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Highlights  23 

- Hazelnuts contain unsaturated fatty acids, vitamin E and bioactives as polyphenols 24 

- Regular intake may contribute to improve lipid profile and reduce oxidative stress  25 

- An 8-week hazelnut intervention was performed in hyperlipidemic children 26 

- Markers of DNA damage, but not oxidised LDL, decreased after intervention  27 

- Hyperlipidemic children may benefit from the inclusion of hazelnuts in their diet  28 

  29 
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ABSTRACT 30 

Children with primary hyperlipidemia are prone to develop premature atherosclerosis, possibly 31 

associated with increased oxidative stress. Nutritional therapy is the primary strategy in the 32 

treatment of hyperlipidemia and associated conditions. Dietary interventions with bioactive-rich 33 

foods, such as nuts, may contribute to the modulation of both lipid profile and the 34 

oxidative/antioxidant status. Our study aimed to assess the impact of a dietary intervention with 35 

hazelnuts on selected oxidative stress markers in children and adolescents with primary 36 

hyperlipidemia. 37 

A single blind, 8-week, randomized, controlled, three-arm, parallel-group study was performed. 38 

Children and adolescents diagnosed with primary hyperlipidemia (n=60) received dietary guidelines 39 

and were randomized into three groups: group 1 received hazelnuts with skin (HZN+S), and group 40 

2 hazelnuts without skin (HZN-S), at equivalent doses (15-30 g/day, based on body weight); group 41 

3 (controls) received only dietary recommendations (no nuts). At baseline and after 8 weeks, plasma 42 

oxidized LDL (ox-LDL) concentrations, oxidative levels of DNA damage in lymphocytes, and 43 

potential correlation with changes in serum lipids were examined. 44 

A reduction of endogenous DNA damage by 18.9±51.3% (p=0.002) and 23.1±47.9% (p=0.007) was 45 

observed after HZN+S and HZN-S, respectively. Oxidatively-induced DNA strand breaks 46 

decreased by 16.0±38.2% (p=0.02) following HZN+S treatment. Ox-LDL levels did not change 47 

after HZN+S intervention, but positively correlated with total cholesterol (TC) and low-density 48 

lipoprotein cholesterol (LDL-C).  49 

A short-term hazelnut intervention improves cell DNA protection and resistance against oxidative 50 

stress but not ox-LDL in hyperlipidemic pediatric patients. 51 

The trial was registered at ISRCTN.com, ID no. ISRCTN12261900. 52 

 53 

 54 

  55 
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1. INTRODUCTION 56 

Hyperlipidemia plays a key role in the pathogenesis of atherosclerosis through several steps. 57 

Increased lipid peroxidation and associated oxidative stress trigger endothelial dysfunction [1], 58 

activate plaque progression [2], and induce cardiovascular diseases (CVDs) [3,4]. This course starts 59 

early in life, as demonstrated in hypercholesterolemic children, who reveal premature markers of 60 

subclinical atherosclerosis, including endothelial dysfunction[5] in relation to prolonged exposure 61 

to oxidative stress [6]. 62 

Oxidative stress results in damage of different cellular components by excessive generation of pro-63 

oxidant species, as well as deficiency of antioxidant defense mechanisms [7]. Lipids are susceptible 64 

targets of oxidation and plasma oxidized LDLs (ox-LDLs) play a major role in atherosclerosis 65 

development [2]. Ox-LDLs can be estimated with a reliable and sensitive technique based on 66 

monoclonal antibodies [8]. Several studies in adults demonstrated significant correlations between 67 

high circulating levels of ox-LDL and prevalence of CVDs, diabetes and metabolic syndrome [3]. 68 

Moreover, children with familiar hypercholesterolemia (FH) showed higher ox-LDL levels as 69 

compared to controls [9], although data in children are scanty and, at times, contradictory [10,11].  70 

Severe accumulation of endogenous pro-oxidants in cells could also generate DNA damage, 71 

including modified DNA bases, that may contribute to cardiovascular dysfunction. In this context, 72 

there is a growing amount of evidence documenting that oxidative stress-induced DNA damage 73 

may contribute to atherosclerotic plaque formation [12]. Oxidized DNA damage can be evaluated 74 

through different methodologies. The “comet assay”, also called “single cell gel electrophoresis”, is 75 

a sensitive and rapid technique for quantifying and analyzing DNA damage, evaluated for example 76 

as single- and double- DNA strand breaks in individual cells. Direct measurement of oxidative 77 

DNA damage may be obtained through modifications of the comet assay, which allow the detection 78 

of oxidised DNA bases through the use of specific enzymes, i.e. formamidopyrimidine DNA 79 

glycosylase (FPG) or endonuclease III, able to detect oxidised purines and pyrimidines, respectively 80 

[13]. Furthermore, DNA damage is often used to estimate cell resistance to ex vivo oxidative 81 
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treatments (i.e. hydrogen peroxide) [13,14].The principle behind this approach is that, antioxidants 82 

deriving from dietary supplementation reach the cells and enhance their ability to resist against an 83 

oxidative attack. Limited studies have evaluated the levels of DNA damage in hyperlipidemic 84 

subjects to assess the effect of oxidative/antioxidant status on DNA stability in lymphocytes 85 

[15,16]. 86 

The Mediterranean diet is thought to increase protection against atherosclerosis and CVDs, and this 87 

effect has been attributed to a variety of dietary components. Cardioprotective effects are also 88 

associated with regular consumption of nuts due to their optimal composition in bioactive 89 

compounds, such as unsaturated fatty acids, fiber, L-arginine, tocopherols, polyphenols and 90 

phytosterols [17,18]. Furthermore, the ingestion of whole nuts, including their skin where a 91 

significant part of their antioxidant polyphenols reside, could also contribute to the cholesterol-92 

lowering effect [19]. 93 

The aim of this study was to compare the effect of hazelnut consumption, with skin (HZN+S) or 94 

without (HZN-S), on oxidative stress markers, evaluated by ox-LDL, endogenous and oxidatively-95 

induced DNA damage, in children and adolescents with primary hyperlipidemia. 96 

 97 

2. MATERIALS AND METHODS 98 

2.1 Experimental design 99 

The study was approved by the Ethics Committee of the City of Health and Science University 100 

Hospital of Turin (Italy) (EC:CS377) in accordance with the principles outlined of the Declaration 101 

of Helsinki and was registered under ISRCTN.com (identifier no. ISRCTN12261900).  102 

The full experimental design was previously reported [20]. Briefly, sixty-six hyperlipidemic 103 

children and adolescents (mean age 11.6 ± 2.6 years) were enrolled within pediatric patients cared 104 

at the Department of Public Health and Pediatric Sciences of the University of Turin to participate 105 

in a trial evaluating the effect of hazelnuts Corylus avellana L. (cultivar ‘Tonda Gentile delle 106 

Langhe’ from Piedmont, Italy) on serum lipid profile and fatty acid composition of erythrocyte 107 



6 
 

phospholipids [20]. To be eligible, screened children and adolescents were required to be normal-108 

weight [body mass index (BMI) <90th percentile for age and sex] with diagnosis of primary 109 

hyperlipemia - including familial hypercolesterolemia (FH), familial combined hyperlipidemia 110 

(FCHL) or polygenic hypercholesterolemia (PHC) - with total serum cholesterol (TC) and/or 111 

triglycerides (TG) levels higher than age- and sex-specific 90th percentile. Diagnostic criteria of 112 

primary hyperlipidemia were based on accepted international standards as previously reported [21]. 113 

Subjects with secondary hyperlipidemia or other disorders, obesity, lipid-lowering treatments 114 

(including functional foods), allergy or aversion to nuts were excluded. All participants and their 115 

legal guardians agreed to participate in the second step of the trial and to collect blood in order to 116 

perform further analysis. 117 

The intervention study was an 8-week, randomized, single-blind, controlled trial, with three parallel 118 

treatment arms and was performed between January 2015 and October 2015. Detailed information 119 

on study intervention and its impact on lipid profile have been previously reported [20].  120 

A pediatrician who was not involved in the study and in sample analysis was appointed to allocate 121 

patients to the different treatments according to a randomization list obtained through the center 122 

database. The numbers of participants who were randomly assigned to different study groups, the 123 

rate of patients completing the study and analyzed for the primary outcome are depicted in Figure 124 

1. Subjects were deprived of nuts for 3 weeks before the beginning of the study, and were randomly 125 

assigned to one of three groups with a 1:1:1 ratio (22 subjects each): 1) HZN+S group received 126 

unpeeled hazelnuts; 2) HZN-S group received peeled hazelnuts; 3) control group received only 127 

dietary recommendations. Participants in the two hazelnut groups were instructed to consume one 128 

daily portion of roasted HZN-S or HZN+S for 8 weeks, while those in the control group were asked 129 

to avoid nut consumption for the entire intervention period. The amount of hazelnuts was calculated 130 

on the basis of children’s body weight and corresponded to servings of 15-30 g. Hazelnuts provided 131 

about 50% of fat, mainly monounsaturated fatty acids (MUFAs) and in particular oleic acid (>80% 132 

of total fat). Moreover, hazelnuts are source of phytosterols, tocopherols and minerals. Moreover, 133 
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HZN+S provided a concentration of polyphenols - mainly gallic acid and procyanidin B2 - three 134 

fold higher than HZN-S, and exhibited a higher antioxidant capacity (Figure 2) [20]. 135 

At recruitment, children and their families received nutritional recommendations based on the 136 

cardiovascular health integrated lifestyle diet (CHILD-1) as reported [22]. All participants were 137 

encouraged to maintain the same dietary habits throughout the study period. To check the 138 

compliance to the instructions patients were asked to fill weekly food diaries during each 139 

intervention phase and to return any residual package of hazelnuts. At the beginning and at the end 140 

of the study, each participant underwent medical examination for the analysis under study. 141 

 142 

2.2 Blood sample collection, separation and storage 143 

Venous blood samples were collected early in the morning after an overnight fast into vacutainers 144 

containing lithium heparin. PBMCs were separated by density gradient, using Histopaque 1077. A 145 

total of 100μl of whole blood was gently mixed with 900 μl of cold RPMI 1640 medium in 146 

microfuge tubes. Then, 100 μl Histopaque 1077 was carefully added to the bottom of the tube and 147 

centrifuged at 200 ×g for 4 min at room temperature. The PBMCs were removed, washed with 148 

PBS, and centrifuged for 10 s at 5000×g at room temperature to pellet the cells. The supernatant 149 

was poured off and the pellet resuspended in 50 μl of PBS and used immediately for the 150 

determination of ex-vivo resistance to oxydatively-induced DNA strand breaks. A different batch of 151 

isolated PBMC was diluted into an appropriate freezing medium made of 50% fetal bovine serum, 152 

40% RPMI 1640 and 10% DMSO as cryoprotectant, and stored at -80°C for the subsequent 153 

determination of endogenous DNA damage. 154 

 155 

2.3 Evaluation of oxidatively induced DNA damage in PBMCs    156 

The evaluation of cell resistance to oxidatively induced DNA damage was performed by comet 157 

assay, as previously reported [23]. Oxidative stress in fresh PBMCs was induced using 500 uM 158 

H2O2. Two slides were prepared for each subject: one was treated with H2O2 (500 µmol/l in PBS) 159 
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for 5 min at room temperature in the dark; the other was treated for 5 min with a solution of PBS 160 

only (control slide). Following the oxidative treatment, slides were immersed in a lysis buffer (2.5 161 

M NaCl, 0.1 M Na2EDTA, 10 mM Tris, 1% N-lauroylsarcosine sarcosine sodium salt, pH 10 with 162 

NaOH; 1% Triton X-100 and 1% DMSO) for 1 h at 4°C in the dark. Slides were then transferred in 163 

a horizontal electrophoresis tank containing an alkaline electrophoresis buffer (0.3 M NaOH, 1 mM 164 

Na2EDTA) and kept for 40 min at 4°C. Then, electrophoresis was carried out (25 V, 300 mA, 20 165 

min) in the same alkaline solution at 4 °C in the dark. The samples were subsequently washed in a 166 

neutralizing buffer (0.4 M Tris–HCl, pH 7.5) for 15 min at 4°C in the dark, stained with ethidium 167 

bromide (2 μg/ml) for 20 min, washed in PBS, drained, and coverslipped. DNA damage produced 168 

was compared to that obtained in control cells. The lower the DNA damage detected, the higher the 169 

ability of the cells to protect themselves from an induced oxidative stress.  170 

 171 

2.4 Evaluation of FPG-sensitive sites in PBMCs 172 

Endogenous DNA damage (FPG-sensitive sites) was analysed on cryopreserved PBMCs by means 173 

of the enzyme formamidopyrimidine DNA glycosylase, able to detect the oxidized purines (mainly 174 

8-oxo-7,8-dihydroguanine), as previously reported [24]. In brief, cryopreserved PBMCs were 175 

rapidly thawed at 37°C and washed with fresh RPMI medium and cold PBS. Cell suspension was 176 

embedded in LMP agarose (1.5% wt/vol in Tris–acetate–EDTA buffer at pH 7.4, 37°C) and 177 

pipetted on fully frosted slides previously precoated with NMP agarose (1% wt/vol in Tris–acetate–178 

EDTA buffer). After the lysis phase (2.5 M NaCl, 0.1 M Na2EDTA, 10 mM Tris, 1% N-179 

lauroylsarcosine sarcosine sodium salt, pH 10 with NaOH; 1% Triton X-100 and 1% DMSO, for 1 180 

h at 4°C in the dark), slides were washed three times (5 min each) in 40 mM HEPES, 0.1 M KCl 181 

and 0.5 mM EDTApH 8.0, with KOH buffer. Then, one slide was treated with a solution of FPG 182 

enzyme (100 ng/ml in enzyme buffer: 40 mM HEPES, 0.1 M KCl, 0.5 mM EDTA and 0.2 mg/ml 183 

bovine serum albumin, pH 8.0 with KOH), while the other slide (control) with buffer without FPG. 184 
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Incubation was performed at 37°C for 45 min. The slides were then transferred to electrophoresis 185 

buffer and processed, as previously described (see oxidatively induced DNA damage).  186 

 187 

2.5 Quantification of DNA damage 188 

One hundred images of nucleoids, or comets, per slide were electronically captured at 20x 189 

magnification, using an epifluorescence microscope (Olympus CX 41; Olympus Italia) attached to a 190 

high sensitivity CCD video camera (CFW 1808M; Scion Corporation, Germany), and to a computer 191 

equipped with an image analysis system (Cometa 1.5; Immagini e Computer, Bareggio, Milan, 192 

Italy). The level of DNA damage was calculated as the percentage of DNA in the tail. For each 193 

subject, the percentage of DNA in the tail of control cells (slides not treated with H2O2 or FPG) was 194 

subtracted from the percentage of DNA in the tail of cells incubated with H2O2 or FPG. 195 

 196 

2.6 Analysis of ox-LDL 197 

The serum ox-LDL concentrations were measured by an ELISA kit (Mercodia, Uppsala, Sweden), 198 

according to the manufacturer instructions. The absorbance was evaluated at 450 nm using a plate 199 

reading spectrophotometer (mod. F200 Infinite, TECAN Milan, Italy). Each sample was determined 200 

in duplicate. The analysis was performed in a subsample of 40 subjects, belonging to HZN+S and 201 

control groups. Ratio of ox-LDL/LDL ratio and ox-LDL/HDL were also calculated. 202 

 203 

2.7 Statistical analysis 204 

Sample size was calculated taking into account the expected variation in the primary endpoints 205 

considered based on results previously obtained from our group. In particular, 16 subjects per group 206 

were estimated to be sufficient to detect significant differences in DNA damage after HZN 207 

interventions, with a power of 80% and p=0.05. All data are presented as mean ± standard deviation 208 

(SD). Two-way ANOVA was used to compare the effect of dietary treatment (HZN+S, HZN-S or 209 

control group) and time (baseline vs. 8 weeks) on the levels of DNA damage and ox-LDL. 210 
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Differences were considered significant at p≤0.05; post hoc analysis of the differences between 211 

treatments was assessed by the Least Significant Difference test considering p≤0.05 for statistical 212 

significance. Regression analysis was used to verify correlations between the variables under study 213 

(DNA and lipid damage vs. serum lipids) at baseline and percent changes observed between pre-to-214 

post intervention in the three groups. Statistical analysis was performed using STATISTICA 215 

software (Statsoft Inc, Tulsa, OK, USA). 216 

 217 

3. RESULTS 218 

3.1 Baseline characteristics  219 

Baseline levels of DNA strand breaks, FPG-sensitive sites and oxidatively-induced DNA damage in 220 

the three treatment groups of hyperlipidemic subjects are reported in Table 1. No significant 221 

differences were found by one-way ANOVA (p≥0.05) at baseline among groups. 222 

   223 

3.2 Effect of intervention on DNA strand breaks and FPG-sensitive sites in PBMCs 224 

The effect of intervention on the levels of DNA strand breaks and FPG-sensitive sites in PBMCs is 225 

reported in Table 1. The regular intake of hazelnuts was associated with the reduction (time effect) 226 

of the levels of DNA strand breaks by 18.8% (95% CI: -36.8%, -2.71%, p=0.003) and by 13.9% 227 

(95% CI: -28.6%, 0.84%; p=0.001), respectively after HZN+S and HZN-S intake. A significant 228 

decrease (time x treatment interaction, p=0.0006) was also observed for the levels of FPG-sensitive 229 

sites (endogenous DNA damage). In particular, DNA damage was reduced by 18.9% (95% CI: -230 

41.7%, +3.9%; p=0.002) and by 23.1% (95% CI: -45.5%, -0.66%; p=0.007), respectively after the 231 

consumption of HZN+S and HZN-S.  232 

On the contrary, an increase of 26.8% (96% CI: -0.84%, +54.5%; p= 0.04) in FPG-sensitive sites 233 

and a reduction (time effect) in the levels of DNA strand breaks of 21.2% (95% CI: -39.1%, -3.38%, 234 

p=0.015) was registered in the control group at the end of the study period (Table 1).  235 

 236 
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3.3 Effect of intervention on DNA strand breaks and H2O2-induced -DNA damage in PBMCs 237 

The effect of intervention on the levels of DNA strand breaks and H2O2-induced -DNA damage in 238 

PBMCs is reported in Table 1. The consumption of hazelnuts and control treatment did not affect 239 

the levels of DNA strand breaks. With regard to cell protection against an ex-vivo induced oxidative 240 

stress, HZN+S treatment significantly decreased (time effect, p=0.002) the level of oxidatively-241 

induced DNA strand breaks by 16.0% (95% CI: −32.9%, +0.89%), while no significant effect was 242 

observed after HZN-S and control treatment (Table 1).  243 

 244 

3.4 Effect of intervention on oxidized LDL levels  245 

In Table 2 are reported the levels of ox-LDL and its ratio with LDL and HDL concentrations. 246 

Data regarding the serum lipid profile was previously published [20]. Mean baseline ox-LDL levels 247 

in hyperlipidemic children were 54.4 ± 15.4 U/L, and did not significantly change in the control or 248 

HZN+S groups after intervention (Table 2). No effect was also observed in the ratio of ox-249 

LDL/HDL. A time effect was observed in the levels of ox-LDL/LDL; post hoc analysis revealed a 250 

difference between baseline values of HZN+S group and control group after 8 weeks  251 

 252 

3.5 Correlation between serum lipid profile and markers of oxidative stress 253 

Correlations between DNA and lipid damage and serum lipid profile previously published [20] have 254 

been performed to ascertain the contribution of dyslipidemia on oxidative stress in the population 255 

under study. At baseline, a positive correlation between LDL-C concentrations and H2O2-induced 256 

DNA damaged (r= 0.34, p= 0.04) was detected. Furthermore, serum TC, LDL-C and non-HDL-C 257 

levels were directly related to ox-LDL (r= 0.84, p< 0.001; r= 0.85, p< 0.001; r= 0.87, p< 0.001, 258 

respectively) in the subgroup of subjects analyzed (n=40).  259 

Interestingly, a direct association between ox-LDL concentrations and the levels of TC, LDL-C 260 

and non-HDL in both control (r= 0.57, p= 0.014; r= 0.73, p= 0.001; r= 0.72, p= 0.001, respectively) 261 
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and HZN+S group (r= 0.60, p= 0.004; r= 0.56, p= 0.008; r= 0.69, p< 0.001, respectively) was 262 

evidenced. 263 

 264 

4. DISCUSSION 265 

Our study shows the effect of hazelnuts intake on oxidative stress markers in children and 266 

adolescents with primary hyperlipidemia. In particular, hazelnut consumption was associated with 267 

reduced levels of DNA strand breaks, FPG-sensitive site and H2O2-induced DNA strand breaks. On 268 

the other hand, we could not demonstrate an effect of HZN+S on ox-LDLs, whose levels remained 269 

unchanged in treated and untreated patients. 270 

According to previous literature, hyperlipidemia is associated with increased oxidative stress 271 

[12,15,16,25–27] from the pediatric age [5,28,29]. A proper nutritional intervention is considered 272 

the primary strategy to prevent the onset of chronic degenerative diseases, especially in children 273 

with primary hyperlipidemia, presenting with higher risk of developing CVD in adulthood [30].  274 

In particular, clinical and epidemiological studies in hyperlipidemic and healthy adults have 275 

consistently demonstrated the favorable effects of regular nut intake on health [31–33], which 276 

appear attributable to their high content in bioactive compounds with antioxidant properties (i.e. 277 

vitamin E, polyphenols, phytosterols), able to reduce both cholesterol levels and oxidative 278 

stress[34]. Clinical trials have shown a correlation between regular nut consumption and the 279 

reduction of some markers of oxidative stress, including the levels of DNA damage (calculated as 280 

the percentage of DNA strand breaks in lymphocytes, or levels of urinary 8-hydroxy-2’-281 

deoxyguanosine concentrations, [8-OH-dG]); in vivo antioxidant capacity; ox-LDL; 282 

malondialdehyde concentrations; conjugated diene formation; plasma or urine isoprostane 283 

concentrations; and antioxidant non-enzymatic and enzymatic activity [34–45]. However, most of 284 

the studies investigated the effects of almonds, walnuts or pistachios, while data on hazelnuts are 285 

scanty. 286 
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Hazelnuts are among the most popular tree nuts consumed worldwide, and the second richest source 287 

of MUFAs - mainly oleic acid- and phytochemicals with remarkable antioxidant properties, i.e. α-288 

tocopherol, proanthocyanidins and carotenoids [18,34]. In our study, Italian hazelnuts Corylus 289 

avellana L. ‘Tonda Gentile delle Langhe’ were administer peeled or unpeeled (HZN-Sand HZN+S, 290 

respectively) to evaluate potential differences in the antioxidant properties associated with hazelnut 291 

skin. Indeed, a portion of HZN+S or HZN-S provides similar amounts of MUFAs, phytosterols, α-292 

tocopherol and minerals, but different amount of polyphenols (mostly gallic acid), which are mainly 293 

present in the skin. Although generally considered a byproduct of peeled HZNs, skins are an 294 

interesting edible source of polyphenol compounds with antioxidant properties [46]. 295 

Several in vivo studies have documented the capacity of polyphenol-rich foods to decrease 296 

oxidative stress and/or to increase antioxidant protection by reducing DNA oxidized bases and 297 

strand breaks [47,48]. The comet assay is a valid, widely used method for the evaluation of DNA 298 

damage and the protective effects of dietary bioactives in human cells [49]. To our knowledge, no 299 

previous study has investigated the impact of hazelnut intake on DNA damage in patients at risk of 300 

oxidative stress, like children with primary hyperlipidemia, nor the potential difference associated 301 

with the consumption of peeled vs. unpeeled hazelnuts. Based on our data, both types of hazelnuts 302 

significantly reduced the levels of DNA strand breaks and FPG-sensitive sites (as marker of 303 

endogenous DNA damage), but only HZN+S significantly decreased the ex-vivo oxidatively-304 

induced DNA damage in PBMCs, a suggested marker of antioxidant protection or cell ability to 305 

protect from an oxidative insult. Indeed, it is noteworthy that high amounts of vitamin E, with well-306 

recognized antioxidant properties, are regularly introduced through hazelnut intake. Moreover, it 307 

may be hypothesized that the higher amount of polyphenols, and antioxidant capacity in HZN+S 308 

previously showed [20] increased treatment efficacy (Figure 2).  309 

Regarding control treatment, we found a significant increase in the levels of the FPG-sensitive sites 310 

possibly attributed to the significant reduction in the levels of DNA strand breaks (background SBs 311 

expressed as % DNA in tail, EB) following the 8 weeks of intervention. The reduction observed is 312 
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difficult to explain and it may be due to an improvement of endogenous antioxidant status following 313 

the dietary advices. 314 

The ability of nuts to reduce markers of oxidative DNA damage was also observed in other 315 

intervention studies conducted in adults supplemented with almonds [36,37], brazil nuts [39], or 316 

mixed nuts (i.e. walnuts, almonds and hazelnuts) [38]. Two studies carried out in healthy smokers 317 

demonstrated that the oxidative DNA damage levels significantly decreased after daily almond 318 

supplementations for 4 weeks, suggesting that almonds could counteract the oxidative stress 319 

mediated by tobacco [36,37]. After an 8-week intake of selenium-rich Brazil nuts, Cominetti et al. 320 

[39] found a significant decrease of DNA strand breaks in a group of obese women with wild-type 321 

genotype of glutathione peroxidase1 Pro198Leu polymorphism, but not in the groups with other 322 

genotype variants. However, studies investigating the relationship between hazelnut consumption 323 

and oxidative stress in humans are limited. López-Uriarte et al. [38] evaluated the role of mixed 324 

nuts, including hazelnuts, in adult patients with metabolic syndrome, and found a significant 325 

reduction of DNA damage, evaluated as 8-OH-dG, after 8-week treatment. 326 

The unchanged ox-LDL levels found after hazelnut consumption in our trial were also observed in 327 

other studies following the intake of different nuts [35,38]. Despite the high content of MUFAs, 328 

which have been associated with reduced susceptibility of LDL to oxidation [50], after HZN+S 329 

treatment we did not observe significant changes in the levels of ox-LDL, and its ratio with LDL-C 330 

and HDL-C concentrations. A possible explanation is that our study was carried out in children with 331 

primary hyperlipidemia showing mild LDL-C elevations and instructed to healthy lifestyle 332 

recommendations. As expected, cholesterol values were directly correlated to ox-LDL. Moreover, 333 

the LDL-C concentrations were positively associated with the levels of oxidatively-induced DNA 334 

damage, suggesting that both markers may be considered of special interest from the clinical point 335 

of view, providing an overall indication of the oxidative status secondary to hyperlipidemia. 336 

The cardiometabolic health benefits associated with nut consumption were mainly described in 337 

studies conducted in adults reporting a favorable effect on plasma lipid profile as we have also 338 



15 
 

demonstrated in children. Indeed, only two intervention trials were performed in children and 339 

adolescents to evaluate the efficacy of nuts in reducing CV risk [51,52], but none of them included 340 

hyperlipidemic patients. Maranhão et al. [51] demonstrated that regular intake of Brazil nuts for 16 341 

weeks positively influenced the lipid profile, microvascular function and ox-LDL levels in obese 342 

children, attributed to nuts high content of unsaturated fatty acids and bioactives.  343 

A possible limitation of the present study is the absence of a control group of healthy children and 344 

adolescents, which makes data applicable only to children with primary hyperlipidemia.  345 

 346 

6. CONCLUSIONS 347 

In conclusion, hazelnuts supplementation can be recommended to children with primary 348 

hyperlipidemia in association with an appropriate, balanced diet, to improve the lipid profile and 349 

reduce the oxidative stress.  350 

 351 
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FIGURE CAPTION 1 531 
 532 
Figure 1 – Flow-chart of partecipant selection, allocation to the study arms and follow-up  533 
 534 
 535 

 536 
 537 
 538 
Legend: Control, no treatment group; HZN+S, group treated with hazelnuts with skin; HZN-S, 539 
group treated with hazelnuts without skin. 540 
 541 
 542 
  543 
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 544 
FIGURE CAPTION 2 545 
 546 
Figure 2 – Contribution in antioxidants provided by a portion (30 g) of HZN+S and HZN-S 547 

 548 

 549 
 550 
Legend: TPC, Total Phenolic Content; TAC, Total Antioxidant Capacity; TTC, Total Tocopherol 551 

Content; GAE, Gallic Acid Equivalents; TE, Trolox Equivalent 552 

  553 



25 
 

 554 

 555 

 556 

 557 


