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A B S T R A C T

Data concerning the neural basis of noun and verb processing are inconsistent. Some authors assume that action-
verb processing is based on frontal areas while nouns processing relies on temporal regions; others argue that the
circuits processing verbs and nouns are closely interconnected in a predominantly left-lateralized fronto-tem-
poral-parietal network; yet, other researchers consider that the primary motor cortex plays a crucial role in
processing action verbs. In the present study, one hundred and two patients with a tumour either in the right or
left hemisphere were submitted to picture naming of objects and actions before and after surgery. To test the
effect of specific brain regions in object and action naming, patients' lesions were mapped and voxel-lesion-
symptom mapping (VLSM) was computed. Behavioural results showed that left-brain damaged patients were
significantly more impaired than right brain-damaged patients. The VLSM showed that these two grammatical
classes are segregated in the left hemisphere. In particular, scores in naming of objects correlated with damage to
the anterior temporal region, while scores in naming of actions correlated with lesions in the parietal areas and
in the posterior temporal cortex. In addition, VLSM analyses carried out on non-linguistic tasks were not sig-
nificant, confirming that the regions associated with deficits in object and action naming were not generally
engaged in all cognitive tasks. Finally, the involvement of subcortical pathways was investigated and the inferior
longitudinal fasciculus proved to play a role in object naming, while no specific bundle was identified for actions.

1. Introduction

Several neuropsychological studies have investigated the noun/verb
dissociation at a functional or anatomical level to verify whether the
processing of distinct grammatical classes is segregated or spread over a
common network. Verb-noun dissociation in aphasic patients was first
described around 1980 (Baxter and Warrington, 1985; Miceli et al.,
1984, 1988; Zingeser and Berndt, 1990). After these preliminary ob-
servations, many studies replicated this double dissociation, showing
that patients with lesions in the neocortical temporal areas are impaired
at naming nouns relative to verbs and patients with frontal lesions are
impaired with verbs relative to nouns (for review see Pillon and
d'Honinchtun, 2011).

Therefore, this popular view based on neuropsychological data
suggests that nouns would require the involvement of left temporal

regions, while left posterior inferior frontal areas subserve verb pro-
cessing (Damasio and Tranel, 1993), a result replicated in neurode-
generative conditions by Daniele et al. (2013) and, more recently, in
neurosurgical patients during awake surgery (Lubrano et al., 2014).
This neuro-anatomical distinction traces back the “old” observation
that Broca's aphasics with pre-rolandic lesions are more impaired in
action naming while fluent aphasics with retro-rolandic lesions are
especially affected in naming objects (Goodglass et al., 1966). However,
there are exceptions to it, as, for example, the patient reported by De
Renzi and Di Pellegrino (1995) with a lesion extending to the frontal
lobe but sparing action naming or those described by Silveri and Di
Betta (1997) with selective verb impairment and a left parietal lesion.
Similar results were obtained in a study mapping lesions of 20 stroke
patients: those with disproportionate impairment of verbs clustered
mainly in two sites: either left posterior temporal lobe and inferior
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parietal lesions, or extensive left fronto-temporal lesions (Aggujaro
et al., 2006). Similarly, Luzzatti et al. (2006) found that in 15 patients
with a predominant impairment of verbs, lesions involved the left
posterior temporo-parietal perisylvian region, the insula and/or the
basal ganglia, but never concerned the frontal lobe only.

This variability found in post-stroke patients is also present in
neurosurgical patients. Corina et al. (2005), for example, investigated
the neural representation of action verbs and object nouns in 13 neu-
rosurgical patients undergoing awake cortical mapping. Cortical sti-
mulation of the anterior superior and of the middle temporal gyrus
caused inability to name objects, whereas the location of the area
causing inability to name actions varied across subjects (middle su-
perior temporal gyrus, supramarginal gyrus, and/or the posterior
middle temporal gyrus).

The neuroimaging literature is even more inconsistent, due to the
different paradigms applied. In general, data seem to confirm the
frontal activation for verbs (Petersen et al., 1989; Shapiro et al., 2005;
Warburton et al., 1996). However, several studies instead found a
posterior middle temporal gyrus activation showing equally strong se-
lectivity for event and state verbs relative to semantically matched
nouns (see, for example, Peelen et al., 2012).

Direct evidence for a noun–verb difference can be found in a PET
experiment, using lexical decision (Perani et al., 1999). Stimuli selected
by Perani et al. were nouns referring to tools and psychological states or
manipulation and psychological verbs. Their results showed in-
completely overlapping neural substrates for verb and noun processing,
without a double dissociation between frontal and temporal cortex, but
only the presence of areas specific for verbs (Broca's area, left middle
temporal gyrus). Other areas, centred on the left perisylvian cortex,
were equally activated by noun and verb processing. However, a sub-
sequent PET experiment failed to confirm this result (Tyler et al., 2001):
no differences were found between closely matched nouns and verbs.
Accordingly, Liljeström et al. (2008) in an fMRI experiment with
healthy volunteers who silently performed both action and object
naming from action images, and object naming from object-only images
found an activation of a similar network of cortical areas in all three
conditions, including bilateral occipito-temporal and parietal regions,
and left frontal cortex.

Nevertheless, an rTMS study with stimulation applied at a frequency
of 1 Hz over 12min for a total of 720 pulses reinforced the hypothesis
that the left anterior midfrontal cortex is critical for processing verbs,
since only stimulation of this region (and not of alternative sites, such
as its right hemisphere homologue, the premotor cortex, the pars tri-
angularis of the inferior frontal gyrus) increased response latencies for
verbs, with no effect on nouns (Cappelletti et al., 2008). Nevertheless, a
functional specialization within the ventral premotor cortex for obser-
ving actions and for observing objects, and a different organization for
processing sentences describing actions and objects was found in an
fMRI study (Tremblay and Small, 2011).

It has to be noticed that Corina et al. (2005) found, by means of
DES, that the distance for the noun-verb sites was of approximately
1 cm, both at the supramarginal gyrus and in the middle superior
temporal gyrus. These findings could partly explain the apparent in-
consistency in the neurolinguistic literature regarding selective deficits
of action and object naming. Indeed, neuroimaging techniques could
have failed to observe clear regional differences, due to the proximity of
sites producing different patterns of processing for either object or ac-
tion. Accordingly, a recent meta-analysis (Crepaldi et al., 2013) does
not support the popular tenet that verb processing is predominantly
based in the left frontal cortex and noun processing relies specifically on
temporal regions. Consequently, this finding does not support the idea
that verb lexical-semantic representations are heavily based on embo-
died motoric information, suggesting instead that the cerebral circuits
deputed to noun and verb processing lie in close spatial proximity in a
wide network including frontal, parietal, and temporal regions
(Crepaldi et al., 2013).

The anatomical dissociation between nouns and verbs has been
related to different psycholinguistic interpretations, at the semantic,
lexical or syntactic-morphological level. The “semantic” account is an
application of the functional/sensory theory for selective semantic ca-
tegories deficits to noun/verb (Bird et al., 2000): semantic information
would be organized according to attributes and, therefore, properties
concerning visual aspects (which characterize objects) would be stored
in the visual processing areas, while motor properties (object use)
would be stored in motor control areas. This distinction is mainly based
on the degree of imageability, with verbs having a low imageability. In
contrast, Bedny and Caramazza (2011) suggest that interactions be-
tween word meaning and sensory-motor experience occur in higher-
order polymodal brain regions. The other semantic account refers to the
fact that prototypical nouns and verbs tend to be objects (visual prop-
erties) and actions (action features), respectively (Damasio and Tranel,
1993; McCarthy and Warrington, 1985). Recently, Moseley and
Pulvermuller (2014) suggested that in the noun/verb dissociation to-
pographical differences in brain activation, especially in the motor
system and inferior frontal cortex, are driven by semantics. The analysis
of inferior frontal/insula, precentral and central areas revealed an in-
teraction between lexical class and semantic factors with clear category
differences between concrete nouns and verbs but not abstract ones.

Others interpreted the dissociation on (at least in part) grammatical
basis (Caramazza and Hillis, 1991; Shapiro and Caramazza, 2003). In
particular, Shapiro et al. (2006) suggested that what is partially dif-
ferent in terms of neural networks is where morpho-syntactic processes
involving nouns and verbs take place. These authors tried to identify
the cerebral regions that become activated when people produce verbs
and nouns within short sentences, and found that left temporal areas
(more precisely the fusiform gyrus) are activated when nouns are in-
tegrated in sentences, while the left prefrontal and superior parietal
cortices become active when verbs are integrated in sentences. This
suggests that morpho-syntactic processings that are applied to nouns
and verbs involve neural networks at least partially segregated.

A final hypothesis suggests that words of different grammatical
classes are not neurally separable, but what is separable are words re-
ferring to actions vs. words referring to objects (regardless of their
grammatical class). The same shared neural network would be engaged
in integration processes for both nouns and verbs. The extent to which
such a network would be engaged would depend upon the processing
demands of the task (e.g., Siri et al., 2008) or by the types of morpho-
syntactic processes (Tyler and Marslen-Wilson, 2008).

Given the inconsistency of the literature, we tried to shed light on
the (possible) neural correlates of this (if any) dissociation by means of
voxel lesions symptom mapping (VLSM), in a consecutive series of
patients undergoing brain surgery for temporal, parietal and frontal
tumour removal. Performances before and after surgery in naming
pictures of objects and actions were compared taking into account le-
sion lateralization. VLSM analyses were also performed to explore the
relationship between lesion location and behavioural performance,
with the aim of clarifying whether impairments in naming actions and
objects could be associated with lesions in segregated regions.

2. Materials and methods

2.1. Participants

One-hundred two patients (55 male, mean age 42.1, SD 13.19,
range 15–74; mean education 13.5 years, SD 3.6, range 5–23) were
included in the study. Of these, 37 underwent surgery for a right
hemisphere (RH) tumour and 65 for a left hemisphere (LH) one; all but
6 were right-handed (Oldfield, 1971). Presurgical fMRI assessed lan-
guage lateralization in all patients by means of a word generation and a
picture-naming task (Papagno et al., 2011). Only one left-handed pa-
tient (VG) showed a moderate right lateralization of language. Forty-
three patients had a high-grade glioma (HGG; RH: 12, LH: 31), 49 a
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low-grade glioma (LGG; RH: 17, LH: 32) and 10 an evolving low- grade
glioma (ELGG; RH: 8, LH: 2), according to the World Health Organi-
zation (WHO) classification. RH and LH patients did not differ in tu-
mour volume [t(72)= 1.58, p= .17], age [t(100)= 0.4, p= .69], or
educational level [t(100)= 0.78, p= .44]. All patients had no visual
recognition, conceptual or articulatory deficits, as assessed by an ex-
tensive neuropsychological battery. Moreover, they did not show the-
matic roles assignment deficits, as assessed by means of a sentence
comprehension task (Cecchetto et al., 2012).

2.2. Neuropsychological assessment

An extensive neuropsychological assessment, including Attentional
Matrices, Token Test, Raven Colored Progressive Matrices, Verbal
Fluency on phonemic and semantic cue (Novelli et al., 1986), as well as
a picture naming of objects and a picture naming of action (Papagno
et al., 2012), was performed in the week (1–7 days) before and in the
week (1–7 days) after surgery.

Picture naming of objects was assessed by means of a subtest from a
standardized Semantic Battery developed by Catricalà et al. (2013) (see
Fig. S4a for a stimulus example). This task included 48 colored pictures
of items from living and non-living categories balanced for semantic
category, semantic relevance, familiarity name agreement, picture ty-
picality, image complexity, frequency and familiarity (cut-off 41.48,
range 0–48).

Action naming was also a standardized Italian test, which included
50 line drawings of a person performing an action (Crepaldi et al.,
2014), with a name agreement ≥85%; thirteen were inaccusative, 17
intransitive and 20 transitive verbs (see Fig. S4b for a stimulus ex-
ample). They were matched for frequency with objects. Patients were
asked to name what the agent was doing. Note that lexical retrieval was
assessed therefore, any response that matched the meaning was ac-
cepted, independently from the verb form (i.e., to eat, he eats, etc.).
Constructions using auxiliary verbs were not accepted, but synonyms,
such as, for example, “sbucciare” and “pelare”, both meaning “to peel”,
or “annegare” and “affogare”, both meaning to drown, were accepted
(cut-off 36.86; range 0–50).

For both tasks, responses were scored as correct or wrong. See
Appendix for a complete list of the experimental stimuli.

2.3. Data analysis

2.3.1. Behavioural performance
Analyses were performed using the statistical software SPSS (ver-

sion 24; Armonk, NY: IBM Corp). Scores on the neuropsychological tests
were analysed by means of mixed Time (pre-/post-surgery) by
Hemisphere (left/right) ANOVAs. Post-hoc tests were run on compar-
isons on estimated marginal means within the ANOVAS, by means of
the same software. Bonferroni correction for multiple comparisons was
applied.

2.3.2. MRI acquisition and VLSM
MRI was performed pre- and post-operatively on a 3 Tesla MR

scanner (Siemens Verio, Erlangen, Germany). Standard MR evaluation
for morphological characterization of lesions included axial T2-
weighted TSE sequence (TR/TE 3000/85ms; field of view (FOV),
230mm; 22 slices; section thickness, 5/1-mm gap; matrix, 512×512;
SENSE factor, 1.5), axial 3D-FLAIR sequence (TR/TE 10000/110ms;
FOV, 230mm; 120 slices; section thickness, 1.5/0-mm gap; matrix,
224×256; SENSE factor, 2) and postcontrast T1-weighted inversion
recovery sequence (TR/TE 2000/10ms; FOV, 230mm; 22 slices; sec-
tion thickness, 5/1-mm gap; matrix, 400×512; SENSE factor, 1.5).
Lesion volume was calculated with semi-automatic segmentation with
region of interest analysis with iPlan Cranial 3.0 software suite
(Brainlab, Feldkirchen, Germany). FLAIR hyperintense and gadolinium-
enhanced signal abnormalities were included in the lesion load for low-

grade and high-grade gliomas, respectively, and then reported in cm3.
The extent of resection (EOR) was measured on pre- and post-operative
MR performed after surgery, and classified as previously reported
(EOR= [(pre-operative volume− post-operative volume) / pre-opera-
tive volume)] ∗ 100 (Smith et al., 2008). Individual lesion mapping was
manually performed by two independent judges (GM and AP) who
drew over the lesion boundaries, on each relevant post-surgery T1 MRI
axial slice, a volume of interest (VOI) in MRIcron software (www.
mricro.com/mricron). All voxels with altered signal, i.e. the regions
removed by surgical procedure and adjacent oedema when present
(Mattavelli et al., 2017) were included in the VOIs, which were then
smoothed in the three planes and inspected by a skilled neurologist (CP)
and neurosurgeon (MR). Finally, lesion maps and patients' MRIs were
normalized to an MNI T1 template in SPM8 (Ashburner and Friston,
1999).

The NPM software of the MRIcron package (Version 2016) was used
to perform voxel-based lesion-symptom mapping (VLSM). Post-surgery
VOIs and behavioural scores at the neuropsychological tests were
analysed. As in Mattavelli et al. (2017), the choice of analysing the post-
surgery performance aimed at linking patients' cognitive abilities with
brain damage. Before surgery, indeed, some areas inside the lesion can
be functionally active (this is why direct electrical stimulation is per-
formed); therefore, mapping a pre-surgery lesion does not guarantee
that we are mapping an inactive region (Karnath and Steinbach, 2011).
Similarly, the analysis of the difference between post and pre-surgery
scores may only reflect this heterogeneity. Voxel-wise analysis was
carried out by means of t-tests (Campanella et al., 2014; Mattavelli
et al., 2017) only in those voxels damaged in at least three patients
(7,109,137 voxels) with a statistical threshold of p= .05, applying a
Bonferroni correction for unique lesion patterns.

3. Results

3.1. Behavioural results

3.1.1. Neuropsychological assessment
In general, performance decreased after surgery (see Tables 1 and 2

for means and statistical analyses, respectively).
ANOVAs revealed a significant main effect of Time on all the

mentioned tests. LH patients performed worse than RH patients in
language-related tasks, as the main effect Hemisphere was significant
for the Token Test, verbal fluency on phonemic and semantic cue, and
for sentence comprehension. The Hemisphere by Time interaction
highlighted that performance significantly decreased in LH compared to
RH patients in the Token Test, Attentional Matrices, verbal fluency on
phonemic and semantic cue and sentence comprehension, while no
differences were found in the Raven Colored Progressive Matrices be-
tween LH and RH patients.

3.1.2. Picture naming of objects
Considering normative data for picture naming of objects, patients

scoring under the cut-off were 3 LH and 3 RH in the pre-surgery as-
sessment, and 28 LH and 2 RH in the post-surgery one. The Time x
Hemisphere ANOVA revealed a significant main effect of Time [F
(1,100)= 19.98; p < .001], being the post-surgery performance worse
(mean score= 40.2; SD=11) than the pre-surgery one (mean
score= 45.6; SD=3.9); also the main effect of Hemisphere was sig-
nificant [F(1,100)= 6.03; p= .016], since RH patients outperformed
LH patients (mean scores: 45, SD=6.1, vs 41.8, SD=6.5). Crucially,
the Time by Hemisphere interaction was significant [F(1,100)= 16.08;
p < .001]. Post hoc tests showed that LH patients' performance on
picture naming of objects significantly decreased after surgery (45.8,
SD=3.1, vs 37.7, SD=11.9; p < .001) but not in RH patients (45.2,
SD=5, vs 44.8, SD=7.3; p= .77). In addition, LH and RH patients'
performance did not differ in before surgery (p= .44), while it did after
tumour resection (p= .001; see Fig. 1a).
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3.1.3. Picture naming of actions
Action naming was not assessed post-surgery in four patients. The

behavioural and VLSM analyses were then run on 98 patients. Patients
scoring under the cut-off were 3 LH and 3 RH in the pre-surgery as-
sessment, and 29 LH and 6 RH in the post-surgery one. Similarly to
picture naming of objects, the Time by Hemisphere ANOVA showed a
significant main effect of Time [F(1,96)= 36.7; p < .001], being post-
surgery scores lower (mean score= 37.7; SD=10.7) than pre-surgery
ones (mean score= 44.3; SD=5.4); also the main effect Hemisphere
[F(1,96)= 5.6; p= .019] was significant, being RH patients' scores
higher than LH patients' ones (mean scores: 42.9, SD=7.6, vs 40,
SD=6.5). Finally, the Time by Hemisphere interaction was significant
[F(1,96)= 18.4; p < .001]: while LH and RH patients performed at a
similar level before surgery (44.4, SD=3.7, vs 43.9, SD=7.7;
p= .73), as for objects, after tumour resection LH patients' performance
significantly decreased compared to RH patients' one (35, SD=11.2, vs
42.1 SD=7.9; p= .001). LH patients' post-surgery scores, indeed,

significantly differed from pre-surgery ones (p < .001), while RH pa-
tients' scores did not (p= .27; see Fig. 1b).

3.2. VLSM results

Fig. 2a shows the lesion overlap for the 102 patients. Obviously,
according to the patients' selection, the maximum lesion overlap was
found in the fronto-temporo-insular regions. In Fig. 2b the regions with

Table 2
Statistical analyses of patients' performance on the neuropsychological tests.

Test df F p Partial eta 2

Token Test
Time 1, 100 52.74 < .001 0.34
Hemisphere 1, 100 7.56 .007 0.07
Time×Hemisphere 1, 100 25.61 < .001 0.20

Verbal fluency (semantic cue)
Time 1, 80 12.88 .001 0.139
Hemisphere 1, 80 6.8 .01 0.078
Time×Hemisphere 1, 80 0.58 .45 0.007

Verbal fluency (phonemic cue)
Time 1, 97 60.08 < .001 0.382
Hemisphere 1, 97 3.88 .038 0.038
Time×Hemisphere 1, 97 10.03 .002 0.094

Sentence comprehension
Time 1, 98 5.98 .016 0.058
Hemisphere 1, 98 3.17 .078 0.031
Time×Hemisphere 1, 98 4.76 .032 0.046

Attentional matrices
Time 1, 100 72.29 < .001 0.42
Hemisphere 1, 100 2.47 .112 0.024
Time×Hemisphere 1, 100 5.71 .019 0.054

Raven Colored Progressive Matrices
Time 1, 98 49.3 < .001 0.335
Hemisphere 1, 98 1.97 .16 0.02
Time×Hemisphere 1, 98 0.029 .86 0

Fig. 1. Performance of right (LH) and left hemisphere (RH) patients on picture
naming of objects (A) and actions (B). Vertical bars represent standard error of
the means; asterisks highlight significant results in post-hoc analyses for the
significant Time×Hemisphere interaction.

Table 1
Means and standard deviation (SD) of the left (LBD) and right brain-damaged (RBD) patients in the neuropsychological tests on the pre- and post-surgical assessment.

Test RBD patients LBD patients

N° patients Mean SD N° patients Mean SD

Token Test
- Pre-surgery 37 31.55 4.47 65 32.2 2.34
- Post-surgery 37 30.13 5.61 65 24.26 7.91
Verbal fluency
- (Semantic) pre-surgery 35 38.26 9.55 65 39.37 10.58
- (Semantic) post-surgery 36 32.53 8.69 64 24.11 14.77
- (Phonemic) pre-surgery 35 29.17 8.15 65 29.58 11.50
- (Phonemic) post-surgery 36 22.81 11.55 64 15.09 11.51
Sentence comprehension
- Pre-surgery 27 98% 0.025 32 98% 0.018
- Post-surgery 26 97% 0.03 26 95% 0.06
Attentional matrices
- Pre-surgery 37 47.81 7.73 65 47.79 7.03
- Post-surgery 37 40.59 9.67 65 34.92 14.45
Raven Colored Progressive Matrices
- Pre-surgery 37 29.33 4 69 30.42 3.8
- Post-surgery 37 26.43 4.01 69 27.61 4.73
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a statistical power of 0.8 in the VLSM analyses on picture naming of
objects and action are represented.

Both tests showed a significant left-sided lesion-behaviour correla-
tion (nouns: t-test range −2.9–6.38, Z score threshold=4.56; verbs: t-

test range −3.32–4.67, Z score threshold=4.53); however, inside the
left hemisphere, specific sites for object and actions were spatially
segregated. Picture naming of objects deficits were linked to damaged
voxels in the left inferior middle and superior temporal gyrus, the

Fig. 2. Results of the VLSM analyses at the picture naming tasks. (A) Lesion maps of 102 patients. Color bar indicates the number of overlapping lesions in each voxel;
left hemisphere (LH) is on the left side and right hemisphere (RH) on the right side of the images. (B) Maps of regions with statistical power of 0.8 in the VLSM
analyses. Pink areas represent overlapping power maps for picture naming of objects and verbs. Blue areas are regions with 0.8 power for the Picture Naming of
Objects task only. (C) Results of VLSM analyses for objects (red) and actions (blue) picture naming. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Voxel-based lesion–symptom mapping results for object naming.

Object naming 

Index Area N>0 %N>0 Sum>0 Mean>0 Max MaxX MaxY MaxZ 

0 Not cortical 1620 0,000288 75385,41 0,013392 6,338009 −40 −10 −21 

89 Temporal_Inf_L 972 0,037899 53622,41 2,090787 6,044359 −42 −10 −24 

37 Hippocampus_L 433 0,057973 16214,84 2,170952 5,819884 −33 −4 −27 

55 Fusiform_L 337 0,018382 19413,14 1,058918 6,378164 −39 −8 −24 

85 Temporal_Mid_L 184 0,004676 50195,62 1,275522 5,540484 −42 −2 −27 

41 Amygdala_L 132 0,076168 5844,02 3,372199 5,167499 −23 −3 −13

83 Temporal_Pole_Sup_L 78 0,007626 18321,36 1,791294 5,19508 −31 6 −22 

81 Temporal_Sup_L 56 0,003059 27832,37 1,520313 5,166825 −38 −9 −7 

39 ParaHippocampal_L 39 0,004942 11059,46 1,401529 4,918922 −31 −10 −24 

29 Insula_L 33 0,002196 24931,17 1,659312 5,166825 −37 −9 −7 

87 Temporal_Pole_Mid_L 33 0,005515 12715,78 2,124963 5,061547 −47 10 −31 

Subcortical pathways 

For Speculative Brodmann Map: 0=not cortical and 48=no Brodmann label 

Index Area N>0 %N>0 Sum>0 Mean>0 Max MaxX MaxY MaxZ 

0 Unclassified 469 0,000532 41452,16 0,047024 6,378164 −38 −8 −24 

45 Uncinate_fasciculus_ 19 0,404255 190,8201 4,060001 5,108708 −32 0 −20 

33 External_capsule_R 12 0,016461 1484,897 2,036896 5,081907 −36 −8 −12

31 Sagittal_stratum_(in 9 0,031469 625,4899 2,187028 5,429827 −40 −14 −18

39 Fornix_(cres)_/_Stri 5 0,036496 239,2063 1,746031 5,247717 −32 −6 −18
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hippocampus, the anterior part of the fusiform gyrus, the superior
temporal pole, the amygdala and the insula (see Fig. 2c and Table 3).
Crucially, damage to subcortical pathways was linked to picture
naming of objects. In particular, damage to the uncinate fasciculus and,
to a greater extent, to the inferior longitudinal fasciculus, led to a worse
performance in this task (see Fig. 3a and b and Table 3; for a 3D ren-
dering of the results, see Fig. S3).

Conversely, regions associated with a deficit in picture naming of
actions involved more posterior regions of the left hemisphere, in-
cluding the posterior middle and superior temporal gyrus, the supra-
marginal and angular gyri, and, marginally, the rolandic operculum
(see Fig. 2c and Table 4).

VLSM was performed also on a series of other neuropsychological
tests to verify selectivity, namely the fact that performance was not
generally impaired in all tasks after brain damage in that site. There
was no significant correlation between brain damage and cognitive
performance for the Raven Colored Progressive Matrices, Attentional

Matrices, sentence comprehension and verbal fluency on phonemic cue,
while VLSM analysis showed a significant correlation between deficits
in verbal fluency on semantic cue and damaged voxels in the left
anterior middle and inferior temporal gyri, middle and superior tem-
poral pole, the fusiform gyrus, the amygdala, the hippocampus and
parahippocampal gyrus (t-test range −3079–5188, Z score
threshold= 4.56; see Fig. 4a and Table 5).

Finally, voxels in the posterior part of the left superior and middle
temporal gyri as well as the angular and supramarginal gyri were cor-
related with impaired Token Test (t-test range −3705–4697, Z score
threshold= 4.56; see Fig. 4b; for overlapping voxels of the VLSM for
different tasks see Figs. S1 and S2).

4. Discussion

We assessed performance on action and object naming in patients
with left or right hemisphere tumour before and after surgery for its

Fig. 3. Results of VLSM analyses for Picture Naming of Objects (in red) superimposed on (A) the left ILF (in green; yellow voxels represent overlapping regions) and
(B) the left Uncinate Fasciculus (in cyan, violet voxels represent overlapping regions) taken from the template of subcortical tracts (Catani and Thiebaut de Schotten,
2008). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Voxel-based lesion–symptom mapping results for action naming.

Action naming 
Index Area N>0 %N>0 Sum>0 Mean>0 Max MaxX MaxY MaxZ 
85 Temporal_Mid_L 803 0,020405 36401,09 0,924989 4,583582 −54 −51 15 

81 Temporal_Sup_L 104 0,005681 21270,79 1,161894 4,609326 −52 −28 20 

63 SupraMarginal_L 95 0,009589 2773,844 0,279988 4,609326 −56 −26 20 

94,86388 0,010186 4,583582 −44 −54 23 

17 Rolandic_Oper_L 17 0,002141 6995,775 0,881191 4,609326 −50 −28 21 

35958,46 1,402053 4,60521 −42 −5 −27 

0 Not cortical 3 5,33E-07 53385,18 0,009484 4,667598 −40 −7 −24 

65 Angular_L 18 0,001933

89 Temporal_Inf_L 4 0,000156

55 Fusiform_L 3 0,000164 14379,5 0,784351 4,562143 −39 −7 −24
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removal. The lesion–behaviour relationship was also examined.
LH and RH patients did not differ before surgery in neuropsycho-

logical tests and in tumour volume. However, in LH patients, neu-
ropsychological performance significantly decreased post-surgery, as

already noticed in this type of patients (Papagno et al., 2012), while RH
patients' performance remained stable. In particular, post-surgery
scores significantly decreased for both nouns and verbs only in LH
patients, being impaired approximately the 30% of them.

Fig. 4. Results of VLSM analyses for (A) the Verbal fluency on semantic cue (yellow) and (B) the Token Test (green). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 5
Voxel-based lesion–symptom mapping results for verbal fluency on semantic cue.

Verbal fluency on semantic cue 

ZxaMYxaMXxaMxaM0>naeM0>muS0>N%0>NaerAxednI

0 Not cortical 443 7,87E-05 79380,55 0,014102 5,107423 −42 −5 −24 

4−24−50530,5701376,181,01924825010,0072L_fnI_laropmeT98  −27 

55 Fusiform_L 74 0,004036 18418,97 1,004689 5,187588 −39 −7 −24 

−609250,5842520,232,41702375500,075L_puS_eloP_laropmeT38 31 5 −19 

37 Hippocampus_L 30 0,004017 10925,17 1,462736 4,942249 −33 −4 −27 

91−413−609250,5235111,3582,293518900,071L_aladgymA14

87 Temporal_Pole_Mid_L 16 0,002674 11003,44 1,838809 4,588205 −30 7 −36 

2−2−24−706967,4775749,009273653000,041L_diM_laropmeT58 7 

39 ParaHippocampal_L 7 0,000887 10107,2 1,280852 4,66087 −28 −8 −29 

Subcortical 

Index Area N>0 %N>0 Sum>0 Mean>0 Max MaxX MaxY MaxZ 

0 Unclassified 112 0,000127 43278,29 0,049096 5,056029 −38 0 −26 

45 Uncinate_fasciculus_ 5 0,106383 175,2643 3,729027 4,756124 −32 0 −20 

Token Test 

Index Area N>0 %N>0 Sum>0 Mean>0 Max MaxX MaxY MaxZ 

85 Temporal_Mid_L 972 0,0247 47115,5 1,197253 4,697416 −54 −51 15 

81 Temporal_Sup_L 537 0,029333 22838,78 1,247544 4,697416 −62 −47 16 

63 SupraMarginal_L 20 0,002019 2293,322 0,231485 4,697416 −59 −48 24 

65 Angular_L 18 0,001933 97,79385 0,010501 4,697416 −44 −54 23 

0 Not cortical 1 1,78E−07 58171,93 0,010334 4,670862 −47 −45 16 
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Concerning the anatomical correlates of these deficits in object and
action naming, we found significant VLSM results in the LH for the two
naming tasks. Crucially, VLSM showed two segregated regions ac-
counting for patients' behaviour: object naming was related to lesions in
a region that included the inferior temporal gyrus, the hippocampus,
the anterior part of the fusiform gyrus, and, to a lesser extent, the
amygdala and the anterior middle and superior temporal gyrus, while
action naming impairment involved a region including the posterior
middle and superior temporal gyrus, the supramarginal gyrus, and,
marginally, the rolandic operculum and the angular gyrus. These results
support previous neuropsychological findings of left lateralized and
distinct neural correlates for object and action naming (Kemmerer
et al., 2012; Tranel et al., 2001); moreover, they demonstrate that
noun-verb anatomo-functional dissociation can be found also in brain
tumour patients despite the possible reorganization occurring in these
patients (Duffau, 2011). A similar VLSM study conducted on stroke
patients (Baldo et al., 2013) has shown that a large network in left peri-
Sylvian cortex supports picture naming, but that the left mid-posterior
middle temporal gyrus and underlying white matter play a critical role
in the core ability to retrieve a name associated with an object or pic-
ture. Other VLSM studies investigated recognition of action words by
means of a word-video matching task (and not naming as in our study),
and found that performance in a semantic gesture recognition task was
predicted by damage to the posterior temporal lobe, whereas the spatial
gesture recognition task was predicted by damage to the inferior par-
ietal lobule (Kalénine et al., 2010). Similar anatomical results were
obtained by Tarhan et al. (2015) for both action production and action
recognition. Our results on action naming, i.e. the involvement of the
middle temporal gyrus and inferior parietal cortex, are also in line with
those obtained in a meta-analysis on functional neuroimaging studies
on semantic processing in which a specific contrast was performed on
types of conceptual knowledge (Binder et al., 2009). In this study an
ALE analysis run on 40 activation foci reported by 10 studies specifi-
cally investigating action processing, indeed, revealed significant
overlap in the left ventral supramarginal gyrus and left middle temporal
gyrus.

There are, however, some issues that deserve further discussion. The
first point is the finding concerning object naming. The majority of the
reported patients with selective disorders of noun processing had retro-
rolandic lesions, in particular involving the left temporal lobe (see
Cappa and Perani, 2003 for a review). Damasio and Tranel (1993) re-
ported patients with the lesion location carefully assessed by means of
MRI, and demonstrated that a patient with an impairment only for
nouns, had bilateral mesial and lateral temporal lesions, while a second
one, with a similar dissociation, had a left anterior temporal lesion.
Later, Damasio et al. (1996) demonstrated that abnormal retrieval of
words for animals correlated with damage to the left inferior temporal
gyrus, while abnormal retrieval of words for tools correlated with da-
mage to a postero-lateral inferior temporal gyrus and the temporo-
parietal-occipital junction. Finally, patients with anterior temporal lo-
bectomy were found to be impaired in naming objects but not verbs
(Glosser and Donofrio, 2001). Regarding neuroimaging studies, Price
et al. (1996) by means of PET associated areas specific to object naming
with left temporal extrasylvian regions, left anterior insula and right
cerebellum.

Our results are in line with these previous studies, but further spe-
cified the temporal regions involved in object naming. Crucially, new
insight is provided on the role of subcortical structures in this task.
Lesions to the left inferior longitudinal fasciculus, indeed, has been
found to impair performance, suggesting that this long tract might be
crucial, together with the uncinate fasciculus, in retrieving and se-
lecting the correct lexical information, stored in the middle and inferior
portions of the temporal lobe.

The second point deserving consideration is a lack of correlation
between action naming and frontal regions damage (see for example
Damasio and Tranel, 1993), as was already found in several

neuropsychological studies (De Renzi and Di Pellegrino, 1995; Silveri
and Di Betta, 1997; Luzzatti et al., 2006), and in a meta-analysis per-
formed on neuroimaging studies (Crepaldi et al., 2013). Our results,
indeed, suggest an involvement in picture naming of actions of the
posterior temporal lobe and supramarginal gyrus. A careful investiga-
tion of previous studies, however, shows that the correlation between
action naming and these more posterior regions is not new, although it
is the link with frontal lesions that has always been stressed. For ex-
ample, Martin et al. (1996) found an activation of the left middle
temporal gyrus by action word generation. In contrast to our findings,
Tranel et al. (2001) found maximal overlap in the left frontal operculum
in 22 patients who failed an action naming task (and compared to pa-
tients who passed it), but converging with our results also in the su-
pramarginal gyrus, portions of the posterior middle temporal gyrus, and
the white matter underlying all of these regions. Notably, many of the
patients who failed the action naming task passed a separate object
naming task. Similarly, Kemmerer et al. (2012) found, in 61 patients
with lesions due to different etiologies, that action naming was linked
with the cortex and underlying white matter of several left-hemisphere
regions, including the inferior frontal gyrus. However, in line with our
results, also the supramarginal gyrus, and the posterior middle tem-
poral gyrus, posterior inferior temporal and lateral occipital gyri, and
posterior fusiform and lingual gyri were involved. A substantial pro-
portion of the patients with action naming deficits had normal naming
of the object categories that were tested (animals, fruits/vegetables,
and tools). This dissociation substantiates our findings of segregated
underlying neural substrates for actions and objects.

The supramarginal gyrus involvement in action naming found in the
previous literature and in our study, is particularly interesting: for ex-
ample, Sirigu et al. (2004) showed that patients with parietal lesions
can report when they started moving, but not when they first became
aware of their intention to move. They thus proposed that when a
movement is planned, activity in the parietal cortex generates a pre-
dictive internal model of the upcoming movement. Yet, supramarginal
gyrus lesions are associated with ideomotor apraxia (Goldenberg,
2009), which is related to manipulation of object and action processing
and this is consistent with our finding of a role of the supramarginal
gyrus in action processing. Moreover, the left supramarginal gyrus has
been linked with the planning of complex visually guided actions (see
Kemmerer et al., 2012 for a detailed discussion). Finally, Tettamanti
et al. (2005) showed that listening to transitive sentences describing
concrete object-directed actions (e.g., I grasp the knife) engaged the left
supramarginal gyrus.

A further support to the role of the left supramarginal gyrus in ac-
tion naming comes from a tDCS study on corticobasal degeneration
(Manenti et al., 2015), in which anodal tDCS applied over the left
parietal cortex decreased reaction time during action naming. Inter-
estingly, a recent multivoxel pattern analysis study (Wurm and
Lingnau, 2015) reported that this region seems to be specifically in-
volved in the abstract representation of actions, suggesting a role in
high-order semantic action representation.

All these data suggest a distributed network for action words that
probably includes frontal, parietal and temporal regions. However,
frontal regions are involved in syntactic processing (Kaan and Swaab,
2002; see for example a meta-analysis in Vigneau et al., 2006, showing
evidence of a cortical area in the pars opercularis of the inferior frontal
gyrus dedicated to syntactic processing) and it could well be the case
that the frontal involvement is related to morphosyntactic processing
applied to verbs.

Also, we must underline that large parts of the language ventral
stream (that includes the inferior fronto-occipital fasciculus, the un-
cinate fasciculus and the inferior longitudinal fasciculus) were not
covered by lesions present in our patients. Therefore, we cannot ex-
clude that a lesion in (for example) the posterior inferior temporal gyrus
would result in a disproportionate deficit to process object names, too.

Finally, a relevant result was that VLSM analyses carried out
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considering the scores on non-linguistic neuropsychological tests
(Attentional Matrices and Raven Colored Progressive Matrices) were
not significant. This finding demonstrates that the regions associated
with deficits in naming, namely the inferior, middle and superior
temporal gyri, the anterior part of the fusiform gyrus, the supramar-
ginal gyrus, the angular gyrus and the hippocampus, were not generally
engaged in all cognitive tasks. In other words, the VLSM result was
specific for the two tasks of interest. Similarly, verbal fluency on pho-
nemic cue did not show any correlation with these regions. However,
being this task more related to executive functions, this result is, at least
in part, expected. Conversely, the same regions supporting picture
naming of objects, namely the anterior part of the inferior, middle,
superior temporal lobe as well as the fusiform gyrus and the hippo-
campus, were involved in verbal fluency on semantic cue. This is not
surprising, since verbal fluency on semantic cue requires lexical-se-
mantic processing which probably relies on the same retrieval me-
chanism guiding picture naming of objects.

A final comment concerns the time point of imaging and beha-
vioural testing that we chose. Karnath and Rennig (2017) tested the
validity of the three common combinations (acute, post-acute and
chronic) of structural imaging data and behavioural scores used in
VLSM analyses. They found that only the combination of acute beha-
vioural scores and acute structural imaging produced accurate results in
revealing the emergence of hemiparesis after stroke, because chronic
patients with recovery from hemiparesis do not provide valid results.
Indeed, Karnath and Rennig suggest that VLSM studies that use the
patients' chronic behaviour should measure patients' behaviour both in
the acute and the chronic phases to exclude those patients who initially
suffered from the deficit of interest but have significantly recovered. An
interesting approach would be to analyze patients' behaviour in the
chronic phase and imaging from the acute phase to reveal the neural
correlates of chronic dysfunction.

Indeed, if the aim of a VLSM lesion analysis is to uncover the neural
substrates of a certain function in the healthy human brain, the use of
chronic behavioural data appears to be inadequate because of possible
reorganization. These results were obtained with stroke patients but the
same line of reasoning can be adopted for neurosurgical patients: post-
surgery scores directly reflect the cognitive consequences of brain re-
section, without the possible intervention of a plastic reorganization,
which has been found to occur in tumour patients at 3-months follow-
up testing (Papagno et al., 2016). Similarly, pre-surgery scores may, or
not, be impaired by the presence of the tumoral lesion (since, as men-
tioned in the introduction, there can be functional areas inside the tu-
mour), being thus, in our opinion, not reliable. Therefore, we consider
the VLSM studies performed by Piras and Marangolo (2007) (six
months after stroke and only 16 patients) and by Campanella et al.
(2010) (only 30 patients with left or right lesions, relating MRI before
surgery with scores before or after surgery) quite questionable.

5. Conclusions

In conclusion, our results on a very large series of patients suffering
a disease with the same type of aetiology showed an object/action
dissociation, confirming its relevance in our tasks. In line with the
previous literature, our data suggest that temporal regions are involved
in naming objects, while, in contrast with the dominant view we found
no evidence of frontal involvement but more posterior temporal regions
and the supramarginal gyrus in naming actions.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.03.022.
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