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6  Abstract

7 Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients
include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both
9 plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many stud-
10 jes have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot
1 species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms
12 that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbo-
13 hydrate metabolism, which display defective seed development, are currently available for many plant species. The physi-
4 ological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of
15 carbohydrates works in plants and the critical role that these carbohydrates, and specially starch, play during seed develop-
16 ment. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism’s effects on seed
17 development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review
18 also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted

genetic engineering and classical breeding programs.
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21 AGP  ADPG pyrophosphorylase
22 ADPG ADP-glucose

3 CW Cell wall

24 DAP  Days after pollination

25 DBE  Starch-debranching enzyme
26 FRK  Fructokinase

27 GIP Glucose-1-phosphate

28 GBSSI  Granule-bound starch synthase I

29 GWD  Glucan, water dikinases
30 pK Piruvate kinase
g; SBE Starch-branching enzymes
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SS Starch synthase
SuSy Sucrose synthase
SUT SUC transporters
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Introduction

Developing seeds are a well-studied system to analyze the
transport and compartmentalization of photoassimilates and
sink metabolism, where the role of carbon flow is central.
Seed formation can be divided into three stages: embryogen-
esis, maturation and desiccation. Each stage is characterized
by specific sequences of molecular events (Baud et al. 2002)
and metabolic profiles (Angeles-Nufiez and Tiessen 2010).
Developing seeds are complex structures formed by a testa
of maternal origin that contains the fertilization products:
embryo and endosperm. Development occurs in a series of
specific spatiotemporal steps, with a phase of cell division
followed by cell elongation, and a phase in which reserve
storage compounds are sequestered. In many species, this
sequence of events spreads in a wavelike manner, creating a
developmental gradient that displays strict molecular, meta-
bolical and structural-mechanical coordination (Ruan and
Chourey 2006). The accumulation of storage compounds in
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Plant Reproduction

seeds relies on their capacity to import sucrose from mater-
nal tissues (Weber et al. 2005). Sucrose synthesised in green
(photosynthetically active) tissues is transported through the
phloem to support growth and maturation of heterotrophic
tissues such as seeds (Zhang et al. 2007). Thus, seed fill-
ing depends above all on the rate of photoassimilate sup-
ply and on metabolic regulation of transport (Weber et al.
2005). Sucrose is the main product of photosynthesis, so the
overall capacity of heterotrophic tissues to import photoas-
similates depends on the ability of their individual cells to
import, metabolize and store sucrose. The discharge paths
depend upon the particular seed sink strength and specific
nutritional requirements at each developmental stage. This
process provides most of our food and feed due to the accu-
mulation of the major storage products strongly enhanced
in crop plants by breeding efforts: starch, protein and oil.
Such storage products are synthesised and stored in either
the cotyledons (as in legume seeds) or the endosperm (as
in cereal grains) or in both tissues (as in tobacco seeds).
Table 1 shows in detail the nutrient partitioning displayed
by some important seed crops.

The carbohydrate composition of seeds consists of oli-
gosaccharides such as fructans (Cimini et al. 2015) and pol-
ysaccharides. Starch is the main polysaccharide stored in
seeds. It represents the major source of carbohydrates in the
human diet, and it is also the main plant carbohydrate used
by the food industry and is therefore of great economic rel-
evance. Cereal grains and legume seeds are by far the most
important starch sources, and they are used to produce pasta,
bread, rice, flours and couscous, for example. Such products
form the basis of human alimentation. Other polysaccha-
rides present in plant seeds include cell wall polysaccharides
(cellulose, hemicelluloses and pectin). In some cases, cell
wall polysaccharides have been proposed to act as seed stor-
age polysaccharides, including mixed-linkage glucan in the
monocot Brachypodium distachyon (Guillon et al. 2012) and
mannan in the seeds of several species such as guar (Cya-
mopsis tetragonoloba) (reviewed in Nishinari et al. 2007).
Cell wall polysaccharides have many applications in food
and non-food industry (Ying et al. 2013; Mudgil et al. 2014;
Chateigner-Boutin et al. 2016). Cell wall polysaccharides are
also important because some of them contribute to dietary
fibers. Dietary fibers are defined as edible plant components
that are not digested in the small intestine but fermented in
the colon. They include cell wall polysaccharides, resistant
starch, resistant oligosaccharides and lignin. Dietary fibers
can regulate intestinal activity by increasing fecal mass and
accelerating intestinal transit. Several studies have reported
that a fiber-rich diet helps to reduce cholesterol levels and
lowers the risk of suffering impaired glucose tolerance and
insulin resistance (Weickert and Pfeiffer 2018).

The availability of mutant legumes, grasses and crucifers
with altered development and carbohydrate metabolism has
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facilitated the understanding of the genetic basis of seed car-
bohydrate accumulation. Decades of research on the genetic
programmes underlying plant embryogenesis and seed matu-
ration have led researchers to propose different models to
explain key regulatory networks and enzymes involved in
the control of carbohydrate flow in developing seeds. In
many crops, these products are of fundamental economic
importance for the post-harvest industry (Lee et al. 2017,
Nakamura et al. 2017; Xu et al. 2017; Guo et al. 2018). The
disruption of carbohydrate metabolic pathways at different
levels can lead to dramatic developmental defects (discussed
in the last section of this manuscript).

This review summarizes recent progress in understanding
the role of key genes controlling seed-specific carbohydrate
flow, with special emphasis on the control of seed develop-
ment. The purpose of this manuscript is to provide the reader
with a comprehensive view of the relationships between
carbohydrate metabolite homeostasis and carbon partition-
ing, the distribution of storage compounds such as starch,
and the influence of these factors on seed development. We
also provide some speculative views to encourage further
experimentation. Since the coordination of seed develop-
ment is considered to be different between clades, species
and genera, we highlight regulatory targets in monocots and
dicots that could be used by breeding programs to improve
seed quality.

Seed development and differentiation
is tightly linked to metabolic
reprogramming

One of the factors considered to have contributed to the
rise of angiosperms to ecological dominance is double fer-
tilization event and the development of a seed formed by
a diploid embryo and a triploid endosperm, both of them
enclosed by a testa, derived from maternal integuments (De
Bodt et al. 2005). Embryogenesis takes place protected by
the diploid maternally derived integuments, which eventu-
ally form the seed coat (Lafon-Placette and Kohler 2014).
Endosperm works as a nourishing tissue, controlling the
growth of a small embryo that quickly enlarges after ferti-
lization (Fiume and Fletcher 2012). After fertilization, the
embryo goes through a phase of active cell division, fol-
lowed by a phase of morphogenesis, and finally a matura-
tion process, during which several types of species-specific
storage products are accumulated (Bentsink and Koornneef
2008). Over time, seeds have evolved remarkable develop-
mental strategies that enabled plants to colonize diverse
ecological niches across the globe. Seeds represent a major
adaptive advantage that enabled seed plants to dominate
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Table 1 Seed storage composition of monocots, eudicots and gymnosperm species

Clade Clade Family Name (**) Carbohydrate Oil Protein References
GYMNO- PINACEAE Pinus pinea (pine 13 (total) 68.3 13.6 Kim et al. (2017)
SPERMS nut)*
GNETACEAE Gnetum africa- 0.8 (CW) 3.1 17.5 Ekop (2007)
num (African 87.6 (carbohy-
jointfir)® drates)
88.4 (total)
ANGIOSPERMS NYMPH NYMPHAE- Nymphaea lotus ~ 5.6-6.6 (CW) 6.1-7.1 3 Muhammad et al.
AEALES ACEAE (Egyptian 81-82.4 (carbohy- (2011)
lotus)® drates)
86-88 (total)
Hordeum vulgare 13.4-42.1 (CW) 2.7-3.2 10.8-14.1 Beloshapka et al.
(barley)b 0.1 (glucose) (2016)
67.7-73.8 (starch)
Zea mays (maize  13.5 (CW) 5.1 7.09 Beloshapka et al.
“yellow corn™)® 0.2 (glucose) (2016)
65 (starch)
Avena sativa 9.9-11.1 (CW) 7.4-8.5 10.8-12.7 Beloshapka et al.
(oat)® 0.1 (glucose) (2016)
65.3-73.4 (starch)
Oryza sativa 7 (CW) 4.4-4.6 9.8-12.8  Beloshapka et al.
(rice)® 0.1 (glucose) (2016)
77 (starch)
Triticum aestivum 67 (starch) 1.5-3.5 13-17 Hogy and Fang-
(wheat)® 70-75 (total) meier (2008)
and Tausz et al.
(2017)
MONOCOTS POACEAE Sorghum bicolor ~ 12.5 (CW) 4.3 10.19 Beloshapka et al.
(sorghum)b 0.2 (glucose) (2016)
70.5 (starch)
Phalaris canar- 20.8 (CW) 7.3 17.4 Beloshapka et al.
iensis (canary 0.1 (glucose) (2016)
grass seed)® 49.7 (starch)
Eleusine coracana 15.3 (CW) 5 11.5 Beloshapka et al.
(millet) 0.1 (glucose) (2016)
64.9 (starch)
Secale cereale 20.4-252 (CW) 2.5-2.8 11.4-15.8 Nystrom et al.
(rye)® 1.7-2.5 (glucose) (2008)
54.9-60.3 (starch)
79-90.9 (total)
x Triticosecale 73.1 (total) 1.8 13.1 Zhu (2018)
“ Triticum
x Secale”
(triticale)®
Elaeis guineensis  18.1 (total) 54.8 7.8 Kok et al. (2011)
(oil palm)®
ARECACEAE Phoenix dactylif- 67.2-743 (CW)  5.6-8.7 4.8-6.9 Habib and Ibrahim
era (date palm)* 2-4.7 (other car- (2009) and Nehdi
bohydrates) etal. (2018)
69.2-79 (total)
EUDICOTS BRASSI- Brassica napus 22-24 (total) 41-50 24.1-26.5 Barthet and Daun
CACEAE (rapeseed)b (2011), Hua et al.
(2012) and Khan
etal. (2018)
Arabidopsis 2 (total) 30-40 3040 Baud et al. (2008)
thaliana®
AMARAN- Chenopodium 19.9 (CW) 6.2 9.3 Beloshapka et al.
THACE AE quinoa (quinoa)b 1.3 (glucose) (2016)
55.7 (starch)
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Table 1 (continued)

Clade Clade Family Name (*°) Carbohydrate Oil Protein References
LINACEAE Linum usitatis- 50-51 (total) 19.5-20.8 16.5-17.8 Herchi et al. (2014)
simum (flaxseed
hull)®
ROSACEAE Prunus dulcis 21.5 (total) 49.9 21.1 Kim et al. (2017)
(almond)®
JUGLAN- Juglans regia 13.7 (total) 65.2 15.2 Kim et al. (2017)
DACEAE (walnut)?
Carya illinoinen-  13.8 (total) 71.9 9.1 Kim et al. (2017)
sis (pecan)®
BETULACEAE  Corylus avellana  16.7 (total) 60.7 14.9 Kim et al. (2017)
(hazelnut)?
- PROTEACEAE  Macadamia integ- 13.8 (total) 75.7 7.9 Kim et al. (2017)
o rifolia (macada-
e mia nut)*
D;: ANACARI- Pistacia vera 27.1 (total) 45.3 20.1 Kim et al. (2017)
J(__D: DACEAE (pistachio)®
“5 Anacardium 30.1 (total) 43.8 18.22 Kim et al. (2017)
< occidentale
(cashew)?
LECYTHITA- Bertholletia 11.7 (total) 67.1 14.3 Kim et al. (2017)
CEAE excelsa (Brazil
nut)?
FAGACEAE Castanea sativa -~ 45.5 (total) 2.2 242 Kim et al. (2017)
(chest nut)*
EUPHORBI- Ricinus communis 2.4-3 CW 40-56 22.1-24.3 Akande et al.
ACEAE (castor bean)® (2012) and
Perdomo et al.
(2013)
PHABACEAE Medicago trun- 2 (starch) 3 (total) 9 35 Djemel et al.
catula (barrel (2005) and Song
medic tree)® et al. (2017a, b)
Medicago orbicu- 9 (starch) 2.5 1 Song et al. (2017)
laris (button
medic)®
Glycine max 2 (total) 20 40 Song et al. (2017a)
(soybean)b
Pongamia pinnata 7 (total) 35 20 Bala et al. (2011),
(pongam oil Scott et al. (2008)
tree)® and Song et al.
(2017a)
Arachis hypogea 16 (total) 49 26 Kim et al. (2017)
(peanut)®
Cicer arietinum 44 (total) 6 23 Huang et al.
(chick pea)b (2007), Rachwa-
Rosiak et al.
(2015) and Song
et al. (2017)
Lupinus luteus 2 (total) 8 38 Song et al. (2017a)
“angustifolius
and albus” (yel-
low Iupin)®
Pisum sativum 40 (total) 3 27 Song et al. (2017a)
(garden pea)®
Vicia faba (broad 45 (total) 3 30 Song et al. (2017a)
bean)®
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Table 1 (continued)

Clade Clade Family Name (*°) Carbohydrate Oil Protein References
Phaseolus vul- 19 (total) 20 23 Song et al. (2017a)
garis (common
bean)®
Lotus japoni- 1 (total) 7 43 Dam et al. (2009)

cus (birdsfoot

trefoil)®

and Song et al.
(2017a)

The table contains datasets of seed storage composition from different plant species (based on bibliography included in the table). Superscripts
following the common names indicate whether sugar, oil and protein contents are expressed as percentage fresh weight (*) or dry weight (°). In
the seed carbohydrate composition column, and according to the cited studies, we have indicated in parentheses the percentages of starch, glu-
cose, cell wall components (indicated as CW) and total carbohydrates where these data were known. CW components are the data reported as
“fibers” in the sources reviewed and comprise plant cell wall-derived polysaccharides (mostly cellulose, and to a lesser extent, hemicellulose and

lignin)

unraveling carbohydrate biosynthesis and its relationships
to structure and functionality is of enormous interest and
represents a prerequisite for the targeted improvement of
starch crops (Onda and Mochida 2016). Centuries of artifi-
cial selection, together with several decades of agricultural
research during the twentieth and twenty-first century, have
elucidated the qualitative and quantitative traits associated
with seed components. Moreover, molecular approaches that
can increase the quantity and improve the quality of seed
products have been developed (Collard and Mackill 2008).
Today, breeders have a tremendous interest in deciphering
the genetic control of seed development and metabolism.
Seed development progresses temporally and spatially in
a coordinated way within the different seed organs and is
influenced by mitotic activity, transcriptional regulation,
metabolic flow and finally storage processes (Locascio
et al. 2014). In recent years, the genetic programs under-
lying plant embryogenesis and seed maturation have been
well characterized (Pfister and Zeeman 2016; Stein et al.
2017; Meng et al. 2017; Pirone et al. 2017; Doughty et al.
2014; Locascio et al. 2014; Li and Li 2015; Orozco-Arroyo
et al. 2015). Proper endosperm development is necessary for
correct embryogenesis (Hehenberger et al. 2012). In Arabi-
dopsis, mutations affecting endosperm proliferation, cellu-
larization or breakdown have been well documented. Such
mutations cause morphological disruption, altering develop-
ment and causing embryo abortion in Arabidopsis (Kondou
et al. 2008; Yang et al. 2008; Costa et al. 2014) and maize
(Fouquet et al. 2011). Seed coat failure can also affect dra-
matically embryo viability (Berger 2003; Auger et al. 2010;
Chen et al. 2013; Ehlers et al. 2016). Embryonic develop-
ment depends entirely on an adequate supply of nutrients
from maternal tissues. Significant progress has been made
in understanding the translocation of photoassimilates from
source tissues to sink tissues (Bihmidine et al. 2013). How-
ever, the mechanisms by which sucrose is transported from
the maternal seed coat of Arabidopsis to the embryo and the
endosperm (as well as downstream pathways) have remained

elusive. Specific transporters have been identified that play
a key role in sucrose flow from the seed coat to filial tissues
(Chen et al. 2015). Chen et al. (2015) showed that blocking
the carbon flow at maternal seed coat tissues can induce
significant delay in embryo development. In analogous way
to the seed coat in dicots, in monocots, the pericarp, a mater-
nal structure that encloses the filial storage organs (embryo
and endosperm), exerts a major role controlling the meta-
bolic flow toward filial tissues (Radchuk and Borisjuk 2014;
Rolletschek et al. 2015). This close interdependence of both
fertilization products requires a dynamic metabolic flow to
ensure coordinated growth and development.

Seed carbohydrate composition in different
systems

Storage compounds of seeds are primarily composed of sug-
ars, proteins and lipids, and the distribution of these metabo-
lites varies depending on the developmental program of each
species. The composition and relative amount of these stor-
age compounds have been quantified in different seed tissues
of many species (Table 1).

Endosperm structure in mature seeds varies considerably
among different species. In monocots (such as Poaceae), a
large starchy endosperm persists as a storage tissue until ger-
mination. In a developmental context, plants with this type
of seeds are referred to as “albuminous” or “endospermous”
(Yan et al. 2014). In Solanaceae species like tomato (Sola-
num lycopersicum), mature seeds display a hard and thick
endosperm cell layer, which undergoes extensive weakening
during seed germination (Nonogaki et al. 2000). In contrast,
the endosperm of “exalbuminous” or “cotyledonous” seeds
such as soybean (Glycine max) and pea (Pisum sativum) is
absorbed during embryo development and the storage tis-
sues are the enlarged cotyledons (Lee et al. 2012). In mature
seeds of Brassicaceae (e.g., Arabidopsis thaliana), the
residual endosperm is confined to a peripheral aleurone-like
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cell layer (Lee et al. 2012). In Brassicaceae species, the
endosperm acts as a mechanical barrier to inhibit embryonic
growth and as a nutrient reserve for seed germination and
early seedling establishment (Miiller et al. 2006).

The “endospermous” versus “cotyledonous” dichotomy
establishes two very different developmental programs
between species, and consequently major differences in
transcriptional reprogramming events, storage and matura-
tion phases, and metabolism of storage compounds. In the
endosperm of “albuminous” Poaceae, a common feature
is that carbohydrates, especially starch, are by far the most
abundant component (about 80% of the seed composition),
while proteins, and particularly oils, represent a minor
fraction (12 and 3%, respectively) (Table 1). Such nutrient
partitioning can be considered an “energetic” strategy. In
endospermous seeds, such as those of cereals, mobiliza-
tion of the major reserves within seed storage tissues occurs
only during germination, to provide the growing seedling
with nutrients until it becomes autotrophic (Bewley et al.
2013). In species of the Poaceae family, like wheat, a pro-
gressive accumulation of both proteins and starch increases
during late seed development (Shewry et al. 2009), whereas
sucrose, accumulated early in development, is consumed
gradually as growth progresses (Weichert et al. 2010).

In castor bean (Ricinus communis), another endosperm
accumulator, storage nutrient accumulation works slightly
differently. In this species, the most abundant storage com-
pounds are fatty acids (from 40 to 56% of seed composition),
the remainder being proteins, and an almost insignificant
accumulation of carbohydrates (Akande et al. 2012; Per-
domo et al. 2013). On the other hand, in oil palm (Elaeis
guineensis), fatty acids comprise 55% of the storage com-
pounds, carbohydrates 18% and protein just 8% of stored
nutrients (Kok et al. 2011).

“Exalbuminous” or “cotyledonous” species, like those
in the Fabaceae family, have a completely different storage
composition. Some of them, like broad bean (Vicia faba),
button medic (Medicago orbicularis) and chick pea (Cicer
arietinum), primarily sequester carbohydrates, followed by
proteins, and-a small amount of oils. In contrast, in soy-
beans (Glycine max), barrel clover (Medicago truncatula),
yellow lupin (Lupinus luteus) and common bean (Phaseo-
lus vulgaris), proteins are the main reserve component of
seeds (20-40%). In peanut (Arachis hypogaea), fatty acids
(approximately 50%) are far more abundant than proteins
and starch (Kim et al. 2017). Oil contents also represent a
major storage component in soybean (Glycine max), pon-
gam oil tree (Pongamia pinnata), birdsfoot trifoil (Lotus
Jjaponicus) and common bean (Phaseolus vulgaris). Studies
done in Vicia faba have demonstrated that at early stages of
development, and its endosperm contains a large amount
of hexose sugars, derived from high invertase activity on
sucrose (Weber et al. 1996; Draper 1997; Borisjuk et al.
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1998; Weschke et al. 2003; Melkus et al. 2011). As devel-
opment progresses, the activity of invertases ceases and
causes decreased hexose levels and increased sucrose levels
in the endosperm. A similar trend in sugar accumulation has
been reported for Pisum sativum and Zea mays during seed
development (Jaynes and Nelson 1971; Borisjuk et al. 2002).

In the Brassica family, the model species Arabidopsis
thaliana is considered a typical “oleaginous” plant, since
seeds accumulate mainly fatty acids (approximately 40%).
Protein content in Arabidopsis also represents an impor-
tant pool (roughly 40%) compared to carbohydrates (about
2%). In Arabidopsis seeds, starch content reaches its max-
imum between 6 and 9 days after pollination (DAP) and
then decreases abruptly. The highest levels of hexoses (glu-
cose and fructose) are detected at 3 DAP and then decrease
drastically to undetectable levels in mature seeds (Baud
et al. 2002). There have been important studies in rapeseed
(Brassica napus), which is closely related to Arabidop-
sis, in which metabolism of sugars has been analyzed in
dissected embryo and endosperm (Hills 2004). Rapeseed
contains an important pool of carbohydrates (22-24%). In
the endosperm, at initial phases of development, imported
sucrose is cleaved by invertases. This results in high levels
of hexoses and low amounts of sucrose. As seed develop-
ment proceeds, glucose and fructose levels decrease with
an increase in sucrose content. Sucrose represents 97% of
sugar composition in embryo during the seed development
process (Hills 2004).

In other eudicot families, the carbohydrate fraction rep-
resents an important component of total seed composition.
Carbohydrates represent the major component in Amaran-
thaceae, Linaceae and Fagaceae, identical to the storage
strategy of basal angiosperms like Nymphaeaceae. Further-
more, carbohydrates represent an important pool in seeds
of Rosaceae (21.5%), Juglandaceae (13.7%), Betulaceae
(167%), Proteaceae (13.8%), Anacaridaceae (27.1%), Lecy-
thitaceae (11.7%) families. In gymnosperms, reported car-
bohydrate levels in seeds range from approximately 13% in
pine nut (Pinus pinea) to the approximately 88% found in
African jointfir (Gnetum africanum).

The sucrolytic pathway triggers a metabolic
switch during seed development

The presence of sucrose hydrolyzing enzymes, which
produce hexoses from sucrose cleavage, is critical for the
establishment of the pre-storage phase during seed devel-
opment via regulation of source/sink relations (Herbers
and Sonnewald 1998; Baroja-Fernandez et al. 2003; Wang
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et al. 2010a, b; Adhikari et al. 2016). Sucrolytic routes lead-[XeZio

ing to major storage compounds in most angiosperms have
been well described (schematically summarized in Fig. 1).
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Fig. 1 General view of the metabolic pathways connecting carbon
partitioning to the main storage compounds in seeds and key enzy-
matic steps involved in seed development. Photoassimilates from
source tissues enter maternal tissues via the phloem. Sucrose plays
a central role and is partitioned into different storage-specific path-
ways by multiple enzymes, leading to the accumulation of starch, oil
and proteins. Seed maternal tissues (like seed coatin dicots or peri-
carp in monocots) control the rate of delivery of sucrose uptake into
the seed by means of sucrose transporters and hexose transporters
(described in Fig. 2). Once in the filial tissues, sucrose is metabolized
by the action of cell wall invertases and SuSy, releasing hexose phos-
phates into the cytosol. CWinv cleave sucrose in the apoplastic space
between maternal and filial tissues. UDPG is used as a precursor for
cell wall biogenesis. Starch is synthesized in the plastid via a biosyn-

Sucrose cleavage in sink tissues can be catalyzed either by
invertases (EC 3.2.1.26) or by sucrose synthases (SuSy, EC
2.4.1.13) (Fig. 1). Starting from sucrose, invertase gener-
ates glucose and fructose, while SuSy renders UDP-glucose
(UDPG) and fructose. Hexoses enter the hexose-P pool in
the cytosol. These monosaccharides, translocated by hexose
transporters, are essential for proper seed development. In
Arabidopsis, the glucose transporter mutants erdl6 and gpt1
formed seeds with altered seed storage nutrient composition
that affected seed development (Poschet et al. 2011; Hedhly
et al. 2016). Once in the cytosol, carbon can be preferentially
partitioned into either oil, protein or starch accumulation
(discussed in detail later) (Baud et al. 2008) (Fig. 1). Little
is known about the developmental consequences of alter-
ing carbohydrate-related genes, but there are many mutants

thetic pathway that uses PGI, PGM, AGP and SS enzymes. Starch
degradation involves a- and p-amylases (forming maltose) units and
the action of different starch phosphorylating enzymes (necessary for
starch degradation); GWD and glucan phosphate phosphatases. Hex-
ose can be metabolized through the oxidative pentose phosphate path-
way and the glycolytic pathways, providing precursors for fatty acid
production in the form of acetyl-CoA. Pyruvate kinase catalyzes the
essential irreversible transphosphorylation from phosphoenol pyru-
vate to pyruvate. Phosphoenol pyruvate is a key metabolic intermedi-
ate directing carbon partitioning toward protein and oil accumulation.
Abbreviations ADPG ADP-glucose; AGP ADPG pyrophosphorylase;
Hex Hexose; CWinv cell wall invertase; SuSy sucrose synthase; CW
cell wall; UDPG UDP-glucose

reported in the literature with phenotypic defects. We cannot
describe all of them in detail here, but it is important to sum-
marize at least those most representative in key model spe-
cies. Due to limited space, we have included list of mutants
corresponding to one dicotyledonous species (Arabidopsis;
Table 2) and two monocotyledonous species (maize and rice;
Tables 3 and 4, respectively).

Mutations of invertase and other sucrolytic enzymes that
alter the hexose/sucrose ratio have been shown to produce
phenotypic effects during seed development in many spe-
cies (Angeles-Nufez and Tiessen 2011, 2012; Adhikari
et al. 2016; Hedhly et al. 2016; Stein et al. 2017; Meng et al.
2017; Pirone et al. 2017; Solis-Guzman et al. 2017; Durand
et al. 2017). In Arabidopsis seeds, the transition from a pre-
storage to a maturation (storage) phase is characterized by a
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Table 3 (continued)

I

Shen et al. (2010)

References

expression of ZmLEC] dur-
ing early seed development

complements atlec] mutant
in Arabidopsis. Constitutive
increased oil accumula-

Phenotype

a critical role both in early
and late embryo develop-

mental stages

Function
GRMZM2GO011789  Transcription factor that plays Expression of ZmLEC1

Locus

Gene
LECI

Leafy cotyledon 1 (lecl)
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Springer

tion both in embryo and

Pouvreau et al. (2011) and
Shen et al. (2010)

endosperm. Reduced seed

germination

WRIIA, WRIIB GRMZM2G124524 Transcription factors involved Expression of both ZmWrila
and Zmwrilb complement

in glycolysis, fatty acid and
TAG-related biosynthetic

pathways

GRMZM2G174834

Wrinkled 1 a (wrila), wrin-
kled 1 b (wrilb)

the atwri mutant in Arabi-
dopsis. Overexpression of

WRIIA enhances accumula-

tion of fatty acids, organic
acids and amino acids in

maize seed

Genes are grouped according to the type of protein that they encode (enzymes, transporters and transcription factors), and among these groups, genes are ordered alphanumerically by their locus

code

clear metabolic switch from high hexose/sucrose ratios at 5
and 11 DAP to very low ratios at 14 DAP (Baud et al. 2002).
Sugar metabolism and transport are highly compartmental-
ized in seeds; therefore, small differences in hexose/sucrose
ratio can have dramatic effects on seed development and
storage metabolism (Morley-Smith et al. 2008). An altered
hexose/sucrose ratio in SuSy mutants was shown to modify
carbon partitioning and maturation of Arabidopsis seeds
(Angeles-Nufiez and Tiessen 2010). The LEC?2 transcription
factor mutant displayed a low hexose/sucrose ratio due to an
alteration in SuSy expression that induced alterations in stor-
age compound accumulation in developing seeds (includ-
ing altered oil, proteins and starch contents). The SuSy and
LEC?2 putative regulatory elements have been well described
(Angeles-Nuiiez and Tiessen 2012). Mutation of LEC?2 also
dramatically affected the delivery of photosynthates from
the seed coat to the embryo (sink strength). This led to the
formation of smaller seeds with altered seed weight ratios
(more seed coat and less embryo weight).

It is widely accepted that SuSy catalyzes the synthesis of
the main carbon source that enters cellular metabolism in
seeds, controlling the channeling of incoming sucrose into
starch and cell wall polysaccharides (Fallahi et al. 2008;
Chourey et al. 2012; Li et al. 2013; Doughty et al. 2014)
(Fig. 1). There are several lines of evidence that point out
the importance of SuSy in sink organs of crop plants, where
reduction in SuSy activity has been shown to reduce the
availability of carbon for synthesis of storage products and
growth. This is the case for the rugosus4 (rug4) mutation of
pea (Craig et al. 1999) and the shrunkenl (shl) and sucrose
synthasel (susl) mutations of maize (Chourey et al. 2012),
where the disruption of highly expressed seed-specific SuSy
isoforms resulted in marked seed phenotypes, along with
reduced seed SuSy activity and reduced starch accumula-
tion. In a similar way, mutation of genes encoding proteins
with different kinds of sucrose-phosphate synthase activity,
like sp3, sp4 and tpslI in Arabidopsis, or spsl and spsl1 in
rice, result in abnormal, or often arrested seed development
(Hashida et al. 2016; Solis-Guzman et al. 2017). Free hex-
oses, fructose and glucose, can be phosphorylated by hexoki-
nases (EC 2.7.1.1) and fructokinase (FRK; EC 2.7.1.4),
channeling carbon flow to fatty acid synthesis and therefore
oil accumulation (Stein et al. 2017) (Fig. 1). Mutations of
Arabidopsis FRKSs, like frk6 or frk7, or of a transcriptional
regulator of that pathway WRINKLEDI (wril) result in
small seeds with altered lipid concentrations (Baud et al.
2009; Stein et al. 2017). Pyruvate kinase (PK, EC 2.7.1.40),
which controls the final step of glycolysis and catalyzes the
transfer of a phosphate group from phosphoenolpyruvate
(PEP) to adenosine diphosphate (ADP), yielding pyruvate
and ATP (Fig. 1). Furthermore, mutations affecting plastidic
pyruvate kinase (PKP) displayed reduced oil accumulation
and produced a wrinkled seed phenotype (Baud et al. 2009).
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appearance. Altered phys-
icochemical characteris-

tics of starch contained by

the seed

Genes are grouped according to the type of protein that they encode (enzymes, transporters and transcription factors), and among these groups, genes are ordered alphanumerically by their locus

code

Blocking endosperm cellularization also affects the
amount of nutrients stored in the seed, which are funda-
mental for the subsequent growth of the embryo. Endosperm
nuclear division precedes embryo cell proliferation. Con-
secutive endosperm and embryo cell division are controlled
by regulatory mechanisms that involve sugar signaling
(Wang and Ruan 2012, 2013; Bergareche et al. 2018). For
instance, studies done in cotton seeds demonstrated that the
asymmetric spatial expression of the cell wall invertase gene
GhCWINI in the embryo sac regulated the sequential devel-
opment of endosperm and embryo by invertase-mediated
sugar signaling. This may be achieved by establishment
of a spatial gradient of glucose concentration (higher in
the endosperm with respect to the embryo), thus favoring
endosperm nuclear division over embryo cell proliferation
during seed set (Wang and Ruan 2012). In addition, the
metabolic switch from seed expansion to the storage phase
is strongly affected by sugar signals. The transition from cell
division and expansion to storage activities in seed is associ-
ated with a decrease in invertase activity and an increase in
SuSy activity, resulting in an increased sucrose/glucose ratio.
A correlation was observed between decreased glucose con-
centrations and reduced mitotic activity in legume embryos
(Borisjuk et al. 1998), largely due to a decrease in cw-Inv
gene expression (Weber 1995). Also, the highest expres-
sion levels of SuSy coincide with rapid starch filling in rice
grains (Wang et al. 1999). Experiments done with labeled
sucrose in oilseed rape seeds showed that the transport of
sucrose from the integuments to the embryo occurs via the
micropylar endosperm and that sucrose uptake via chalazal
endosperm is involved in filling the central endosperm vacu-
ole, the main storage pool for hexoses during seed develop-
ment (Morley-Smith et al. 2008). In Arabidopsis, failure of
endosperm cellularization in fertilization independent seed
2 (fis2) mutant seeds correlated with impaired embryo devel-
opment and increased hexose levels, suggesting that arrest
of embryo development is a consequence of failed nutrient
translocation to the developing embryo (Hehenberger et al.
2012). At early developmental stages, embryo formation
strongly relies on nutrient provisioning via the endosperm.
If the latter is not fully functional, the embryo will most
probably starve and abort, as inferred by several studies in
which impaired cellularization caused seed abortion (Scott
et al. 1998; Hehenberger et al. 2012; Chen et al. 2015).

The floral patterning regulator APETALA2 (AP2),
together with ArSUCS, is involved in the hydrolytic control
of sucrose from seeds as described in Arabidopsis (Baud
et al. 2005). The ap2 mutant shows larger seeds compared
to wild type (Jofuku et al. 2005). Ap2 mutants displayed
higher hexose levels than wild-type seeds between 5 and
13 DAP (Ohto et al. 2005). Apparently, AP2 can regulate
cell wall invertase activity and hence the hexose/sucrose
ratio, thus influencing sugar transfer from maternal tissues
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to the embryo and the endosperm. Sucrose hydrolysis is a
fundamental component of plant performance (Cheng and
Chourey 1999; Weichert et al. 2010; Faix et al. 2012). In
this context, the “invertase control hypothesis” was proposed
many years ago. The hypothesis, initially demonstrated in
dicotyledons (Wobus and Weber 1999), was later also dem-
onstrated in monocotyledonous plants. The mutation of
maize cell wall invertase INCW?2 resulted in miniature ker-
nels (mnl mutation) and development of a severely reduced
endosperm (Cheng et al. 1996; Taliercio et al. 1999; Vil-
har 2002; Fatihi et al. 2013). The observation that a soluble
invertase expressed during early development of seed (/VR2)
can affect yield under limited photosynthetic activity condi-
tions suggests that soluble invertases also play a critical role
in the supply of hexoses to support cell division during the
pre-storage phase (Andersen 2002; Bihmidine et al. 2013;
Wan et al. 2017).

Maternal tissues regulate photoassimilate
import and sink strength of seeds

Seed filling depends primarily on photoassimilate supply and
sink strength, but also depends on carbon partitioning and
remobilization. The overall capacity of heterotrophic tissues
to uptake photoassimilates depends on the ability of individ-
ual cells to import, metabolize and store sucrose. Although
some seeds can undergo greening, embryo development
relies on the supply of photoassimilates from maternal tis-
sues. The discharge paths depend on the particular resistance
of the seed sink and its developmental stage. In organs that
can release sugar via the apoplast, there are two possible
routes for subsequent absorption by storage cells: hydrolysis
of sucrose by an apoplastic invertase and the subsequent
release of glucose and fructose units, or direct import of
sucrose by active transport at the plasma membrane. As
detailed in Fig. 2, different apoplastic barriers exist between
genetically distinct tissues such as maternal integuments and
endosperm/embryo. Photoassimilates produced in mother
tissues are delivered to the developing seed via the vascular
system. This facilitates the coordination of physiological and
developmental processes between the mother and its progeny
(van Bel et al. 2013). The maternal symplasm represents
the major route by which nutrients reach the seed (Radchuk
and Borisjuk 2014). The vasculature does not extend beyond
the seed coat (McDonald et al. 1995; Etchells et al. 2012);
thus, both embryo and endosperm are apoplastically isolated
from the maternal tissues. Numerous pathways for nutrient
flow are available and depend on the structure of the seed
in each species (reviewed in Radchuk and Borisjuk 2014).
The import of sucrose occurs via the apoplast of tissues that
surround the embryo (Weber et al. 2005). In legume cotyle-
dons and barley endosperm, sucrose accumulation increases

@ Springer

during maturation, and this marks the switch from maternal
control to filial control of seed growth (Weber et al. 2005).
In legume seeds, feeding with sucrose alters the meris-
tematic state, induces cell expansion and endopolyploidiza-
tion (Weber et al. 1996; Rolletschek 2005) and promotes
cotyledon storage activity at the transcript level (Ambrose
et al. 1987; Dante et al. 2014). In maize kernels, the vascu-
lar bundle finishes directly at the placenta—chalazal region.
In Arabidopsis, the sucrose pool which arrives in the seed
coat via the funicular phloem enters the outer integument
of the seed coat through plasmodesmatal connections.
Nutrients must be transported from the outer to the inner
integuments successively, since the outer integument and
the inner integument constitute independent symplasms
and consequently transferred to the endosperm and embryo
(each one constituting an independent symplasm) (Stadler
2005; Ingram 2010). In common bean, fava bean and pea,
seed coat parenchyma is the major site for the uptake of
sucrose released from the maternal tissues to the seed apo-
plasm (Wang et al. 1995). In grain crops, like wheat and
barley, sucrose is unloaded via the nucellar projection and
it is redistributed toward the endosperm, enabling control
of seed growth by maternal tissues (Wang and Fisher 1994,
Thiel et al. 2008; Melkus et al. 2011; Bihmidine et al. 2016;
Brandt et al. 2018). In cereal grains, the pericarp, a mater-
nal tissue that surrounds the embryo and endosperm, plays
a critical role controlling the flow of nutrients during seed
development (including sucrose unloading, starch biosyn-
thesis and carbon remobilization) (for a complete review,
see Rolletschek et al. (2015). A defective nucellar projec-
tion compromises nutrient flow into the endosperm, with
a concomitant reduction in final grain size (Radchuk 2006;
Melkus et al. 2011; Yin and Xue 2012; Andriotis et al. 2012;
Pirone et al. 2017).

It has been shown that several sucrose transporters can
participate in the provision of nutrients to the embryo
(Fig. 2). The way in which sucrose is released from mater-
nal tissues (the seed coat) for supporting development of
filial tissues (the embryo) is not well understood, except
for the contribution of a subset of transporters. Evidence
from studies in pea (Pisum sativum) and bean (Phaseolus
vulgaris) seeds implicated SUF transporters (SUcrose/H*
cotransporter family) in sucrose efflux from the seed coat
(Ritchie et al. 2003; Zhou et al. 2007). Three sucrose trans-
porter genes expressed in the developing grain of wheat
have been identified (Aoki et al. 2002). The role of specific
sucrose transporters in Arabidopsis seeds was demonstrated
during later developmental stages, revealing the orchestrated
action of three specific sucrose transporters (SWEETI1, 12
and /5) for efflux of sucrose from the integument into the
apoplasm, as well as from the endosperm to support growth
and development of the embryo (Chen et al. 2015). SUC5
may be responsible for uptake of sucrose into the endosperm
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Maternal tissues

Filial tissues

PHLOEM
sucrose
VASCULAR BUNDLE (monocot) PERICARP (monocot)
OUTER INTEGUMENT (dicot) INNER INTEGUMENT (dicot) X ENDOSPERMT — g™ I
Suc Suc Suc
I 1 Suc \ S'& Suc
| || Hex
Hex A Hex
L JU y
:‘:{) Sweet transporter * Hex/ H+ symporter
G Suc/ H+ symporter ‘ CW invertase

@ Sucrose Synthase

Suc: Sucrose

Fig.2 Sucrose unloading and multistep sequential apoplastic trans-
port during early stages of seed development. Sucrose arrives to
the seed through the phloem and enters the vascular bundles/outer
integuments via plasmodesmatal connections. In_Arabidopsis, the
outer integument functions as a symplastic extension of the funicu-
lar phloem and plays a similar role to the vascular compartments in
grains and cereal legumes: distribution and import of photoassimi-
lates into filial tissues (Stadler 2005; Kunieda et al. 2013). Several
studies suggest the absence of symplastic connections between seed
coat, endosperm and embryo. These tissues are separated by three
apoplastic borders: (1) between the vascular bundles/outer integu-
ments and inner integuments/pericarp, (2) between the inner integu-
ments/pericarp and the endosperm and (3) between the endosperm
and the embryo (Stadler 2005; Kunieda et al. 2013; Creff et al. 2015;
Turbant et al. 2016). The bypass of these borders inevitably requires
the existence of a sucrose carrier-mediated transport (SWEET trans-
porter) acting at each interface (Chen et al. 2015b; Griffiths et al.

from the apoplasm between the seed coat and the endosperm
in Arabidopsis (Baud et al. 2005). The impact in Arabidopsis
seed development was similar in the suc5 single mutant and
the sweetl 1, 12, 15 triple mutant; both mutants manifested
severe seed defects, including delayed embryo development,
reduced seed weight, and reduced starch and lipid content,
with a clear “wrinkled” seed phenotype (Chen et al. 2015;
Griffiths et al. 2015).

Hex: Hexoses

2016; Durand et al. 2017). The SUC transporters (SUTs) may be
responsible for sucrose loading from the apoplasm and are essen-
tial for sucrose translocation into each symplastic area (Lalonde
et al. 2004; Baud et al. 2005; Zhou et al. 2007; Pommerrenig et al.
2013; Ruan et al. 2008). At the inner integument, sucrose can be
either transported toward the filial tissues via the apoplast (through
SUTs) or metabolized by cell wall invertases (CWinv) or sucrose
synthase (SuSy), with the resulting monosaccharides translocated
by hexose transporters. Sucrose can be cleaved by SuSy in the cel-
lularizing endosperm, and the resulting UDPG can be used to meet
cell wall biosynthesis demands (Ruan et al. 2008). Sucrose and hex-
ose transporters play a major role in delivering sugars to the embryo,
and some sucrose can be transported to the globular embryo and
processed by CWinv to provide the hexose needed for cell division
(Wang and Ruan 2012). Nevertheless, hexose import may dominate
over sucrose import during the early stages of seed development

Starch biosynthesis and breakdown
pathways in seeds

A detailed examination of starch biosynthetic pathways
is beyond the scope of this review. However, as starch is
a major seed component, the most relevant events of this
pathway are discussed in this section. The starch synthesis
pathways in photosynthetic organs like leaves and in hetero-
trophic sink organs like seed endosperm have been described
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elsewhere (Nakamura 2002; Lee et al. 2007; Bahaji et al.
2015; Boyer et al. 2016; Pfister and Zeeman 2016; Naka-
mura et al. 2017; Wang et al. 2017a, b). Studies of mutants
identified in many plant species have revealed that the key
control steps of the starch synthesis pathway are mediated by
ADP-glucose pyrophosphorylase (AGP, EC 2.7.7.27). AGP
catalyzes the formation of ADP-glucose (ADPG) and inor-
ganic pyrophosphate (PPi) from glucose-1-phosphate (Glc-
1-P) and ATP. The resulting ADPG molecule serves as the
glucosyl donor for starch synthesis by action of starch syn-
thases (ADPG:(1,4)-a-p-glucan 4-a-pD-glucosyltransferase,
SS,EC 2.4.1.21 and 2.4.1.242) followed by combined action
of starch-branching enzyme (SBE, EC 2.4.1.18) and starch-
debranching enzyme (DBE; EC 3.2.1.68 for isoamylase type
and EC 3.2.1.41 for pullulanase type).

Mutants impaired for AGP activity in rice and maize dis-
play a severe inhibition of starch synthesis and a significant
increase in sucrose, glucose and fructose accumulation, con-
comitant with the development of a shrunken endosperm and
an overall reduced seed size (Hannah et al. 2001; Lee et al.
2007; Huang et al. 2014; Tang et al. 2016; Wei et al. 2017).
As the substrate for starch synthesis, ADPG must be trans-
ported into amyloplasts from the cytosol by an ADPG trans-
porter located in the envelope membrane of amyloplasts.
Sullivan (1991) first proposed BT1 proteins as ADPG trans-
porters in cereal endosperms. Cereal endosperms express the
plastidial ADPG carrier brittle-1 (BT1) which can transport
ADPG from the cytosol into plastids (Shannon et al. 1998;
Kirchberger et al. 2007). Transport studies have shown that
maize ZmBT1, barley HYNST1 and wheat TaBT1 are able
to transport ADPG in counter-exchange with ADP (Patron
2004; Bowsher et al. 2007; Kirchberger et al. 2007). Muta-
tion of the rice ADPG transporter ortholog OsBT! induced
dramatic defects in endosperm appearance and reduced
grain weight (Li et al. 2017a, b). Starch synthases (SS) then
transfer glucose units from ADP-glucose to the non-reducing
end of an a-glucan backbone, thus elongating amylose and
amylopectin molecules. SS mutants in cereals, like dulll
in maize, as well as waxy, ssl and ss3a-1 in rice result in
reduced seed weight and altered seed composition (Fujita
et al. 2011; Lin et al. 2012; Shahid et al. 2016). SBEs gener-
ate a-1,6-branch linkages in a-glucans through cleavage of
a-1,4 bonds. The total amylose content in cereal endosperm
has been increased by the enhancement of granule-bound
starch synthase I (GBSSI) expression or by eliminating
SBEs, SSIla or other enzymes involved in amylopectin syn-
thesis (Itoh et al. 2003; Umemoto et al. 2004; Crofts et al.
2012; Zhou et al. 2016; Wang et al. 2017a). The “wrinkled”
seed mutant (rr) of pea (Pisum sativum L.), the object of
Mendel’s studies, appeared by mutation of the gene encod-
ing SBEI by insertion of a transposon-like element into the
coding sequence (Mendel 1865; Bhattacharyya et al. 1993).
Finally, there is evidence that the disproportionating enzyme
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(4-a-glucanotransferase, DPE) and a-glucan phosphorylase
are involved in the pathway of starch biosynthesis by affect-
ing a-glucan phosphorylase activity (Colleoni et al. 1999;
Dauvillée et al. 2006). Mutations affecting phosphorylase
activity, like dpe2 and phslI-1 in Arabidopsis and phol in
rice, cause disruptions in the starch content of seed, which
in the case of rice results in smaller seeds (Zeeman 2004;
Chia et al. 2005; Satoh et al. 2008).

In recent years, there have been major advances in our
understanding of starch breakdown in heterotrophic seed
tissues (Wu et al. 2014; Tetlow and Emes 2017). The ini-
tial event, required for subsequent starch degradation, is the
phosphorylation of amylopectin by glucan water dikinase
enzymes (a-glucan, water dikinase, GWD, EC 2.7.9.4).
Arabidopsis knockout mutants lacking GWD exhibited
a starch-excess phenotype in seeds and delayed embryo
development (Andriotis et al. 2010; Pirone et al. 2017).
In rice, mutation of the plastidial a-glucan phosphorylase
gene affected the synthesis and structure of starch in the
endosperm, accompanied by a shrunken phenotype that
appears when grown in cold conditions (Satoh et al. 2008).

Once phosphorylated, a-amylases catalyze forma-
tion of soluble starch (Wu et al. 2014). Plant a-amylases
(EC 3.2.1.1), the most abundant amylolytic enzyme in the
endosperm, hydrolyze a-(1,4)-glucosidic linkages in glucan
polymers to release both linear and branched glucans. This
facilitates the attack of the granule by other enzymes and
releases soluble glucan fragments to serve as substrates for
other enzymes. Mutation of the a-amylase in maize induced
glassy, shrunken and translucent kernel phenotypes (James
et al. 2015). Similar effects were also seen in rice mutants
affecting a-amylase (Satoh 2003). The complete degrada-
tion of soluble starches proceeds with the concerted action
of DBE enzymes, which catalyze the hydrolysis of a-(1,6)-
glucosidic linkages of polyglucans.

The grains of the debranching enzyme mutant Bell-a in
rice displayed an altered fine structure of amylopectin that
is associated with size and weight reduction when compared
to wild-type grains (Satoh 2003). Linearized glucans are
exposed to (1) B-amylases, which catalyze the hydrolysis
of a-(1,6) glucosidic linkages of polyglucans liberating the
disaccharide maltose, or to (3) a-glucosidases (EC 3.2.1.20),
which catalyze the release of a-p-glucose from the non-
reduced ends of a-linked glucans. The resulting maltose and
glucose units are then exported to the cytosol via maltose
transporter (MEX1) and glucose transporters. The glucose
produced in the endosperm can be taken up and converted to
sucrose in the scutellum and redistributed to growing tissues
such as young shoot and root tissues (Griffiths et al. 2016;
Niittyl4 et al. 2004; Reidel et al. 2008).

Viable seed formation requires the tightly coordinated
activity of many proteins involved in carbohydrate metabo-
lism. This statement is supported by the characterization of
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a wide variety of mutants affecting carbohydrate metabolism
that display defective seed phenotypes, most of which (both
mutants and phenotypes) have been discussed in this review
and are included in Tables 2, 3 and 4. Several transcription
factors presented in the tables have not yet been directly
linked to metabolic regulation, like MINI3, PHEI and TTG1
in Arabidopsis, LEC1, WRIIA and WRIIB in maize and NF-
YBI and RSRI in rice, but can affect seed development at
different levels: seed size, weight, color, morphology and
seed composition (Shen et al. 2010; Fu and Xue 2010; Pou-
vreau et al. 2011; Fatihi et al. 2013; Orozco-Arroyo et al.
2015; Chen et al. 2015a; Xu et al. 2016; Meng et al. 2016).
Further research should assess to what extent these pheno-
types are linked to alterations in carbohydrate metabolism.

Future perspectives

The identification of quantitative trait loci that determine
seed carbohydrate contents, along with genetic engineer-
ing to overexpress or repress genes involved in carbon flow
toward seed starch, oils or proteins have led to significant
increases in storage compounds in several species (Wese-
lake et al. 2009; Kurai et al. 2011; Li et al. 2013; Paul et al.
2017). A better understanding of sucrose delivery and starch
biosynthesis pathways in seeds requires additional research
in each specific crop at the biochemical, developmental and
molecular levels, which allows plant breeders and biotech-
nologists to increase seed carbohydrates in a predictable
way. Overall, the data discussed here suggest that breeders
should give more attention to the role that metabolites play
at critical points of the developmental program. A central
unanswered question is the identification of nutrient sensing
mechanisms and signal transduction pathways that connect
carbohydrate status with seed inter-compartmental crosstalk.
Carbohydrate and nitrogen metabolisms are highly intercon-
nected, and the identification of branch points will help to
clarify what determines assimilate partitioning between
starch, proteins and oils. Manipulation of carbon and nitro-
gen partitioning constitutes a potential tool for agricultural
improvements, but pleiotropic seed developmental defects
can limit the applicability of this strategy.

Studies of transporter function are of particular interest
from the perspective of applied science. Overexpression
of the barley sucrose transporter HvSUT! in endosperm
increased storage protein content (20%) and nitrogen
assimilation (up to 14%) (Weichert et al. 2010). Similarly,
expression of the amino acid transporter gene (VfAAPI) in
pea seeds leads to increased seed biomass (therefore more
carbon) (Weigelt et al. 2008). In addition, overexpression
of sucrose transporters in Arabidopsis companion cells
impacted phosphate requirements (Dasgupta et al. 2014).
These studies point to the complex cross talk between

carbon, nitrogen and phosphate metabolism in specific seed
compartments. Synergistic effects and possible developmen-
tal defects in seed formation should not be overlooked in
breeding programs attempting to modify the storage status
of crop plants.

Maternal tissues such as the seed coat (dicots) and peri-
carp (monocots) serve a number of functions, most of which
evolved to protect the seed and to promote the development
of embryo and endosperm. The architecture, chemical com-
position and metabolism of these tissues work together to
respond to developmental programs. Sucrose passing from
the mother plant to the developing endosperm and embryo
are distributed by the seed coat and pericarp, which rep-
resent a critical bottleneck ensuring proper nutritional dis-
tribution among all progeny during seed development and
seed filling. Future studies should take into account the
role of the these tissues when attempting to modulate seed
development.

Current strategies to improve seed quality range from
conventional breeding, marker-assisted breeding, quanti-
tative trait loci (QTLs), mutagenesis, creation of hybrids,
genetic modification (GM), new genome-editing technolo-
gies and chemical approaches. Metabolomics approaches
allow the parallel assessment of the levels of a broad range
of metabolites for both phenotypic and physiological char-
acterization. These approaches allow breeders to modulate
a quantitative trait and to reprogram the metabolome to pro-
duce valuable nutrients. For instance, recent work demon-
strated the feasibility of creating high-amylose rice through
CRISPR/Cas9-mediated targeted mutagenesis of a starch-
branching enzyme (Sun et al. 2017).

Recently, methods allowing rapid, high-throughput
genotyping of entire crop populations have emerged and
opened the door to wider use of molecular tools in plant
breeding. For instance, the importance of rice as a food crop
has made it the focus of genome-scale efforts to identify
factors controlling seed yield and composition. Massive
sequencing efforts, including the 3000 Genomes Project,
have enabled the creation of datasets and bioinformatic tools
to analyze SNPs and to search for the presence or absence
of genes across multiple representatives of Oryza species
(Li et al. 2014). Using this resource, genome wide asso-
ciation (GWAS) and SNP marker approaches have sought
to elucidate candidate genes that correspond to QTLs for
important agronomic traits, including grain size and compo-
sition. Huang et al. (2012) undertook a GWAS incorporat-
ing 950 varieties and identified candidate genes for amylose
content (thaumatin-like protein cluster on chromosome 12)
and protein content (peptidase gene cluster on chromo-
some 70). Most effort has been aimed at increasing rice
yield and seed size. Those results, combined with GWAS/
SNP-based targets to improve quality (lower amylose and
higher eating quality), may prove to be the future direction
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of marker-assisted breeding programs (Huang et al. 2012).
The availability of seed to immediately apply these data to
breeding programs is hoped to accelerate improvement of
rice to meet the demands of a growing population and a
changing climate. Hopefully, these tools will soon be avail-
able for the study of all major crop plants to accelerate seed
improvement.
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