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Luminal B breast cancers (BC) have a more aggressive behavior associated with a higher rate of tumor relapse and worse
prognosis compared to luminal A tumors. In this study, we evaluated the involvement of specific epithelial-to-mesenchymal
transition- (EMT-) and immune-related pathways in the dissemination of luminal B BC cells. The expression of 42 EMT- and
immune-related genes was evaluated in matched sentinel lymph nodes (SLNs) analyzed by the one-step nucleic acid
amplification assay (OSNA) and primary tumors of 40 luminal B BC patients by gene array and immunohistochemistry. The
results were validated in an independent group of 150 luminal B tumors by immunohistochemistry and immunofluorescence
and using gene expression data from 315 luminal B BC patients included in the Metabric dataset. We found that the expression
of CXCR4 (p = 3 28E − 02) and CD163 (p = 6 92E − 03) was significantly upregulated in SLNs of recurrent luminal B BC
patients. Luminal B primary tumors overexpressing CXCR4 were characterized by an increased expression of vimentin and a
high content of CD163-positive macrophages. Bioinformatics analysis confirmed the correlation of CXCR4 with CXCL12, VIM,
and CD163 expression and LN involvement. Our results suggest that the upregulation of the CXCR4/CXCL12 pathway and the
presence of protumor macrophages in the primary tumor and SLNs sustain the aggressiveness of an important subgroup of
luminal B BC.

1. Introduction

Breast cancer (BC) is a heterogeneous disease, which
encompasses distinct subtypes that differ in molecular fea-
tures, clinical behavior, and response to treatment [1–3].
Gene expression-based classification identified four major
BC molecular subtypes defined as luminal A and B, human

epidermal growth factor receptor 2- (HER2-) enriched, and
triple negative (TN)/basal-like tumors [1–3]. Luminal B
tumors, which account for approximately 20% of all BC,
show a lower expression of estrogen receptor (ER), lower
or no expression of progesterone receptor (PgR), and higher
proliferation compared to luminal A cancers and can be
HER2 positive [4, 5]. In particular, luminal B tumors have

Hindawi
Disease Markers
Volume 2018, Article ID 5018671, 9 pages
https://doi.org/10.1155/2018/5018671

http://orcid.org/0000-0001-9605-8167
http://orcid.org/0000-0002-6469-4086
http://orcid.org/0000-0002-9013-4728
https://doi.org/10.1155/2018/5018671


a more aggressive behavior compared to luminal A cancers,
showing a pattern of tumor recurrence and prognosis similar
to those of HER2-enriched and TN/basal-like cancers [6].

It is well established that cancer cells, moving from pri-
mary breast tumor, can reach distant organs and metastasize
through both blood and lymphatic vessels [7]. The sentinel
lymph node (SLN), being by definition the first lymph node
reached by BC cells spreading from the primary site, exerts
a pivotal role in disease progression [8]. Tumor dissemina-
tion through SLNs, which can be rapidly detected through
the one-step nucleic acid amplification assay (OSNA), is
often driven by the epithelial-to-mesenchymal transition
(EMT) process that allows epithelial cells to detach from
the surrounding tissue and acquire a mesenchymal pheno-
type, gaining migratory and invasive abilities [9, 10].

In the last few years, a growing interest has been given to
the relationship between tumor cells and the immune system
[11, 12]. Importantly, EMT is emerging as a crucial mecha-
nism regulating the dynamic interactions in the tumor
microenvironment and supporting tumor immune escape
[13, 14]. Indeed, cancer cells with mesenchymal features are
able to shape the phenotype and the activity of tumor-
associated immune cells, which in turn can regulate EMT
in cancer cells through the release of multiple soluble
mediators [13, 14]. In particular, inflammatory cells and
tumor-associated macrophages (TAMs) have been shown
to be able of inducing EMT, sustaining tumor progression
in BC [13, 15]. Thus, the identification of the mechanisms
underlying the acquisition of metastasis-enabling features
and the generation of a permissive microenvironment for
tumor growth and invasion can help identify luminal B BC
patients at high risk of relapse and may represent the ratio-
nale for the development of novel therapeutic strategies.

In this study, we evaluated the role of EMT- and
immune-related pathways in sustaining the dissemination
to SLNs and in driving local and distant relapse in luminal
B BC patients.

2. Methods

2.1. One-Step Nucleic Acid Amplification (OSNA). The OSNA
assay was performed as previously reported, using the OSNA
BC System (Sysmex, Kobe, Japan)[16]. Briefly, after remov-
ing extranodal and fatty tissues, the SLNs (≤600mg) were
homogenized in 4mL of Lynorhag lysis buffer (Sysmex) for
90 sec on ice using a Physicotron Warring blender with an
NS-4 shaft (MicroTec Nichion) and then centrifuged at
10,000×g for 1min at room temperature. SLNs exceeding
the specified maximum weight of 600mg were cut into two
or more pieces and processed separately. The lysate (2μL)
was subjected to the automated reverse transcription loop-
mediated isothermal amplification (RT-LAMP) of cytokera-
tin 19 (CK19) mRNA using an RD-100i analyzer (Sysmex).
The remaining sample was stored at −80°C. CK19 mRNA
copy number was determined based on a standard curve
generated using a known quantity of human CK19 mRNA,
and samples were classified based on the CK19 mRNA
copy number/μL. Accordingly, we defined macrometastasis
(++) as >5× 103 copies/μL of CK19 mRNA, micrometastasis

(+) as 2.5× 102 to 5× 103 copies/μL, and nonmetastasis (−)
as <2.5× 102 copies/μL. All surgical resection specimens were
also analyzed for CK19 expression using immunohistochem-
istry (RCK108 antibody, Dako).

2.2. Clinical and Pathological Data of Luminal B HER2-
Negative Breast Cancer. We used a discovery cohort of
40 patients with invasive ductal luminal B (HER2-nega-
tive) BC and OSNA ++ SLNs, who underwent surgery at
the Humanitas Clinical and Research Center between 2011
and 2014. The validation dataset included 150 patients
with invasive ductal luminal B (HER2-negative) BC and
OSNA ++ SLNs, who underwent surgery at the Humanitas
Clinical and Research Center between 2006 and 2010.
Samples in the two cohorts were homogeneous for all clinico-
pathological features and treatments. Matched formalin-
fixed and paraffin-embedded (FFPE) tissues were available
for all the selected cases. Patients were classified as relapsing
based on the first evidence of invasive relapse at any site.
Clinical and pathological data of these cohorts are reported
in Supplementary Table 1 and Supplementary Table 2.

2.3. Sample Processing andQuantitative Reverse Transcription
PCR (qRT-PCR). The OSNA lysates were incubated at 37°C
in a water bath until completely thawed and centrifuged at
12,000×g for 5min at room temperature. The supernatant
was discarded, and lysis reagent (Qiazol, Qiagen) was added.
RNA was then extracted with the RNeasy Plus Universal Tis-
sue Kit (Qiagen) following the manufacturer’s instructions.

RNA retrotranscription was performed with the iScript
Advanced cDNA Synthesis Kit (Bio-Rad). Briefly, the reverse
transcription master mix was prepared as indicated, and 5μL
of total RNA input were added to 15μL of the prepared
master mix for each reverse transcription reaction. All the
reactions were assembled on ice. The complete reaction mix
was then incubated in a thermal cycler according to the man-
ufacturer’s protocol.

Based on a comprehensive literature review and pathway
enrichment analysis, we identified a set of 42 genes associated
with immune and EMT functions (Supplementary Table 3).
Expression profiling by qRT-PCR was performed using a
custom gene panel (Bio-Rad) using a ViiA 7 Real-Time PCR
system (Applied Biosystems). Data were then normalized,
and we considered as positive cut-off a ΔCt> 4.

2.4. Immunohistochemistry and Immunofluorescence. FFPE
tissues were cut into 2μm sections and subjected to antigen
unmasking at 98°C in a water bath for 25min. Slides were
cooled for 30min before the treatment with Peroxidase
Blocking Reagent (Dako) and Background Sniper (Biocare).
Immunohistochemical reactions were performed using
CONFIRM anti-Ki67 (clone 30-9; Ventana Medical Sys-
tems), CONFIRM anti-vimentin (clone V9; Ventana Medical
Systems), anti-CD163 (clone 10D6, 1 : 1000; Novocastra),
anti-CXCR4 (clone UMB2, 1 : 200; Abcam), and anti-
CXCL12 (clone 79018, 1 : 500; R&D Systems) primary
antibodies. DAB chromogen kit (Biocare Medical) was
used for immunodetection. All analyses were performed
centrally at the Humanitas Clinical and Research Center
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by two pathologists, who were blinded for patient charac-
teristics and outcome. The staining was evaluated by
intensity (0 =no staining, 1 =weak, 2 =moderate, and
3= strong) and the percentage of stained cells (0 = 0%,
1= 1–10%, 2= 11–50%, 3=51–80%, and 4> 80%). The
immunoreactive score (IRS) was obtained by multiplying
the intensity with the proportion of positive cells, and
samples were classified as negative (IRS= 0–5) or positive
(IRS= 6–12) [17–19]. CD163 staining was scored using a
four-tiered system ranging from 0 (absent) to 3 (dense),
as previously described [15].

For immunofluorescence, FFPE sections (3μm) were
subjected to UV radiation for 48h at 16°C. Deparaffinization
and antigen unmasking were performed in sodium citrate
buffer pH6.0 (Bio-Optica) at 98°C in a water bath for
25min. Slides were cooled in deionized water and blocked
with PBS containing 2% bovine serum albumin and 2% goat
serum for 30min at room temperature. Sections were then
incubated with anti-CXCR4 antibody (clone UMB2, 1 : 200;
Abcam) for 1 h at room temperature and then with anti-
CD163 antibody (clone 10D6, 1 : 1000; Novocastra) for 1 h
at room temperature. Goat anti-rabbit Alexa Fluor 488 and
goat anti-mouse Alexa Fluor 594 (Invitrogen) were used as
secondary antibodies. Slides were counterstained with DAPI
and mounted with ProLong Gold (Invitrogen). Images were
captured using an Olympus Fluoview FV1000 laser scanning
confocal microscope (Olympus).

2.5. In Silico Data Analysis. Gene expression data from the
Metabric dataset were processed as previously described
[20, 21]. Overall, we analyzed 315 patients with luminal B
(HER2-negative) BC, as defined by the PAM50 classifier
and based on the expression of the ERBB2 gene. Patients’
characteristics are reported in Supplementary Table 4.

2.6. Statistical Analysis. The analysis of differential gene
expression between patients’ subgroups was performed by
unpaired two-tailed t-test. Spearman’s rank correlation test
was used to evaluate the correlation between variables.
Clinicopathological associations were investigated using
Fisher’s exact test (FET) and Mann–Whitney U test for
categorical and continuous data, respectively. For categori-
cal analysis, the median expression of CXCR4 was used as
cut-off. p values were adjusted for multiple testing by
Benjamini-Hochberg correction, and the level of statistical
significance was set at p < 0 05.

3. Results

3.1. Identification of Genes Differentially Expressed between
Relapsing and Nonrelapsing Luminal B BC Patients. We first
investigated the potential involvement of EMT and immune
signaling in the metastatic dissemination of luminal B BC.
We analyzed the expression of 42 genes associated with these
pathways in 40 OSNA ++ SLNs of luminal B (HER2-nega-
tive) BC patients, which included 20 relapsing subjects and
20 tumor recurrence-free patients (Supplementary Table 1).

We identified 12 genes that were differentially expressed
between recurrent and nonrecurrent luminal B BC patients

(Table 1). However, only eight genes (CALD1, CD163,
COL1A2, CXCR4, ITGAV, SNAI2, TGFB2, and TWIST1),
whose expression was upregulated in SLNs of patients
who experienced tumor relapse, remained significant after

Table 1: Genes differentially expressed in the OSNA ++ sentinel
lymph nodes of relapsing and nonrelapsing luminal B BC patients.

Gene Fold change p value Adjusted p value∗

TGFB2 5.2 7.81E − 05 3.28E − 03
CD163 5.5 3.30E − 04 6.92E − 03
COL1A2 8.3 3.40E − 03 3.28E − 02
CXCR4 3.4 4.17E − 03 3.28E − 02
ITGAV 2.9 4.25E − 03 3.28E − 02
TWIST1 5.2 4.69E − 03 3.28E − 02
CALD1 4.1 6.44E − 03 3.59E − 02
SNAI2 3.7 6.84E − 03 3.59E − 02
MKI67 1.9 1.26E − 02 5.24E − 02
BMP1 0.4 1.27E − 02 5.24E − 02
LAG3 3.2 1.40E − 02 5.24E − 02
CDH2 2.5 1.50E − 02 5.24E − 02
IL2 3.4 1.78E − 02 5.68E − 02
STEAP1 5.8 1.89E − 02 5.68E − 02
ZEB1 2.8 2.77E − 02 7.76E − 02
FOXC2 7.6 3.32E − 02 8.73E − 02
PGR 4.3 3.71E − 02 9.16E − 02
CDH1 2.2 5.20E − 02 1.21E − 01
VCAN 2.3 5.53E − 02 1.22E − 01
WNT5A 2.0 7.42E − 02 1.49E − 01
HPRT1 1.8 7.46E − 02 1.49E − 01
CD28 2.2 9.66E − 02 1.84E − 01
TMEFF1 2.7 1.15E − 01 2.09E − 01
GSC 2.7 1.33E − 01 2.33E − 01
SNAI1 2.6 1.53E − 01 2.57E − 01
OSM 2.7 1.67E − 01 2.69E − 01
IL10 2.3 1.79E − 01 2.78E − 01
FGF1 2.2 1.90E − 01 2.80E − 01
CSF1 1.9 1.93E − 01 2.80E − 01
AHNAK 0.8 2.30E − 01 3.21E − 01
SOX10 2.5 2.54E − 01 3.43E − 01
TIMP1 1.4 3.11E − 01 4.08E − 01
ESR1 1.5 4.31E − 01 5.48E − 01
VIM 1.2 4.58E − 01 5.66E − 01
IGF1R 1.3 5.06E − 01 6.07E − 01
TGFB1 0.8 5.37E − 01 6.27E − 01
SPARC 0.9 5.99E − 01 6.80E − 01
IGFBP4 1.1 6.57E − 01 7.26E − 01
ERBB2 1.2 7.07E − 01 7.61E − 01
CD4 1.1 8.42E − 01 8.69E − 01
AXL 1.1 8.48E − 01 8.69E − 01
MRC1 1.0 9.00E − 01 9.00E − 01
∗Benjamini-Hochberg-adjusted p values.
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adjustment for multiple testing (Table 1), indicating that
both EMT and immune response have a crucial role in
the spread of luminal B BC cells to SLNs. In particular,
the chemokine receptor CXCR4, which mediates both the
EMT process and the polarization toward an immuno-
suppressive microenvironment, has been directly involved
in the progression of ER-positive BC [22–24]. Further-
more, the high expression of CD163 in SLNs from relaps-
ing patients may suggest an active role of M2 protumor
macrophages in supporting the aggressiveness of luminal B
BC cells.

3.2. CXCR4/CXCL12 Axis Has a Key Role in Determining the
Metastatic Destination of Luminal B BC. To evaluate the
potential involvement of CXCR4- and CD163-positive mac-
rophages in the progression of luminal B BC, we analyzed the
matched primary tumors of luminal B BC patients in the
discovery cohort. We found that CXCR4 protein was overex-
pressed in relapsing luminal B BC patients compared with
nonrelapsing cases (FET p = 0 010; Figure 1(a)). Further-
more, we showed that primary tumors with significant high
levels of the CXCR4 receptor also overexpressed its ligand
CXCL12 (Figure 1(b)). The association between CXCR4
protein levels and tumor relapse (FET p = 0 031) was con-
firmed in luminal B BC patients of the validation cohort
(FET p = 0 031; Figure 2). Importantly, we demonstrated that
luminal B primary tumors overexpressing CXCR4 were char-
acterized by an increased expression of the mesenchymal
marker vimentin and by a high content of CD163-positive
TAMs (FET p = 0 033; Figure 2). Conversely, wewere not able
to detect any association between the expression of CXCR4
and Ki67 in luminal B BC (Figure 2).

To confirm the relevance of TAMs in favoring the aggres-
siveness of BC cells, we performed double immunofluores-
cence for CXCR4 and CD163 on tumor tissues of luminal B
BC patients from the validation cohort. Accordingly, we
demonstrated that CXCR4-positive BC cells and CD163-
positive TAMs were localized in the same tumor regions in

75% of relapsing cases, while no association was observed
in nonrelapsing luminal B cancers (Figure 3).

These findings were further validated by analyzing the
gene expression profiles of 315 luminal B (HER2-negative)
BC patients enclosed in the Metabric dataset. In silico analy-
sis confirmed that the expression of CXCR4 in the primary
tumor significantly correlated not only with the expression
of its ligand CXCL12 (Spearman’s coefficient, rs = 0.4920)
but also with the expression of VIM (rs = 0.4779) and
CD163 (rs = 0.4853) (Figure 4(a)). Similarly, the expression
of CXCL12 was strongly associated with the expression of
VIM (rs = 0.7133) and CD163 (rs =0.4454) (Figure 4(b)).
Conversely, we found a mild inverse correlation of CXCR4
and CXCL12 with MKI67 (rs =−0.1262; rs =−0.2076, resp.),
thus confirming the lack of association between the
CXCR4/CXCL12 axis and proliferation in luminal B BC
(Figures 4(a) and 4(b)). Furthermore, we demonstrated that
the overexpression of CXCR4 in luminal B (HER2-negative)
BC was significantly associated with LN positivity according
to bothMann–Whitney (p = 0 003) and FET tests (p = 0 001).

On overall, these results suggest that a permissive tumor
microenvironment in the primary tumor and SLNs, charac-
terized by EMT features such as the activation of CXCR4/
CXCL12 axis and the presence of protumor M2 TAMs, can
sustain the aggressiveness of cancer cells and support their
metastatic dissemination in luminal B BC.

4. Discussion

Luminal cancers, which enclose around two-thirds of all BC,
are generally considered less aggressive and associated with
better prognosis compared with nonluminal tumors.
However, luminal B cancers are recognized as having a
metastatic dissemination time pattern and an outcome simi-
lar to those of HER2-positive and TNBC, with an increased
risk of tumor relapse in the first five years after diagnosis
[6]. SLN biopsy has been demonstrated to be an accurate pre-
dictor of axillary LN status, which is considered a consistent
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Figure 1: CXCR4 and CXCL12 expression in luminal B BC samples. (a) Immunohistochemical analysis showing a higher expression of
CXCR4 protein in the primary tumors of relapsing compared to relapse-free luminal B BC patients. (b) Immunohistochemical
analysis of CXCL12 protein levels in the primary tumors of relapsing and relapse-free luminal B BC patients. (i) 10x magnification
and (ii) 20x magnification.
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Figure 2: Immunohistochemical staining for CXCR4, vimentin, and CD163-positive macrophages in luminal B BC samples. (a)
Immunohistochemical analysis of CXCR4 protein levels and the presence of CD163-positive macrophages in the primary tumors of
relapsing and relapse-free luminal B BC patients. (b) Evaluation of Ki67 and vimentin protein expression in the primary tumors of
relapsing and relapse-free luminal B BC patients. (i) 10x magnification and (ii) 20x magnification.
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Figure 3: Double immunofluorescent staining for CXCR4 and CD163 in luminal B BC samples. Representative images of double
immunofluorescent staining and confocal microscopy on primary tumors of relapsing (a) and nonrelapsing (b) luminal B BC patients
showing that CXCR4-expressing cancer cells (green) and CD163-positive TAMs (red) are localized in the same tumor regions of relapsing
luminal B BC. Scale bars represent 50 μm.
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Figure 4: In silico analysis of gene expression data of luminal B BC patients from the Metabric dataset. (a) Correlation between CXCR4,
CXCL12, VIM, CD163, and MKI67 in 315 luminal B (HER2-negative) primary BC. (b) Correlation between CXCL12, VIM, CD163, and
MKI67 in 315 luminal B (HER2-negative) primary BC. Spearman’s coefficients (rs) and p values are shown.
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prognostic factor in BC including luminal B tumors and it is
currently used in treatment decision-making [25–28].

Migration of primary tumor cells in the local lymphatic
system facilitates the dissemination to the SLN and subse-
quently to distant organs. EMT and immunosuppression
are increasingly recognized as potent inducers of tumor pro-
gression and invasion, although the mechanisms mediating
the tumor spread to the regional draining LN are still not
fully elucidated [9–15]. In this study, we demonstrated that
the CXCR4/CXCL12 pathway was upregulated in the pri-
mary tumor and in the matched macrometastatic SLNs of
luminal B BC patients who had tumor recurrence, and it
was associated with characteristics of tumor aggressiveness
and invasiveness such as LN involvement. Increased levels
of CXCR4/CXCL12 have been found in many types of can-
cer, including BC, and have been associated with metastasis
and poor prognosis [22, 29–32]. Accordingly, a strong
expression of CXCR4 has been demonstrated in primary
breast tumors, axillary LN metastases, and distant metastases
of the lung and liver [30]. Interestingly, we found that the
expression of CXCR4 correlated with the levels of its ligand
CXCL12 in the primary tumors of relapsing luminal B BC
patients. In agreement with previous findings showing that
CXCL12 is preferentially expressed in the most common
metastatic sites of BC (i.e., the LNs, lung, liver, and bonemar-
row) and that it induces the recruiting of CXCR4-positive
cancer cells to CXCL12-expressing sites, our results suggest
that the chemokine CXCL12 and its cognate receptor CXCR4
exert a key role in determining the metastatic potential of
breast tumor cells [30, 33].

In ER-positive BC, the activation of CXCR4 signaling has
been demonstrated to drive BC cells to an invasive and endo-
crine therapy-resistant phenotype through the activation of
extracellular signal-regulated kinases (ERK) 1/2, p38
mitogen-activated protein kinase (MAPK), and NF-κB path-
ways and through the enhancement of ER-mediated gene
expression [23, 24, 34]. Furthermore, CXCR4/CXCL12 axis
has been shown to be capable of inducing EMT in ER-
positive BC through the regulation of key EMTmarkers such
as E-cadherin and N-cadherin [23, 24]. Accordingly, we
demonstrated that the CXCR4 pathway correlated with the
expression of the mesenchymal marker vimentin in luminal
B primary tumors and that the overexpression of CXCR4 in
metastatic SLNs was concurrent with that of other EMT-
related genes, such as SNAI2, TGFB2, and TWIST1. Thus,
our results provide an important evidence for the association
of CXCR4/CXCL12 axis with the progression of tumor cells
toward a mesenchymal phenotype, suggesting a potential
mechanism that drives the metastatic spread of luminal B
BC cells from primary tumors and SLNs to distant sites.

Growing evidence indicates that the metastatic ability
of a cancer relies on intrinsic properties of tumor cells
such as EMT and on signals derived from the tumor
microenvironment [35]. Interestingly, numerous chemo-
kines and associated receptors, including CXCL12 and
CXCR4, have been shown to exert a key role in mediating
the communication between cancer cells and nonmalig-
nant stromal cells, ultimately favoring the establishment
of a permissive microenvironment for tumor development

and progression [22, 30, 36]. Accordingly, we found that
CD163 was overexpressed in metastatic SLNs of relapsing
luminal B BC patients. Furthermore, we demonstrated that
aggressive luminal B primary tumors characterized by the
high expression of CXCR4 and CXCL12 showed an increased
content of CD163-positive macrophages. Additionally, we
revealed that protumor TAMs and CXCR4-positive cancer
cells were frequently localized in the same areas of the
primary tumor. Of note, TAMs, which essentially resemble
alternatively activated M2-like macrophages, have been
shown to affect multiple aspects of cancer progression,
including EMT and immune suppression, and to modulate
the response to anticancer therapies [15, 37, 38]. More-
over, mononuclear phagocytes are attracted to tumor and
metastatic sites by the presence of CXCL12, which is able
to shape monocyte polarization toward a protumor M2-like
phenotype [36, 39–41].

5. Conclusions

In conclusion, although further studies are required to vali-
date the molecular mechanisms and the association between
the expression of these EMT- and immune-related markers
and BC progression, our findings suggest that the upregula-
tion of the CXCR4/CXCL12 axis and the presence of protu-
mor macrophages in the primary tumor and SLNs sustain
the aggressiveness of luminal B BC cells, favoring the gener-
ation of a permissive tumor microenvironment and leading
to metastatic spread.
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