
GENERALIZED TWISTED CUBICS ON A CUBIC FOURFOLD AS A

MODULI SPACE OF STABLE OBJECTS
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Abstract. We revisit the work of Lehn–Lehn–Sorger–van Straten on twisted cubic curves in a

cubic fourfold not containing a plane in terms of moduli spaces. We show that the blow-up Z′ along

the cubic of the irreducible holomorphic symplectic eightfold Z, described by the four authors, is

isomorphic to an irreducible component of a moduli space of Gieseker stable torsion sheaves or

rank three torsion free sheaves.

For a very general such cubic fourfold, we show that Z is isomorphic to a connected component

of a moduli space of tilt-stable objects in the derived category and to a moduli space of Bridgeland

stable objects in the Kuznetsov component. Moreover, the contraction between Z′ and Z is realized

as a wall-crossing in tilt-stability.

Finally, Z is birational to an irreducible component of a moduli space of Gieseker stable aCM

bundles of rank six.
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Introduction

The birational geometry of cubic fourfolds is a fascinating and challenging problem in alge-

braic geometry. The guiding principle of this paper is to understand and reinterpret geometric

constructions on cubic fourfolds in terms of sheaf theory and homological algebra.
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The conjectural relation between the question of rationality of cubic fourfolds and their de-

rived categories of coherent sheaves is now well-known, and it emerged in the work of Kuznetsov

[26]; the derived category of a cubic fourfold has a semiorthogonal component, the Kuznetsov com-

ponent, whose properties are supposed to detect rationality. Addington and Thomas [2] showed

that Kuznetsov’s categorical approach to rationality essentially matches the more classical Hodge

theoretical one due to Hassett [19].

In this paper we deal with spaces of rational curves. For low degrees, spaces of rational curves

give rise to irreducible holomorphic symplectic (IHS) varieties. Beauville and Donagi [10] showed

that the Fano variety F (Y ) of lines on a cubic fourfold Y is a smooth projective IHS variety of

dimension four deformation equivalent to the Hilbert scheme of two points on a K3 surface. More

recently, by following geometric intuitions by Dolgachev and seminal works [14, 17, 18, 36], Lehn,

Lehn, Sorger, and van Straten [30] studied the space of rational curves of degree three. If the cubic

fourfold Y does not contain a plane, they proved that the irreducible component M3(Y ) of the

Hilbert scheme containing twisted cubic curves is a smooth projective variety of dimension ten. The

curves in M3(Y ) always span a P3, so there is a natural morphism from M3(Y ) to the Grassmannian

Grass(3,P5) of three-dimensional projective subspaces in P5. This morphism induces a fibration

M3(Y ) → Z ′(Y ), which is a P2-fiber bundle. The variety Z ′(Y ) is also smooth and projective

of dimension eight. Roughly speaking, Z ′(Y ) is constructed as a moduli space of determinantal

representations of cubic surfaces in Y (see [9, 15], for more on determinantal representations).

Finally, in Z ′(Y ) there is an effective divisor coming from non-CM twisted cubics on Y . This

divisor can be contracted, giving rise to a new variety denoted by Z(Y ). The variety Z(Y ) is a

smooth IHS variety of dimension eight. It contains the cubic fourfold Y and Z ′(Y ) can be realized

as the blow-up of Z(Y ) in Y . In [1], it was shown that Z(Y ) is deformation equivalent to a Hilbert

scheme of four points on a K3 surface.

The goal of this article is to give an alternative construction of Z(Y ) and Z ′(Y ) by building

on the previous works [6, 28, 29, 34].

Main Theorem. Let Y be a smooth cubic fourfold not containing a plane and let H denote the

class of a hyperplane section.

(1) Let v1 =
(
0, 0, H2, 0,−1

4H
4
)
. Then Z ′(Y ) is isomorphic to an irreducible component of the

moduli space of Gieseker stable sheaves on Y with Chern character v1.

(2) Let v2 =
(
3, 0,−H2, 0, 1

4H
4
)
. Then:

(2a) Z ′(Y ) is isomorphic to an irreducible component of the moduli space of Gieseker stable

torsion free sheaves on Y with Chern character v2.

(2b) If Y is very general, both Z(Y ) and Z ′(Y ) are isomorphic to an irreducible component of

the moduli space of tilt-stable objects on Db(Y ) with Chern character v2. The contraction

Z ′(Y )→ Z(Y ) is realized as a wall-crossing contraction in tilt-stability.

(2c) If Y is very general, then Z(Y ) is isomorphic to a moduli space of Bridgeland stable

objects in TY with Chern character v2.

(3) Let v3 =
(
6,−3H,−1

2H
2, 1

2H
3, 1

8H
4
)
. Then Z(Y ) is birational to a component of the moduli

space of Gieseker stable aCM bundles on Y with Chern character v3.
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A cubic fourfold is very general if the algebraic part H4(Y,Z) ∩H2,2(Y ) of the cohomology

group H4(Y,Z) is the smallest possible, i.e., it is generated by the class of a smooth cubic surface.

Also, we denote by TY the Kuznetsov component of Y ; this is the triangulated subcategory of

Db(Y ) defined by

TY :=〈OY ,OY (H),OY (2H)〉⊥

=
{
G ∈ Db(Y ) : Homp

Db(Y )
(OY (iH), G) = 0, for all p and i = 0, 1, 2

}
.

Part (1) of the Main Theorem identifies Z ′(Y ) with an irreducible component of the moduli

space of ideal sheaves of generalized twisted cubics inside the corresponding cubic surface (see

Proposition 1.2). Note that the moduli space of such ideals has more than one irreducible compo-

nent (see Remark 1.3).

Part (2a) is in some sense a reformulation of Part (1): the rank three torsion free sheaves are

obtained by mutation of the ideal sheaves in Part (1) (see Section 2.2). A priori it is not clear

why these sheaves are Gieseker stable, and this is the main content of this part of the theorem

(see Proposition 2.5). The advantage of this description of Z ′(Y ) is that the rank three torsion

free sheaves associated to aCM twisted cubics belong to the category TY . As explained in [27,

Section 4], this reconstructs the symplectic structure on the corresponding open subset. The

stability of the sheaves associated to aCM twisted cubics was already proved in [38, Lemma 2.5].

Our motivation for Parts (2b) and (2c) is to directly construct Z(Y ) as a moduli space of

objects in the derived category (or in TY ), thus reproving [30], as also suggested in [1]. The main

issues are the stability of the objects involved and the projectivity of the resulting moduli spaces.

We can solve the stability problem by restricting ourselves to very general cubic fourfolds; this is,

anyway, an interesting case from many perspectives (see, for example, [21]). We cannot yet solve

the projectivity issue, and so to prove the Main Theorem we still have to rely on [30]. On the

other hand, we will observe later that the smoothness of the moduli spaces in Parts (2b) and (2c)

is automatic since they parametrize objects contained in the K3 category TY . In contrast to this,

proving that Z(Y ) is smooth requires some work in [30].

Tilt-stability is an auxiliary notion of stability in the derived category, introduced in [8], as a

direct generalization of Bridgeland stability on surfaces [12]. It depends on two real parameters,

α and β, α > 0. The basic fact is that when α is sufficiently large, the moduli space of tilt-

stable objects with fixed numerical invariants is isomorphic to stable sheaves, where stability is

now the usual notion of Gieseker stability (with Hilbert polynomial truncated at ch2). Hence, for

the Chern character v2 for α large and β < 0, Part (2a) of the Main Theorem realizes Z ′(Y ) as

an irreducible component of the moduli space of tilt-stable objects. The idea is now to vary α

and study the transformations induced on the moduli space when stability changes (very much

like usual variation of GIT quotients, see [16, 42]). In fact, Part (2b) arises by crossing the first

wall: the induced map contracts other irreducible components, and induces on Z ′(Y ) a blow-down

onto Z(Y ). As remarked before, the sheaves corresponding to aCM curves are in TY . Crossing

the wall in tilt-stability is nothing but projecting the sheaves corresponding to non-CM curves

onto the category TY . This wall-crossing interpretation for other constructions involving cubic

hypersurfaces was already studied in our previous paper [29] for cubic threefolds; we also refer
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to [40], where wall-crossing techniques are treated more in detail in the case of the projective

three-dimensional space.

Bridgeland stability conditions on the Kuznetsov component TY of a cubic fourfold have been

constructed in [6]. By using a similar argument as in [6, Appendix A], we can prove that the objects

in Part (2b) after crossing the wall are also Bridgeland stable, for very general cubic fourfolds. The

advantage of working with Bridgeland stability is that the moduli spaces, if projective, are actually

smooth connected IHS varieties. In fact, moduli spaces are expected for any K3 category to be

proper symplectic algebraic spaces which are very close to be projective, since they are endowed

with a natural non-trivial nef line bundle by [4]. Also, if Part (2c) could be extended to special

cubic fourfolds, wall-crossing in Bridgeland stability would provide a wealth of IHS birational

models for Z(Y ), similarly as in [5].

Part (3) follows from Part (2a) via a second mutation, which is an autoequivalence of TY

(see Section 3.1). As before, the difficult part is to prove the stability of these vector bundles (see

Proposition 4.2). It should also be observed that constructing families of stable aCM bundles is, in

general, a difficult task. The result above provides such a family in the rank six case. This should

be compared to the family of rank four stable aCM bundles exhibited in [28].

Plan of the paper. The paper is organized as follows. After some preliminaries about generalized

twisted cubics and the construction of Z(Y ) (see Section 1.1), we show that Z ′(Y ) is isomorphic

to (a component of) a moduli space of ideals (Part (1) of the Main Theorem; see Section 1.2).

By using this, we prove Part (2a) of the Main Theorem in Sections 2.2 and 2.3. We will also

show that the moduli space of stable torsion free sheaves under consideration contains another

irreducible component (see Section 2.4). As a preparation, we recall in Section 2.1 the notion

of semiorthogonal decomposition and Kuznetsov’s description of the derived category of a cubic

fourfold.

The proof of Part (2b) of the Main Theorem is carried out in Section 5. This requires

some preliminary results about tilt-stability discussed in Section 5.1. The wall-crossing argument

discussed in Section 5.3, which concludes the proof of Part (2b), needs a detailed analysis of the

so-called first wall. This is explained in Section 5.2.

The proof of Part (2c) is carried out in Section 6. A brief recall on Bridgeland stability on the

Kuznetsov component of a very general cubic fourfold is in Section 6.1. The proof of the theorem

is in Section 6.3, after a few preliminary results in Section 6.2, which are a very mild generalization

of some results in [6, Appendix A].

To prove Part (3) of the Main Theorem, we need to move one step further and make another

mutation. More precisely, Section 3 yields the desired aCM vector bundles. In Section 3.3 we

discuss some of their basic properties. In the same section we describe a natural involution which

is used in Section 4.1 to prove their Gieseker stability. Part (3) is finally proved in Section 4.2.

Notation. In this paper we work over the complex numbers. For a smooth projective variety

X, we denote by Db(X) the bounded derived category of coherent sheaves on X and we refer to

[20] for basics on derived categories. We assume some familiarity with basic constructions and

definitions about moduli spaces of stable bundles for which we refer to [22]. For example, given a
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sheaf F and an ample divisor H, we denote by P (F, n) := χ(F (nH)) its Hilbert polynomial and

by p(F, n) its reduced Hilbert polynomial.

1. The geometric setting

In this section we briefly recall the constructions in [30] and we show that Z ′(Y ) is isomorphic

to a component of the moduli space of Gieseker stable sheaves containing the ideal sheaves of

generalized twisted cubics inside the corresponding cubic surface.

1.1. Generalized twisted cubics on cubic fourfolds. Let Y be a smooth cubic fourfold not

containing a plane. Following [30], we denote by M3(Y ) := Hilbgtc(Y ) the irreducible component

of the Hilbert scheme Hilb3n+1(Y ) containing the twisted cubics. By [30, Theorem A], the moduli

space M3(Y ) is a smooth irreducible projective variety of dimension ten.

The curves C in M3(Y ) are usually called generalized twisted cubics and they can be divided

into two classes depending on whether C is arithmetically Cohen-Macaulay (aCM) or non-Cohen-

Macaulay (non-CM). The latter ones are plane curves with an embedded point at a singular point

of the curve. The locus of non-CM curves is a Cartier divisor J(Y ) inside M3(Y ). Both aCM and

non-CM curves span a 3-dimensional linear subspace in P5.

According to [30], the natural morphism

s : M3(Y )→ Grass(3,P5),

sending a generalized twisted cubic C on Y to the 3-dimensional projective space 〈C〉 in P5 spanned

by C, factors through a smooth projective variety Z ′(Y )

(1.1.1) M3(Y )

s

��

a

))
Z ′(Y )

π
uu

Grass(3,P5).

in such a way that a : M3(Y ) → Z ′(Y ) is a P2-fiber bundle. According to Section 3 in [30], a

point p ∈ π−1([P3]) ⊆ Z ′(Y ) is given by the pair ([A], g) where A is a 3 × 3 matrix with linear

entries and g is an equation of the cubic surface Y ∩ π(p). More precisely, A is a stable matrix

with respect to the reductive group G = GL3 × GL3/∆0. If det(A) 6= 0, then the class [A] is the

orbit of A with respect to G. In that case g = det(A). If det(A) = 0, then we can suppose that

A is skew-symmetric and the class [A] is the orbit of A inside the skew-symmetric matrices with

respect to Γ = GL3/± id which acts via γ ·A = γAγt.

Also, a point q ∈ s−1([P3]) ⊆ M3(Y ) is given by a pair ([A], g) where A is a stable 3 × 3

matrix with linear entries and g is an equation of the cubic surface Y ∩π(p), but the class of [A] is

different. Indeed, if q corresponds to an aCM curve, then det(A) = g and the class [A] is the orbit

of A with respect to the parabolic subgroup P = (GL3 × P ′)/C∗ ⊆ G, where P ′ is the parabolic

subgroup of elements that stabilize the subspace C2 × {0} ⊆ C3. Then a(q) is given by taking

further quotient and the fiber corresponds to G/P ∼= P2.
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Finally, by [30, Theorem B], the image of a(J(Y )) which is a Cartier divisor D in Z ′(Y ) can be

contracted such that the contraction Z(Y ) is a smooth eight dimensional irreducible holomorphic

symplectic manifold. Hence, Z ′(Y ) is the blow-up of Z(Y ) and the centre is isomorphic to Y

embedded as a Lagrangian submanifold in Z(Y ):

Z ′(Y )
b // Z(Y )

D ∼= P(TY ) //
?�

OO

Y
?�

j

OO

where b : Z ′(Y )→ Z(Y ) is the blow-up of Z(Y ) along j(Y ).

1.2. Z ′ as a moduli space of ideals. We keep assuming that the cubic fourfold Y is smooth and

does not contain a plane. Let J be the moduli space of Gieseker stable sheaves on Y with reduced

Hilbert polynomial

(1.2.1)
3

2
n(n− 1).

Given a generalized twisted cubic C contained in the cubic surface S ⊆ Y , we have

(1.2.2) h0(IC/S(nH)) =
3

2
n(n− 1) and hi(IC/S(nH)) = 0,

for n > 1. Hence, the reduced Hilbert polynomial p(IC/S , n) has the form (1.2.1).

Lemma 1.1. The ideal sheaf IC/S on Y is Gieseker stable for all generalized twisted cubics C in

Y .

Proof. The sheaf IC/S is torsion supported on the reduced and irreducible cubic surface S. The

result follows since IC/S as a sheaf on S is torsion free of rank one. �

For later use, let us remember the following natural isomorphisms

Hom(IC/S , IC/S) ∼= H0(S,OS) ∼= C

Ext1(IC/S , IC/S) ∼= H0(S,OS(H))⊕2 ∼= C8

Ext2(IC/S , IC/S) ∼= H0(S,OS(2H)) ∼= C10,

(1.2.3)

where C is an aCM generalized twisted cubic contained in the cubic surface S ⊆ Y .

Let us now move towards the first description of Z ′(Y ) as a moduli space of ideals; Proposi-

tion 1.2 belows proves Part (1) of the Main Theorem.

From the discussion in Section 1.1, we know that Z ′(Y ) parametrizes pairs p = ([A], g), where

A is a stable 3×3 matrix with linear entries and g is an equation of the cubic surface Sp = Y ∩π(p).

As explained in the proof of Proposition 3.12 in [30], any choice of a two-dimensional subspace in

the space generated by the column vectors of A gives a 3 × 2-matrix whose minors provide three

quadrics generating the ideal Ip = (Q1, Q2, Q3) ⊆ OP3 . Consider I ′p = Ip + (g) ⊆ OP3 and take

the quotient by (g) such that we obtain I ′′p = I ′p/(g) ⊆ i∗OSp . Note that if we take any curve

C ∈ a−1(p) ⊆M3(Y ), we have

IC/Sp ∼= I
′′
p .
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By the discussion in Section 4 of [30], the previous assignment p 7→ I ′′p works in families over

Grass(3,P5), giving a morphism

f : Z ′(Y ) −→ J

which clearly factors through an irreducible component J1 of J.

Proposition 1.2. The morphism f : Z ′(Y )→ J1 is an isomorphism.

Proof. We denote by J′1 the image of f , with the induced reduced structure, and we think of f as

a morphism from Z ′(Y ) to J′1. Set k : J′1 ↪→ J1 to be the inclusion.

The fact that f is injective follows from the argument in the proof of Proposition 3.12 and

the discussion in Section 3.1 of [30]. Indeed, a point in J′1 corresponds to an ideal IC/S , where C

is a generalized twisted cubic contained in the cubic surface S. Thus, it determines uniquely the

cubic equation g cutting out S in P3. The ideal of the twisted cubic inside S can be given by three

quadrics which are the minors of a 3× 2-matrix. Depending on whether the twisted curve is aCM

or non-CM, the matrix can be completed uniquely (up to the action of the corresponding group)

to either a stable 3× 3-matrix whose determinant is g or to a stable skew-symmetric matrix.

We want to prove that f is actually a closed embedding. For this, it is enough to show that

it is injective on tangent spaces. On the open complement Z ′(Y ) \D of the divisor of curves with

embedded points this is a straightforward verification using long exact sequences of Ext-groups

that we skip. The situation is more delicate for points on the divisor D. A curve C corresponding

to a point on D is defined as subscheme of Y by the following data:

(i) The choice of a point y ∈ Y ;

(ii) The choice of a P3 passing through y and contained in the projective tangent space of Y at

y, the intersection of which with Y defines a cubic surface S;

(iii) A plane P in this P3 passing through y.

The tangent space of [C] ∈ M3(Y ) is ten-dimensional and spanned by the following first order

deformations:

(i) Four directions corresponding to infinitesimal translations of y in Y ;

(ii) Three directions corresponding to infinitesimal deformations of P3 inside the projective

tangent space of Y at y;

(iii) Two directions corresponding to the changes of the choice of the plane P ;

(iv) One direction that leads to the removal of the embedded point.

The two directions listed under (iii) are those contracted under the map M3(Y ) → Z ′(Y ). The

seven directions listed under (i) and (ii) effectively change the position of the 3-space P3 ∈
Grass(3,P5). The 7-dimensional subspace Θ ⊂ T[C]Z

′(Y ) spanned by these directions therefore

maps injectively into the tangent space T[IC/S ]J1. We need to focus on the deformation that

removes the embedded point, i.e. that is transverse to D ⊂ Z ′(Y ). In order to facilitate the cal-

culation we may choose coordinates x0, . . . , x5 in P5 in such a way that the embedded point is

y = [1 : 0 : 0 : 0 : 0 : 0], the tangent hyperplane to Y at y is {x5 = 0}, the three space spanned

by C is {x4 = x5 = 0} and the plane P that contains the plane cubic curve C0 ⊂ C equals

{x3 = x4 = x5 = 0}. Then the cubic polynomial f that defines Y may be written in the form

f =
∑3

i,j=1 gijxixj + x4q4 + x5q5 with quadratic forms q4 and q5 and a symmetric matrix (gij)
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of linear forms in x0, x1, x2, x3. The ideal IC/Y is generated by x4, x5, x1x3, x2x3, x
2
3. Besides the

tautological relations the last three generators have the following non-trivial syzygies:

( x1x3 x2x3 x23 ) ·
(

0 −x3 x2
x3 0 −x1
−x2 x1 0

)
= 0.

A deformation transverse to D is characterised by the property that the skew-symmetry of the

3 × 3-matrix A appearing in the equality above is destroyed (cf. the discussion in Section 3.3. of

[30].). The relevant deformation of A is in fact given by A A+ ε (gij). The generators of IC/Y
change to

(x4, x5, x1x3 + εg2, x2x3 − εg1, x
2
3).

Here gi =
∑3

j=1 gijxj . Note that in first order the linear forms x4 and x5 that define the 3-

space 〈C〉 do not change. The first order deformation under discussion is therefore exceptional

for the projection Z ′(Y ) → Grass(3,P5). For the same reason the corresponding deformation

of IC/S will be linearly independent of the image of the seven dimensional space Θ discussed

above, provided we can show that it is non-zero. The assertion is therefore reduced to the task of

showing that the extension 0 → IC/S → I ′ → IC/S → 0, where I ′ ⊂ OS [ε] is generated by the

quadrics x1x3 + εg2, x2x3 + εg1, x
2
3, is non-split. Any splitting s : IC/S → I ′ necessarily has the

form s(x1x3) = x1x3 + ε(g2 + γ1x3), s(x2x3) = x2x3 + ε(−g1 + γ2x3), s(x2
3) = x2

3 + εγ3x3 with

γi ∈ (x1, x2, x3). In order for s to be well-defined the relation 0 x3 −x2

−x3 0 x1

x2 −x1 0


 g2 + γ1x3

−g1 + γ2x3

γ3x3

 = 0 ∈ O3
S

must hold. Using the relation x1g1 + x2g2 + x3g3 = 0 and the fact that S is integral, one gets

g1 = γ2x3 − γ3x2, g2 = γ3x1 − γ1x3, g3 = γ1x2 − γ2x1.

If one writes γi =
∑3

j=1 γijxj with complex numbers γij and uses the relation ∂gi
∂xj

=
∂gj
∂xi

, one gets

γij = δijγ0 for some γ0, which immediately produces the contradiction g1 = g2 = g3 = 0.

This means that the differential of f is injective and f is a closed embedding. A general point

in J1 is of the form IC/S for an aCM curve C. In this case, by (1.2.3),

dim Ext1(IC/S , IC/S) = dimZ ′(Y ) = 8.

Therefore, the projective variety Z ′(Y ) is embedded as a closed subvariety into an irreducible

variety of the same dimension. So Z ′(Y ) is actually isomorphic to J1. �

Remark 1.3. One could proceed further and describe a second irreducible component J2 in J.

Instead of taking the ideal of a generalized twisted cubic C in a cubic surface S ⊆ Y , one can

consider pairs (p, S), where p ∈ S ⊆ Y and S is again a cubic surface. This yields a bundle G→ Y

and the fiber over p ∈ Y is the Grassmannian of 3-planes in P5 passing through p. Thus, the fiber

is isomorphic to Grass(3,P5) and G has dimension ten.

Arguing as in the previous case, we can map a pair (p, S) in G to the corresponding ideal

sheaf Ip/S(−H) in Y . This gives a morphism f ′ between G and a second irreducible component

J2 ⊆ J. It is not difficult to see that J1 and J2 intersect each other. This is indeed the image

under f of the divisor D ⊆ Z ′(Y ), where all non-CM curves in M3(Y ) are mapped by a. Indeed,
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if p ∈ D, then f(p) = IC/S is such that IC/S ∼= Ip/S(−H), where p is the singular point of the

surface S and Y is tangent at p to the P3 containing S.

Moreover, one can check that, away from the intersection between J1 and J2, the morphism

f ′ is an isomorphism.

2. Z ′ as a moduli space of Gieseker stable torsion free sheaves

In this section, we show that the irreducible component J1 described in Section 1.2 is isomor-

phic to an irreducible component of a moduli space of torsion free sheaves on the cubic fourfold.

All together, this proves Part (2a) of the Main Theorem.

As they will be used all along the paper, we first list some basic properties of semiorthogonal

decompositions. We focus on the derived categories of cubic fourfolds.

2.1. Semiorthogonal decompositions and cubic fourfolds. Take a smooth projective variety

X and let Db(X) be its bounded derived category of coherent sheaves. A semiorthogonal decom-

position of Db(X) is a sequence of full triangulated subcategories T1, . . . ,Tm ⊆ Db(X) such that

HomDb(X)(Ti,Tj) = 0 for i > j and, for all G ∈ Db(X), there exists a chain of morphisms in

Db(X)

0 = Gm → Gm−1 → . . .→ G1 → G0 = G

with cone(Gi → Gi−1) ∈ Ti for all i = 1, . . . ,m. We will denote such a decomposition by

Db(X) = 〈T1, . . . ,Tm〉.
An object F ∈ Db(X) is exceptional if HomDb(X)(F, F ) ∼= C and Homp

Db(X)
(F, F ) = 0 for all

p 6= 0. A collection {F1, . . . , Fm} of objects in Db(X) is called an exceptional collection if Fi is an

exceptional object for all i, and Homp
Db(X)

(Fi, Fj) = 0 for all p and all i > j.

Remark 2.1. An exceptional collection {F1, . . . , Fm} in Db(X) provides a semiorthogonal decom-

position

Db(X) = 〈T, F1, . . . , Fm〉,

where, by abuse of notation, we denoted by Fi the triangulated subcategory generated by Fi

(equivalent to the bounded derived category of finite dimensional vector spaces). Moreover

T := 〈F1, . . . , Fm〉⊥ =
{
G ∈ Db(X) : Homp(Fi, G) = 0, for all p and i

}
.

Similarly, one can define ⊥〈F1, . . . , Fm〉 = {G ∈ T : Homp(G,Fi) = 0, for all p and i}.

For an exceptional object F ∈ Db(X), we consider the two functors, respectively left and right

mutation, LF ,RF : Db(X)→ Db(X) defined by

LF (G) := cone (ev : RHom(F,G)⊗ F → G)

RF (G) := cone
(
ev∨ : G→ RHom(G,F )∨ ⊗ F

)
[−1],

where RHom(−,−) := ⊕p Homp
Db(X)

(−,−)[−p].

Let us now go back to the case of a cubic fourfold Y in P5. As observed in [26], we have a

semiorthogonal decomposition

(2.1.1) Db(Y ) = 〈TY ,OY ,OY (H),OY (2H)〉,
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where H is a hyperplane section of Y . The objects OY , OY (H) and OY (2H) are exceptional and,

by definition,

TY := 〈OY ,OY (H),OY (2H)〉⊥

=
{
G ∈ Db(Y ) : Homp

Db(Y )
(OY (iH), G) = 0, for all p and i = 0, 1, 2

}
.

Note that TY is a K3 category : its Serre functor is the shift by 2 and its cohomological properties

are the same as those of Db(X), for X a K3 surface. By tensoring by OY (−H) the semiorthogonal

decomposition (2.1.1), we have

(2.1.2) Db(Y ) = 〈T′Y ,OY (−H),OY ,OY (H)〉

and T′Y is naturally equivalent to TY .

2.2. The first mutation: general properties. Assume, from now on, that Y is a smooth cubic

fourfold not containing a plane. Take a generalized twisted cubic C in M3(Y ) and fix the class H

of an ample divisor on Y . Denote by S the (reduced and irreducible) cubic surface in Y containing

C. From (1.2.2) we get

H i(Y, IC/S(2H)) ∼=

0 i 6= 0

C3 i = 0.

The evaluation map

H0(Y, IC/S(2H))⊗OY
evC // IC/S(2H)

is surjective and we can then define the rank three torsion free sheaf

FC := ker(evC)

which sits in the short exact sequence

(2.2.1) 0 // FC // O⊕3
Y

evC // IC/S(2H) // 0.

From this, we deduce that the Chern character of FC is

ch(FC) =

(
3, 0,−H2, 0,

1

4
H4

)
,

which is precisely v2 of the Main Theorem, and its reduced Hilbert polynomial is

(2.2.2) p(FC , n) =
1

8
n4 +

3

4
n3 +

11

8
n2 +

3

4
n.

Remark 2.2. (i) By definition, FC is actually obtained by applying the functor

LOY (−⊗OY (H)) [−1]

to the sheaf IC/S(H).

(ii) The notation FC is partly misleading as FC does not depend on C itself but on the ideal

IC/S . Indeed, it was shown in [1] that if C1 and C2 are aCM generalized twisted cubics, then

b([C1]) = b([C2]) if and only if FC1
∼= FC2 . We will use this fact at the end of Section 5.3.

We have the following result.
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Lemma 2.3. We have hi(Y, FC) = 0, for all i. And if C is an aCM twisted cubic, then the sheaf

FC is in TY .

Proof. The fact that hi(Y, FC) = 0 for all i, is clear form Remark 2.2. On the other hand,

hi(Y, FC(−H)) = hi−1(S, IC/S(H)) = 0 by (1.2.2). If C is aCM, then it has a resolution in P3 of

the form (see, for example, [9, 15])

0→ OP3(−3H)⊕3 → OP3(−2H)⊕3 → IC/S → 0.

Hence, hi(Y, FC(−2H)) = hi−1(S, IC/S) = 0 for all i. �

Remark 2.4. If C is a non-CM generalized twisted cubic on Y , we have

Homi(FC ,OY (−H)) ∼= Hom4−i(OY (2H), FC) ∼=

C i = 1, 2

0 otherwise.

In particular, FC is not an object of TY , whenever C is a non-CM generalized twisted cubic.

Moreover, combining this with Lemma 2.3, we have that Hom(FC ,OY (−H)[1]) is non-trivial if

and only if C a non-CM generalized twisted cubic on Y .

2.3. The first mutation: stability. First of all, given any generalized twisted cubic C in a cubic

fourfold Y not containing a plane, we can prove the following.

Proposition 2.5. The sheaf FC is Gieseker stable for all generalized twisted cubics C in Y .

Proof. For sake of simplicity, let us just write F for FC . We need to show that the reduced Hilbert

polynomial of any non-trivial proper saturated subsheaf A ⊂ F satisfies p(A,n) < p(F, n). As F

has rank three, the subsheaf A has rank one or rank two.

Case rk(A) = 1. As A is torsion free, it has the form A = IW/Y (m) for some twist m ∈ Z and

a subscheme W ⊂ Y of codimension greater or equal than two. The leading terms of p(A,n) are
1
8n

4 + (m2 + 3
4)n3 + . . .. Since A is a subsheaf of O3

Y as well, one has m 6 0. But if m < 0, then

A is not destabilizing. Hence, only the case m = 0 and A = IW/Y requires further consideration.

Since h0(Y, F ) = 0, the subscheme W ⊂ Y is non-empty.

Let L denote the saturation of IW/Y in O3
Y . Then L is a reflexive sheaf of rank one and hence

invertible. This shows that L ∼= OY . We obtain a commutative diagram

0 // F // O⊕3
Y

// IC/S(2H) // 0

0 // IW/Y //

OO

OY //

OO

OW //

OO

0

of short exact sequences. By assumption, IW/Y is saturated in F so that the quotient F/IW/Y is

torsion free and the map OW → IC/S(2H) is injective. Since S is irreducible and reduced, this

forces W to contain S, so that

P (OW , n) > P (OS , n) =
1

2
(3n2 + 3n+ 2)

and

P (IW/Y , n) 6
1

8
n4 +

3

4
n3 +

3

8
n2 +

3

4
n < p(F, n)
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which completes the analysis in this case.

Case rk(A) = 2. Let R ⊂ O⊕3
Y be the saturation of A in O⊕3

Y . The quotients F/A and O⊕3
Y /R

are torsion free sheaves of rank one and therefore have the form F/A ∼= IW/Y (mH) and O⊕3
Y /R ∼=

IW ′/Y (m′H) for some integers m,m′ ∈ Z and subschemes W,W ′ ⊂ Y of codimension two. As F

and O⊕3
Y are isomorphic outside a codimension two locus, the same is true for A and R and for

IW/Y (mH) and IW ′/Y (m′H). In particular, m = m′. As IW ′/Y (mH) is globally generated, one

has m > 0, and if m > 0, the sheaf IW/Y (mH) is not a destabilizing quotient of F . This implies

that m = 0, and since IW ′/Y is globally generated, W ′ = ∅. We obtain a commutative diagram

0 0 0

0 // IW/Y //

OO

OY //

OO

OW //

OO

0

0 // F //

OO

O⊕3
Y

//

OO

IC/S(2H) //

OO

0

0 // A //

OO

O⊕2
Y

//

OO

Q′ //

OO

0

0

OO

0

OO

0

OO

with exact lines and columns. Since S is irreducible and reduced, the map O⊕3
Y → IC/S(2H)

factors through O⊕3
S . This induces a surjection OS → OW , namely W must be a subscheme of

S. If IW/Y is assumed to be a destabilizing quotient of F , we must have p(IW/Y , n) 6 p(F, n) or,

equivalently, P (OW , n) > p(OY , n) − p(F, n) =
(
n+2

2

)
. This shows that W is 2-dimensional and

hence equals S. In this case, the support of the kernel Q′ is 1-dimensional, which is impossible

since IC/S is pure of dimension two. Hence, we are done with the second case as well. �

Proof of Part (2a) of the Main Theorem. By Proposition 1.2, we already know that Z ′(Y ) is iso-

morphic to J1. Thus, we just need to show that there is an irreducible component M1 of the

moduli space M of stable sheaves with reduced Hilbert polynomial (2.2.2) isomorphic to J1.

By Remark 2.2, the construction of FC from IC/S(2H) is functorial and commutes with

base change in flat families of generalized twisted cubics. Thus, by Proposition 2.5, it defines a

morphisms f : J1 →M1, where M1 is indeed an irreducible component of M.

Let us first prove that f is bijective. Indeed, since the support of the quotient O⊕3
Y /FC

has codimension two in Y , the inclusion FC → O⊕3
Y is isomorphic to the natural embedding

FC → FC
∨∨. In particular, IC/S(2H) can be reconstructed from FC as the quotient FC

∨∨/FC .

Now we can prove that the differential df of f is injective. Using the identifications of

the tangent space of J1 in IC/S with Ext1(IC/S , IC/S) and of M at FC with Ext1(FC , FC), the

differential df is defined as follows. Given v ∈ Ext1(IC/S , IC/S), there exists w ∈ Ext1(FC , FC)
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making the following diagram of distinguished triangles commutative

FC //

w

��

O⊕3
Y

0
��

// IC/S(2H)

v

��

// FC [1]

w[1]

��
FC [1] // O⊕3

Y [1] // IC/S(2H)[1] // FC [2].

Indeed, the existence and uniqueness of w is due to the fact that homi(OY , FC) = hi(Y, FC) = 0

for all i. Hence, df sends v to w. The injectivity of df depends on the fact that w is uniquely

determined by v, as by Serre duality we have Ext1(IC/S(2H),OY ) ∼= Ext3(OY , IC/S(−H))∨ and

the latter space is actually trivial, being IC/S supported on the surface S.

So far we have that f induces an isomorphism of J1 onto its image. But if C is an aCM curve,

then by Lemma 2.3, the sheaf FC is in TY . Thus, we have

Homi(FC , FC) ∼= Homi+1(IC/S(2H), FC),

for i = 0, 1, 2. Moreover, by Serre duality, we get Hom(IC/S , IC/S) ∼= Ext1(IC/S(2H), FC) and the

long exact sequence

0→Ext1(IC/S , IC/S)→ Ext2(IC/S(2H), FC)→ Ext2(IC/S(2H),O⊕3
Y )→

→Ext2(IC/S , IC/S)→ Ext3(IC/S(2H), FC)→ 0.
(2.3.1)

On the one hand, we have the natural isomorphisms

Exti(IC/S(2H),OY ) ∼= H4−i(Y, IC/S(−H)) ∼=

C3 if i = 2

0 otherwise

and we have already computed (1.2.3). Using again that FC ∈ TY and (1.2.3), we have

Ext2(FC , FC) ∼= Hom(FC , FC) ∼= Hom(IC/S , IC/S) ∼= C.

Therefore, the long exact sequence (2.3.1) becomes:

0→ C8 → Ext2(IC/S(2H), FC)→ C9 → C10 → C→ 0.

In conclusion f induces an isomorphism Ext1(FC , FC) ∼= Ext2(IC/S(2H), FC) ∼= C8 and thus

df is an isomorphism as well. Hence, f induces an isomorphism between J1 and the irreducible

component M1. �

2.4. The second family. We now want to show that M contains at least another irreducible

component M2. The discussion here goes along the same lines as in Sections 2.2 and 2.3. Thus,

we will be a bit quicker explaining the arguments.

We pick a point p ∈ Y and a linear 3-dimensional subspace U ⊂ P5 that passes through p.

Then Ip/S(H) has exactly three linearly independent global sections, the evaluation map

H0(Y, Ip/S(H))⊗OY
evp // Ip/S(H)

is surjective and we get a rank three torsion free sheaf Ep := ker(evp). Again, Ep is obtained by

applying the functor LOY (−⊗OY (H)) [−1] to the sheaf Ip/S . The reduced Hilbert polynomial of

Ep is the same as in (2.2.2). Moreover we have the following.
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Proposition 2.6. The sheaf Ep is Gieseker stable for all p ∈ Y .

Proof. The argument is exactly the same as in Proposition 2.5 substituting IC/S(2H) by Ip/S(H).

Thus, we leave the easy check to the reader. �

Varying the point p ∈ Y and the 3-dimensional projective space containing it produces other

sheaves contained in another irreducible component M2 inside M. More precisely, the irreducible

component J2 described in Remark 1.3 injects into M2 of M. Here, the argument is very similar to

the one in the previous Section 2.3. Indeed, the procedure that associates Ep to Ip/S(H) described

above yields a morphism g : J2 → M2 which is bijective onto its image because, again, the ideal

Ip/S(H) can be reconstructed from Ep as the quotient Ep
∨∨/Ep.

3. aCM twisted cubics and aCM bundles

In this section we associate an aCM bundle to an aCM curve in a cubic fourfold Y not

containing a plane. For this, we need some general results in [29] which we recall in Section 3.1.

The Gieseker stability of this aCM bundle will be discussed in Section 3.3.

3.1. aCM bundles on cubics. Let us briefly summarize some general results from [29] which

have a sort of general flavour and apply to any smooth cubic hypersurface. To begin with, consider

the following.

Definition 3.1. A vector bundle F on a smooth projective variety X of dimension n is arithmeti-

cally Cohen-Macaulay (aCM) if dimH i(X,F (jH)) = 0 for all i = 1, . . . , n− 1 and all j ∈ Z.

The existence of families of (stable) aCM bundles is in general related to the so-called repre-

sentation type of a variety. It is in general not that easy to produce such families. An example of

a two dimensional family of (Gieseker) stable aCM vector bundles on a cubic fourfold containing

a plane was exhibited in [28, Theorem A]. To get such a result we used a simple criterion that we

recall here below.

Lemma 3.2 ([29, Lemma 1.9]). Let Y ⊂ Pn+1 be a smooth cubic n-fold and let F ∈ Coh(Y )∩TY .

Assume

H1(Y, F (H)) = 0

H1(Y, F ((1− n)H)) = . . . = Hn−1(Y, F ((1− n)H)) = 0.
(3.1.1)

Then F is an aCM bundle.

The idea is that, in presence of a cubic hypersurface, one can show that a sheaf is an aCM

vector bundle just by proving much less cohomology vanishings.

3.2. The second mutation: producing aCM bundles in TY . Let C be an aCM twisted cubic

in Y and let S = 〈C〉 ∩ Y the cubic surface containing C. Consider

MC := LOY
(
LOY

(
IC/S(2H)

)
⊗OY (H)

)
[−2].

We also set

(3.2.1) GC := ker
(
OS(H)⊕3 ev−→ IC/S(3H)

)
.
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Remark 3.3. It is not difficult to see that the functor LOY (−⊗OY (H)) [−1] is an autoequivalence

of TY .

Lemma 3.4. The object MC is a rank 6 aCM bundle in TY .

Proof. By Lemma 2.3 and Remark 2.2, FC = LOY
(
IC/S(2H)

)
[−1] is a sheaf in TY . Hence,

MC ∈ TY , for example by [28, Lemma 1.10]. To prove that MC is a sheaf we need to prove that

FC(H) is globally generated, so that MC = ker
(
evF : O⊕9

Y → FC(H)
)
.

Since the evaluation map ev : OY (H)⊕3 → IC/S(3H) factors through ev : OS(H)⊕3 →
IC/S(3H), there is a natural injection IS/Y (H)⊕3 ↪→ FC(H) whose cokernel is GC . Hence, to

prove that FC(H) is globally generated, it is enough to prove that GC is.

Note that we have

0→ OP3(−3H)⊕3 → OP3(−2H)⊕3 → IC/S → 0.

By tensoring this exact sequence by OS(3H), we obtain the exact sequence

O⊕3
S

// OS(H)⊕3 ev // IC/S(3H) // 0,

where GC = ker(ev). Hence, GC is globally generated and we have proved that MC is a sheaf.

To prove that MC is an aCM bundle we use Lemma 3.2. Since MC is the kernel of an

evaluation map and H1(Y,OY (H)) = 0, it follows that H1(Y,MC(H)) = 0. Moreover, since

H i(Y, FC(−2H)) = 0 for all i (see Lemma 2.3), we have that H i(Y,MC(−3H)) = 0 for i = 1, 2, 3.

So all the vanishings required in Lemma 3.2 hold true and we are done. �

Remark 3.5. If C is a non-CM twisted cubic in Y , then one can still consider the object MC

formally defined as above but in this case MC is not a coherent sheaf but an actual complex of

coherent sheaves.

3.3. Some properties of MC . To compute the Chern character of MC we need the following

preliminary result. It will be used to control the stability of MC as well.

Lemma 3.6. Let C be an aCM twisted cubic in Y and S = 〈C〉 ∩ Y . Then the sheaf MC sits in

the following non-split exact sequence

(3.3.1) 0→ OY (−H)⊕3 →MC → KC → 0,

where KC := ker
(
O⊕3
Y

ev−→ GC

)
sits in an exact sequence

(3.3.2) 0→ I⊕2
S/Y → KC → IC/Y → 0.
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Proof. By definition MC sits inside the commutative diagram

0

��

0

��
MC

��

// KC

��

// 0

0 // O⊕6
Y

��

// O⊕9
Y

ev

��

// O⊕3
Y

ev

��

// 0

0 // IS/Y (H)⊕3

��

// FC(H)

��

α // GC

��

// 0,

0 0 0

with exact rows and columns. Here α is the map completing the commutative diagram

0 // FC(H) // OY (H)⊕3 //

⊕β
��

IC/S(3H) // 0

0 // GC // OS(H)⊕3 // IC/S(3H) // 0

and β : OY (H)→ OS(H) is the restriction map. In particular, the kernel of α is IS/Y (H)⊕3. The

kernel of the evaluation map ev : O⊕6
Y → IS/Y (H)⊕3 is OY (−H)⊕3. Hence, we get the first part

of the statement.

To get (3.3.2), one argues as follows. If S is an integral cubic surface, by [13, Lemma 2.5]1,

then GC also sits in the following exact sequence on S

0 // IC/S // O⊕3
S

ev // GC // 0.

Thus, since the evaluation map ev : O⊕3
Y → GC factors through ev : O⊕3

S → GC , there is an

injection IS/Y (H)⊕3 ↪→ KC whose cokernel is IC/S , i.e., we have an exact sequence

(3.3.3) 0→ I⊕3
S/Y → KC → IC/S → 0.

1More precisely, it follows from Eisenbud’s equivalence between matrix factorizations and mCM-modules.
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Now, consider the commutative diagram

0

��

0

��

I⊕2
S/Y

��

I⊕2
S/Y

��
0 // I⊕3

S/Y

��

ev // KC

��

// IC/S // 0

0 // IS/Y

��

// U

��

// IC/S

��

// 0.

0 0 0

with exact rows and columns. The vertical map I⊕2
S/Y → I

⊕3
S/Y is any splitting inclusion. A simple

calculation shows that Ext1(IC/S , IS/Y ) ∼= C. Thus the second part of the statement follows once

we prove that U does not split as a direct sum of IC/S and IS/Y .

To this extent, it is enough to show that Hom(KC , IS/Y ) = 0. For this, consider the short

exact sequence

0→ OY (−2H)→ OY (−H)⊕2 → IS/Y → 0.

Applying Hom(KC ,−) to it we get

Hom(KC ,OY (−H))⊕2 → Hom(KC , IS/Y )→ Ext1(KC ,OY (−2H)).

Since Hom(IC/S ,OY (−H)) ∼= Hom(I⊕3
S/Y ,OY (−H)) = 0, we get Hom(KC ,OY (−H)) = 0. On the

other hand, by the definition of KC , we get Ext1(KC ,OY (−2H)) ∼= Ext2(GC ,OY (−2H)), and so

Ext2(GC ,OY (−2H)) ∼= H2(Y,GC(−H)) ∼= H1(S, IC/S(2H)) = 0 by (1.2.2). This concludes the

proof. �

By the Grothendieck–Riemann–Roch theorem, we can compute the following Chern charac-

ters:

ch(IS/Y ) =
(
1, 0,−H2, 3l,−7

4pt
)

ch(KC) =
(
3, 0,−2H2, 3l, 0

)
ch(OY (−H)⊕3) =

(
3,−3H, 3

2H
2,−3

2 l,
3
8pt
)
.

Hence, by applying Lemma 3.6, we deduce

(3.3.4) ch(MC) =
(
6,−3H,−1

2H
2, 3

2 l,
3
8pt
)
,

which is exactly v3 from Part (3) of the Main Theorem. The reduced Hilbert polynomial of MC is

(3.3.5) p(MC , n) :=
1

8
n4 +

1

2
n3 +

5

8
n2 +

1

4
n.

The following lemma will be used later on and provides a natural involution for the aCM

bundles MC .
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Lemma 3.7. Let C be an aCM twisted cubic in Y and set S = 〈C〉 ∩ Y . The sheaf M ′C :=

Hom(MC ,OY (−H)) is naturally isomorphic to MC′ for some aCM twisted cubic C ′ ⊂ S.

Proof. Applying the functor Hom(−,OY (−H)) to the exact sequence (3.3.1), we obtain

0→ OY (−H)⊕3 →M∨C ⊗OY (−H)→ O⊕3
Y → Ext1(KC ,OY (−H))→ 0.

By (3.3.3), we have

(3.3.6) 0→ Ext1(KC ,OY (−H))→ Ext1(I⊕3
S/Y ,OY (−H))→ Ext2(IC/S ,OY (−H))→ 0,

where we recall that, by the Koszul resolution of IS/Y or OS , Ext1(IS/Y ,OY ) ∼= Ext2(OS ,OY ) ∼=
OS(2H). Hence, we have Ext1(I⊕3

S/Y ,OY (−H)) ∼= OS(H)⊕3 and, since IC/S is a line bundle LS on

S,

Ext2(IC/S ,OY (−H)) ∼= L−1
S (H).

Recall that we have

0→ OP3(−3H)⊕3 → OP3(−2H)⊕3 → LS → 0.

Hence

0→ OP3(2H)⊕3 → OP3(3H)⊕3 → L−1
S (3H)→ 0.

Thus,

(3.3.7) LS
∨ ∼= IC′/S(2H)

for some other twisted cubic C ′ inside S. Summing up, from (3.3.6) we obtain

0→ Ext1(KC ,OY (−H))→ OS(H)⊕3 ev−→ IC′/S(3H)→ 0.

Thus, Ext1(KC ,OY (−H)) ∼= GC′ and as in Lemma 3.6, we obtain the desired presentation of

M ′C . �

Remark 3.8. Given C a twisted cubic in S, then, for example by [9, Proposition 6.2] or [15, The-

orem 4.2.22], we have that OS(C) ∼= IC/S∨ ∼= IC′/S corresponds to a determinantal representation

of S. Here C ′ is the aCM twisted cubic in Lemma 3.7. There are 72 determinantal representation

of S. Moreover, we can associate to OS(C) the morphism

S → |OS(C)|∨ =
∣∣IC′/S(2H)

∣∣∨
and the latter linear system is isomorphic to P2. This gives a presentation of S as the blow-up

of six general points, giving a “six” in the 27 lines of the cubic surface. Clearly, there are also 72

sixes. The twisted cubic C ′ corresponds to the double six of C (see Section 9 of [15]).

4. Z as a moduli space of stable aCM bundles

In this section we prove Part (3) of the Main Theorem. In particular, Y will always be a cubic

fourfold not containing a plane and C will be an aCM curve in M3(Y ). The key point consists in

showing that MC is Gieseker stable (Section 4.1). The theorem is finally proved in Section 4.2.
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4.1. Stability of MC . In order to study the stability of the vector bundle MC in Proposition 4.2

we first study the stability of the sheaf KC (see (3.3.1)).

Lemma 4.1. Let C be an aCM twisted cubic in Y and suppose that S = 〈C〉 ∩ Y is an integral

surface. The torsion-free sheaf KC defined in Lemma 4.1 is a Gieseker stable sheaf with reduced

Hilbert polynomial

(4.1.1) p(KC , n) :=
1

8
n4 +

3

4
n3 +

7

8
n2 +

1

4
n.

Proof. For sake of simplicity, let us just write K for KC . We need to show that the reduced Hilbert

polynomial of any non-trivial proper saturated subsheaf A ⊂ K satisfies p(A,n) < p(K,n). As K

has rank three, the subsheaf A has rank one or rank two.

Case rk(A) = 1. By letting GC(H) play the role of IC/S(2H), we can apply exactly the same

arguments as in the proof of case rk(A) = 1 of Proposition 2.5 in the present situation (see (3.2.1)

and Lemma 4.1). Hence, we get that the only possible destabilizing ideal sheaf is IW/Y where W

contains S and

P (IW/Y , n) 6
1

8
n4 +

3

4
n3 +

3

8
n2 +

3

4
n < p(K,n)

which completes the analysis in this case.

Case rk(A) = 2. Again, the same arguments as in the proof of case rk(A) = 2 of Proposition 2.5

show that we have a subscheme W ⊂ Y of codimension two such that and the following commu-

tative diagram

0 0 0

0 // IW/Y //

OO

OY //

OO

OW //

OO

0

0 // K //

OO

O⊕3
Y

//

OO

GC(H) //

OO

0

0 // A //

OO

O⊕2
Y

//

OO

Q′ //

OO

0

0

OO

0

OO

0

OO

with exact lines and columns. If IW/Y is assumed to be a destabilizing quotient of K, we must

have p(IW/Y , n) 6 p(K,n) or, equivalently, P (OW , n) > p(OY , n) − p(K,n) = n2 + 2n + 1. This

shows that ch2(W ) > ch2(GC(H)). In this case, the support of the kernel Q′ is 1-dimensional,

which is impossible since GC(H) is pure of dimension two. Hence, we are done with the second

case as well. �

Having this, we can finally go back to the vector bundles MC . In particular, we get the

following.

Proposition 4.2. Let C be an aCM twisted cubic in Y and suppose that S = 〈C〉∩Y is an integral

surface. Then the rank six aCM bundle MC is Gieseker stable with ch(MC) = v3.
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Proof. The Chern character of MC was computed in (3.3.4). We are left to prove stability. For

sake of simplicity, let us just write M for MC . Since M is a vector bundle, we need to show that the

reduced Hilbert polynomial of any non-trivial proper saturated reflexive subsheaf A ⊂M satisfies

p(A,n) < p(M,n). If it is not the case, we have

0 −→ A −→M −→ B −→ 0

with B a torsion-free sheaf and p(A,n) > p(M,n). Applying the functor Hom(−,OY (−H)) to the

exact sequence we get also

0 −→ Hom(B,OY (−H))
ψ−→MC′ −→ Hom(A,OY (−H)),

where Hom(B,OY (−H)) is reflexive and H4−k. chk(cokerψ) 6 H4−k. chk(Hom(A,OY (−H))) for

k = 2 and they are equal for k 6 1. Hence, if A is a reflexive destabilizing sheaf of MC of rank

four or five, then there is a subsheaf of MC′ with the same ch1 and possibly bigger ch2 which is a

destabilizing subsheaf respectively of rank two and one.

This shows that we just need to analyze the cases rk(A) = 1, 2, 3 and show that, in order to

exclude them, it is enough work with the Chern character truncated at degree smaller or equal to

two.

Case 1: rk(A) = 1. As A is a line bundle, it has the form A = OY (m) for some twist m ∈ Z.

The leading terms of p(A,n) are 1
8n

4 + (m2 + 3
4)n3 + . . .. Since A is a subsheaf of O⊕9

Y as well, one

has m 6 0. But if m < 0, then A is not destabilizing. Hence, only the case m = 0 and A = OY
requires further consideration. But in this case, since h0(Y,M) = 0, we get a contradiction.

When rk(A) > 2, we have the following commutative diagram

(4.1.2) 0 0 0

0 // B1
//

OO

B //

OO

B2
//

OO

0

0 // OY (−H)⊕3 //

OO

M //

OO

KC
//

OO

0

0 // A1
//

OO

A //

OO

A2
//

OO

0

0

OO

0

OO

0

OO

with exact lines and columns and where Ai and Bi are possibly zero. Since we have assumed that

B is torsion-free, then B1 is also torsion-free. Then, by the first vertical exact sequence, we have

that, A1 is reflexive.

Now we study the remaining cases. We use the following convention: the Case i.j, will refer to

the case where rk(A) = i and rk(A2) = j.
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Case 2.0: rk(A2) = 0. Since KC is torsion free, A2 = 0. Hence, A is a subsheaf of the semistable

sheaf OY (−H)⊕3 and p(A,n) 6 p(OY (−H), n) < p(M,n), so A does not destabilize M .

Case 2.1: rk(A1) = rk(A2) = 1. In that situation, in order to destabilize we need that c1(A1) +

c1(A2) > −1. Since KC is Gieseker stable by Lemma 4.1, the only possibility is that A1
∼= OY (−H)

and A2 = IW/Y for some subscheme W ⊂ Y of codimension greater or equal than two. Moreover

as h0(Y,KC) = 0, we have that W ⊂ Y is non-empty. By the presentation (3.3.3), and since

the cubic surface S is irreducible and reduced, this forces W to contain S, so that P (OW , n) >

P (OS , n) = 1
2(3n2 + 3n+ 2), and P (IW/Y , n) 6 1

8n
4 + 3

4n
3 + 3

8n
2 + 3

4n. Thus

P (A,n) 6
1

8
n4 +

1

2
n3 +

3

8
n2 +

3

4
n < p(M,n)

which completes the analysis in this case.

Case 2.2: rk(A2) = 2. In that case, A ∼= A2. In order to destabilize we need c1(A) > −1. If

c1(A) > 0, then c1(A) = 0 and A is necessarily the extension of two ideals of subschemes of

codimension at least two (by the stability of KC and (3.3.2)). Moreover, since A is reflexive, we

have

0→ OY → A→ IW/Y → 0

whereW has codimension greater or equal than two. Hence, h0(Y,A) > 0 contradicting h0(Y,M) =

0.

Now we need to consider the case c1(A) = −1. As before, since A is reflexive and semistable,

we have

0→ OY (−H)→ A→ IW/Y → 0

with W of codimension two to let the extension be non-trivial. Since Y does not contain a plane

(nor a quadric), ch2(OW ) ·H2 > ch2(OS) ·H2. Thus, P (OW , n) > P (OS , n) = 1
2(3n2 + 3n + 2),

and as before, P (IW/Y , n) 6 1
8n

4 + 3
4n

3 + 3
8n

2 + 3
4n. Then

P (A,n) 6
1

8
n4 +

1

2
n3 +

3

8
n2 +

3

4
n < p(M,n)

which completes the analysis in this case.

Case 3.0: rk(A2) = 0. Since KC is torsion free, A2 = 0. Hence, A is a subsheaf of the semistable

sheaf OY (−H)⊕3 and p(A,n) 6 p(OY (−H), n) < p(M,n), so A does not destabilize M .

Case 3.1: rk(A2) = 1. Since OY (−H)⊕3 is semistable, p(A1, n) 6 p(OY (−H), n). On the other

hand, also KC is semistable, so p(A2, n) 6 p(KC , n). Then

p(A,n) 6
2

3
p(OY (−H), n) +

1

3
p(KC , n) =

1

8
n4 +

5

12
n3 + . . . < p(M,n).

Therefore, A does not destabilize M .

Case 3.2: rk(A2) = 2. If A destabilizes M , in particular −1
3 6 µ(A). Since A and KC are

semistable, µ(A) 6 µ(A2) 6 µ(KC) = 0. As 2µ(A2) is an integer, µ(A2) = c1(A2) = 0. Since

A1 is a reflexive sheaf of rank one, A1 is a line bundle, more precisely, the only possibility is

A1
∼= OY (−H).
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Note that A2 in (4.1.2) is the extension of two ideals

0→ IW ′/Y → A2 → IW ′′/Y → 0,

with S ⊆ W ′,W ′′, and codimW ′, codimW ′′ at least two (by (3.3.3)). Then, by (3.3.2), B2 in

(4.1.2) has either torsion in codimension at least two or it is isomorphic to IC/Y . Note that

Ext1(IC/Y ,OY (−H)) ∼= H3(Y, IC/Y (−2H)) = 0.

Hence, since OY (−H) is not a direct summand of M , the only possibility is that B2 has torsion

in codimension k > 2. But then, Extk−1(A,OY ) ∼= Extk(B,OY ) ∼= Extk(B2,OY ) is supported in

codimension k. So we get a contradiction with A being reflexive.

Case 3.3: rk(A2) = 3. In that case A ∼= A2 is semistable and reflexive. If c1(A2) = 0, then either

A2 = KC , which is impossible since (3.3.1) does not split, or B2 has torsion in codimension at least

two contradicting A being reflexive as in the previous case.

Hence, we can suppose c1(A) = −1. Suppose that B2 is a pure sheaf supported on H. Hence,

B2 = IW/H(aH) for some a ∈ Z and W ⊂ H of dimension at most one. Then Ext1(B2,OY ) ∼=
OH(−(a + 1)H). A simple computation using (3.3.2) shows that Ext1(KC ,OY ) has rank two on

S. Thus, the natural exact sequence

OH(−(a+ 1)H) ∼= Ext1(B2,OY )→ Ext1(KC ,OY )→ Ext1(A2,OY ),

implies that S is contained in the support of Ext1(A2,OY ), contradicting the reflexiveness of

A2. �

Let N be the moduli space of Gieseker semistable sheaves over Y with reduced Hilbert poly-

nomial (3.3.5) and denote by NaCM ⊆ N the open subset of Gieseker stable aCM bundles. The

result above immediately implies the following.

Corollary 4.3. The open subset NaCM is non-empty.

In particular, we get a new family of Gieseker stable aCM bundles on any cubic fourfold not

containing a plane. As a consequence of the discussion in the next section, such a family (or rather

its smooth locus) has dimension eight.

4.2. Proof of Part (3) of the Main Theorem. Consider the open subset U in M1 that cor-

responds to Z ′(Y ) \D. In other words, a point in U is a sheaf FC , where C is an aCM curve in

Y . By applying the functor Υ = LOY (−⊗OY (H)) [−1] to FC and by Proposition 4.2, we get a

morphism U → NaCM. Note that this is the same as applying LOY (LOY (−)⊗OY (H)) [−2] to

IC/S(2H).

To show that this provides an isomorphism between U and an open subset of a component of

the closure of NaCM in N, we just observe that Υ is an autoequivalence of TY (see Remark 3.3)

and thus, given two aCM generalized twisted cubics C1 and C2 on Y , we have FC1
∼= FC2 if and

only if MC1
∼= MC2 . For the same reason, Υ induces an isomorphism between Ext1(FC , FC) and

Ext1(MC ,MC) for any aCM generalized twisted cubic C on Y . This concludes the proof of the

theorem.
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5. Z is generically a moduli space of tilt-stable objects

In this section we prove Part (2b) of the Main Theorem. The proof is based on a wall-crossing

argument with respect to tilt-stability. This is preceded by an introductory discussion concerning

general facts about tilt-stability.

5.1. Tilt-stability. Let Y be a smooth cubic fourfold and let α, β ∈ R, with α > 0, be two

parameters. We will sometimes refer to the half-plane{
(α, β) ∈ R2 : α > 0

}
as the (α, β)-plane.

For a coherent sheaf E on Y , the vector

chβ(E) = e−βH ch(E) ∈ H∗(Y,R)

is called twisted Chern character of E. Unraveling the definition, it is easy to compute the degree

zero, one and two parts of chβ(E), which will be extensively used later:

chβ0 = ch0 = rk(E) chβ1 = ch1−βH ch0 chβ2 = ch2−βH ch1 +
β2H2

2
ch0 .

For a coherent sheaf E on Y , we set

µβ(E) =

+∞, if chβ0 (E) = 0,

H3 chβ1 (E)

H4 chβ0 (E)
, otherwise.

This slope function is a minor variation of the usual slope function. The induced notion of stability

is exactly the same as slope-stability for torsion-free sheaves. Torsion sheaves instead are all

semistable.

Following [12], there exists a torsion pair (Tβ,Fβ) in Coh(Y ) where Tβ and Fβ are the

extension-closed subcategories of Coh(Y ) generated by µβ-stable sheaves of positive and non-

positive slope, respectively. Let Cohβ(Y ) ⊆ Db(Y ) denote the extension-closure

Cohβ(Y ) := 〈Tβ,Fβ[1]〉.

It turns out that Cohβ(Y ) is an abelian category which is the heart of a bounded t-structure

on Db(Y ). With respect to the t-structure given by the abelian category of coherent sheaves, an

object E in Cohβ(Y ) has at most two non-zero cohomology sheaves, namely H−1(E) ∈ Fβ and

H0(E) ∈ Tβ.

Following [8], for an object E in Cohβ(Y ), we define

να,β(E) =

+∞, if H3 chβ1 (E) = 0,

H2 chβ2 (E)−α
2

2
H4 chβ0 (E)

H3 chβ1 (E)
, otherwise.

An object E ∈ Cohβ(Y ) is tilt-(semi)stable (or να,β-(semi)stable) if, for all non-trivial subobjects

F of E,

να,β(F ) < (≤)να,β(E/F ).
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Tilt-stability is a good very2 weak stability condition satisfying a Bogomolov–Gieseker inequality,

in the sense of [7, Appendix B] and [37, Definition 2.13]. In particular, it satisfies the weak

see-saw property, Harder–Narasimhan filtrations exist [7, Proposition B.2], and the dependence

on the two parameters α and β is continuous with a locally-finite wall and chamber structure

[7, Propositions B.2 & B.5]. Note that the results in [7] are only stated for threefolds, but the

argument is identical in the fourfold case, actually in any dimension.

The next two results are also only stated for threefolds (or surfaces), but the proofs remain

valid in any dimension.

Theorem 5.1 ([8, Theorem 7.3.1] and [7, Theorem 3.5]). Let E ∈ Cohβ(Y ) be a να,β-semistable

object. Then

∆(E) := (H3 ch1(E))2 − 2(H4 ch0(E))(H2 ch2(E)) > 0.

In addition, if H−1(E) 6= 0, then ∆(E) = 0 if and only if E ∼= OY (dH)⊕r[1] for some d ∈ Z and

r ∈ Z>0.

Proof. We only prove the second statement. If E is να,β-semistable with H−1(E) 6= 0 and ∆(E) =

0, then by [7, Corollary 3.11, (c)] and the proof of [7, Proposition 3.12] (which, in turn, uses [41,

Theorem 2]), H0(E) must be zero, and E ∼= H−1(E)[1], where H−1(E) is a slope-semistable vector

bundle with ∆(H−1(E)) = 0. Thus, [31] applies (see also [24, Theorem 4.7]), and H−1(E) is a

projectively flat vector bundle. Since Y is simply-connected, again by [41, Theorem 2], H−1(E)

must be a direct sum of line bundles, as in the statement. The fact that line bundles are stable is

nothing but [8, Proposition 7.4.1]; this shows the converse implication. �

For an object E in Db(Y ), we denote by ch62(E) the truncation at degree two of the Chern

character ch(E).

Theorem 5.2 ([12, Proposition 14.2]). Let E ∈ Db(Y ) be such that the vector ch62(E) is primitive,

ch0(E) > 0, and H3 chβ1 (E) > 0. Then E is να,β-stable for α � 0 if and only if E is Gieseker

stable.

Combining Theorem 5.2 with Part (2a) of the Main Theorem, we get the following.

Corollary 5.3. Let Y be a smooth cubic fourfold not containing a plane. Then any FC in Z ′(Y )

is να,β-stable for α� 0 and β < 0.

We will actually need a stronger and more precise version of the previous result. When Y

is a very general cubic fourfolds, we need to show that α � 0 can be chosen uniformly for all

generalized twisted cubics C (see Corollary 5.6 below).

5.2. The first wall. In this section we compute exactly the first wall in Corollary 5.3 above.

Namely, we fix the primitive vector v′2 =
(
3, 0,−H2

)
. We know that for α � 0 and β < 0, tilt-

stable objects correspond to Gieseker stable sheaves E with ch62(E) = v′2. We want to determine,

in the region α > 0 and β < 0, the first locus where tilt-stability changes. We will use extensively

results from [40]. As before, these results were proved in the threefold case only; the results still

hold with identical proofs in our fourfold case (and again, in any dimension as well).

2In more recent papers, like [6], a very weak stability condition is called a weak stability condition.
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From now on, we assume that Y is very general 3, namely that the algebraic part H4(Y,Z)∩
H2,2(Y ) of the cohomology group H4(Y,Z) is generated by the class of a smooth cubic surface H2.

We start by recalling the definition of a wall. We consider the rank three lattice

Γ := Z
〈

ch62(E) : E ∈ Db(Y )
〉
⊂ Z

〈
(1, 0, 0), (0, H, 0), (0, 0, 1

2H
2)
〉

generated by the truncated Chern characters of objects in Db(Y ).

Definition 5.4. Let w ∈ Γ. A numerical wall for w in the (α, β)-plane is a proper non-trivial

solution set of an equation

να,β(w) = να,β(u),

for a vector u ∈ Γ. Given an object E ∈ Cohβ(Y ), a numerical wall for w = ch62(E) is called

an actual wall for E, if for each point (α, β) of the numerical wall there is an exact sequence of

semistable objects

0→ F → E → G→ 0

in Cohβ(Y ), where να,β(F ) = να,β(G) numerically defines the wall.

Since να,β only depends on Γ, the previous definition makes sense.

In the (α, β)-plane, numerical walls for a vector w = (r, cH, sH2) are very easy to describe

(see, for example, [33] and [40, Theorem 3.3]). That is, there is a unique straight wall corresponding

to β = c
r . Moreover, all other walls are strictly nested semicircles, whose centers converge to the

two points β = β1, β2 for which chβ2 (w) = 0. Thus, it makes sense to speak about the region inside

or outside a numerical wall (see Figure 1).

In our case, w = v′2. The unique straight wall is at β = 0. We are interested in the region

β < 0, so that the objects FC are in Cohβ(Y ) and we can apply Corollary 5.3. In this region, the

point of accumulation for the center of all walls is β = −
√

6
3 . By Corollary 5.3, we know there is a

largest semicircular wall for any sheaf FC ; the next lemma provides a uniform bound for this wall,

which will be an actual wall for sheaves FC corresponding to non-CM curves.

Lemma 5.5. Let v′2 = (3, 0,−H) ∈ Γ. The largest numerical wall W0 for v′2 in the region β < 0

is given by the equation

να,β(OY (−H)) = να,β(v′2).

Proof. By using Theorem 5.1, the following inequalities have to be satisfied for a wall W to exist

(see [40, Section 5.3]). Let (α, β) ∈W and let 0→ F → E → G→ 0 be an exact sequence defining

a wall with ch62(E) = v′2. Then

να,β(F ) = να,β(E) = να,β(G)

0 < H3 chβ1 (F ), H3 chβ1 (G) < H3 chβ1 (E)

0 6 ∆(F ), ∆(G) < ∆(E).

Moreover, we need to impose ch62(F ), ch62(G) ∈ Γ.

3While the walls in the (α, β)-plane make sense for any cubic fourfold, we assume that Y is very general since it

may happen that the wall we find is not the first wall for special cubic fourfolds. To still recover it as the first wall,

we would probably need to consider a generalized tilt-stability function in which H2 chβ2 is deformed to γ chβ2 , where

γ is allowed to vary in H4(Y,Z) ∩H2,2(Y ).
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All of these put enough inequalities to implement a computer program to compute the possible

classes of F and G in C. For example, the code for a concrete implementation in SAGE [39] can

be found at Benjamin Schmidt’s webpage:

https://sites.google.com/site/benjaminschmidtmath/research

By doing the computation at β = −1, this shows that there is no numerical wall intersecting

the line β = −1, that is, no classes satisfy the inequalities. The wall W0 is given by the equation

α2 +

(
β +

5

6

)2

=
1

36
.

It passes through the point (0,−1). Since walls are strictly nested, this is the largest wall (see

Figure 1). �

Hence, for a very general cubic fourfold, we have the following precise version of Corollary 5.3.

Corollary 5.6. Let v′2 = (3, 0,−H2) and let (α, β) be outside the numerical wall W0 and such

that β < 0. Then for an object E ∈ Db(Y ) with ch62(E) = v′2, the following are equivalent:

(a) E is να,β-semistable;

(b) E is να,β-stable;

(c) E is a torsion-free Gieseker-stable sheaf.

A similar argument as in Lemma 5.5 shows which classes in Γ give the numerical wall W0.

Lemma 5.7. Let u ∈ Γ be such that να,β(u) = να,β(v′2) for all (α, β) ∈W0. Then u is one of the

following classes:

(−1, H,−H2/2), (−2, 2H,−H2), (−3, 3H,−3H2/2), (−4, 4H,−2H2),

(−5, 5H,−5H2/2), (−6, 6H,−3H2), (4,−H,−H2/2), (5,−2H, 0),

(6,−3H,H2/2), (7,−4H,H2), (8,−5H, 3H2/2), (9,−6H, 2H2).

Proof. This is a straightforward computation, which again can be implemented in a computer

program. We only need to check which classes in Γ satisfy the inequalities in Lemma 5.5 for

(α, β) = (1
6 ,−

5
6). Here we use again the SAGE code at Benjamin Schmidt’s webpage. �

This gives us how the sheaves FC destabilize at the wall W0, determining for which sheaves

FC , W0 is an actual wall.

Proposition 5.8. Let (α, β) ∈W0.

(a) Let C be an aCM twisted cubic curve in Y . Then FC is να,β-stable.

(b) Let C be a non-CM cubic curve in Y . Then FC is να,β-semistable and a Jordan–Hölder

filtration in Cohβ(Y ) is given by

(5.2.1) 0→ NC → FC → OY (−H)[1]→ 0.

Proof. By Corollary 5.6, all FC are semistable at the numerical wall W0. Assume that FC is not

stable. Then, by Lemma 5.7, there is a stable quotient FC � Q with ch62(Q) = a ·(−1, H,−H2/2)

for a = 1, . . . , 6. But, by Theorem 5.1, since ch0(Q) < 0 (and so H−1(Q) 6= 0) and ∆(Q) = 0, we

have Q = OY (−H)[1] (and so a = 1).



GENERALIZED TWISTED CUBICS ON A CUBIC FOURFOLD 27

We can now use the computation in Remark 2.4. If C is aCM, then Hom(FC ,OY (−H)[1]) = 0,

and so FC is stable. If C is non-CM, then Hom(FC ,OY (−H)[1]) ∼= C. Hence, the kernel NC :=

ker(FC � OY (−H)[1]) satisfies Hom(NC ,OY (−H)[1]) = 0; therefore, by the same argument, NC

is να,β-stable and (5.2.1) gives a Jordan–Hölder filtration for FC . �

Finally, by choosing (α, β) inside the wall W0 and sufficiently close to the wall itself (actually,

again by a straightforward computation, it is enough to pick β = −5/6 and arbitrary 0 < α < 1/6;

we do not need this), we have the following stable objects.

Let us denote by F ′C = pr(FC) ∈ TY , where pr : Db(Y ) → TY is the projection functor (left

adjoint to the inclusion). Note that F ′C = ROY (−H)(FC); in particular, if C is an aCM twisted

cubic curve, then F ′C = FC .

Proposition 5.9. Let β = −5/6 and α = 1/6− ε for ε > 0 sufficiently small.

(a) Let C be an aCM twisted cubic curve in Y . Then F ′C = FC is να,β-stable.

(b) Let C be a non-CM cubic curve in Y . Then F ′C is να,β-stable and fits into a non-split exact

sequence in Cohβ(Y )

0→ OY (−H)[1]→ F ′C → NC → 0.

Proof. The first part follows immediately by openness of tilt-stability [7, Proposition B.5]. For the

second, the fact that F ′C fits into a non-split short exact sequence as in the statement is a direct

computation by using Remark 2.4. To prove it is να,β-stable, we first observe that F ′C is semistable

at the wall W0. Then, as in the proof of Proposition 5.8, if F ′C is not stable inside the circle, it

must have OY (−H)[1] as quotient, which is impossible. �

Stability in A described in Corollary 5.6.

Stability in B described in Proposition 5.8.

Stability in C described in Proposition 5.9.

α

β < 0

β

W0

β = 0

C B A

β = −1

β = −5/6

Figure 1. First numerical wall W0 for v′2

5.3. The blow-up as a wall crossing. Let Y be a very general cubic fourfold. Consider the

Chern character v2 = (3, 0,−H2, 0, 1
4H

4). We can now complete the proof of Part (2b) of the Main

Theorem.

We denote by Mα,β(v2) the moduli space of να,β-semistable objects in Cohβ(Y ) with Chern

character equal to v2. Since v′2 = (3, 0,−H2) is a primitive vector, if (α, β) is not on a wall for
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v′2, all objects are να,β-stable, and so simple. The moduli space of simple objects in Db(Y ) is

an algebraic space locally of finite type over C, by [23]. By the main result in [37] (extended to

tilt-stability for fourfolds with an analogous proof following [37, Sections 4.5 & 4.7]), if (α, β) is

not on a wall for v′2, then Mα,β(v2) is an open subset of the moduli space of simple objects in

Db(Y ) and it is of finite type, separated, and proper over C.

By Part (2a) of the Main Theorem and Corollary 5.6, for (α, β) in the region outside the

semi-circle W0 and such that β < 0, we have that Z ′(Y ) is isomorphic to an irreducible component

of Mα,β(v2), thus proving the first part of Part (2b).

Let F be a quasi-universal family on Y ×Z ′(Y ), both as Gieseker-stable sheaves and as να,β-

stable objects, for (α, β) in the region outside the wall W0 (see, for example, [35, Appendix 2]

for the definition and existence of a quasi-universal family). By [25, Theorem 6.4], we have a

semiorthogonal decomposition

(5.3.1) Db(Y ×Z ′(Y )) = 〈TY×Z′(Y ),OY �Db(Z ′(Y )),OY (H)�Db(Z ′(Y )),OY (2H)�Db(Z ′(Y ))〉.

Consider the relative projection F ′ of F on TY×Z′(Y ). By Proposition 5.9, F ′ gives a quasi-universal

family of να,β-stable objects for β = −5/6 and α = 1/6−ε. Let Z denote the irreducible component

of the moduli space M1/6−ε,−5/6(v2) containing the sheaves FC for an aCM twisted cubic C. The

family F ′ induces a morphism a′ : Z ′(Y ) → Z, which is birational on the locus corresponding to

such sheaves FC . Moreover, this also shows that the objects F ′C of Proposition 5.9 also lie in the

same irreducible component. But

dim Hom(F ′C , F
′
C [i]) =


1, if i = 0, 2

8, if i = 1

0, otherwise.

Hence, Z is smooth and therefore a connected component of M1/6−ε,−5/6(v2).

To finish the proof of Part (2b) of the Main Theorem, we only need to show that the map

a′ : Z ′(Y ) → Z is the contraction b : Z ′(Y ) → Z(Y ) described in [30, Section 4.5]. By [32, Theo-

rem 2] (the same argument has been used in [29, Theorem 3.10]), we only have to show that a′

contracts the same locus as the morphism b. Namely, by Proposition 5.8 and Proposition 5.9, this

amounts to showing that for two non-CM curves C1 and C2, we have F ′C1
∼= F ′C2

if and only if C1

and C2 are in the same fiber of b. But [1, Lemma 1 & Proposition 2] exactly say what we want4.

6. Z is generically a moduli space of Bridgeland-stable objects

In this section we prove Part (2c) of the Main Theorem. The proof is based on the results in

the previous section and on the construction in [6]. In fact, we will prove that the objects F ′C are

also Bridgeland-stable for a very general cubic fourfold.

6.1. Bridgeland stability. In this section we give a brief recall on Bridgeland stability on the

Kuznetsov component of a very general cubic fourfold. We start by recalling a few results from [2,

Section 2] (see also [6, Proposition and Definition 9.6]) on the Mukai structure for the Kuznetsov

component.

4To be precise, in [1], the authors consider the Kuznetsov component T′
Y in (2.1.2), which is equivalent to TY .
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Let the numerical K-group be the quotient of the Grothendieck group K(TY ) by the kernel

of the Euler characteristic pairing, χ(E,F ) =
∑

i(−1)i dim Exti(E,F ). For a very general cubic

fourfold we denote the numerical K-group of TY by Λ. We denote surjection v : K(TY ) � Λ is

called the Mukai vector. Then Λ has rank two and is generated by the classes

λ1 := v([prOL(H)]) and λ2 := v([prOL(2H)]),

where L ⊂ Y denotes a line and pr : Db(Y ) → TY is the projection functor. The bilinear

symmetric even form (−,−) = −χ(−,−) is called the Mukai pairing. In view of [2, Section 2.4],

the intersection matrix of the Mukai pairing with respect to the generators λ1 and λ2 is:(
2 −1

−1 2

)
.

Definition 6.1. Let Y be a very general cubic fourfold. A Bridgeland stability condition on TY

with respect to the lattice Λ is a pair σ = (Z,P) consisting of group homomorphism Z : Λ→ C of

maximal rank and full additive subcategories P(φ) ⊂ TY for each φ ∈ R, satisfying:

(a) if 0 6= E ∈ P(φ), then Z(E) ∈ R>0 exp(iπφ);5

(b) for all φ ∈ R, P(φ+ 1) = P(φ)[1];

(c) if φ1 > φ2 and Ej ∈ P(φj), then HomTY (E1, E2) = 0;

(d) (HN-filtrations) for every nonzero E ∈ TY there exists a finite sequence of morphisms

0 = E0
s1−→ E1 → . . .

sm−−→ Em = E

such that the cone of si is in P(φi) for some sequence φ1 > φ2 > · · · > φm of real numbers.

The nonzero objects of P(φ) are said to be σ-semistable of phase φ, and the simple objects

of P(φ) are said to be σ-stable. Note that, since Λ has rank two and Z has maximal rank, any

stability condition on TY with respect to the lattice Λ satisfies automatically the support property

(see, for example, [6, Remark 2.6]). In particular, Jordan-Hölder filtrations exist as well.

We denote by Stab(TY ) the space of stability conditions on TY with respect to the lattice

Λ; we know that Stab(TY ) 6= ∅ thanks to [6, Theorem 1.2] and it has the structure of complex

manifold of dimension two, by [11, Corollary 1.3]. We denote by σ = (Z,P) the Bridgeland

stability condition constructed in [6, Section 9]. For the purposes of this paper, we do not need an

explicit description of σ. The only key feature is the ordering of the phases with respect to σ of

two special objects related to lines in Y which is summarized in (6.3.1).

The moduli space Mspl(TY ) of simple objects in TY is an algebraic space locally of finite type

over C. Indeed, as remarked in Section 5.3, the corresponding statement is true for simple objects

in Db(Y ) by [23]. Moreover, belonging to the Kuznetsov component TY is an open condition for

an object in Db(Y ), by semicontinuity.

Let us fix a primitive non-zero Mukai vector v0 ∈ Λ. Let σ = (Z,P) ∈ Stab(TY ) and let

φ0 ∈ R be such that Z(v0) ∈ R>0 exp(iπφ0). We denote by Mσ(v0, φ0) ⊂ Mspl(TY ) the subset

parameterizing σ-stable objects in TY with Mukai vector v0 and phase φ0. Since v0 is primitive

and the rank of Λ is two, all σ-semistable objects are σ-stable. It is expected that Mσ(v0, φ0) is

5 By abuse of notation, we write Z(E) instead of Z(v([E])) and v(E) instead of v([E]) for any E ∈ TY .
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an algebraic space of finite type, separated, and proper over C. While this is not available yet, it

is not needed for our purposes, since the following result holds:

Proposition 6.2 ([6, Proposition A.7]). Under the above assumptions, assume that there exists

a smooth integral projective variety M ⊂ Mσ(v0, φ0) of dimension v2
0 + 2 such that the inclusion

M ↪→Mspl(TY ) is an algebraic morphism. Then M = Mσ(v0, φ0) as algebraic spaces6.

Note that there exists a quasi-universal family on M which is actually contained in the

semiorthogonal component TY×M , where we use the notation as in (5.3.1). We will apply Propo-

sition 6.2 when M is the IHS eightfold Z(Y ), and so we will still use the existence of Z(Y ) and its

projectivity (namely, the main result in [30]). Having good properties for Mσ(v0, φ0), as we have

in the case of K3 surfaces by [4], would imply the existence of Z(Y ) without assuming [30].

6.2. Stability of special objects. Let Y be a very general cubic fourfold. Let F ′C ∈ TY be

the objects defined in Proposition 5.9. To prove Bridgeland stability of F ′C we use a very similar

argument as in [6, Section A.1]. As in [6], the key ingredient is the following observation (see [35]

and [3, Lemma 2.5]).

Lemma 6.3 (Mukai). Let A→ E → B be an exact triangle in TY . Assume that Hom(A,B) = 0.

Then

dim Ext1(A,A) + dim Ext1(B,B) 6 dim Ext1(E,E).

The above lemma is used in the proof of the following results. In Proposition 6.4 though, we

directly refer to [6, Appendix A].

Proposition 6.4. Let Y be a very general cubic fourfold. Then there exists no nonzero object

E ∈ TY with Ext1(E,E) = 0 or Ext1(E,E) ∼= C2.

Proof. The fact that there exist no objects with Ext1(E,E) = 0 is [6, Lemma A.2]. For objects

with Ext1(E,E) ∼= C2, we can use [6, Lemma A.3]: if such an object E exists, then v(E)2 = 0,

which is impossible in the lattice Λ, unless v(E) = 0. �

As a consequence of Proposition 6.4, we obtain stability of all objects with Ext1 ∼= C4.

Proposition 6.5. Let Y be a very general cubic fourfold and let E ∈ TY be an object with

Ext1(E,E) ∼= C4. Then, for all σ ∈ Stab(TY ), E is σ-stable. In particular, v(E)2 = 2.

Proof. Let E ∈ TY be an object as in the statement and let σ ∈ Stab(TY ). By Lemma 6.3 and

Proposition 6.4, we can assume that E is σ-semistable and that it has a unique σ-stable factor E0.

If E 6= E0, then d := dim Hom(E,E) > 2. Therefore, v(E)2 = 4 − 2d 6 0, which is impossible in

the lattice Λ. �

Finally, we can study stability of the objects F ′C :

Proposition 6.6. Let Y be a very general cubic fourfold and let E ∈ TY be an object with

Ext<0(E,E) = 0, Hom(E,E) ∼= C, and Ext1(E,E) ∼= C8. If E is not σ-stable for some σ ∈
Stab(TY ), then its HN-filtration is of the form

A→ E → B,

6To be precise, the functor associated to Mσ(v0, φ0) is coarsely represented by M .
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where A and B are σ-stable with v(A)2 = v(B)2 = 2 and (v(A),v(B)) = 1.

Proof. Assume that E is not σ-stable. Since Hom(E,E) ∼= C, E cannot have a unique σ-stable

factor. Hence, we have a non-trivial exact triangle A → E → B with Hom(A,B) = 0, B ∈ P(φ),

and such that the HN-factors of A have phases > φ. By Lemma 6.3 and Proposition 6.4, we must

have

Ext1(A,A) ∼= Ext1(B,B) ∼= C4.

By Proposition 6.5, this implies that both A and B are σ-stable, and so it is exactly the HN-

filtration of E. Moreover, v(A)2 = v(B)2 = 2. Since by assumption v(E)2 = 6, this gives

(v(A),v(B)) = 1. �

6.3. Proof of Part (2c) of the Main Theorem. Let Y be a very general cubic fourfold, and

let σ = (Z,P) be any of the Bridgeland stability conditions on TY constructed in [6, Section 9].

Part (2c) of the Main Theorem follows immediately from the following result.

Proposition 6.7. For any generalized twisted cubic curve C, the object F ′C is σ-stable.

Indeed, by Proposition 6.7 and by Part (2b) of the Main Theorem, the IHS eightfold Z(Y ) is

contained in the moduli space Mσ(v0, φ0), where v0 = v(F ′C) and φ0 is chosen accordingly, and

the inclusion Z(Y ) ↪→Mspl(TY ) is an algebraic morphism. The theorem then follows directly from

Proposition 6.2.

To prove Proposition 6.7 we will use Proposition 6.6. To this end, the first thing is to compute

the numerical class v0.

Lemma 6.8. We have v0 = v(F ′C) = 2λ1 + λ2 ∈ Λ.

Proof. This is a straightforward computation, by using the definitions. �

By Proposition 6.6 and Lemma 6.8, if we assume that F ′C is not σ-stable, then we must have

v(A),v(B) ∈ {λ1,λ1 + λ2}. Stable objects with class λ1 can be easily determined, by using

Proposition 6.5. Indeed, we recall the following construction of Kuznetsov–Markushevich from

[27], and used in [6, Appendix A]. Given a line L ⊂ Y , we define a torsion-free sheaf FL as the

kernel of the (surjective) evaluation map

FL := ker
(
H0(Y, IL/Y (H))⊗OY � IL/Y (H)

)
,

where IL/Y is the ideal sheaf of L in Y . Then by [27, Section 5], FL is a torsion-free Gieseker-

stable sheaf on Y which has the same Ext-groups as IL/Y , and which belongs to TY . Its Chern

character is ch(FL) = (3,−H,−1
2H

2, 1
6H

3, 1
8H

4). By definition of λ1, one also easily verifies that

v(FL) = λ1. By letting L vary, the sheaves FL span a connected component of the moduli space of

Gieseker-stable sheaves which is isomorphic to the Fano variety of lines F (Y ) [27, Proposition 5.5].

By Proposition 6.5, FL is σ-stable, and by Proposition 6.2 the moduli space Mσ(λ1, φ(FL)) is

isomorphic to F (Y ).

Bridgeland stable objects with Mukai vector λ1 + λ2 can also be easily described. Indeed,

given a line L ⊂ Y , we can define objects PL as in [34, Section 2.3]. They are non-trivial extensions

OY (−H)[1]→ PL → IL/Y ,
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defined as the right mutation PL := ROY (−H)(FL(−H)). In particular, PL is obtained from FL

by applying an autoequivalence of TY , and so it has the same Ext-groups as FL and it is easy to

check that its class in Λ is exactly

v(PL) = λ1 + λ2.

Therefore, they are also all σ-stable, and their moduli space Mσ(λ1 + λ2, φ(PL)) is isomorphic to

F (Y ) as well.

We can also easily compute the corresponding phases of FL and PL with respect to σ. To this

end we use the computation in the proof of [6, Proposition 9.10]; we have

(6.3.1) φ(FL) < φ(PL) < φ(FL) + 1.

Hence, by Proposition 6.6, if F ′C is not σ-stable, we must have an exact triangle

PL → F ′C → FL,

namely, in the notation of the proposition, we must have A = PL and B = FL. Hence, to prove

Proposition 6.7, it is enough to show that Hom(F ′C , FL) = 0. This may be checked directly, or it

follows immediately from Lemma 6.9 below, thus concluding the proof of Proposition 6.7, and so

the proof of the Main Theorem.

Lemma 6.9. The sheaf FL is να,β-stable, for all α > 0 and β < −1/3. Moreover, we have

να,β(FL) < να,β(F ′C) for (α, β) ∈W0.

Proof. This can be shown, similarly to Lemma 5.5, by looking at the semi-line β0 = −1, and letting

α vary. Indeed, the unique straight wall corresponds to β = −1/3 and we are interested in the

region β < −1/3 so that the objects FL are in Cohβ(Y ). Moreover, the point of accumulation for

the center of all walls for FL in this region is β = −1. Hence, if we prove that FL is να,β0-stable,

for all α > 0, we have that it is να,β-stable for all α > 0 and β < −1/3. The inequality between

the slopes is then a direct computation.

For α� 0 large, since (3,−H,−H2/2) is primitive and −1/3 > −1, the objects FL are να,β0-

stable. Then, as in Lemma 5.5, we can check by computer that there is no wall intersecting the

semi-line β0 = −1. �
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