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Abstract

We address the estimation of the magnetic field B acting on an ensemble of atoms with total spin J
subjected to collective transverse noise. By preparing an initial spin coherent state, for any
measurement performed after the evolution, the mean-square error of the estimate is known to scale
as1/],i.e. no quantum enhancement is obtained. Here, we consider the possibility of continuously
monitoring the atomic environment, and conclusively show that strategies based on time-continuous
non-demolition measurements followed by a final strong measurement may achieve Heisenberg-
limited scaling 1/J2 and also a monitoring-enhanced scaling in terms of the interrogation time. We
also find that time-continuous schemes are robust against detection losses, as we prove that the
quantum enhancement can be recovered also for finite measurement efficiency. Finally, we
analytically prove the optimality of our strategy.

1. Introduction

Recent developments in the field of quantum metrology have shown how quantum probes and quantum
measurements allow one to achieve parameter estimation with precision beyond that obtainable by any classical
scheme [1, 2]. The estimation of the strength of a magnetic field is a paradigmatic example in this respect, as it
can be mapped to the problem of estimating the Larmor frequency for an atomic spin ensemble [3-9].

As amatter of fact, if the system is initially prepared in a spin coherent state, the mean-squared error of the
field estimate scales, in terms of the total spin number J, as 1/J, which is usually referred to as the standard
quantum limit (SQL) to precision. If quantum resources, such as spin squeezing or entanglement between the
atoms of the spin ensemble, are exploited, one observes a quadratic enhancement and achieves the so-called
Heisenberg scaling,i.e.1/J?[10, 11]. On the other hand, it has been proved that such ultimate quantum limit may
be easily lost in the presence of noise [12] and that typically a SQL-like scaling is observed, with the quantum
enhancement reduced to a constant factor. These observations have been rigorously translated into a set of no-
go theorems [ 13, 14], which fostered several attempts to circumvent them. In particular, it has been shown how
one can restore a super-classical scaling in the context of frequency estimation, for specific noisy evolution and/
or by optimizing the strategy over the interrogation time [15—19], or by exploiting techniques borrowed from
the field of quantum error-correction [20-22].

In this manuscript, we put forward an alternative approach: we assume to start the dynamics with a classical
state that is monitored continuously in time via the interacting environment [23, 24]. The goal is to recover the
information on the parameter leaking into the environment and simultaneously to exploit the back action of the
measurement to drive the system into more sensitive conditional states [25—34]. This approach has received
much attention recently [35-42] also in the context of quantum magnetometry [43—48].

Here we rigorously address the performance of these protocols, depicted in figure 1, taking into account the
information obtained via the time-continuous non-demolition measurements on the environment, as well as
the information obtainable via a strong (destructive) measurement on the conditional state of the system. In
particular, in the limit of large spin, we derive an analytical formula for the ultimate bound on the mean-squared

©2017 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Atomic magnetometry via time-continuous measurements—an atomic ensemble, prepared in a spin-coherent state aligned
to the x-direction and placed in a constant magnetic field B pointing in the y-direction, is coupled to train of probing fields that are
continuously monitored after the interaction with the sample.

error of any unbiased estimator, and conclusively show that, for experimentally relevant values of the dynamical
parameters, one can observe a Heisenberg-like scaling.

Remarkably, at variance with most of the protocols proposed for quantum magnetometry, and in general for
frequency estimation, one does not need to prepare an initial spin-squeezed state. The Heisenberg scaling is in
fact obtained also for an initial classical spin coherent state, thanks to the spin squeezing generated by time-
continuous measurements’ back-action. Finally, we analytically prove that the ultimate quantum limit for noisy
magnetometry in the presence of collective transverse noise [36] is in fact saturated by our strategy, i.e. one does
not need to implement more involved strategies, e.g. jointly measuring the conditional state of the system and
the output modes of the environment at different times.

The paper is organized as follows. In section 2, we present the quantum Cramér—Rao bounds that hold for
noisy metrology, with emphasis on estimation strategies based on time-continuous, non-demolition
measurements and a final strong measurement on the corresponding conditional quantum states. In section 3,
we introduce the physical setting for the estimation of a magnetic field via a continuously monitored atomic
ensemble. In particular, we focus on the case of large total spin, where a Gaussian picture is able to describe the
whole dynamics. In section 4, we present the main results: we first calculate the classical Fisher information (FI)
corresponding to the photoccurent obtained via the time-continuous monitoring of the environment, and we
discuss how to attain the corresponding bound via Bayesian estimation. We then address the possibility of
performing also a strong measurement on the conditional state of the atomic ensemble, and derive the ultimate
limit on this kind of estimation strategy, quantified by an effective quantum Fisher information (QFI). Upon
studying this quantity, we observe how, in the relevant parameters’ regime, the Heisenberg limit can be
effectively restored, also discussing the effects of non-unit monitoring efficiency, corresponding to the loss of
photons before the detection. Finally, we also prove the optimality of our measurement strategy in the case of
ideal detectors. Section 5 closes the paper with some concluding remarks.

2. Quantum Cramér—Rao bounds for time-continuous homodyne monitoring

A classical estimation problem consists in inferring the value of a parameter € from a number M of measurement
outcomes X = {x, %, ..., x)} and their conditional distribution p(x|). We define an estimator 9()() a
function from the measurement outcomes to the possible values of § and we dub it asymptotically unbiased
when, in the limit of large number of repetitions of the experiment M, its average is equal to the true value, i.e.
fdx p(xIN) 0 (x) = 6, where p(x|\) = Hin 12 (x10). The Cramér—Rao theorem states that the variance of any
unbiased estimator is lower bounded as Varj(6) = (M F[p(x|6)])~!, where

Flplo)] = [ dx pxlN)(@slogp(iA)2 M

denotes the classical FI.

In the quantum realm, the conditional probability distribution reads p(x|0) = Tr[gyIl,], where gy is the
quantum state of the system labeled by the parameter 6, and I1, isa POVM operator describing the quantum
measurement. One can prove that the FI corresponding to any POVM is upper bounded F[ p(x|0)] < Qlogl,
where Q[ 0y] = Tr[oy LHZ] is the QFI, and L is the so-called symmetric logarithmic derivative, which can be
obtained by solving the equation 20y09 = Lgos + 09Lg [49-51]. The QFI depends on the quantum state gy
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only, and thus poses the ultimate bound on the precision of the estimation of §. Moreover, in the single
parameter case the bound is always achievable, that is, there exists a (projective) POVM such that the
corresponding classical FI equals the QFI.

In this manuscript we consider a quantum system evolving according to a given Hamiltonian Hj
characterized by the parameter we want to estimate, and coupled to a bosonic environment at zero temperature
described by a train of input operators dy, (¢), satisfying the commutation relation [dj, (), difl ] =6 —t,
via an interaction Hamiltonian i, (t) = 6&{& (t) + &%4;,(t) (¢ being a generic operator in the system Hilbert
space) [23]. By tracing out the environment, the unconditional dynamics of the system is described by the

Lindblad master equation

d A R
d_f = Lo = —i[Hy, o] + DI[¢] o, @

where D[clo = coc" — (£7¢o + 0E7¢) /2.

If one performs a homodyne detection of a quadrature Xou (t) = doue(t) + &;ut (t) on the output operators,
i.e. on the environment just after the interaction with the system, one obtains that the dynamics of the system
quantum state 0 conditioned on the measurement results (we will omit the dependence of the measured
photocurrent y,), is described by the stochastic master equation [23]

do© = —i[Hy, 0©]dt + DI[E10© dt + JTH[E]0© dw,. 3)

Here 1 denotes the efficiency of the detection, dw, is a stochastic Wiener increment (s.t. dw? = dt), and
Hclo© = 20© + p©e" — Tr[p© (¢ + 7] 0 (notice that in principle one could consider other measure-
ment strategies different from homodyne, yielding a different superoperator). The corresponding measurement
record duringa time step t+ — ¢ + dt is given by the infinitesimal current

dy, = 1 Tr[09(¢ + €M) dr + dw,. 4)
With the help of such measurement strategies, one can estimate the value of the parameter 6 both from the

T . .
measured photocurrent y, = fo dy;, and from a final strong (destructive) measurement on the conditional

state 0(©). In this case, as we explicitly show in appendix A (in general both for the classical and quantum case),
the proper quantum Cramér—Rao bound reads

1
M(Fp(yp] + Epyy[QLo©1D)
where the first term at the denominator F[ p(y;)]is the FI corresponding to the classical photocurrent y;., while
the second term is the average of the QFI for the conditional state Q[ ()] over all the possible trajectories, i.e. on

all the possible measurement outcomes for the photocurrent.
The classical FI F[ p(y;)] can be calculated as described in [35] by evaluating

Flp(yp] = Bpyp[Tr (711, (6)

where the operator T evolves according to the stochastic master equation

Vary(0) > (€)

dr = —i[Hy, 7] dt — i[(0pHy), o] dt + DI[E]7 dt + (ér + 7¢7)dw.. 7)

The conditional states ¢©) at time T can be obtained by integrating (3), for a certain stream of outcomes y;; then
one can first calculate the corresponding QFI Q[ 0], and, numerically or when possible analytically, its average
over all the possible trajectories explored by the quantum system due to the homodyne monitoring.

A more fundamental quantum Cramér—Rao bound that applies in this physical setting has been derived in
[36], by considering the QFI obtained from the unitary dynamics of the global pure state of system and
environment. This QFI is obtained by optimizing over all possible POVMs, i.e. one also considers the possibility
of performing non-separable (entangled) measurements over the system and all the output modes d (¢) at
different times. On the other hand, in the previous setting the estimation strategies were restricted to the more
experimentally friendly case of sequential /separable measurements on the output modes and on the final
conditional state of the system.

The QFI expressing this ultimate QCRB is by definition

Qr(0) = 409,09,10g(| () () [1(02)) 1) lo,— 0,05 (©)

where (1) (6;) |1 (6,)) is the fidelity between the global state of system and environment for two different values of
the parameter, and where we have highlighted its dependence on the superoperator £ that defines the
unconditional master equation (2). The key insight is that this fidelity can be determined by using operators
acting on the system only [36, 52] and it can be expressed as the trace of an operator Tr [p] = (¥ (6)) [ (6,)),
which obeys the following generalized master equation

3
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dp oA A1
d—f — —i(Hy,p — pHy,) + DIE1p. ©)
Asbefore, we already assumed that the dependence on the parameter lies only in the system Hamiltonian Hy and
that we have a single jump operator ¢. We remark that the operator g is not a proper density operator
representing a quantum state, except in the limit case §; — 6,, where we recover the standard master
equation (2).

3. Quantum magnetometry: the physical setting

We address the estimation of the intensity of a static and constant magnetic field Bacting on a ensemble of N
two-level atoms that are continuously monitored [43—46], as depicted in figure 1. The atomic ensemble can be
described as a system with total spin ] = N /2 with collective spin operators defined as I, = %Zfi o Tin» Where
a = x, ¥, zand o;, denotes the Pauli matrices acting on the ith spin. The collective operators obey the same
angular momentum commutation rules Ui, fj] = igj Ji» where gijx is the Levi-Civita symbol. We remark that in
the present manuscript we choose units such that /z = 1.

We assume that the atomic sample is coupled to a electromagnetic mode a;,(¢) corresponding either to a
cavity mode in a strongly driven and heavily damped cavity [26], or analogously to a far-detuned traveling mode
passing through the ensemble [46]. By considering an interaction Hamiltonian Ay = VEL(Gin (1) + ﬁiL (1))
and if these environmental light modes are left unmeasured, the evolution of the system is expressed by (2), which
in this case corresponds to a collective transverse noise on the atomic sample,

do . s R

T Lo = —iBl,, ¢] + kDU.]o, (10)
where the constants « and 7y represent respectively the strength of the coupling with the noise and with the
magnetic field, that is directed on the y-axis and thus perpendicular to the noise generator. At t = 0 we consider
the system prepared in a spin coherent state, i.e. a tensor product of single spin states (qubits) directed in the
positive x direction,

N
[¥(0) = QI+ = I, I)s» (11)
k=0

where |+) is the eigenstate of o, with eigenvalue +1. We thus have that the spin component on the x direction
attains the macroscopic value (J;(0)) = J. The unconditional dynamics of (f,) is obtained by applying the
operator J; to both sides of equation (10) and then taking the trace. The result is the following equation
describing damped oscillations

A1)

N R,
D) )~ Zheon, (42

where we observe how the the dissipative and unitary parts of the dynamics are respectively shrinking the spin

vector (J ) and causing its Larmor precession around the y-axis. In the following we will assume to measure small
magnetic fields, such that yBt < 1 and we can approximate the solution of the previous equation as

(Je (1) = (Jo(0)) e /2 = Je rt/2, (13)

If the light modes are continuously monitored via homodyne measurements at the appropriate phase, one allows
acontinuous ‘weak’ measurement of J; the corresponding stochastic master equation (3) for finite monitoring
efficiency ) reads

do©@ = —iyBlJ,, 0“1dt + kD[]0 dt + JmrHIL]0©dw;, (14)

while the measurement result at time ¢ corresponds to an infinitesimal photocurrent

dy, = 2 /nk Tr[o® J.1dt 4 dw,. Itis important to remark how the collective noise characterizing the master
equation (10) describes the dynamics also in experimental situations where no additional coupling to the atomic
ensemble, with the purpose of performing continuous monitoring, is engineered [53—-55]. In this respect,
assuming a non-unit efficiency 7 corresponds to considering both homodyne detectors that are not able to
capture all the photons that have interacted with the spin, and environmental degrees of freedom, causing the
same kind of noisy dynamics, that cannot be measured during the experiment.

Let us now consider the limit of large spin J > 1. In this case, the dynamics may be effectively described with
the Gaussian formalism as longas (J, (t)) ~ J, i.e. for times t small enough to guarantee that k¢ < 1. We define
the effective quadrature operators of the atomic sample, satisfying the canonical commutation relation
[X, P] = i,as[46,47]
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where J; = |(J.(t))] (notice that in the limit of large spin J we can safely consider the unconditional average
value (] (1)), as the stochastic correction obtained via (14) would be negligible). In the Gaussian description the
initial state |1/ (0)) corresponds to the vacuum state X + iP) |0) = |0), which is Gaussian. As the stochastic

master equation (14) becomes quadratic in the canonical operators (and thus preserves the Gaussian character of
states)

do© = —inB\T[X, 091 dt + K], D[P] 0©dt + Tonk HIP] 0©dw,, (16)

the whole dynamics can be equivalently rewritten in terms of first and second moments only [56, 57] (see
appendix B for the equations describing the whole dynamics in the Gaussian picture). As it will be clear in the
following, due to the nature of the coupling, in order to address the estimation of B, we only need the behavior of
the mean and the variance of the atomic momentum quadrature P calculated on the conditional state 09,
which follows the equations

d(P(t)). = —By\Je 7 dt + 2Var [P(t)]\nrJe 7 dw;, (17)
dVar [P(t)]
dt B

The differential equation for the conditional second moment is deterministic and can be solved analytically. For
an initial vacuum state, i.e. with Var[P (0)] = %, we obtain the following solution

1
SJ(1—e %) +2

—dnrfe ¥ (Var [P ()] (18)

Var[P(1)] = (19)

that shows how the conditional state of the atomic sample is deterministically driven by the dynamics into a
spin-squeezed state.

4, Results

Here we will present our main results, that is the derivation of ultimate quantum limits on noisy magnetometry
via time-continuous measurements of the atomic sample. We will first evaluate the classical FI F{y,]
corresponding to the information obtainable from the photocurrent, and we will also show how the
corresponding bound can be achieved via Bayesian estimation. We will then evaluate the second term appearing
in the bound, corresponding to the information obtainable via a strong measurement on the conditional state of
the atomic sample. This will allow us to discuss the ultimate limit on the estimation strategy via the effective QFI:
we will focus on the scaling with the relevant parameters of the experiment, i.e. with the total spin number J and
the monitoring time characterizing each experimental run t, and we will address the role of the detector
efficiency 7.

4.1. Analytical FI corresponding to the time-continuous photocurrent

As discussed before, the measured photocurrent y, obtained via continuous homodyne detection can be used to
extract information about the system and to estimate parameters which appear in the dynamics. The ultimate
limit on the precision of this estimate is quantified by the FI [ p(y,)]. Given the Gaussian nature and the simple
dynamics of the problem we can compute it analytically in closed form, by applying the results of [58]. As we
describe in more detail in appendix B, one obtains the formula

Flp(y)] = 2nxJe™ /2 By [(O5(P (D)) (20)

By considering (17) and remembering that dw, = dy, — +/2nkJe~ (P(t)).dt, one obtains that the time
evolution of the derivative of the conditional first moment (ﬁ (1)), w.r.t. to the parameter B, can be written as

d(9s(P(1)).)
dt

where Var,[P(¢)]is obtained from equation (19). We thus observe that the evolution is deterministic and one
can easily derive its analytical solution. By applying equation (20), as the average over the trajectories is not
needed, we readily obtain the following analytical formula for the FI

64y e (e — 1)
9k [(4n] + Der — 4]

= —y/Je 2 — AVar [P(t)InkTe " 2(Dp(P(1)).), 1)

3rt

- [—4n] — 12n)er + 3(4nJ + 3)et + (4] + 3)ei]. (22)

Flp(yl =

As intuitively expected, this is a monotonically increasing function of t, since the partial derivative is always
positive. To get some insight into this expression we first report the leading term for t — 0

5
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Figure 2. Bayesian estimation of B from a single simulated experiment—the data shown in the plots are obtained as a function of xt,
for v/k = 1 G}, J = 10*and 5 = 1; the prior distribution of the parameter Bis uniform in the interval [—0.01, 0.01] G,and the
true value is Birye = 0 G. In the top panel we show the ratio between the standard deviation of the posterior distribution and the
standard deviation predicted by the Cramér—Rao bound. In the bottom panel we show the posterior distribution as a function of time,
the constant white dashed line marks the value By, ye.

FIp(y] ~ %ﬂv%ﬁ, (23)

where we explicitly see both Heisenberg scaling J* and a monitoring-enhanced time scaling £*. We can get further
intuition about this expression by expanding it around ] = oo, the limit in which the Gaussian approximation
becomes exact. The leading order in this other expansion is quadratic in J, thus showing again Heisenberg
scaling, irregardless of #:

64y )% (et — 1)%(4e¥ + e + 1)

9k2(e¥ + 1) ’
this last approximations actually reproduces the behavior of the function quite well in the range of parameters
we will consider in the following.

We now want to show that one can achieve this classical Cramér—Rao bound from the time-continuous
measurement outcomes obtained via an appropriate estimator. In figure 2 we indeed show the posterior
distribution as a function of time for a single experimental run, obtained after a Bayesian analysis (see
appendix C for details). We observe how the distribution gets narrower in time around the true value and we also
explicitly show that its standard deviation o converges to the one predicted by the Cramér—Rao bound
ocr(t) = F p(yt)]*l/ 2, In the initial part of the dynamics the values of g5 are smaller than the corresponding
ocg: this is due to the choice of the prior distribution, being narrower than the likelihood and thus implying
some initial knowledge on the parameter which is larger than the one obtainable for small monitoring time.

Flp(ypl = (24)

4.2. Quantum Cramér—Rao bound for noisy magnetometry via time-continuous measurements
In order to evaluate the quantum Cramér—Rao bound in equation (5) we now need to consider the second term
By [QI 29, corresponding to the information obtainable via strong quantum measurement on the
conditional state of the system. The conditional state ¢() is Gaussian and has a dependence on the parameter B
only in the first moments. Therefore the corresponding QFI can be evaluated as prescribed in [59] (see
appendix B for more details) obtaining,

Q[,_O(C)] — (83<P(f)>c )2' (25)

Var [P(t)]

Since, as we proved before, the evolution of both Jp <13 (#)). and Var, [P(t)]is deterministic, the average over all
possible trajectories is also in this case trivial and we have By, , [Q[2©]] = Q[2“)]. By exploiting the analytical
solution for both quantities, the QFI reads

Kt

32y (2] — dnje”% — (Bn) + 3)ei + 3)°
9*[(4n] + D€t — dn]] '
As expected, for no monitoring of the environment (1 = 0), one obtains that Q[o9] ~ J,ie. corresponding to
the SQL scaling. This function is also monotonically increasing with t and we can expand itaround J = oo to
study the leading term, which shows again a quadratic scalingin J
128y2]2e 1 (—3e7 + 2¢i" + 1)2
9k2(e7 — 1) '

Qo] = (26)

Qo] ~ (27)
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Figure 3. ] scaling—effective QFI O asa function of J for different vales of #t, for unit efficiency nand effective coupling strength
v/k = 1 G} axes are in logarithmic scale. The solid curves are for increasing values of xt (shown in the legend) from top to bottom.
The two regimes appearing in the plots are ~J* (steeper slope) for higher values of st and higher values of Jand ~J (gentler slope) for
the opposite parameters’ regions. For visual comparison we show a dashed line at the top ocJ* and a dotted line at the bottom ocJ.
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Figure 4. Time scaling—effective QFI O asa function of t for different values of J, for unit efficiency nand effective coupling
strength /K = 1 G~} axes are in logarithmic scale. The solid curves are for increasing values of ] (shown in the legend) from top to
bottom. The two regimes appearing in the plots are ~(kt)> (steeper slope) for higher values of ¢ and higher values of Jand ~(rt)?
(gentler slope) for the opposite parameters’ regions. For visual comparison we show a dashed line at the top o(xt)* and a dotted line at
the bottom ox(kt)>.

We also remark that the QFI is equal to the classical FI for a measurement of the quadrature P, thus showing that
a strong measurement of the operator J, on the conditional state of the atomic sample is the optimal
measurement saturating the corresponding quantum Cramér—Rao bound.

By combining equations (22) and (26), we can now define the effective QFI

0 = Flp(y)] + Epiyy [QLo 1] = Flp(y)] + Qo) (28)

which represent the inverse of the best achievable variance according to the quantum Cramér—Rao bound (5).
The resulting expression can be simplified to get the following simple analytical formula

Q = KiJ + nKyJ?, (29)
where

,YZ
K = 32-(1 — e #t/%)2, (30)

HZ

2
K = 64l(1 _ Bentra g pemir2 le**ff). (1)
K2 3 3

We start by studying how this quantity scales with the total spin: in figure 3 we plot O asafunction of Jin the
appropriate regions of parameters. We remark that the plots will be presented by using 1/« as a time unit so that
the strength of the interaction becomes v/ x and is always fixed to 1 G~! in the following. We observe that,
within the validity of our approximation (k¢ < 1), itis possible to obtain the Heisenberg-like scaling J* for the
effective QFI. There is a transition between SQL-like scaling and Heisenberg scaling depending on the
relationship between Jand xt showing how the quantum enhancement is observed for J > 1/kt.

The same conclusions are drawn if we look at the behavior of é asafunction of the interrogation time ¢,
plotted in figure 4: a transition from a t*-scaling to a monitoring-enhanced #’-scaling is observed for J > 1/kt.
We remark here that the typical scaling obtained in quantum metrology for unitary parameters is of order £*. The
observed £°-scaling is due to the continuos monitoring of the system. A similar scaling of the FI would be in fact
obtained for an equivalent classical estimation problem, where a continuously monitored classical system is
estimated via a the Kalman filter [58]. Notice that there are also few recent examples in the literature where a
t*-scaling can be observed. This is obtained in noiseless quantum metrology problems with time-dependent
Hamiltonian and by exploiting open-loop control [60—63]. In particular in [63], it was also shown thata
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Figure 5. Effect of non-unit efficiency—effective QFI @ asafunction of J (top panel) and «t (bottom panel) for different values of
and effective coupling strength 7/ = 1 G~1. The two regimes appearing in the plots are ~J> (top panel) and ~(xt)* (bottom panel)
for higher values of ¢ and higher values of  while ~J? (top panel) and ~(xt)? (bottom panel) for the opposite parameters’ regions.
For visual comparison we show a dashed line at the top ocJ* (top panel) and oc(xt)? (bottom panel) and also a dotted line at the bottom
oJ (top panel) and oc(kt)? (bottom panel).

£>-scaling can be achieved without additional control, but by performing repeated (stroboscopic) measurement
on the system, analogously to our strategy.

The previous results were both shown by considering perfect monitoring of the environment, i.e. for
detectors with unit efficiency 7. In figure 5 we plot the behaviors of O asa function of Jand f, varying the detector
efficiency n; we observe how the quantum enhancements can be obtained for all non-zero values of 7). The effect
of having a non-unit monitoring efficiency is simply to imply larger values of ] to witness the transition between
SQL to Heisenberg-scaling, as one can also understand by looking at the role played by nand ] in equation (29).

We remind that if we consider only the classical FI [ p(y,)], the Heisenberg scaling in terms of Jand
£>-scaling are always obtained for xt < 1and for every 1, as shown by the expansion (23). However, if the
contribution of this term, as well as the contribution of conditioning to the QFI, are too small then the QFI of the
unconditional state, i.e. (26) with n = 0, dominates (the term 7K, J? in (29) is negligible) and we observe SQL
scaling for . We finally mention that the in the regimes where we observe Heisenberg scaling of 9, the classical
FI F[p(y,)]amounts to a relevant part of the total, namely around 25%.

4.3. Optimality of time-continuous measurement strategy for noisy quantum magnetometry

As explained before, the ultimate limit for quantum magnetometry, in the presence of Markovian transversal
noise as the one described by the master equation (10), is given by the QFI Q- in equation (8). The generalized
master equation (9) in this case (considering the large-spin approximation) reads

o . Fo e S,
d—f = —inJT.B.X2 — B,2X) + xIDIP]p. (32)

In appendix D we show how this equation can be solved in a phase space picture, since the equation contains at
most quadratic terms in X and P and thus preserves the Gaussian character of the operator 2.
The final result is

Or,=0n=1=KJ+KJ% (33)

i.e., we exactly obtain the effective QFI Q defined in equation (28) in the limit of unit efficiency = 1. This
result remarkably proves that our strategy, not only allows to obtain the Heisenberg limit, but also corresponds
to the optimal one, given a collective transversal noise master equation (10) and in the presence of perfectly
efficient detectors. Indeed, any other more experimentally complicated strategy, based on entangled and non-
local in time measurements of the output modes and the system, would not give better results in the estimation
of the magnetic field B.
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5. Conclusion and discussion

We have addressed in detail estimation strategies for a static and constant magnetic field acting on an atomic
ensemble of two-level atoms also subject to transverse noise. In particular, we have evaluated the ultimate
quantum limits to precision for strategies based on time-continuous monitoring of the light coupled the atomic
ensemble.

After deriving the appropriate quantum Cramér—Rao bound, we have calculated the corresponding effective
QFlin the limit of large spin, posing the ultimate limit on the mean-square error of any unbiased estimator. Our
results conclusively show that both Heisenberg J>-scaling in terms of spin, and a monitoring-enhanced #*-scaling
in terms of the interrogation time, are obtained for J > 1/kt, confirming what was discussed in [43, 46]. We
have remarkably demonstrated that these quantum enhancements are also obtained for not unit monitoring
efficiency, i.e. even if one cannot measure all the environmental modes or for not perfectly efficient detectors.
Finally we have analytically proven the optimality of our strategy, i.e. that given the master equation describing
the unconditional dynamics of the system and ideal detectors, no other measurement strategy would give better
results in estimating the magnetic field.

We remark that Heisenberg scaling, or at least a super-classical scaling, can be obtained in the presence of
collective or individual (independent) transversal noise, by preparing a highly entangled or spin-squeezed state
at the beginning of the dynamics and, for individual noise, by optimizing on the interrogation time ¢ [17-19]. In
this respect, the advantage of our protocol lies in the fact that it achieves the Heisenberg scaling even for an initial
classical spin-coherent state, exploiting the dynamical spin squeezing that is generated by the weak
measurement.

In conclusion, we have shown that time-continuous measurements represent a resource for noisy quantum
magnetometry [43, 46, 47]. Indeed, the information leaking into the environment, here represented by light
modes coupled to the atomic sample, obtained via homodyne detection, and the corresponding measurement
back-action on the atomic sample, may be efficiently (and optimally) exploited in order to obtain the promised
quantum enhanced estimation precision.
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Appendix A. Classical and quantum Cramér—Rao bounds for sequential non-demolition
measurements

Here we will show how to derive the quantum Cramér—Rao bound for time-continuous homodyne monitoring
reported in equation (5).

We start by considering a (classical) estimation problem of a parameter 6 described by a conditional
probability p(z, y,|0), where the vector y; = (3}, 15 --+» ) contains the outcomes of sequential
measurements performed up to time T, while z corresponds to a final measurement performed on the state of
the system that has been conditioned on the previous measurement results y;.. The corresponding classical FI
can be evaluated as

FpG vl = [ dy dz ez, yil0)@slogp Gz, yyl0))?

= [ dy dz pCalyp, O)p(v,10)[@slogp(elyy )
+ 2(96logp(zlyy» 0))(Dslogp(y410))
+ (9plogp(y;10))*1, (A1)

where the second expression has been obtained by means of the Bayes rule
Pz yrl0) = p(alyr, O)p(y;l6).

In the following, we will omit the dependence on the parameter ! and we will denote by E, ) [-] the average
over a probability distribution p(x). By considering each term inside the integral separately one obtains

Epzy,) [(Oplogp(zly))* 1 = By [FLpGlypll, (A.2)

9
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2Epy, [0plog p(2ly;) Oplog p(yr)] = 2 fdy(aGP(YT)) fdz(@gp(zlyT)) =0, (A.3)

EP(Z,YT) [(Dp 108P(YT))2] = Flp(ypl (A4)

where we have used the property f dz(Opp(2lyp) = Oy f dz p(zly;) = 0p(1) = 0. Asaconsequence, any

unbiased estimator 8 based on M experiments, i.e. obtained collecting M series of measurement outcomes
(¥y» 2), satisfies the generalized Cramér—Rao bound

1
M(F1p(yp] + By [FlpEyplD

where the first term F[ p(y;)]is the FI corresponding to the sequential measurements with outcomes y;, while
the second term is the average of the FI [ p(z] y;)], corresponding to the final measurement over all the possible
trajectories conditioned on the previous measurement results y;.. The bound in equation (A.5) bears some
formal similarity to the Van Tree’s inequality [64], which however applies in a quite different situation, i.e. the
case where the parameter to be estimated 6 is a random variable distributed according to a given probability
distribution p(0).

The estimation strategy here described is of particular interest when we deal with quantum systems, given
the back-action of quantum measurement on the state of the system itself. We can in fact associate each
measurement outcome y, to a Kraus operator M,, such that the conditional quantum state, for the system
initially prepared in a state g, and after obtaining the stream of outcomes y;., reads

Vary(0) > (A.5)

(o) _ MYT ‘gOMYT

Y, B (A.6)
Tr[Ny, 00My]

4

where MYT = M,,_...M,, M, and the probability of obtaining the outcomes y; reads

p(y;0) = Tr[]\?IyT QOM;T]S. One can then also perform a strong (destructive) measurement described by POVM
operators {II,} on the conditional state, and the whole measurement strategy is described by the conditional
probabilities

Py, 0) = TrloP L],
p(z lee) = p(alyp 0) P(YT'G)
= Tr[My, 00 M, IL.]. (A7)

Typically the parameter to be estimated 6 enters in the the dynamics described by the Kraus operators M), . For
this reason we will start by considering these operators fixed, while we suppose we can optimize over the final

measurement {II,}. We can then apply the quantum Cramér—Rao bound for the conditional states gng), stating

that F{p(zly,)] < Q[gng)]. One then obtains a more fundamental quantum Cramér—Rao bound for our
estimation strategy

1

Vary(6) > o
MFlp(yp] + Ep(yT)[Q[:_OyCT]])

(A.8)

Clearly this bound can be readily applied to the time-continuous case discussed in the main text, where the
vector of outcomes ;. corresponds to a measured homodyne photocurrent, and where the conditional state o
can be obtained via a stochastic master equation as the one in equation (3).

We should also remark that a bound of this kind has already been considered in [39], in a similar physical
situation where # probes, that may be prepared in a quantum correlated initial state, are coupled to n
independent environments and one performs sequentially #» measurement on the respective environments and a
final measurement on the conditional state of the probes.

()
Yr

Appendix B. Gaussian dynamics and Gaussian FI

Here we will provide the formulas for the dynamics of the atomic ensemble described by the stochastic master
equation (14). As we mentioned in the text, the whole dynamics preserves the Gaussian character of the
quantum state and thus can be fully described in terms of the first moments vector (£), and of the covariance
matrix o of the quantum state 0. These are defined in components as (7;). = Tr [} 0“]and

o = Tr[{# — (Fi)e> f — (R } 09 for the operator vector = (X, P)'. In formulae one obtains [56, 57]:

3 . . . . .

In our treatment we will consider the sequential non-demolition measurement fixed, and thus described by a fixed set of Kraus operators
{M,, }. However one can generalize the results by considering adaptive schemes where one can decide to modify the measurement performed
ateach time t;.

10
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oM dw

d(®), = udt + s B.1
() Nl (B.1)
do =D — oMM'o, (B.2)
dt

where
D= (2“] e 0), (B.3)
0 0

0 0
M = (\/W 0), (B.4)
u = (0, —1ByJe "7, (B.5)

and dw is a vector of Wiener increments such that dw; dwy = ¢;dt, related to the photocurrent via the
equation
dw
_ T /%
The equations (17), (18) and (21) can be obtained from the ones above, remembering that for our
definitions 05, = 2Var[P(¢)].
The method to calculate the FI corresponding to the time-continuous measurement in the case of linear
Gaussian system has been described in [58]. One has to evaluate the formula

FIp(¥)] = Epy) [205(2))) MMT (95 ()], (B.7)

that, by plugging in the matrices describing our problem, is easily simplified to equation (20).

As the conditional state is Gaussian, also the calculation of the corresponding QFI can be easily obtained, in
this case by applying the results presented in [59]. Moreover, as only the first moments of the state depend on the
parameter B, the calculation is further simplified and one has

Qo©] =2 (Fp(E)) o (Dp(E)). (B.8)

By noticing that the only non-zero entry of the vector p(t), is the one corresponding to (P (¢)),, one easily
obtain equation (25).

Appendix C. Bayesian analysis for continuously monitored quantum systems

Bayesian analysis has proven to be an efficient tool for estimation in continuously monitored quantum systems
[35, 38,42, 48]. The goal is to reconstruct the posterior distribution of B given the observed current y,, by Bayes
rule:

L(Bly)p(B)
p(y)
where p(B) is the prior distribution, L(B|y,) = p(y,|B) is the likelihood and p(y,) serves as a normalization

pBly) = (C.1)

factor. The Bayesian estimator is the mean of the posterior distribution B (v) = Ep|y, [Bland itis proven that
the corresponding variance Var3(B) = Ej )y, [B*] — By )y [B])? is asymptotically optimal, i.e. tends to
saturate the Cramér—Rao bound when the length of the vector y;. is large.

The simulated experimental run is obtained by numerically integrating the stochastic differential
equation (17) with the Euler—Maruyama method for the ‘true’ value of the parameter B,.. Time is discretized
with steps of length At, i.e. to get from time 0 to time T'we perform ny = T /At steps. Experimental data is
represented by the observed measurement current y; = (Ay,, ..., AytnT)T, which corresponds to an

ny-dimensional vector. The outcome at every time step Ay, is sampled from a Gaussian distribution with
variance At and mean A_yt (B) = 2nKJe <13 (t;)). At. Notice that A_yt (B) depends explicitly on the
parameter B via the quantum expectation value (P (t;)). on the conditional state.

Since we are estimating only one parameter the posterior can be obtained on a grid on the parameter space,
while for more complicated problems Markov chain Monte Carlo methods might be needed to sample from the
posterior [35]. In practical terms we need to solve equations (17) and (18) for every value of the parameter B on

the grid, assuming to perfectly know all the other parameters; then we need to calculate the likelihood for each
value via

11
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L(Blyy) o« [ exp N (C.2)

i=0

y [@n—ZZ®V]

by considering the outcomes as independent random variables, i.e. multiplying the corresponding probabilities.
We then apply Bayes rule, equation (C.1), assuming a flat prior distribution p(B) on a finite interval. The same
analysis is trivially applied to more than one experiment by simply multiplying the likelihood obtained for every
different observed measurement current.

Appendix D. Ultimate QFI via generalized master equation in phase space

Here we explicitly show how to solve equation (32). The characteristic function for a generic operator O is
defined as

x[01(s) = Tr[D-0], (D.1)
where the displacement operator is defined as
D = exp (is" Q). (D.2)

In particular we will work in the phase space of a single mode system, so that #7 = (X, P)is the vector of
quadrature operatorsand s’ = (x, p) is the vector of phase space coordinates.

The action of operators in the Hilbert space corresponds to differential operators acting on the characteristic
function via the following mapping [56, 65]

Xp o (—iap - %)X(s), (D.3)
ﬁe{4@+§y@, (D.4)
Pp — (iax — g)X(S), (D.5)
b (i@x + g)x(s). (D.6)

If we now define the characteristic function associated to the operator g introduced in equation (9)

X (s, t) = x[2](s), (D.7)

the quantity of interest in order to compute the QFI is then Tr 2 = ¥ (0, t), as evident from the definition (D.1).
By applying the phase space mapping, from the generalized master equation (32) we get to the following
partial differential equation for the characteristic function

3%39=P%i&;&x—%%Lﬂwﬂ&—&WJMaa (D.8)

This equation can be solved by performing a Gaussian ansatz, similarly to [66], i.e. assuming that at every time
the characteristic function can be written in the following form

(s, t) = C(t)exp[—i TV o(H)Qs + isTQTsm(t)]. (D.9)

The dependence on time and on the parameters B /, is completely contained in the covariance matrix o (¢), in
the first moment vector s,,(t)" = (x,,(¢), p,,(t)) and in the function C(¢) = x(0, ), which is the final result we
are seeking.

By plugging (D.9) into (D.8) and equating the coefficients for different powers of x and p, one obtains a
system of differential equations; the relevant ones are the equations coming from the coefficients of order one,
and multiplying p and p*:

Kt

o1,1() = 2kJe 2, (D.10)
mmz—%wrﬂ&—&mmm (D.11)
C(t) = —iryJe 7 (B — By)xu()C(1). (D.12)

These equations are solved analytically with the initial conditions a; ;(0) = 1, x,,,(0) = 0 and C(0) = 1(since
fort = 0the operator o corresponds to the initial state of the system |0) (0| ), yielding

12
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2
C@t) = exp[%}(& — By)2eft(ef — 1) - (—4Je¥ + (6] + 3)e7 — 2])]. (D.13)

By plugging this term into equation (8), we finally obtain the ultimate QFI O, reported in equation (33).
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