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Inferential methods can be used to integrate experimental informations and molecular simulations.
The maximum entropy principle provides a framework for using equilibrium experimental data, and
it has been shown that replica-averaged simulations, restrained using a static potential, are a practical
and powerful implementation of such a principle. Here we show that replica-averaged simulations
restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the
dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved
data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well
as a computational validation making use of simple models and synthetic data. Some limitations and
possible solutions are also discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5030339

I. INTRODUCTION

Molecular dynamics (MD) is a powerful sampling strat-
egy that allows studying equilibrium as well as time-resolved
properties of complex systems at atomistic resolution.1 The
predicting power of MD is related to both the quality of the
force fields as well as to the extent of the sampling.2 Nowa-
days, the microsecond time scale is routinely accessible for
systems of the order of 10 kDa, with the notable exception of
Anton computers that allow performing simulations one to two
orders of magnitude longer.1 When molecular events cannot
be sampled by standard MD, the sampling can be enhanced
by methods focused either on the recovery of the underly-
ing free energy,2,3 most notably umbrella sampling,4 or on
the generation of reactive trajectories, like Markov-state mod-
els5 and path-sampling methods.6 Modern force fields can
often reproduce quantitatively the equilibrium properties of
small- to medium-sized proteins, even if the results are still
often system and/or force-field dependent, in particular, for
disordered proteins.7–10 Force-field robustness in reproducing
kinetic properties is, instead, more questionable and poorly
investigated.11,12

In order to improve the accuracy of molecular simulations
with respect to equilibrium properties in a system-specific way,
hybrid methods based on the integration of experimental data
in MD simulations have been introduced.13–17 These methods
take into account the ensemble averaged nature of equilib-
rium experimental data by including additional energy terms
to the force field based on a forward model of the experimen-
tal observable and a bias that imposes the average agreement
to the data either following the maximum entropy principle

a)Electronic mail: guido.tiana@unimi.it
b)Electronic mail: carlo.camilloni@unimi.it

(pMaxEnt)18–23 or Bayesian statistics24,25 and can be used
to obtain results of comparable quality independently by the
specific force field.26 Hybrid approaches based on a statisti-
cal treatment of experimental data have been recently used
also in combination with enhanced sampling methods,27,28

ab initio models,29 coarse-grained models,30 and Markov-state
models.31

In principle, an inferential approach like the principle
of maximum caliber (pMaxCal),32 that is the dynamic ver-
sion of the principle of maximum entropy, could also be
used to improve the quality of simulations in reproducing
time-resolved properties. The pMaxCal was so far used to
study basic aspects of non-equilibrium systems,33,34 to model
chemical reactions35 and more recently to find collective vari-
ables for enhanced sampling techniques36 and to reweigh the
results of MD simulations37,38 and of Markov state mod-
els39 also out-of-equilibrium.40 With respect to the MaxEnt,41

there is not yet an implementation that allows the direct inte-
gration of experimental data in MD simulations making use
of a bias.

The pMaxCal states that the least-biased distribution p(γ)
of trajectories γ generated by a stochastic process, like that
associated with the dissipative dynamics of a biomolecule,
is that obtained by maximizing the path entropy (for an
exhaustive review, see Refs. 42 and 43),

S[p(γ)] = −
∑
γ

p(γ) log p(γ). (1)

Similar to what is done in equilibrium statistical mechanics, it
is possible to use Lagrange multipliers to constrain the opti-
mization of S[p] in such a way that the average

∑
γp(γ)f (γ) of

some conformational property f of the system matches at each
time any function of time (e.g., a function which reports the
time course of some experimental data). The resulting distri-
bution p(γ), beside being in agreement with the experimental
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data, guarantees to minimize the amount of further arbitrary
information provided to the model.

In this work, we present an implementation of the pMax-
Cal inspired by the replica-averaging implementation of the
pMaxEnt20,21 that could allow us to generate MD trajecto-
ries biased by time-resolved experimental data. The goal of
such a bias is not immediately that of generating more effi-
cient reactive trajectories, like in the case of path sampling
methods, but that of improving the average agreement of an
ensemble of MD simulations with an experimental time trace.
We first analytically showed the equivalence of the pMaxCal
with replica-averaged time-resolved restrained simulations,
and then we used structure-based potentials and synthetic
data to assess the reliability of replica-simulations in modu-
lating time-resolved properties using multiple conformational
parameters. We anticipate that one limit of the current approach
is that one should be able to run MD of length compara-
ble to that of the time-resolved observables of interest. Since
time-resolved experimental observables report on processes
often happening on longer time scales than those accessible
by MD, we use our simple models to discuss the possibil-
ity of rescaling the time scale of the guiding observable so
as to effectively rescale the time scale of the ensemble of
simulations.

II. METHODS
A. Theoretical framework

Our goal is to simulate the ensemble of trajectories that ini-
tiate from a given state (a single conformation or an ensemble
of conformations), follow the time course of a set of time-
dependent experimental data, and minimize the subjective bias
introduced into the system, maximizing the associated caliber.
We define {γ} as the set of trajectories of the system, where
the trajectories are regarded as a discrete set of conformations
γ ≡ {r0, r1, . . ., rT}, as those usually generated in MD
simulations. Kinetic experiments usually return time-resolved
quantities that depend on the conformations visited along the
trajectory. We define f exp

t , the time-course of the quantity mon-
itored in the available experiment, indexed by the discrete time
t; this can be one- or higher-dimensional. We assume to know
the forward model associated with the experiment, that is,
the function f (rt) that maps a conformation rt visited along
a trajectory into the ideal result that the experiment would
give if applied to an ensemble of identical conformations rt .
Moreover, we assume to know the microscopic diffusion coef-
ficient D associated with the degrees of freedom of the system,
for example, obtaining it from specific experiments (like Dif-
fusion Ordered Spectroscopy (DOESY) spectra from NMR
experiments) or approximating it by Stokes’ law.

In detail, given {γ} as our set of stochastic trajectories of
the N-particle system starting at point r0, we are interested
in the probability p(γ). The principle of maximum caliber
requires that p(r0, r1, . . ., rT ) maximizes

S[p(γ)] = −
∑
{γ }

p({γ}) log p({γ}) (2)

with the constraints

∑
{γ }

p({γ})f (rt) = f exp
t (3)

and
1

2∆t

∑
{γ }

p({γ})[rt+1 − rt]
2 = D (4)

at each discrete time t and that
∑

p({γ}) = 1. One should note
that any drift due to forces acting on the atoms scales as ∆t
and does not contribute to Eq. (4) in the limit of small ∆t. The
constrained maximization gives

p({γ}) =
1

Zd
exp


−

∑
t

(
νt[rt+1 − rt]

2 + λt f (rt)
) , (5)

where Zd is the normalization constant, νt is the set of
Lagrange multipliers which implements the average of
Eq. (4), and λt is the set that implements Eq. (3). In principle,
λt can be obtained by d(log Zd)/dλt = f exp

t , but in practice
this is hampered by the sum Zd over all possible paths.

It is useful to extend the expression found in Eq. (5) in
two ways. First, let us consider n independent replicas of
the system, each defined by trajectories {γα} = {rαt } with
α = 1, . . ., n and t = 0, . . ., T. The maximum-caliber probability
distribution is then extended to

p({γα}) =
1

Zd
exp


−

∑
t,α

(
ναt [rαt+1 − rαt ]2 + λαt f (rαt )

) . (6)

Moreover, one can require that

∑
{rαt }

p({γα})


1
n

∑
α

f (rαt ) − f exp
t



2

= σ2
nt , (7)

that is, the standard error of the average of f over the repli-
cas is some value σn. For the sake of compactness, let us
define

ξt ≡
1
n

∑
β

f (rβt ) − f exp
t , (8)

implying that the experimental data are matched if ξ t = 0 for
all t. Applying the Lagrange-multiplier method also to this
constrain, the maximum-caliber distribution becomes

p({γα}) =
1

Zd
exp


−

∑
t,α

(
ναt [rαt+1 − rαt ]2 + λαt f (rαt ) + µαntξ

2
t

) .

(9)
In the limit n → ∞, σnt → 0 for every t because of the law
of large numbers, and consequently one can set µαnt → ∞

for each t and α. In particular, σn ∼ n�1/2 and consequently
µαnt ∼ log n.

Similar to the case of equilibrium simulations,20,21 we
want to show that the maximum-caliber distribution of trajec-
tories of Eq. (5) is automatically sampled by replica-averaged
MD simulations, with replicas (identified by Greek letters)
biased by a time-dependent potential,

U({rα}, t) =
nk
2
*
,

1
n

∑
α

f (rα) − f exp
t

+
-

2

, (10)
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where rα is the conformation of the system in the replica α,
n is the number of replicas, and k is a harmonic constant.
The associated stochastic process in the (3N × n)-dimensional
replica space can be regarded as a Markov chain,

pn({rαt }) = pN (rα0 )w(rα0 → rα1 )w(rα1 → rα2 ) . . . w(rαT−1 → rαT ),
(11)

which can be written according to the simplest form of
the Onsager–Machlup function corresponding to an over-
damped stochastic dynamics discretized according to Ito
prescription,44

pn({γα}) = c · exp


−

∑
tα

(
rαt+1 − rαt + k∆tξt

)2

2D′∆t


, (12)

recalling that by definition the initial point rα0 is fixed for all
replicas. Here the diffusion coefficient is D′ = T /γ′, where γ′

is the friction coefficient chosen as an input of the simulation.
In the limit of large k, this can be approximated as

pn({γα}) = c · exp


−

∑
tα

(
rαt+1 − rαt

)2

2D′∆t


·
∏

t

δ(ξt) (13)

because of the definition of Dirac’s delta, that is, for any
distribution ϕ(ξ) and any t,

c
∫

dξt exp


−

∑
α

(
rαt+1 − rαt + k∆tξt

)2

2D′∆t


ϕ(ξt)

= c · exp


−

∑
α

(
rαt+1 − rαt

)2

2D′∆t


· ϕ(0) (14)

in the limit k →∞.
Equation (13) can be rewritten multiplying its rhs. by the

exponential of a linear function of ξ t which is equivalent to

pn({γα}) = c · exp


−

∑
tα

(
rαt+1 − rαt

)2

2D′∆t
−

∑
t

γtξt


·
∏

t

δ(ξt)

(15)
for any γt . In fact, for any distribution ϕ(ξ) and any t,

c
∫

dξt exp


−

∑
α

(
rαt+1 − rαt

)2

2D′∆t


δ(ξt)ϕ(ξt)

= c
∫

dξt exp


−

∑
α

(
rαt+1 − rαt

)2

2D′∆t
− γtξt


δ(ξt)ϕ(ξt),

(16)

meaning that Eq. (13) is equivalent to Eq. (15).
Using the Gaussian representation of Dirac’s delta

δ(ξt) = limκ→∞ exp(−κξ2
t ), Eq. (15) becomes

pn({γα}) = c·exp


−

∑
tα

(
rαt+1 − rαt

)2

2D′∆t
−

∑
t

γtξt −
∑

t

κt(ξt)
2


(17)

in the limit κt →∞ for any t. Choosing γt = λt , remembering
that both µαnt and κt→∞ for large k, then Eq. (17) is equivalent
to the maximum-caliber distribution of Eq. (9).

However, there is a further difficulty involving the dif-
fusion coefficient. If the experimental data are not taken
into account, i.e., λαt = µαnt = 0, then the partition func-
tion in Eq. (9) is a Gaussian integral, and the condition
∂ log Zd/∂ν

α
t = D defining the Lagrange multipliers gives

ναt = 1/D, and thus D = D′. In this case, the diffusion coef-
ficient used as an input to the replica simulation is the same
required by the maximum-caliber principle.

On the other hand, if one accounts for the experimental
data, then ναt , 1/D and the simulated diffusion of the par-
ticles becomes different from that required by the principle
of maximum caliber. If the constraining effect of the experi-
mental data is mild, one can expect that λαt are small, and the
dynamical partition function in Eq. (9) can be approximated
as

Zd =
∑
{γα }

exp

−

∑
t,α

ναt [rαt+1 − rαt ]2

*
,
1 −

∑
t,α

λαt f (rαt )+
-

(18)

and consequently to the first order in λαt ,

D =
1
ναt
− λαt

∂

∂ναt

〈
f (rαt )

〉
d , (19)

where 〈·〉d is the unperturbed average over paths. Comparing
this with Eq. (17) gives

D = D′ + λαt (D′)2 ∂

∂D′
〈
f (rαt )

〉
d (20)

suggesting that the actual diffusion coefficient is modified by
the bias.

So, given the possibility to perform simulations on the
same time scale of a time-resolved experiment, it is in the-
ory possible to integrate the information of the experimental
time-course and generate trajectories in accord with the pMax-
Cal by means of replica-averaged time-resolved restrained
simulations.

Of notice, the theory in its present form is developed for
the case of a uniform prior, nonetheless in the following we
show that its implementation works also for the general case
where a prior approximated Hamiltonian is available (e.g. a
molecular mechanics force–field.

B. Validation strategy

To test the validity of the replica-averaging time-resolved
scheme on molecular models, we performed some sand-box
studies selecting some protein systems and defining for each
of them two different structure-based Gō potentials.45 One
of the two (U ref) is regarded as the reference potential that
controls the dynamics of the system in our ideal experiment,
while the other (Uapprox) is regarded as an approximated poten-
tial we know. The two potentials are chosen in such a way
that the system displays markedly different kinetic proper-
ties when interacting with each of them, but similar equi-
librium properties, which is what is somehow expected by
current state-of-the-art force fields. Structure-based potentials
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FIG. 1. A sketch of the MD simulations, where n replicas of the system evolve
in time coupled by Eq. (10). Lines colored in different hues of red and yellow
represent the time evolution of the biasing variable in the various replicas. The
gray line is the average of the biasing variable over the replicas. The biasing
potential is a harmonic spring acting on this average centred at the value of
the experimental value (blue line) at the corresponding time.

allow us to run a large number of simulations in a rela-
tively short time making them perfectly suitable as a first step
toward a better understanding of the present time-resolved
replica-averaging approach.

We performed multiple simulations with U ref that serve as
reference for the tests. We also defined some conformational
parameter f ref

t as our time-resolved synthetic observable that
is obtained by averaging at each time step over the ensem-
ble of simulation. Some of them [like the root mean square
deviation (RMSD) or the fraction of native contacts] are good
approximations of the reaction coordinates of the system,
while others [like the small-angle x-ray scattering (SAXS)
intensities] are closer to what one could measure in real
experiments.

We applied the pMaxCal to the system interacting with the
potential Uapprox, performing MD simulations of n replicas of
the system biased by f ref

t through the potential described in
Eq. (10) (cf. Fig. 1). The dynamics of the biasing variable
averaged over the replicas, of its fluctuations over the replicas,
and of other variables weakly coupled to it are then compared
with the reference dynamics.

C. Computational implementation

MD simulations are performed with Gromacs 4.5.746 cou-
pled to Plumed 247 using the ISDB module.48 We implemented
a CALIBER bias into Plumed to apply the potential described
in Eq. (10). Simulations were performed with a Langevin
integrator with γ = 1 ps�1 and a time step of 0.1 fs.

We tested different quantities to bias the simulations,
such as the root mean square deviation (RMSD) of the posi-
tion of the Cα from those of the crystallographic confor-
mation, the fraction Q of native contacts defined as49 Q(r)
= 1

N

∑
i,j

1
1+exp(β(rij−λr0

ij))
, where N is the total number of pairs

in the potential, rij ≡ |ri � rj | is the distance between the ith
and jth atom, r0

ij is the distance between the two atoms in the

crystallographic structure, and β = 50 nm�1 and λ = 1.8 are
two switching parameters; and the theoretical SAXS inten-
sities defined as I(q) =

∑
i
∑

j,i fi(q)fj(q)
sin(qrij)

qrij
, where q is

the scattering vector, f k(q) is the atomic form factor of the
kth atom, and rij is the distance between the ith and the jth
atom.

The values of the harmonic constant k were chosen to
be as large as possible, compatibly with the time step of the
simulation.

III. RESULTS
A. Modulation of the dynamics of a β-hairpin model

The first test to verify the ability of replica-averaged time-
resolved simulations to modify the dynamics of a molecular
system was carried out on an all-atom model of the second
hairpin of the protein G B1 domain (residues 41–65, pdb
code 1PGB50) in vacuo. We built two different structure-based
potentials,45 and these potentials are stabilized by the defini-
tion of a reference conformation. The potential U tail is obtained
by rescaling the interactions between the pairs of atoms of a
factor which is proportional to the distance from the turn of the
hairpin, from 0.5 for pairs close to the turn to 1.5 for pairs close
to the termini (see the hairpin schemes in Fig. 2). The potential
Uhead is obtained by inverting the scaling factors to strengthen
by a factor 1.5 the interactions close to the turn and weaken
by 1.5 those close to the termini; this induces a different fold-
ing dynamics while keeping comparable stability between the
folded and the unfolded state (cf. the heat capacities displayed
in Fig. S1 of the supplementary material). The dynamics of the
hairpin interacting with both potentials was simulated starting
from an unfolded conformation at T = 50 K (note that in a
Gō model energy units, and consequently temperature units,
are arbitrary), generating 500 folding trajectories for each of
them. In Fig. 2 is displayed the average value Q(t) of the frac-
tion of native contacts as a function of time. The behavior
for the two systems (dark and light gray for U tail and Uhead,
respectively) is qualitatively different.

FIG. 2. MaxCal restraint over the time evolution of the average fraction of
native contacts. A reference potential U tail is built assigning to the pairs of
residues toward the turn of the hairpin weaker interactions than those toward
the termini; the scaling factor of the Gō interactions goes from 0.5 (yellow
dashed lines) to 1.5 (red dashed lines). An approximated potential Uhead is
built instead assigning to the pairs of residues toward the turn of the hairpin
stronger interactions than those toward the termini; the scaling factor of the
Gō interactions goes from 1.5 (red dashed lines) to 0.5 (yellow dashed lines).
The time evolution of the average fraction of native contacts Q is shown in
light gray and dark gray for U tail and Uhead, respectively. Q from U tail is used
as the experimental observable to bias the approximated Hamiltonian Uhead
by varying the number of replicas from 4 (red) to 128 (yellow), better visible
in the inset.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035818
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The test consisted in biasing the system interacting with
Uhead (regarded as Uapprox) to display the dynamics of the sys-
tem interacting with U tail (regarded as U ref). For this purpose,
we used the function Q(t) of the latter as reference data f ref(t)
and simulated the dynamics of the hairpin with the potential
U tail + Vbias varying the number of replicas from n = 4 to
n = 128 and using a harmonic constant for Vbias equal to
k = 2.5 · 104 · n. The behavior of Q(t) for the resulting
simulations is essentially indistinguishable from that of the
simulations we wanted to target for any n indicating that the
two dynamics are identical at least when projected over the
space defined by the biasing variable (cf. Fig. 2).

To check if not only the biased observable but also other
observables are modified correctly upon the addition of the
bias, we plotted the time evolution of the mean gyration radius
and its standard deviation (cf. Fig. 3) as well as other unbiased
observables (left panel of Fig. S2 of the supplementary mate-
rial). Also in this case, the biased curves match reasonably
well the reference dynamics simulated with U tail, quite inde-
pendently on the number of replicas (cf. also the χ2 displayed
in Figs. S3 and S4 of the supplementary material).

In addition to the average, we also checked the effect on
the fluctuations of the same observables. In the lower panel
of Fig. 3, we plotted the fluctuations of the gyration radius
defined as its standard deviation over the replicas as a function
of time (cf. also the right panel of Fig. S2 of the supplementary
material for the standard deviation of other quantities). In spite
of their noisy behavior, the bias is able to push the system
interacting with Uhead to display fluctuations similar to those
of the system interacting with U tail. Also for them there is not a
clear behavior as a function of the number n of replicas, except
for the fact that n = 4 gives an agreement that is much worse
than for larger n (see also Figs. S5 and S6 of the supplementary
material). Finally, as a control, similar results are obtained

FIG. 3. The time evolution of the gyration radius (top) and its fluctuations
(bottom) of the hairpin. The dark-gray line indicates the dynamics gener-
ated with Uhead, the light-gray line is the reference dynamics generated
with U tail, and the colored lines are the simulations performed with Uhead
and biased using the Q from U tail (cf. Fig. 2) and 4 (red) to 128 replicas
(yellow).

by using Uhead as reference potential and biasing the system
interacting with U tail to follow its dynamics (see Figs. S7–S15
of the supplementary material).

B. Modulation and rescaling of the dynamics
of a simple protein model

Given the ability of pMaxCal replica simulation to mod-
ulate the dynamics of a simple system, we challenged the
algorithm with a larger system. We defined two models for
the full protein G B1 domain. The first is described by the
standard Gō potential UGō and the second in which the Gō
potential is modified strengthening the intra-helix interactions
by a factor of 2 (we shall label the latter as Uα). The equi-
librium properties of the two models are similar (cf. Fig.
S16 of the supplementary material), but their folding dynam-
ics, starting from a disordered conformation, are different (cf.
the shapes of Q displayed as dark-gray and light-gray curves
in Fig. 4). A simulation, carried out over 32 replicas, bias-
ing the molecule interacting with the potential Uα to follow
the dynamics of the mean fraction of native contacts Q of
the molecule interacting with UGō is almost indistinguishable
from the dynamics of its reference simulation when comparing
the biasing variable (cf. the red curve in Fig. 4 and Fig. S17
of the supplementary material). Importantly, the time evolu-
tion of other conformational variables like the total RMSD, the
gyration radius, and the RMSD restricted to the two β-hairpins
and to the whole β-sheet is very similar to those of the ref-
erence system (see Fig. 5 and Fig. S18 of the supplementary
material).

As noted in Sec. II, the current approach allows modify-
ing the time-resolved behavior of a force field making use of
some external time-resolved information; this means nonethe-
less that one should be able to run simulations on the same
time scale of the time-resolved information of interest. What
happens if one rescales the time scale of the time resolved
information by a factor λs? This could in principle allow
running short simulations and yet reproducing the long-time
behavior of the system. This would mean that we might not

FIG. 4. Average fraction of native contacts Q as a function of time for the
following: the unbiased simulations of protein G interacting with UGō (dark
gray); the unbiased simulations interacting with Uα (light gray); and three
biased simulations of the molecule interacting with Uα and biased using the
Q from UGō using 32 replicas with a time compression of λs = 1 (red), λs
= 10 (dark orange), λs = 100 (light orange), and λs = 1000 (yellow). Simu-
lations are performed at T = 106 K starting from a conformation denatured
at 400 K.
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FIG. 5. The time evolution of the average gyration radius (top) and the RMSD
of the interface between β-hairpins 1-2 (bottom) for the same simulations
displayed in Fig. 4. The unbiased simulations of protein G interacting with
UGō (dark gray); the unbiased simulations interacting with Uα (light gray);
and the three biased simulations of the molecule interacting with Uα and
biased using the Q from UGō using 32 replicas, with a time compression of
λs = 1 (red), λs = 10 (dark orange), λs = 100 (light orange), and λs = 1000
(yellow) (cf. Fig. 4).

only employ the MaxCal to improve the quality of a force
field but also to boost, on average, the sampling of reactive
trajectories.

To test the effect of the rescaling at least in ideal cases,
we repeated the above simulations rescaling the time scale of
the target reference data by factors λs = 10, λs = 100, and
λs = 1000. In Figs. 4 and 5, we compared the dynamics of the
biasing coordinate and of some other coordinates, respectively
(cf. also Figs. S17 and S18 of the supplementary material),
with that of the reference system interacting with UGō, rescal-
ing back the time axis to the original time scale to allow a
clear comparison. A rescaling factor λs = 10 gives results
which are essentially identical to the case without rescaling.
With a rescaling factor λs = 100, the qualitative agreement
is still good, but the two curves are no longer perfectly over-
lapping, while a factor λs = 1000 gives a dynamics which
is completely different from both the unbiased and the refer-
ence molecule ones (cf. also Fig. S18 of the supplementary
material).

To study how the bias affects the different time scales
of the dynamics of the model protein, we performed a time-
lagged independent component analysis (TICA)51–53 on the
unbiased and on the biased simulations. This analysis com-
bines information coming from the covariance and time-lagged
covariance matrix of the Cα positions obtaining a qualitative
estimate of the relaxation times of slow variables given as
a linear combination of trajectory observables (cf. Fig. S20
of the supplementary material). The two original potentials
UGō and Uα show significantly different relaxation times,
and the caliber-biased simulation with λs = 1 displays a

good agreement with the reference potential relaxation times,
demonstrating once again that replica-averaged time-resolved
simulations could be used to include time-resolved data in
MD. As expected, with the increase of λs, the system shows
a speed-up in all the slow variables. The worse behavior of
the simulations with λs = 100 and 1000 can be explained con-
sidering the system diffusion time, which is in the order of
1 ps: With a too strong time rescaling, the resulting “slow”
relaxation time is in the order of the ps, and thus, the sys-
tem cannot follow the bias (cf. Fig. S20 of the supplementary
material).

C. Biasing the dynamics using lower
resolution observables

All the former simulations have been biased to follow
observables closely related to the reaction coordinate of the
process (i.e., in this case, protein folding). To test our approach
in the case of more realistic observables, we used the same two
models described in Sec. III B and used the ideal SAXS inten-
sities as our source of synthetic information. We calculated the
SAXS intensities from the reference system interacting with
UGō and used the dynamics of the SAXS intensities at 15 equi-
spaced values of the scattering vector as reference data to bias
the model interacting with Uα.

The dynamics of the SAXS intensities obtained from the
reference simulations are displayed in the upper panel of Fig. 6,
while in the lower panel are shown the dynamics of the SAXS
intensities at the values of q (0.08 Å�1, 0.25 Å�1, and 0.35
Å�1), chosen as an example. For these q and for all the others

FIG. 6. In the upper panel is the time evolution of the SAXS spectrum sim-
ulated for the model of protein G interacting with UGō. In the lower panel
is the evolution of the SAXS intensities at q = 0.08 Å�1, q = 0.25 Å�1, and
q = 0.35 Å�1. The light gray curve is the unbiased dynamics (Uα), the dark-
gray curve is the reference dynamics (UGō), and the red curve is the time
evolution for Uα biased using the SAXS intensities from UGō.
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FIG. 7. The time evolution of gyration radius (top), RMSD of the interface
between β-hairpins 1-2 (middle), and the fraction of native contacts (Q) of
protein G obtained by biasing by means of the ideal SAXS intensities. The
dark-gray curve is the reference dynamics (UGō), and the red curve is the time
evolution for Uα biased using the SAXS intensities from UGō (cf. Fig. 6).

(not shown here), the biased dynamics can follow perfectly
well the dynamics of the reference system. In Fig. 7, it is
shown that the dynamics of the radius of gyration, the RMSD
of hairpins β1-2, and the native contact fraction, observables
are not used for biasing the simulation. The biased simula-
tions appear in good agreement with the reference dynamics
(other conformational variables are shown in Fig. S19 of
the supplementary material). Finally, also the TICA-derived
slow variable relaxation times are in good agreement with the
ones of the unbiased reference potential (cf. Fig. S20 of the
supplementary material). Overall our simple-model calcula-
tions suggest that at least in principle it could be possible
to integrate time-resolved data in MD simulations to modu-
late and possibly improve their agreement with some available
knowledge.

IV. DISCUSSION

The quality of molecular mechanics’ force fields are gen-
erally improving,7,8,54 but these improvements, even if signif-
icant, are limited by the difficulty of training force fields on
systems and/or time scales comparable to the one of interest.
Hybrid, inferential, methods based on the introduction of equi-
librium experimental information in MD simulations, either as
an a posteriori reweighing or as a direct bias of the simula-
tion,17 can alleviate these limitations in a system dependent
manner. Among these, replica-averaged simulations,15 based
on the maximum entropy principle21 and recently extended
to include a Bayesian treatment of the errors,24,25 have been
particularly successful.17,55

Inferential methods could also be used to integrate time-
resolved informations. Here we showed that the principle of
maximum caliber, previously used only to perform a posteri-
ori reweighing,37–40 can be implemented as a direct bias using
a replica-averaged time-resolved MD scheme and that at least
for simple-model systems can be used to modulate the behav-
ior of time-resolved observables. Formally our current proof is
valid for a uniform prior and a Brownian dynamics (cf. Sec. II),
nonetheless the simulations suggest its general validity when a
prior force field is known and trajectories are obtained by MD.
Future studies should also consider the effect of errors in the
data that are currently missing (cf. Ref. 42) and other forms
of experimental informations like path-based information
(cf. Ref. 56).

Importantly, we have also tested the effect of rescaling
the time scale of the employed time-resolved data. Real-
time experiments (H/D exchange,57 real-time NMR,58 and
time-resolved SAXS/WAXS59,60) are often employed to study
processes on time scales that are longer than those usually
accessible by MD (i.e., on the order of hundreds of microsec-
onds to milliseconds and longer). In this case, the choice of
the biasing variable plays an important role to ensure the real-
ism of the resulting trajectories. Our simple models suggest
that it is in principle possible to rescale the time units of the
data employed as long as this is longer than the diffusion time.
Nonetheless more work is needed in this direction to assess
specific observables. We anticipate that for observables corre-
lated with the slowly varying reaction coordinate of a system
(like for the sand-box simulations described in Secs. III A
and III B), the macroscopic dynamic will be correct even in
case of strong rescaling, while for observables weakly corre-
lated with the reaction coordinate of the process, the macro-
scopic dynamics of the system will mostly rely on the force
field.

SUPPLEMENTARY MATERIAL

See supplementary material for additional figures report-
ing more analysis of the effect of the maximum caliber restraint
on replica-averaged MD simulations.

ACKNOWLEDGMENTS

We thank Giovanni Bussi, Stefano Gianni, and Toni
Giorgino for useful discussion.

1R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, Annu. Rev.
Biophys. 41, 429 (2012).

2D. M. Zuckerman, Annu. Rev. Biophys. 40, 41 (2011).
3F. Pietrucci, Rev. Phys. 2, 32 (2017).
4G. Torrie and J. Valleau, J. Comput. Phys. 23, 187 (1977).
5B. E. Husic and V. S. Pande, J. Am. Chem. Soc. 140, 2386 (2018).
6P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Ann. Rev. Phys.
Chem. 53, 291 (2002).

7K. A. Beauchamp, Y.-S. Lin, R. Das, and V. S. Pande, J. Chem. Theory
Comput. 8, 1409 (2012).

8K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror,
and D. E. Shaw, PLoS One 7, e32131 (2012).

9S. Piana, J. L. Klepeis, and D. E. Shaw, Curr. Opin. Struct. Biol. 24, 98
(2014).

10F. Martı́n-Garcı́a, E. Papaleo, P. Gomez-Puertas, W. Boomsma, and
K. Lindorff-Larsen, PLoS One 10, e0121114 (2015).

11S. Piana, K. Lindorff-Larsen, and D. E. Shaw, Biophys. J. 100, L47 (2011).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-035818
https://doi.org/10.1146/annurev-biophys-042910-155245
https://doi.org/10.1146/annurev-biophys-042910-155245
https://doi.org/10.1146/annurev-biophys-042910-155255
https://doi.org/10.1016/j.revip.2017.05.001
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1021/jacs.7b12191
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1021/ct2007814
https://doi.org/10.1021/ct2007814
https://doi.org/10.1371/journal.pone.0032131
https://doi.org/10.1016/j.sbi.2013.12.006
https://doi.org/10.1371/journal.pone.0121114
https://doi.org/10.1016/j.bpj.2011.03.051


184114-8 Capelli, Tiana, and Camilloni J. Chem. Phys. 148, 184114 (2018)
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