
(
8
2

)
x6 + 3

(
8
4

)
x4 − 15

(
8
6

)
x2 + 105

(
8
8

)
x (14)

is the 8-th degree Hermite polynomial.

Proof. Bearing in mind the following property of Fourier trans-
forms,

dnf(x)
dxn

↔ (iω)nF (ω) (15)

together with the noteworthy property of the Gaussian law,

dn 1√
2π

e
−x2

2

dxn
= (−1)n 1√

2π
e− x2

2 pn(x) (16)

the characteristic function of (11) is easily found to be

FX(ω;β) =
(
1 + β

4!ω
4
)

e− ω2
2 . (17)
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By following the same argument, the characteristic function of the
sum of two Gram-Charlier expansions proves to be

FY (ω;β) =
(
1 + β

4!ω
4
)2

e−ω2 =
2∑

j=0

(
2
j

)(
β

4!

)j

ω4je−ω2
. (18)

Now, thanks to the following property of Fourier transforms

|a|f(ay) ↔ F

(
ω

a

)
, (19)

formula (15) can be more conveniently rewritten as

dn|a|fX(ax)
dxn

↔
(

i
ω

a

)n

F

(
ω

a

)
(20)

and this, in light of (16), entails the following

(−1)n |a|√
2π

e− (ax)2
2 pn(ax) ↔

(
i
ω

a

)n

e− 1
2(ω

a )
2
. (21)

Then, setting a = 1√
2 in (21), yields

( 1√
2

)4j 1√
4π

e− x2
4 p4j

(
x√
2

)
↔ ω4je−ω2 (22)

As a by-product, the density function of the sum of two Gram-
Charlier expansions is given by

fY (x1 + x2;β) =
2∑

j=0

(
2
j

)(
β

4!

)j 1√
4π

( 1√
2

)4j

e− y2
4 p4j

(
y√
2

)
(23)

which proves the theorem.

Let us now establish the generalization to n variables as a
corollary.
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Corollary 1. Let us consider n i.i.d. random variables X1, . . . , Xn,
each with density function as in formula (11). Then, the density
function of the sum Y = X1 + · · · + Xn is

fY (x1+· · ·+xn;β) =
n∑

j=0

(
n

j

)(
β

4!

)j 1√
2nπ

( 1√
n

)4j

e− y2
2n p4j

(
y√
n

)
.

(24)

Proof. Upon noting that the characteristic function of the sum of
n variables is

FY (ω;β) =
(
1 + β

4!ω
4
)n

e− nω2
2 =

n∑
j=0

(
n

j

)(
β

4!

)j

ω4je− nω2
2 (25)

and setting a = 1√
n
in formula (21), we get

( 1√
n

)4j 1√
2nπ

e− y2
2n p4j

(
y√
n

)
↔ ω4je− nω2

2 (26)

which eventually leads to the density in formula (24).

The sum variable Y = X1,+ · · ·+Xn depends on one parame-
ter β that it is common to each Xi. In Zoia (2010) it is shown that
the Gram-Charlier expansion (11) has positive density if 0 ≤ β ≤ 4
and is unimodal if 0 ≤ β ≤ 2, 4. These constrains also hold in the
case of the sum of n i.i.d variables, according to the Theorem 1.6
in Dharmadhikari (1988).
The graphs in Figure 1 depict the density functions of Gram-
Charlier expansions when n = 1, n = 2 and n = 3. In each
graph different values of β have been considered; in particular β
has been set equal to 0 (its minimum value), equal to 2,4 (the
maximum value which guarantees the unimodality of the Gram-
Charlier density), and equal to 1 (an intermediate value in its
range of variation).
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Figure 1: Gram-Charlier-like expansions for n = 1, 2, 3, and β =
0, 1, 2.4.
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As a further extension of the Theorem 1, we prove the following
corollary which covers the case of Gram-Charlier expansions of
sum of variables characterized by different parameters β′s.
Corollary 2. Let us consider two independent Gram-Charlier ex-
pansions X1 and X2, characterized by the parameters β1 and β2,
respectively. Then, the density function of the sum Y = X1 +X2,
denoted with fY (x1 + x2;β1, β2), is

fY (x1 + x2;β1, β2) =(
1 + 1

4

(
β1+β2

4!

)
p4

(
y√
2

)
+ 1

16
β1β2
(4!)2 p8

(
y√
2

))
1√
4π

e− y2
4 .

(27)

Proof. In light of (6), the characteristic function of Y is

FY =X1+X2(ω;β1, β2) = e−ω2 ∏2
j=1

(
1 + βj

4! ω4
)
=

= e−ω2
(
1 + β1+β2

4! ω4 + β1β2
(4!)2 ω8

) (28)

and can be written as

FY =X1+X2(ω;β1, β2) =
2∑

j=0

b2,j

(4!)j ω4je−ω2 (29)

where the coefficients b2j are the sum of the combinations of the
two parameters βj taken j at a time, namely b20 = 1, b21 =∑2

j=1 βj and b22 =
∏2

j=1 βj .
Hence, by setting a = 1√

2 in formula (21), with some compu-
tations we obtain (27).

Finally, we state the following corollary which generalizes the
statement of Corollary 2 to n variables with different excess kur-
tosis.
Corollary 3. Let us consider n independent Gram-Charlier ex-
pansions of the random variables X1, . . . , Xn, characterized by pa-
rameters β1 . . . , βn, respectively. Then, the density function of the
sum Y = X1+ · · ·+Xn, denoted with fY (x1+ · · ·+xn;β1, . . . , βn),
is

fY (x1+· · ·+xn;β1, . . . , βn) =
n∑

j=0

(
bn,j

(4!)j

) 1√
2nπ

( 1√
n

) 4j

e − y2
2n p4j

(
y√
n

)
(30)
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where bn,j is the sum of the combinations of the n parameters βj

taken j at a time without repetition.

Proof. As in (6), the characteristic function, FY =X1+···+Xn(ω;β1, . . . , βn)
of the sum of the n Gram-Charlier expansions with different pa-
rameter is

e−ω2 ∏n
j=1

(
1 + βj

4! ω4
)
=

e−ω2
(
1 + β1+···+βn

4! ω4 + β1β2+···+βn−1βn

(4!)2 ω8 + · · · +
∏n

j=1 βj

(4!)n ωn4
)
=∑n

j=0
bnj

(4!)j ω4je−ω2
.

(31)
Then, by setting a = 1√

n
in formula (21), with some computations

we get (30).

This approach can be extended to other densities, besides the
normal. However, when other distributions are considered, the
density of the sum may be more conveniently obtained by making
the convolution of the densities of the variables involved in the
sum.

4 Expected Shortfall for sum of Gram- Char-
lier expansions

Gram-Charlier expansions (GC) prove able to catch the excess of
kurtosis and the asymmetry of a random variable (rv) better than
the usual normal density. and this property is true not only for a
singular rv but also for densities which are sums of rvs.
Hence, the next step is to use GC to measure risks related to
portfolios of insurance or financial assets. In this section, follow-
ing the analysis of Landsman and Valdez (2003) on TCE for sums
of elliptic distributions and bearing in mind the studies of Acerbi
and Tasche (2002), we show how to compute the expected short
fall, ES, to evaluate the right-tail risk of a sum of GC expansions.
First we will consider the case of r.v with same excess kurtosis,
then with different excess kurtosis.
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Assuming that the loss is likely to exceed a certain value υq (re-
ferred to as the q-th-quantile), the ES is defined as follows

ESY (υq) = E(Y |Y > υq) =
∫ ∞

υq
yf(y)dy∫ ∞

υq
f(y)dy

(32)

where, for our purpose, f(y) = f(x1 + x2).
The following theorem shows how the integrals in (32) can be eval-
uated by making use of the definition and properties of the error
function and of the Hermite polynomials

Theorem 2. Let f(y, β) be defined as in (13).Then the ES of y
takes the value
ESY (υq)) =

=
1√
π

e− υ2
q

4

[
1 + 1

2

(
β
4!

)(
p4

(
υq√

2

)
+ 4p2

(
υq√

2

))
+ 1

16

(
β
4!

)2
(

p8

(
υq√

2

)
+ 8p6

(
υq√

2

))]
1
2 erfc

(
υq

2

)
+ 1√

2π
e− υ2

q
4

[
1
2

(
β
4!

)
p3

(
υq√

2

)
+ 1

16

(
β
4!

)2
p7

(
υq√

2

)]
(33)

Proof. Let us proceed by considering separately the numerator
and the denominator of formula (32) which, in the following, will
be denoted by A and B, respectively.
By replacing in the numerator A the density function f(y, β) de-
fined as in (13) we obtain

A =
∫ ∞

υq

(
y + y

2

(
β

4!

)
p4

(
y√
2

)
+ y

16

(
β

4!

)2
p8

(
y√
2

))
1√
4π

e− y2
4 dy =

=
∫ ∞

υq

y√
4π

e− y2
4 dy︸ ︷︷ ︸

A1

+
∫ ∞

υq

y

2

(
β

4!

)
p4

(
y√
2

)
1√
4π

e− y2
4 dy︸ ︷︷ ︸

A2

+

∫ ∞

υq

y

16

(
β

4!

)2
p8

(
y√
2

)
1√
4π

e− y2
4 dy︸ ︷︷ ︸

A3
(34)

By setting t = y√
2 in A1 and bearing in mind that p1(t) = t, we
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get

A1 =
1√
π

∫ ∞
υq√

2

te− 1
2 t2

dt

= 1√
π

∫ ∞
υq√

2

p1(t)e− 1
2 t2

dt
(35)

Now, observe that in light of (16), the following

d

dy

[
dn

dyn
e− y2

2

]
= dn+1

dyn+1 e− y2
2 = (−1)n+1e− y2

2 pn+1(y) (36)

holds true.
This entails that∫

(−1)n+1e− y2
2 pn+1(y)dy =

∫
dn+1

dyn+1 e− y2
2 =

= dn

dyn
e− y2

2 =

= (−1)ne− y2
2 pn(y)

(37)

By using this result, formula (35) becomes

A1 = − 1√
π

∫ ∞
υq√

2

(−1)1p1(t)e− t2
2 dt

∣∣∣∣∣
∞

υq√
2

=

= − 1√
π

e− y2
2

∣∣∣∣∞υq√
2

= 1√
π

e− υ2
q

4

(38)

Following the same procedure, we can compute the integrals in A2
and A3.
In particular, by setting t = y√

2 in A2 yields

A2 =
1

2
√

π

(
β

4!

)∫ ∞
υq√

2

tp4(t)e− 1
2 t2

dt. (39)
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Now, observe that the integral (39) can be rewritten as

A2 =
1

2
√

π

(
β

4!

)(∫ ∞
υq√

2

p5(t)e− 1
2 t2

dt + 4
∫ ∞

υq√
2

p3(t)e− 1
2 t2

dt

)
. (40)

in light of the following property of Hermite polynomials

pn+1(y) = ypn(y) − npn−1(y) (41)

Now, by applying again formula (37) to the integral in (40), with
simple computation we get

A2 =
1

2
√

π

(
β

4!

)
e− υ2

q
4

(
p4

(
υq√
2

)
+ 4p2

(
υq√
2

))
. (42)

Following the same approach, the integral A3 can be written as

A3 =
1

16
√

π

(
β

4!

)2
e− υ2

q
4

(
p8

(
υq√
2

)
+ 8p6

(
υq√
2

))
. (43)

Hence, the numerator A turns out to be

A = 1√
π

e− υ2
q

4 + 1
2
√

π

(
β

4!

)
e− υ2

q
4

(
p4

(
υq√
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(
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1
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)2
e− υ2

q
4

(
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(
υq√
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)
+ 8p6

(
υq√
2

))
(44)

We proceed similarly splitting the denominator B of formula (32)
into three parts

B =
∫ ∞

υq

1√
4π

e− y2
4 dy︸ ︷︷ ︸

B1

+
∫ ∞

υq

1
2

(
β

4!

)
p4

(
y√
2

) 1√
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e− y2
4 dy︸ ︷︷ ︸
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+

+
∫ ∞
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1
16

(
β

4!

)2
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(
y√
2

) 1√
4π

e− y2
4 dy︸ ︷︷ ︸

B3

.

(45)
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Then, by replace y
2 with t in the integral B1 and taking into ac-

count formula 7.1.2 in Abramowitz and Stegun, we get

B1 =
1√
π

∫ ∞
υq√

2

e−t2
dt =

= 1
2erfc

(
υq

2

)
.

(46)

where erfc(x) is the complementary Gauss error function. The
second and third integral in (45) can be evaluated by using the
same approach followed before for the integral A1. This leads to
the following results

B2 =
1

2
√
2π

(
β

4!

)
e− υ2

q
4 p3

(
υq√
2

)
(47)

B3 =
1

16
√
2π

(
β

4!

)2
e− υ2

q
4 p7

(
υq√
2

)
. (48)

Accordingly, the denominator B turns out to be

B = 1
2erfc

(
υq

2

)
+ 1
2
√
2π

(
β

4!

)
e− υ2

q
4 p3

(
υq√
2

)
+ 1
16

√
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(
β

4!
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q
4 p7

(
υq√
2

)
(49)

Finally, by replacing the numerator of formula (32) with (44) and
the denominator of the same formula with (49), respectively, we
eventually obtain formula (33).

The ESY can be easily extended to the sum of n independent
variables. In particular, the following corollary shows the expres-
sion of ESY for the sum of n i.i.d Gram-Charlier expansions.
Corollary 4. Let us consider the sum of n i.i.d Gram-Charlier ex-
pansions Y = X1+ · · ·+Xn. Then, the ESY (υq) has the following
form

ESY (υq) =

√
n

2π
e− υ2

q
2n

[
1 +

∑n
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(
1√
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)4j (
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j

) (
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1
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)4j (
n
j

) (
β
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)j
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(
υq√

n

)]
(50)
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Proof. The proof follows the same lines of Theorem 2. When f(y)
is as in (24), the numerator of formula (32), henceforth denoted
with A, can be written as

A =
n∑

j=0

(
1√
n

)4j (
n

j

)(
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)j 1√
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(51)

Then setting t = y√
n
in A1 and using formula (37) we get

A1 =
√

n

2π
e− υ2

q
2n (52)

while setting t = y√
n
in the integral A2,and making use of both

(41) and (37), yields
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(53)
Accordingly the integral A becomes
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√
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Similarly, after replacing f(y), in (24), in the denominator of (32),
we get
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(55)
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Now, setting t = y√
2n

in the integral B1 yields

B1 =
1
2erfc

(
υq√
2n

)
. (56)

and setting t = y√
n
in the integral B2 and using the result (37),

yields

B2 =
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Accordingly, the integral B becomes
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Finally, formula (50) is obtained by substituting the numerator
and the denominator of formula (32) with A and B given in (54)
and (58), respectively.

Corollary 5. Let us consider the sum of two independent Gram-
Charlier expansions Y = X1 + X2 with extra-kurtosis β1 and β2,
respectively. Then, the ESY (υq) has the following form

ESY (υq) =
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(59)

Proof. Observe that the density of the sum of two Gram-Charlier
expansions with different parameters, given by (27), differs from
that of two Gram-Charlier expansions with equal parameters, given
by (13), just for the coefficients of the Hermite polynomials p4

(
y√
2

)
and p8

(
y√
2

)
. Hence, replacing in (33) the coefficients of the den-

sity (13) with those of the density (27), yields (59).
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The same procedure can be simply generalized to the case of
n random variables with different extra-kurtosis parameters βi.

Corollary 6. Let us consider the sum of n independent Gram-
Charlier expansions Y = X1+· · ·+Xn with extra-kurtosis β1, . . . , βn
respectively. Then, the ESY (υq) has the following form

ESY (υq) =

=
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2π
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[
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Proof. The proof follows the same lines of Theorem 2 with density
(30) replacing density (13) in formula (33).

5 An application to financial asset indexes
In this section the good performance of GC expansions of sums
of r.v in dealing with financial asset indexes is proved. To this
end, we have considered a set of 4 european (UK, Germany, Italy,
France) and 2 asian (China, Japan) stock exchange indexes and
2 arbitrary indexes of the pharmaceutical and alimentary indus-
tries.The preliminary statistics about these data are reported in
Tables 1 and 2.
Table 1 shows the mean (μ), the standard deviation (sd), the skew-
ness (sk) and the kurtosis index (k) of the mentioned series. As
the analysis carried out in the previous section is valid for inde-
pendent rvs, we propose seven couples of indexes for which we
tested a low correlation as reported in Table 2.

Being interested in measuring losses, the returns from data
have been computed as minus the logarithm of the ratio between
the prices at time t and t − 1.
The sample size has been divided into two periods. The data of
the first period (from 01/01/2009 to 17/09/2013) have been used
to estimate the Gram-Charlier (GC) densities and compute the
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Table 1: Summary statistics of losses
ˆFTSE ˆGDAXI FTSEMIB.MI ˆFCHI ˆHSI ˆN225 SXDP.Z KO

μ -0,0260 -0,0493 0,0046 -0,0170 -0,0300 -0,0478 -0,0537 -0,0590
sd 1,1252 1,4278 1,8222 1,4813 1,4350 1,5138 0,8937 1,1148
sk 0,0781 0,0476 0,2106 -0,0242 -0,1662 0,5063 0,3305 -0,1975
k 6,4554 5,7822 5,7534 6,3576 7,0437 6,8020 4,9275 8,1970

The table reports for each loss the mean (μ), the standard deviation (sd), the
skewness index (sk) and the kurtosis index (k).

Table 2: Correlation coefficient of the losses

ρ ˆFTSE ˆGDAXI FTSEMIB.MI ˆFCHI ˆHSI SXDP.Z KO
ˆN225 0.3036 0.2921 0.2490 0.2917 0.5729 0.1776 0.0954

corresponding risk functions. The data of the second period (from
18/09/2013 to 31/12/2014) have been used to evaluate the good-
ness of the risk measure forecasts.
The GC expansions of the sum (GCS) for each couple of indexes
have been estimated as in (27).
Table 3 reports the values of the extra-kurtosis β for each couple
of series under consideration.
In order to assess the goodness of fit of GCS to data, the Hellinger’s
entropy distance (Granger et al., 2004; Maasoumi and Racine,
2002) between the empirical and the estimated distributions have
been computed. Low values of this index denote a good fit of GCS
to data. The last column of Table 3 shows the values of this index
for the GCS densities.

Figure 2 shows the tails of the estimated GCS densities su-
perimposed on those of the corresponding empirical distributions.
Both the values of the Hellinger’s entropy index and the graphs
highlight the good fit of GCS to empirical data, especially in the
tail areas which are the loci involved in the risk measure estimates.
Figure 3 compares the V aR estimated via GCS in the first period
of the sample at the 97, 5% and 99% levels with the corresponding
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Table 3: Parameter estimates of the GCS distribution on the first
1000 days with the relative Hellinger’s entropy distance Sρ.

Index 1 Index 2 β̂1 β̂2 Sρ

ˆN225 ˆFTSE 3.9666 2.9189 0.0203
ˆN225 ˆGDAXI 3.9666 2.9189 0.0213
ˆN225 FTSEMIB.MI 3.9666 2.4250 0.0200
ˆN225 ˆFCHI 3.9666 2.8433 0.0185
ˆN225 ˆHSI 3.9666 3.5847 0.0215
ˆN225 SXDP.Z 3.9666 1.6780 0.0232
ˆN225 KO 3.9666 4.000 0.0173

empirical quantile. As all the V aR estimates exceed the corre-
sponding empirical values, the conclusion that the GCS provide
precautionary V aR estimates against potential losses can be easily
drawn. Notice that in the case of normal distribution, theoreti-
cal V aRα=0.025 it is always equal to 1, 9599 while V arα=0.001 it is
always equal to 2, 3263. In both cases we underestimate this risk
measure, what follows can be very dangerous for the risk manage-
ment, but also in stark contrast to the regulatory philosophy.

To evaluate the out-of-sample performance of the GCS densities,
we have computed the V aR for α = 0.025 and α = 0.01 on the
second part of sample (the last 374 days) which has not been used
in the estimation process of the GCS densities.
Further, some punctual measures of losses in this period have been
computed. These are the ABLF (average binary loss function), the
AQLF (average quadratic loss function) and the UL (unexpected
loss).
The values of these indexes as well as V aR values are displayed in
Table 4. As it happens in the sample (first 1000 days), the V aR
values for GC distribution give a quite precautionary perspective
respect to the Normal one. As a matter of fact all the loss mea-
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Figure 2: Histograms of the portfolio losses with the estimate GCS
densities.

24



2.5 3.0 3.5

−1
.0

0.
5

^N225+^FTSE

0

0 ● ●x( 0.97 ) x( 0.99 ) Var( 0.97 ) Var( 0.99
●

2.0 2.5 3.0 3.5

−1
.0

0.
5

^N225+^GDAXI

0

0 ● ●x( 0.97 ) x( 0.99 ) Var( 0.97 ) Var( 0.99

2.5 3.0 3.5

−1
.0

0.
5

^N225+FTSEMIB.MI

0

0 ● ●x( 0.97 ) x( 0.99 ) Var( 0.97 ) Var( 0.99
●

2.5 3.0 3.5

−1
.0

0.
5

^N225+^FCHI

0

0 ● ●x( 0.97 ) x( 0.99 ) Var( 0.97 ) Var( 0.99

2.5 3.0 3.5

−1
.0

0.
5

^N225+^HSI

0

0 ● ●x( 0.97 ) x( 0.99 ) Var( 0.97 ) Var( 0.99
●

2.5 3.0 3.5

−1
.0

0.
5

^N225+SXDP.Z

0

0 ● ●x( 0.97 ) x( 0.99 ) Var( 0.97 ) Var( 0.99

2.5 3.0 3.5

−1
.0

0.
5

^N225+KO

0

0 ● ●x( 0.97 ) x( 0.99 ) Var( 0.97 ) Var( 0.99

Figure 3: Empirical vs theoretical V aR of the portfolio losses.
Triangles denote empirical V aR at 1 − α = 0, 975, 1 − α = 0, 99
while circles denote estimated V aR with GCS at the same levels.
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sures proposed confirm that the GC distribution offers the best
out of sample performance.

To forecast performance of V aR values estimated via GCS,
at a chosen significance level, has been evaluated by implement-
ing two tests, the likelihood-ratio test and the binomial two-sided
test, see Table 5. The null hypothesis of both tests assumes that
the percentage of forecast losses are coherent with the effective
ones against the bi-lateral alternative which assumes that the V aR
values overestimate or underestimate this percentage. A p-value
lower or equal to 0.01 can be interpreted as evidence against the
correct model (for more details see (Kupiec, 1995; Christoffersen
et al., 1998)).
According to the likelihood ratio test 11 out of 14 GCS engender
forecasts which are coherent at the chosen α level. As shown in
Figure 3, the rejection happens for GCS densities whose V aR esti-
mates are most distant from the corresponding empirical quantiles.
These results are in accordance with the results of the binomial
tests.
Furthermore, a lecture of the likelihood-ratio test of the V aRα=0.01,
inspired on the ”traffic light” approach suggested by the Basel
Committee, seems to place the GCS results in the ”green zone”.

Also the less debatable expected shortfall (ES) has been com-
puted as risk measure. The ES has been computed in the first
period of the sample (the first 1000 days) using the V aR esti-
mated via GCS as quantile. This procedure has been carried out
for different α levels and more precisely for α = 0.05, α = 0.025
and α = 0.01. The estimates of the expected shortfall for these α
values, ESα from now on, are shown in Table 6.
In order to evaluate the out-of sample performance of this risk
measure, the ES have been computed also in the second part of
the sample (last 374 days). These values, denoted with ESemp and
reported in Table 6, have been obtained using V aR from GCS es-
timated in the first sample period for different α values ( α = 0.05,
α = 0.025 and α = 0.01). The goodness of ESα estimates has been
evaluated by implementing two tests based on bootstrap proce-
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Table 4: Descriptive analysis of V aR.

GC Normal
Index 1 Index 2 1 − α V aRemp V aR ABLF AQLF UL V ar ABLF AQLF UL
ˆN225 ˆFTSE 0,975 2,1199 3,1628 0,0053 0,0093 0,0042 1,96 0,0213 0,05 0,019
ˆN225 ˆFTSE 0,990 2,7415 3,8004 0,0027 0,0033 0,0014 2,3263 0,016 0,0331 0,0127
ˆN225 ˆGDAXI 0,975 2,0362 3,1269 0,0080 0,0130 0,0059 1,96 0,0186 0,0487 0,017
ˆN225 ˆGDAXI 0,990 2,8491 3,7856 0,0053 0,0057 0,0014 2,3263 0,008 0,0276 0,0123
ˆN225 FTSEMIB.MI 0,975 2,1155 3,1437 0,0080 0,0120 0,0044 1,96 0,0186 0,0443 0,0148
ˆN225 FTSEMIB.MI 0,990 2,6624 3,7924 0,0027 0,0033 0,0013 2,3263 0,008 0,0245 0,0109
ˆN225 ˆFCHI 0,975 2,0755 3,1575 0,0053 0,0076 0,0032 1,96 0,0213 0,0424 0,0147
ˆN225 ˆFCHI 0,990 2,7897 3,7982 0,0027 0,0028 0,0006 2,3263 0,0106 0,023 0,0095
ˆN225 ˆHSI 0,975 2,1437 3,2068 0,0080 0,0101 0,0038 1,96 0,016 0,0401 0,0149
ˆN225 ˆHSI 0,990 2,8635 3,8186 0,0027 0,0027 0,0001 2,3263 0,008 0,0229 0,0108
ˆN225 SXDP.Z 0,975 2,1910 3,0666 0,0053 0,0141 0,0066 1,96 0,0426 0,083 0,0289
ˆN225 SXDP.Z 0,990 2,8253 3,7606 0,0053 0,0075 0,0029 2,3263 0,0293 0,0532 0,0167
ˆN225 KO 0,975 2,2667 3,2319 0,0106 0,0206 0,0088 1,96 0,0319 0,0908 0,0327
ˆN225 KO 0,990 2,7333 3,8290 0,0080 0,0107 0,0037 2,3263 0,0213 0,0597 0,0237

For each couple of indexes (first two columns) at each level α (third column)
there are displayed the empirical V aR evaluated on the first sample (fourth
column), the theoretical V aR for GC distribution and Normal distribution
(fifth and ninth columns), the three statistical indexes ABLF, AQLF and UL
for GC distribution and Normal distribution (sixth-eighth columns and tenth-
twelfth columns).

dure. Both of them consider the performance of the GCS density
under examination inadequate if the ESα systematically under-
estimates the effective losses mean (ESemp), this implying great
damage.
The first test proposed by McNeil and Frey (2000) is based on the
following statistic

Z1 =
1
N

N∑
t=1

(
XtIXt>V aRα

ESα
− 1

)
(61)

where N is the number of losses Xt in the second part of the
sample (the last 374 days) lying over the V aRα, IXt>V aRα is an
indicative variable which assumes values equal to 1 if Xt > V aRα

and 0 otherwise. ESα is the expected shortfall estimated by using
the GCS density. Under the null hypothesis, assuming the cor-
rectness of the GCS densities or equivalently the goodness of he
ESα estimates, Z1 takes low values.
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Table 5: Analysis of V aR: test.

Index 1 Index 2 1 − α LRuc p-val(LUrc) p-val(VaR)
ˆN225 ˆFTSE 0,975 8,7581 0,0031 0,0076
ˆN225 ˆFTSE 0,99 2,8916 0,0890 0,1958
ˆN225 ˆGDAXI 0,975 6,0585 0,0138 0,0301
ˆN225 ˆGDAXI 0,99 1,0032 0,3165 0,5981
ˆN225 FTSEMIB.MI 0,975 6,0585 0,0138 0,0301
ˆN225 FTSEMIB.MI 0,99 2,8916 0,0890 0,1958
ˆN225 ˆFCHI 0,975 8,7581 0,0031 0,0076
ˆN225 ˆFCHI 0,99 2,8916 0,0890 0,1958
ˆN225 ˆHSI 0,975 6,0585 0,0138 0,0301
ˆN225 ˆHSI 0,99 2,8916 0,0890 0,1958
ˆN225 SXDP.Z 0,975 8,7581 0,0031 0,0076
ˆN225 SXDP.Z 0,99 1,0032 0,3165 0,5981
ˆN225 KO 0,975 4,0438 0,0443 0,0947
ˆN225 KO 0,99 0,1667 0,6831 1,0000

For each couple of indexes (first two columns) at each level α (third column)
there are displayed the statistic test of likelihood ratio test LRuc and the as-
sociated p-value p-val(LRuc) and the p-value of the binomial two-sided test
p-val(VaR) for the GC distribution (fourth-sixth columns). The significance
level is fixed at 1%.
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The second test, proposed by Acerbi and Szekely (2014), is quite
similar to the previous one. The statistic test is

Z2 =
1
T

T∑
t=1

XtIXt>V aRα

αESα
− 1 (62)

where T denotes the sample size. The null hypothesis of this test
is the same as that of the Z1 test and, similarly to this latter, the
Z2 statistic assumes low values under the null hypothesis. Then
a bootstrap simulation has been implemented. In both cases, 999
bootstrap samples have been selected from the out-of-sample data-
set without making any assumption on the the underlying data
distribution and the statistics Z1 and Z2 have been computed by
using these 999 bootstrap samples. The p-values of both tests have
been computed as percentages of the Z1 and Z2 statistics obtained
from bootstrap samples exceeding the corresponding statistics Z1
and Z2, respectively, computed on the second part of the data
(last 374 days). Looking at these p-values, reported in Table 6,
we can conclude that the out of the sample performance of the
GCS densities is quite good in most of the cases.
All the analysis have been carried out by using software R (R Core
Team, 2015). In particular, basic financial operations have been
worked out by using tseries (Trapletti and Hornik, 2015) package,
computations involving Hermite’s polynomials with EQL (Thorn
Thaler, 2009) package and tests for the evaluation of goodness of
fitting have been implemented by using np (Hayfield and Racine,
2008) package.

6 Conclusion
In this paper, we propose an approach to model the sums of lep-
tokurtic Gaussian variables. This approach rests on the polyno-
mial transformation of the Gaussian variables by means of their
associated Hermite polynomials. The resulting distributions are
known as Gram-Charlier expansions. The sum of these Gram
Charlier expansions (GCS) proves to be a tail sensitive density

29



Table 6: Out-of-sample ES performance

Index 1 Index 2 1 − α V aR ESemp ESα Z1 pval(Z1) Z2 pval(Z2)
ˆN225 ˆFTSE 0,950 2,4725 3,2659 3,3266 -0,0182 0,5165 -0,9863 0,4675
ˆN225 ˆFTSE 0,975 3,1628 3,9579 3,8500 0,0280 0,3443 -0,9944 0,5395
ˆN225 ˆFTSE 0,990 3,8004 4,3089 4,4539 -0,0326 0,3744 -0,9974 0,6647
ˆN225 ˆGDAXI 0,950 2,4342 3,8722 3,2944 0,1754 0,4494 -0,9901 0,4975
ˆN225 ˆGDAXI 0,975 3,1269 3,8722 3,8269 0,0118 0,4675 -0,9917 0,4535
ˆN225 ˆGDAXI 0,990 3,7856 4,0568 4,4359 -0,0855 0,4935 -0,9951 0,5355
ˆN225 FTSEMIB.MI 0,950 2,4513 3,6975 3,3092 0,1173 0,4184 -0,9906 0,4905
ˆN225 FTSEMIB.MI 0,975 3,1437 3,6975 3,8376 -0,0365 0,5005 -0,9921 0,4745
ˆN225 FTSEMIB.MI 0,990 3,7924 4,2733 4,4442 -0,0384 0,3744 -0,9974 0,6386
ˆN225 ˆFCHI 0,950 2,4664 3,4896 3,3217 0,0505 0,4695 -0,9912 0,5125
ˆN225 ˆFCHI 0,975 3,1575 3,7596 3,8466 -0,0226 0,5005 -0,9947 0,5355
ˆN225 ˆFCHI 0,990 3,7982 4,0289 4,4512 -0,0949 0,3764 -0,9976 0,6276
ˆN225 ˆHSI 0,950 2,5277 3,6804 3,3680 0,0928 0,4825 -0,9908 0,4935
ˆN225 ˆHSI 0,975 3,2068 3,6804 3,8788 -0,0512 0,5275 -0,9922 0,5115
ˆN225 ˆHSI 0,990 3,8186 3,8710 4,4776 -0,1355 0,3534 -0,9977 0,6547
ˆN225 SXDP.Z 0,950 2,3817 2,9504 3,2435 -0,0904 0,4695 -0,9745 0,4835
ˆN225 SXDP.Z 0,975 3,0666 4,3077 3,7887 0,1370 0,3413 -0,9938 0,5065
ˆN225 SXDP.Z 0,990 3,7606 4,3077 4,4080 -0,0228 0,4675 -0,9947 0,5375
ˆN225 KO 0,950 2,5635 3,5989 3,3926 0,0608 0,5035 -0,9792 0,4765
ˆN225 KO 0,975 3,2319 4,0578 3,8957 0,0416 0,4855 -0,9886 0,5105
ˆN225 KO 0,990 3,8290 4,2954 4,4921 -0,0438 0,4785 -0,9923 0,4885

For each couple of indexes (first two columns) at each level α (third column)
there are displayed the theoretical V aR for GC distribution (fourth column),
the empirical ES evaluated on the first sample (fifth column), the theoretical
ES for GC distribution (sixth column), the statistic tests Z1 and Z2 (seventh
and ninth columns) and the associated p-values for the GC distribution (eight
and tenth columns). The significance level is fixed at 1%.
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as it fits well the tails of the empirical distributions of financial
returns and as such it can be conveniently used to compute risk
measures like the Value at Risk and the expected shortfall. An ap-
plication to a portfolio of a set of financial asset indexes provides
evidence of the effectiveness of the GCS densities as it results from
their in and out of sample performance in both V aR and expected
shortfall estimation.
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