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Abstract  20 

 21 

Beech forests are important for biodiversity conservation in Europe and studies to identify 22 

sustainable forest management practices are therefore required. Several ground beetle species 23 

inhabiting European beech forests are endangered and potentially threatened by logging 24 

interventions. The ground beetle Carabus olympiae Sella, 1855, is a large steno-endemic 25 

endangered alpine species with very restricted ranges. Its known range is only delimited in two 26 

beech forests in the western Italian Alps where beech wood is still harvested. Forty individuals were 27 

collected and radio-tracked in 2014-2015 in order to assess the effects of forest management on 28 

microclimatic conditions, microhabitat use and movements.  29 

All management interventions changed microhabitat availability, with an increase of deadwood and 30 

bare ground. Thermo/hygro button loggers showed that temperature was higher and humidity lower 31 

in managed than in unmanaged stands, suggesting logging interventions may be detrimental to C. 32 

olympiae, either directly (inducing suboptimal climatic conditions) or indirectly (decreasing the 33 

availability of prey). Microhabitat selection analyses showed that in all scenarios, deadwood and 34 

tree bases were preferred, and were used as refuges during the daytime. Bare ground was never 35 

used. The length of the path travelled by individual insects was more variable and the tortuosity 36 

lower in managed than in unmanaged stands, suggesting that management induced more uncertain 37 

and constrained trajectories. 38 

We concluded that logging may exert short-term negative effects on C. olympiae ground beetles (as 39 

suggested by the increase in bare ground, and changes in climatic conditions and movements). 40 

However, the preference for tree bases and deadwood suggests that forest management, 41 

concurrently, may also be beneficial, on the condition that: i) the coppice,  42 

which provides more suitable microhabitats, prevails over conversion to high forest, and ii) 43 

deadwood originating from cutting (branches and treetops) is properly accumulated. 44 
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In methodological terms, this study indicates that radio-tracking may be successfully used as a tool 45 

to assess the effect of forest management on endangered and/or rare ground dwelling insects, and to 46 

identify forest management practices that are most compatible with their conservation.  47 

 48 

49 
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Introduction 50 

 51 

European beech (Fagus sylvatica L.) forests represent a unique ecosystem, stretching from the 52 

Mediterranean regions and southeastern Europe to the British Isles and Scandinavia, comprising 53 

vast areas in the Alps, Balkans and the Carpathians as well as in the northern European lowlands. 54 

The special history and ongoing ecological processes related to beech forests has been 55 

acknowledged by the establishment of the transnational UNESCO World Heritage site "Primeval 56 

Beech Forests of the Carpathians and the Ancient Beech Forests of Germany͟”, instigated in 2007 57 

and 2011. Apart from old-growth remnants, even secondary or managed beech forests harbour 58 

relevant ecosystem processes, animal and plant species of conservation interest, and provide an 59 

immense array of ecosystem services to man. For these reasons, they feature prominently in the 60 

Habitats Directive of the European Commission, Annex I (EU Council 1992), which lists five 61 

different beech forest types that deserve conservation at the EU level (9110 Luzulo-Fagetum beech 62 

forests, 9120 Atlantic acidophilous beech forests, 9130 Asperulo-Fagetum beech forests, 9140 63 

Medio-European subalpine beech woods, 9150 Medio-European limestone beech forests of the 64 

Cephalanthero-Fagion). Beech (Fagus sylvatica L.) forests are important for many autotrophic and 65 

heterotrophic organisms like soil macrofungi, ground dwelling arthropods, land snails, saproxylic 66 

fungi, hole nesting birds, saproxylic insects, epiphytic lichens and bryophytes and epixylic 67 

bryophytes (Brunet et al. 2010, Larrieu et al. 2014a; Larrieu et al. 2014b). European conservation 68 

policy also takes into account beech forests. The Annex 1 of the "Habitats Directive" (92/43/EEC), 69 

which aims to preserve biodiversity through the conservation of the environment, lists eight beech 70 

habitat types as worthy of conservation. Current threats to these ecosystems comprise climate 71 

change (Gessler et al., 2007; Di Filippo et al., 2012), increased possibility of fire and drought 72 

damage (Piovesan et al., 2008; Ascoli et al., 2013), habitat loss and fragmentation (Kunstler et al., 73 

2007), species invasion (Krumm and Vítková 2016) and grazing by domestic or wild ungulates 74 

(Vandenberghe et al., 2007; Olesen and Madsen, 2008). Forestry practices can also affect 75 
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biodiversity both positively and negatively, and studies focused on the impacts of beech forest 76 

management on animal diversity (e.g. Laiolo et al. 2004; Kappes 2005 and 2006; Müller et al. 2007; 77 

Moning and Müller, 2009; Floren et al. 2014; Chumak et al., 2015) are necessary to identify the 78 

practices which are compatible with animal conservation. A case in point are the beech forests of 79 

many mountain areas in Italy (Nocentini, 2009). Most of them were traditionally managed as 80 

coppice, i.e., by repeatedly cutting back sprouts to ground level to stimulate vegetative growth and 81 

provide firewood on a short rotation basis (20 to 40 years). High forests , i.e., stands where trees 82 

regenerate by seed, are rare. However, many coppices are now transitioning to a high-forest 83 

structure, due to either abandonment of regular management, or silvicultural conversion by thinning 84 

(Nocentini, 2009), yet the impacts of such management changes on animal biodiversity are not fully 85 

understood. 86 

Ground beetles (Coleoptera: Carabidae) are typical inhabitants of European beech forests. Carabids 87 

show a wide range of life history traits and microhabitat requirements, and therefore they have been 88 

widely used as biological model of forest management (Rainio and Niemelä, 2003). They are 89 

relatively easy and cost-efficient to sample with standardized methods (i.e., pitfall trapping), and are 90 

sensitive to environmental factors such as temperature, humidity and vegetation structure (Stork, 91 

1990; Butterfield, 1996; Lövei and Sunderland, 1996). Most studies on carabids in different forest 92 

habitats have focused on habitat fragmentation (Davies and Margules, 1998; Niemelä, 2001; 93 

Koivula and Vermeulen, 2005) and edge effects (Heliölä et al., 2001; Koivula et al., 2004; Negro et 94 

al., 2009). The consequences of forestry practices on ground beetle diversity have also been 95 

extensively studied in non-beech forests (Werner and Raffa, 2000; du Bus de Warnaffe and Lebrun, 96 

2004; Pearce and Venier, 2006; Taboada et al., 2006, Baker et al., 2009; Lange et al., 2014; 97 

Skłodowski 2014; Macko, 2016). Habitat modification and destruction may be responsible for 98 

species decline, which affects particularly large-sized and brachypterous (short or reduced wings) 99 

ground beetles, because of their limited dispersal capacity (Kotze and O’Hara, 2003). A common 100 

trend in carabids is that populations of large, poorly dispersing species decrease with increasing 101 
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disturbance and forest management intensity (Raino and Niemela 2003, Kotze and O’Hara, 2003, 102 

Paillet et al. 2010). Since C. olympiae is a large, brachypterous species, we expected that forest 103 

management could exert some negative effect on individual microhabitat use and movements. 104 

Several ground beetle species are threatened (Assmann and Janssen 1999; Kotze and O’Hara, 2003, 105 

Brockerhoff et al., 2005; Matern et al. 2007; Pokluda et al., 2012), despite that, for most species, the 106 

status of populations is not known, and therefore field studies are needed in order to develop the 107 

most appropriate conservation measures.  108 

The species Carabus olympiae Sella, 1855, is an endangered alpine species with a very restricted 109 

range, given that it inhabits only two neighboring beech forests (a few hectares each) in the western 110 

Italian Alps. After the alarming population decline suffered in the years 1930-42 (Malausa et al., 111 

1983), C. olympiae has been declared a priority species (i.e. a species for the conservation of which 112 

the European Community has a particular responsibility) and included in Annexes II and IV of the 113 

EU Habitats Directive. It is listed in international agreements such as the Bern Convention, and is 114 

considered Vulnerable according to the IUCN red list of Threatened species 115 

(http://www.iucnredlist.org/). Despite this protection framework, C. olympiae still faces threats due 116 

to the construction of downhill skiing facilities (Negro et al. 2009, 2010, 2013) and to forestry 117 

practices. In addition to removing trees, logging usually alters the shrub, herbaceous, and litter 118 

layers. The period immediately after logging may therefore be dangerous for forest ground beetles, 119 

which are deprived of protection by the canopy and understory layers. Previous research focused on 120 

local ground beetle diversity, and tentatively indicated that the best option to protect this species 121 

was low-intensity or no management (Negro et al. 2007, 2013), particularly avoiding homogenous 122 

thinning in over-mature coppices (Negro et al., 2014).  123 

Here we tested different forest management techniques to identify those interventions that are 124 

compatible with and, possibly favourable to, the conservation of C. olympiae. 125 

We radio tracked C. olympiae individuals in multiple stands that differed in terms of forest 126 

management and certain structural elements of forests in order to evaluate their effects on 127 
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microhabitat use and movements of these beetles to identify those interventions that are compatible 128 

with and, possibly favourable to, the conservation of C. olympiae. 129 

After logging, we collected and translocated tagged individuals into the managed stands and started 130 

to radio-track them to assess individual ecological choices under different forest management 131 

scenarios. We hypothesized that logging would increase temperature and decrease humidity, change 132 

microhabitat use and affect movement parameters of the radio-tagged individuals.In particular we 133 

expected that bare soil should be avoided by this species, and many other studies provide more 134 

predictions regarding dead wood, dense field vegetation, 135 

We assessed the short-term effects of different types of logging practices on: i) local microclimatic 136 

conditions, ii) habitat use and iii) movements of radio-tagged individuals. In methodological terms, 137 

we aimed to test the effectiveness of the radio-tracking technique as a tool to assess the effect of 138 

forest management on endangered insects.  139 

 140 

Study area  141 

 142 

The study area was the upper Sessera Valley, in the North-western Italian Alps (45°40’ N; 8°16’E). 143 

The area is classified as Site of Community Importance (SCI, IT113002, Val Sessera) with the 144 

purpose of protecting this ground beetle speciesC. olympiae. It includes the upper part of the River 145 

Sessera basin, a mountainous catchment, from the valley bottom up to an elevation of 2556 m a.s.l. 146 

(average elevation: 1350 m). Annual rainfall is 1700 mm with two equinoctial maxima, and mean 147 

annual temperature is 7°C. Snow cover lasts about 5 months (November to March). The most 148 

common land cover classes are pasture, shrubland (Alpine rose Rhododendron ferrugineum L. and 149 

bilberry Vaccinium myrtillus L.), secondary forest on former pastures, coniferous plantation, and 150 

beech forest (belonging to the association Luzulo-Fagetum). In the study area, Alpine rose 151 

shrubland is characterized by sparse isolated patches as the result of historical forest cutting and 152 
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pastoral practices. Beech was traditionally managed as coppice-with-standards (i.e., trees retained to 153 

provide a seed source for stump replacement over time) to produce firewood and charcoal. Over 154 

recent decades, forest management has been progressively reduced. The last harvest in privately 155 

owned coppice stands was carried out in 1960; the density of standards is on average 100 trees per 156 

hectare, and they are now about 80 years old. On the other hand, most coppices on public properties 157 

have been actively converted to high forest in the 1980s. Conversion has been carried out by 158 

progressive thinning (3-4- entries) of sprouts (Giannini and Piussi, 1976), before reaching the final 159 

step of ‘‘temporary high forest’’, i.e., a forest that has the structure of a mono-layered high forest, 160 

but which originated from sprouting, to which the seeding cut will be eventually applied. Most of 161 

the coppices in conversion are currently between the second and the third thinning, and the trees are 162 

70–75 years old, with some standards trees > 100 years old. 163 

 164 

 165 

Methods  166 

 167 

Experimental forest management  168 

Experimental forest management was carried out in 2014 and 2015 in seven different stands, with 169 

the aim of reproducing “business as usual” as well as alternative management options for beech 170 

coppices and high forests (Fig. 1). Forest structure and ground cover were measured before and 171 

after logging across 30 sampling plots (details in Negro et al., 2014). In all logging practices 172 

adopted (interventions ii, iii and iv) the retention of coarse woody debris was prescribed and the 173 

following four treatments were applied: 174 

 175 

i) no logging (control, C), only in over-mature coppices (two stands, one in 2014 and one in 176 

2015, 3 hectares each). These had an average stem density of 2029 trees ha-1, mean canopy 177 
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cover of 89%, and mean living aboveground tree volume of 207 m3 ha-1. Ground cover by 178 

deadwood (downed logs and branches, either sparse or piled) was in the range of 0% to 10% 179 

(Negro et al., 2014);  180 

 181 

ii) strip cuts in the high forest (one stand in 2015, 10 hectares) (management type 1, M1). This 182 

had an average stem density of 915 trees ha-1, mean canopy cover of 89%, and mean living 183 

aboveground tree volume of 273 m3 ha-1 before treatment. After the cut, which was carried 184 

out by removing all trees in 10 elongated openings (350-1250 m2 each) and leaving a total of 185 

30 m3 of cut timber on the ground in the form of whole trees, ground cover by deadwood 186 

had increased on average from 2% to 6%;   187 

 188 

iii) single-tree selection in over-mature coppices (two stands in 2015, 14 and 6 hectares 189 

respectively) (management type 2, M2). This was carried out by harvesting individual 190 

sprouts, trees, or small groups (tree diameter <25 cm) with the aim to promote the growth of 191 

better-quality beech stems, while retaining all other tree species and leaving all branches on 192 

the ground. Stem density and living tree volume were reduced on average by 26% and 30% 193 

respectively, while ground cover by deadwood increased on average from 2% to 8%; 194 

 195 

iv) uniform thinning to convert over-mature coppices to high forest (two stands, one in 2014 196 

and one in 2015, 3 hectares each) (management type 3, M3). This represents the “business 197 

as usual” scenario for beech coppices in the region, and was carried out by harvesting all but 198 

the best-quality sprouts from each stool, and leaving branches in small piles uniformly 199 

scattered on the ground. Stem density and living tree volume were reduced on average by 200 

85% and 60%, respectively, while ground cover by deadwood increased on average from 201 

2% to 5 %.  202 

 203 

Commento [EC13]: L173, please 
clarify “sparse or piled” – do you 
mean that the same amounts were 
distributed evenly all over the 
stands versus stacked in (how 
large?) piles? 
 



10 
 

 204 
 205 
Figure 1. Experimental design. Seven different stands underwent four different forest management 206 
interventions: i) absence of management in over-mature coppices (control, C); ii) strip cuts in the 207 
temporary high forest (management type 1, M1); iii) single-tree selection in over-mature coppices 208 
(management type 2, M2); iv) uniform thinning to convert over-mature coppices to high forest 209 
(management type 3, M3).  210 
 211 

Microclimate monitoring 212 

Five Thermo/Hygro Button loggers (Maxim Integrated Products, Inc., Sunnyvale, CA, U.S.A.) were 213 

used to record temperature and relative humidity every 1 h in each stand in 2015. The data loggers, 214 

fixed attached to wooden poles (2 cm above the soil surface) and sheltered from rain by means of a 215 

plastic roof, were located in areas that were representative of the treatment applied in that stand. 216 

Recorded data were used to compute daily mean, minimum, and maximum temperature and relative 217 

humidity. 218 

 219 

Pitfall trapping 220 
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We captured ground beetles by pitfall trapping in un-managed areas. In each sampling area, five 221 

baited pitfall traps were arranged according to a Latin square design, i.e., at the four vertices and at 222 

the center of a 20 m-wide square. Each trap (7.5 cm diameter and 9 cm deep), filled with 150 ml of 223 

vinegar as an attractant (van den Berghe, 1992), was assembled with a double bottom in order to 224 

keep animals alive. A flat stone was placed above each trap to prevent flooding. The exact location 225 

of traps was determined by means of a Global Positioning System (GPS) Garmin eTrexR 226 

Navigator. A total of 23 sampling areas in 2014 (early July-mid August) and 24 in 2015 (mid June-227 

early August) were set and traps emptied at three-day intervals. 228 

 229 

Radio-tracking 230 

Individuals were radio tagged with Micro-Pip radio-tag transmitters (about 0.3 g, 15 × 5 × 4 mm) 231 

developed by Biotrack Ltd, (Wareham, England, www.biotrack.co.uk). Transmitters were attached 232 

with cyanoacrylate on top of the elytrae, with the short antenna (2.5 cm) directed backwards, in 233 

keeping with Negro et al. (2008). After radio-tagging, individuals were kept for some hours in a 234 

dark terrariurm before releasing them back to the wild. In the field, radio-signals could be detected 235 

from about 300 m, with a battery life span of about three weeks. Tagged carabids were relocated 236 

once a day, in the morning, using a receiver and a hand-held Yagi directional antenna. The exact 237 

radio-telemetry location (fix) was determined in the field by a GPS, where a coloured peg was also 238 

driven into the soil. At the end of the experiment period, radio tagged individuals were caught to 239 

retrieve transmitters before being released.  240 

 241 

C. olympiae are more active at night than by day. During the day, they do not move or move only 242 

very short distances (typically < 2.5 m)up to few meters, whilst long distance movements of several 243 

tens of meters (the maximum linear dispersal range was 77.7 m) were almost exclusively at night 244 

(Negro et al. 2008). The fixes collected in the present study reflect therefore the microhabitat used 245 

by individuals as a refuge or shelter during the day time. 246 
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 247 

Microhabitat assessment 248 

Microhabitat availability for ground beetles was assessed in October 2015 by transect sampling. We 249 

set six linear transects (60 m long) per stand in the same areas used by radio-tracked individuals (a 250 

total of 42 transects, i.e. 6 transects x 7 stands). Quadrats (60 x 60 cm) along transects were set at 251 

two metres one from another (i.e. 30 quadrats for each transect) for a total of 1260 quadrats (30 252 

quadrats x 42 transects). We took a picture of ground cover in each quadrat and the dominant 253 

microhabitat was later classified into one of the following categories: shrubs (SH), tree bases (ST), 254 

deadwood (DW, i.e. coarse woody debris such as pieces of branches or trunks), grass (G), bare 255 

ground (BG), rocks (R) and litter (L).  256 

Individual microhabitat use was assessed by recording the microhabitat used by radio-tagged 257 

individuals as shelter during the day (i.e. the dominant microhabitat category at the fix).  258 

 259 

Data analysis  260 

 261 

Microhabitat use  262 

We used a binomial Generalized Linear Mixed Model to model microhabitat use (i.e. 1 used, 0 263 

unused) as a function of management (i.e. C, M1, M2 and M3), year of study (2014 and 2015), sex, 264 

and microclimate (average humidity and temperature), specifying the identity of radio tagged 265 

individuals as a random effect. We modelled the use of three microhabitat types, i.e. litter, 266 

deadwood and tree bases, for which the sample size was statistically adequate not to have 267 

convergence problems of the model.  268 

In our study design, microhabitat use was measured for each individual, whilst microhabitat 269 

availability was measured at the population scale (i.e. inside each managed stand), assuming that 270 

microhabitat types were equally available to all monitored animals (Thomas & Taylor 1990). To 271 
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compare use and availability in this kind of study design (i.e. to study microhabitat selection), we 272 

used Compositional Analysis, calculating the significance of Wilk’s Λ and t statistics by 273 

randomization tests (Aebischer et al. 1993). Analyses were performed using the function compana 274 

in the package adehabitatHS for R (Calenge, 2011; R Core team, 2016). We also calculated the 275 

selection ratio: wj = uj/aj where uj is the proportion of use of the habitat class j and aj is the 276 

proportion of availability (relative frequency) of habitat class j (Manly et al., 2002). If individuals 277 

use all habitats in relation to their availability, the ratio is 1, if they use a certain habitat 278 

proportionally less than its availability, the ratio is a value between 1 and 0, while if they use the 279 

habitat proportionally more than its availability, the ratio is > 1 (i.e., the higher the value, the higher 280 

the preference for that habitat). 281 

Since the selection ratio showed that microhabitat selection was different from one animal to 282 

another, we investigated these differences by means of eigenanalysis of selection ratios (Calenge, 283 

2006). If W is the table containing the selection ratios for each animal (rows) and each microhabitat 284 

type (columns), the eigenanalysis consists of a non-centred and non-scaled principal component 285 

analysis of the table W − 1, using the proportion of availability of each microhabitat type as column 286 

weights and the number of relocations of each animal as row weights. This analysis partitions the 287 

statistics: 288 

 289 

  290 

  291 

where uij is the number of relocations of animal j in microhabitat i, pi is the proportion of available 292 

resource units in microhabitat i, and u+j is the total number of relocations of animal j. This statistic 293 

was proposed by White and Garrott (1990) to test microhabitat selection. What is interesting is that 294 

this analysis connects two widely used approaches for microhabitat selection studies into a unified 295 

framework [selection ratios and the White and Garrott (1990) statistic]. 296 
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 297 

Movements 298 

Movements were studied by measuring the linear distances (with a telemeter) and the turning angles 299 

between consecutive fixes (Cain, 1989). Vagility indices were computed for each individual, 300 

consistent with Negro et al., 2008. Independence among successive angles was tested by the non-301 

parametric Runs Test above and below the median, which is used to test the randomness of a 302 

sequence of a series of observations (turning angles, in our case) (Sokal & Rohlf, 1995). To 303 

approach normality (checked by using normal probability plots), distance data were square-root 304 

transformed (Sokal & Rohlf, 1995). 305 

To test the agreement among turning angles, we computed an index of angular concordance, or 306 

angular concentration (Zar, 1999; Fortin & Dale, 2005), converting angles in a circular system 307 

using Batschelet’s (1981) protocol. For any sets of data the angles (θi) are represented in a circular 308 

system by vectors of unit length and coordinates (xi, yi) by means of the following equations: xi = 309 

cos(θi) and yi = sin(θi). The coordinates of the mean vector are ( ), while its length is equal to ra = 310 

). The circular equivalent of the standard deviation is s = , which can be 311 

converted to degrees by multiplying by 180°/π (Batschelet, 1981). The mean vector length (ra) takes 312 

a value of 1 when all the angles are the same and a value of 0 when the vectors cancel each other 313 

out (Upton & Fingleton, 1989; Fortin & Dale, 2005). 314 

To check the compactness of the paths travelled by each radio-tagged individual, we calculated the 315 

Index of Tortuosity (T) that considers both distances and angles. This index is based on the convex 316 

hull, which is the smallest convex polygon that fully contains the path. T is equal to the L/M ratio, 317 

where L is the total distance covered and M is the major diameter of the convex hull (Claussen et 318 

al., 1997). The coefficient of variation (CV = standard deviation/mean × 100) of distance was used 319 

to test the variability of daily distance between fixes among different forest management types. 320 
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Movement data were merged with those of 21 individuals radio-tracked in Alpine rose shrubberies 321 

and over-mature beech coppices in years 2005 and 2006 (Negro et al., 2008). This merger 322 

significantly increased the size of the data set and gave us the opportunity to study movements in a 323 

gradient of increasing human impact (from undisturbed forest to managed forest to shrubs resulting 324 

from past forest harvesting). 325 

All vagility parameters (i.e. tortuosity index, angular concordance and CV of distance) were 326 

modelled by means of GLMs, in relation to the sex of the individual and forest management. 327 

 328 

Results 329 

A total of 40 C. olympiae individuals were collected and radio-tracked within stands: 15 in 2014 (in 330 

two stands i.e. C and M3) and 25 in 2015 (in four stands i.e. C, M1, M2 and M3) (Table 1). Forest 331 

management increased deadwood (M1: from 2 to 6%; M2: from 2 to 8%; M3: from 2 to 5%) and 332 

bare ground cover (M1: from 4 to 9%, M2: from 3 to 9%; M3: from 3 to 29%) in all managed 333 

stands. Cover by litter decreased greatly (M1: from 80 to 60%, M2: from 75 to 63%; M3: from 75 334 

to 32%), while grass cover exhibited only little change (M1: from 0 to 3%, M2: from 5 to 1%; M3: 335 

from 5 to 4%). The harvest did not affect ground cover by tree bases, shrubs and rocks.  336 

Table 1. Number of fixes, daily mean ± SE and total distances covered by radio-tagged ground beetles in 337 
2014-2015. 338 
 339 

No. Management Sex Year Fix No. Total distances (m) Mean (m) ± SE 
1 Control F 2014 31 151.10 5.04 ±  0.76 
2 Control M 2014 6 12.91 2.58 ± 1.25 
3 Control M 2014 14 130.05 10.00 ± 2.65 
4 Control M 2014 4 97.10 32.37 ± 6.93 
5 Control F 2014 20 88.90 5.56 ± 0.84 
6 Control F 2014 9 134.80 19.26 ± 4.44 
7 Control M 2014 3 8.65 4.33 ± 2.98 
8 M3 F 2014 6 76.91 15.38 ± 11.78 
9 M3 M 2014 6 57.99 11.60 ± 6.74 
10 M3 M 2014 6 130.47 26.09 ± 11.05 
11 M3 M 2014 31 310.72 11.10 ± 3.23 
12 M3 F 2014 11 125.00 15.63 ± 6.03 
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13 M3 M 2014 11 195.30 19.53 ± 5.65 
14 M3 F 2014 4 3.40 1.13 ± 0.34 
15 M3 F 2014 22 319.40 15.21 ±  3.54 
16 M3 M 2014 16 73.40 4.89 ± 1.36 
17 Control M 2015 37 806.50 22.40 ± 3.09 
18 Control M 2015 38 388.60 10.50 ± 1.40 
19 Control M 2015 6 7.00 1.40 ± 0.44 
20 Control F 2015 13 67.65 5.64 ± 1.91 
21 Control M 2015 29 654.15 23.36 ± 3.79 
22 Control F 2015 4 71.80 23.93 ± 3.14 
23 Control F 2015 15 95.80 6.84 ± 2.50 
24 M2 F 2015 24 259.00 11.26 ± 2.73 
25 M2 F 2015 24 27.28 1.19 ± 0.55 
26 M2 M 2015 19 135.50 7.53 ± 2.65 
27 M2 M 2015 24 63.30 2.75 ± 1.27 
28 M1 M 2015 14 91.20 7.02 ± 2.16 
29 M1 M 2015 11 66.80 6.68 ± 3.35 
30 M1 M 2015 6 110.00 22 ± 11.49 
31 M1 M 2015 6 155.10 15.51 ± 4.74 
32 M1 F 2015 26 306.85 12.27 ± 2.38 
33 M1 F 2015 15 102.73 7.34 ± 2.98 
34 M2 M 2015 11 201.85 20.19 ± 4.77 
35 M2 F 2015 17 289.35 18.08 ± 4.75 
36 M2 F 2015 15 109.13 7.80 ± 2.48 
37 M2 M 2015 14 54.75 4.21 ± 1.74 
38 M3 F 2015 20 343.30 18.07 ± 5.10 
39 M3 F 2015 13 162.20 13.52 ± 4.66 
40 M3 M 2015 7 88.50 14.75 ± 6.68 
41 M3 M 2015 26 453.55 17.44 ±  6.28 

 340 

 341 

Microclimatic conditions 342 

A complete series of climate data was only available for C and M3 stands in 2015, where data 343 

loggers ran without interruption from 18 June to 5 August. Microclimatic conditions in these 344 

control and managed stands were significantly different. No significance differences were found 345 

between control and M1 and M2 stands, likely because the incompleteness of the data collected; the 346 

maximum temperature was on average significantly higher in M3 than in C (Gaussian GLM: beta 347 

5.0297, SE 0.4861, t value 10.35, p <2e-16), whilst the minimum and average humidity were lower 348 
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(minimum humidity: Gaussian GLM: beta -3.27, SE 0.86, t value -3.77, p< 0.000185; average 349 

humidity: Gaussian GLM: beta -18.74, SE 1.53, t value -12.2, p< 0.000185). 350 

 351 

Microhabitat use  352 

Five microhabitats were available for radio-tagged ground beetles in all managed and control areas. 353 

The most available microhabitat was litter (min= 48% of quadrats in M1, max= 63% in C), 354 

followed by deadwood (min = 6% in C, max=27% in M2), bare soil (min = 1% in C, max=34% in 355 

M1), tree bases (min = 4% in M3, max=12% in C) and rocks (min= 1% in M3, max=5% in M2). 356 

Shrubs were absent from M1 and grass cover from M1 and M2. Overall, control areas used by 357 

radio-tagged individuals had more litter, shrubs and tree bases, while managed areas had more 358 

deadwood and bare soil (Fig. 2, on top). 359 
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 360 

Fig 2. Available (top) vs used (bottom) microhabitat types in managed and control areas used by 361 
radio-tracked individuals.  362 

 363 

Radio-tagged individuals used five microhabitat types, i.e. litter, tree bases, deadwood, shrubs and 364 

grass (Fig. 2, on bottom). Bare ground and rocks were never not used. Microhabitat use modelling 365 

did not show any significant differences in the use of litter, deadwood or tree bases due to year of 366 

sampling, sex, mean temperature or humidity. The use of these microhabitat types significantly 367 

changed according to management type only. In particular, litter was used more frequently in M1 368 
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than in control stands, and deadwood was used more frequently in all managed than in control 369 

stands (Table 2).  370 

Table 2. Binomial Generalized Linear Mixed Models of the frequency of the use of Litter, Tree 371 
bases and Deadwood diurnal shelter in the different forest management stands. Control was set as 372 
reference category. Significance codes: ‘***’ p < 0.001; ‘**’ p<0.01; ‘*’ p<0.05; ‘.’ p<0.1. 373 

Litter 

 
Estimate St. Error z values Code 

(Intercept) -1.61 0.28 -5.75 *** 
M1 1.02 0.48 2.13 * 
M2 0.69 0.43 1.61 NS 
M3 -0.06 0.40 -0.14 NS 

    
 

Deadwood 

 
Estimate St. Error z values  

(Intercept) -1.83 0.27 -6.87 *** 
M1 1.10 0.45 2.45 * 
M2 1.49 0.39 3.78 *** 
M3 1.67 0.35 4.76 *** 

    
 

Tree bases 

 
Estimate St. Error z values  

(Intercept) -1.15 0.22 -5.14 *** 
M1 0.26 0.42 0.63 NS 
M2 0.03 0.37 0.09 NS 
M3 -0.68 0.35 -1.95 . 
 374 
 375 

The ranking of microhabitats obtained through Compositional Analysis showed that deadwood and 376 

tree bases were the most preferred microhabitats both in managed and control stands, whilst litter 377 

and grass were the least preferred ones. Shrubs was a high ranking microhabitat in control stands, 378 

but a low ranking one in M2 and M3 stands (Table 3 and Appendix I).  379 

 380 

Table 3. Microhabitat selection as revealed by Compositional Analysis. Microhabitats are ranked in 381 
ascending order of preference. 382 

 383 

 C M1 M2 M3 

Shrub 5 - 2 2 

Tree base 6 4 4 5 
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 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

Manly’s selection ratio Wi for deadwood, tree bases and shrubs was higher than 1 (i.e. positive 395 

selection) and ranged between 0 and 1 for litter and grass (negative selection) both in the managed 396 

and control stands. The selection ratio for tree bases was higher in M1 and M2 stands (4.74 and 397 

4.40, respectively), suggesting a high preference for that microhabitat, and close to 1 for shrubs in 398 

M2 stand (1.06), suggesting a weak positive selection or a random use for that microhabitat (Fig. 3).  399 

 400 

 401 

Grass 2 - - 4 

Litter 3 2 3 3 

Deadwood 4 3 5 6 

Rocks 0 1 0 1 

Bare 
ground 1 0 1 0 

Lambda 0.068 0.088 0.021 0.134 

p-value 0.002 0.040 0.018 0.002 
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 402 

Figure 3. Microhabitat selection in control (C), and managed stands t (M1, M2 and M3) as revealed 403 
by Manly selection ratio Wi (± SE). Microhabitat codes as follows: shrubs (SH), tree bases (ST), 404 
deadwood (DW), grass (G), bare ground (BG), rocks (R) and litter (L). 405 

 406 

The eigenanalysis of selection ratios (Calenge and Dufour, 2006) graphically showed that all 407 

individuals avoided bare ground, grass and rocks and showed variable preference in the use of tree 408 

bases, shrubs and deadwood (Appendix II). The radiotracked individuals selected shrubs, deadwood 409 

and tree bases in C, in M1 they selected deadwood and tree bases, in M2 some individuals selected 410 

shrubs and deadwood and some selected tree bases, while in M3 most individuals selected tree 411 

bases and deadwood. 412 
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Movements 413 

By pooling old (2005 and 2006) and new (2014 and 2015) fixes together, a four-year integrated data 414 

set of 1161 fixes (527 + 634) relative to 61 (21 + 40) ground beetles was obtained. All individuals 415 

displayed zig-zag trajectories (Fig 4). 416 

 417 
 418 

 419 
 420 

 421 

Fig 4. Trajectories of two randomly selected Carabus olympiae individuals (i.e. male No. 13, top 422 
and female No. 5, bottom) radio-tracked in 2014. The individual’s path (red line) and the major 423 
diagonal of the Minimum Convex Polygon (green line) that includes the entire path are shown. 424 
 425 

 426 
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The total distances covered by radio-tracked individuals varied between 3.40 and 806.50 metres, 427 

with mean daily distances ranging from 1.13 to 32.37 metres (Table 1). Angles were evenly 428 

distributed in all stands (shrubberies, control and in managed stands), indicating the lack of a 429 

prevailing walking direction (Appendix III).  430 

GLMs showed that the coefficient of variation of the distances and the tortuosity index varied 431 

according to the management; the length of the paths of individuals in M2 and M3 stands was more 432 

variable than in control stands and the tortuosity index was significantly lower in shrubbery and in 433 

M2 stands than in control, and significantly higher in males than in females (Table 4 and Fig. 5). 434 

 435 

CV Distance 
  Estimate St..Error t values P 
(Intercept) 0.86 0.07 11.88  <2E-16 
M1 0.31 0.16  1.93 5.80E-02 
M2 0.50 0.14  3.49 9.52E-04 
M3 0.33 0.12  2.70 9.25E-03 
Shrubbery 0.18 0.13  1.41 0.16 
          
Tortuosity         
  Estimate St..Error t values P 
(Intercept)  0.83 0.08  9.76  <2.96E-12 
M1 -0.18 0.16 -1.11 0.27 
M2 -0.39 0.15 -2.60 0.01 
M3 -0.16 0.13 -1.30 0.20 
Shrubbery -0,47 0.11 -4.22 1.31E-04 
Sex  0.29 0.09  3.34 1.80E-03 

 436 
Table 4. Generalized Linear Mixed Models of CV of distances and tortuosity in the different forest 437 
management and shrubland stands. Control was set as reference category.  438 
 439 

 440 
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 441 

Fig.5 Box plots of the tortuosity index (top) and of the coefficient of variation of the distances 442 
(bottom) between management types (Control C, Management M1, Management M2, Management 443 
M3 and Shrubs SH) 444 
 445 
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Discussion 446 

Logging may have negative impacts faffects or forest wildlife and insect fauna because of the 447 

induced changes in microclimatic conditions and microhabitat availability. Ground beetles strongly 448 

depend on particular humidity and temperature requirements (Skłodowski 2014). Data loggers 449 

showed that temperature was higher and humidity lower in M3 than in control stands, suggesting 450 

that uniform logging may induce significant short term climatic changes. Warmer and drier 451 

microclimates may negatively affect C. olympiae both directly (this species likes fresh and humid 452 

beech forests, Negro et al. 2014) and indirectly, reducing the local availability of snails and slugs 453 

(Arianta arbustorum, Arion and Limas spp.), which are the preferred prey (Negro et al., 2008pers. 454 

comm.). Canopy and shrub cover usually take several years to recover after a cut, depending on the 455 

intensity of the removal. Montagnoli et al. (2012) compared canopy cover and soil temperature 456 

between May and October at 5 cm depth in over-mature beech coppices (not cut for 40 years) 457 

against those following uniform conversion to high forest (75% of trees removed). Even 14 years 458 

after the cut, canopy cover was on average 22% lower and soil temperature 1 °C warmer than in the 459 

uncut forest.  460 

 461 

The low-intensity interventions (M1 and M2) may have resulted in only negligible changes in 462 

micro-climate, shadiness and shrub cover M1 and M2 forest management interventions, conversely, 463 

might have produced negligible climatic changes. Such lower-intensity cuts may mitigate the 464 

changes in shading, shrub cover, and soil microclimate by preserving patches or corridors of trees 465 

throughout the stands. Small canopy gaps (20 to 30 m diameter) were foundhave been found to 466 

increase maximum soil temperature by +0.2 - +1.9 °C relative to an uncut control, but the effect 467 

was already cancelled out at the edge of the gap (Prévost and Raymond, 2012). Gap cutting may be 468 

even more conservative in terms of soil moisture, which has been found to be unchanged, or even 469 

increased, in small (300-400 m2) and large (500-700 m2) gaps compared to below fully closed 470 

canopy (Bilek et al., 2014).  471 
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Compared to other broadleaves, beech has a strong ability to fill canopy gaps by crown extension 472 

(Brunet et al. 2010). If the regeneration strategy is successful, a new beech layer will establish in 473 

recently opened gaps within a few years, resulting in moderate microclimatic changes with a new 474 

canopy (Dovciak and Brown, 2014). Finally, the release of deadwood on the ground may provide 475 

shadier microsites that mitigate the absence of a more uniform canopy or shrub cover as a 476 

consequence of the cut (Marzano et al., 2013) and contribute to preserving soil moisture (Ritter and 477 

Vesterdal, 2006).  478 

 479 

In addition to microclimatic conditions, forest management may change ground cover and 480 

understory, and induce a different microhabitat use. Even though we were able to consider only 1-2 481 

stands per management, we nonetheless described in details and by means of several sampling 482 

points the variance within each treatments. This allowed us to identify that the use of microhabitat 483 

types by radio-tagged C. olympiae individuals indeed changed significantly according to the 484 

management. The increase in bare ground after logging is obviously a negative effect, given that 485 

individuals cannot hide in such a microhabitat (which was never used) (Niemelä et al., 1996, 486 

Skłodowski 2008). This finding is consistent with previous analyses that showed that C. olympiae 487 

abundance was negatively related to bare ground cover (Negro et al., 2014). However, the increase 488 

in deadwood availability may be beneficial. Microhabitat selection analyses (i.e. Compositional 489 

Analysis and Manly ratio) showed that deadwood and tree bases were positively selectedpreferred 490 

and litter negatively selected (i.e.was avoided avoided) in all managed and control stands, 491 

suggesting that microhabitat preferences did not significantly change with forest interventions. At 492 

the same time, univariate models showed that deadwood was used more frequently in all managed 493 

stands than in control stands. This major use, given the consistency of microhabitat preferences, 494 

may be easily explained by the greater deadwood availability in managed stands. The abundance of 495 

deadwood in managed stands was a consequence of experimental logging that aimed at a high level 496 

of retention of coarse woody debris (Negro et al. 2014). 497 
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It should be emphasised that dDeadwood is crucial for hundreds of rare and threatened species in 498 

Europe alone (cit?!) 499 

 500 

decomposition plays a key role in the recycling of nutrients and organic matter, as well as in 501 

providing a wide variety of microhabitats for plants and invertebrates, particularly insect species 502 

and other organisms (Stevens 1997, Floren et al. 2014, Chumak et al. 2015). Insects, in turn, may be 503 

beneficial to forest bird specialists, whose diversity increases with increasing amounts of deadwood, 504 

both in breeding and in wintering seasons (Laiolo et al. 2004; Caprio et al. 2009).  505 

The quantity of deadwood in Europe’s forests has decreased significantly since the middle of the 506 

19th century due to intense forest exploitation. Since 2000, however, a small overall increase in 507 

deadwood has been observed (Forest Europe 2011). This may be due to management practices that 508 

deliberately increase the amount of woody debris in managed forests (as in our case), either thanks 509 

to legal or policy prescriptions, or as a measure to comply with forest certification requirements 510 

(European Environment Agency 2015). The increases in forest cover and stem density in 511 

many European forests, following extensification of forest use, have also led to a increased natural 512 

disturbance levels (Seidl et al. 2014). Wind storms and bark beetle disturbance events may have 513 

influenced the production of dead wood in some areas (Kulakowski et al. 2017), although this 514 

should not be relevant for the area studied here (no evidence for large disturbances in the managed 515 

beech forest was found). Finally, climate change may also contribute to increased disturbance 516 

frequency and severity, and increased deadwood input (Seidl et al. 2017).  517 

All the above confirms that the retention of deadwood is thus crucial in conservation of forest 518 

organisms, and specific attention should be paid for securing its spatio-temporal continuity in 519 

managed forests a method that produces results that are superior to those achieved by other means 520 

and should therefore be recommended as best practice in forest management devoted to animal 521 

diversity conservation. 522 
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Very large bases of living and dead trees were clearly preferred by C. olympiae individuals that 523 

probably used this resource as shelter for daytime rest or against micro-climatic variationEnlarged 524 

tree bases, especially those with decaying wood, were also greatly appreciated by radio-tagged C. 525 

olympiae (Manly ratio was well above 1 and scored the highest values in M1 and M2 stands), which 526 

took advantages of splits and cavities as shelters. Coppices may provide more of this habitat than 527 

high forests, since the tree base tends to expand if it must support a larger number of sprouts. 528 

Interventions aimed at maintaining over mature coppices are therefore preferable to those aimed at 529 

converting over-mature coppices to high forest, consistent with previous analyses (Negro et al., 530 

2014, Seidle et al. 2017).  531 

The eigenanalysis of selection ratios showed that microhabitat preferences changed from one 532 

individual to another.  533 

 534 

The present research also indicates that forest management may affect C. olympiae movements. 535 

Both the coefficient of variation of the distances and the tortuosity index varied according to the 536 

management. The length of the paths of individuals in managed stands was more variable than in 537 

control stands, suggesting that movements of individuals were more uncertain and 538 

unpredictablerandom in terms of direction and length (sometimes they moved a lot, sometimes they 539 

did not move) when relocated in forest stands subjected to logging. Trajectories were rather 540 

tortuous, fitting the requirements hunting behaviour of a typical “olfactory-tactile” predator that 541 

looks for prey by systematically exploring its territory. The high tortuosity is also in keeping with 542 

the use of decaying fruits and vegetables (as shown by multiple choice tests carried out in the lab by 543 

Negro and Palestrini, unpublished). We did not track individuals in between two successive 544 

telemetric locations. This means that true paths were likely longer and trajectories more tortuous 545 

than those measured. The tortuosity index was significantly lower in Alpine rose shrubland and in 546 

M2 stands than in control. Negro et al. (2008) found that most individuals located in shrubland were 547 

hidden under Alpine rose shrubs, which probably were used as shelter from extreme temperatures 548 
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and protection from predators. We believe the low availability of shrubs (which were isolated and 549 

sparse) may have constrained trajectories (individuals were compelled to move from shrub to shrub) 550 

and reduced their tortuosity. Analogously, changes in microhabitat and/or resource availability in 551 

some managed forest stands may have significantly reduced tortuosity in comparison with controls. 552 

Tortuosity index was significantly higher in males than in females. Males of insects are able to 553 

detect pheromones produced and emitted by females (Gullan & Cranston 1994). We therefore 554 

hypothesize the paths of males were more tortuous in order to diminish the time allocated for the 555 

searching for females (in keeping with Negro et al. 2008). 556 

 557 

We assumed that microhabitat use and movements of radio-tracked individuals were unaffected by 558 

radio-tags. Although their weight and dimensional impediment were low, concerns about the effects 559 

of tagging on animal behaviour may arise and a reduction in dispersal ability cannot be excluded. In 560 

fact, the weight of the tag (0.3 g) is about 40% of the average weight of individuals, and the tag 561 

fixed on top of the elytra may be a hindrance to the movements across narrow passages (leaf-litter, 562 

thick grass, etc.). In a previous paper on movements of the common ground beetle species C. 563 

coriaceus, Riecken & Raths (1996) stated that foraging success was not substantially reduced by 564 

radiotags. During the present research, radio-tagged individuals were observed on many occasions 565 

to feed on molluscs and to copulate with untagged individuals (in keeping with Negro et al., 2008), 566 

suggesting radio-tagging did not significantly affect feeding and mating behaviour. If a reduction in 567 

dispersal existed, however, this would have affected both individuals in control and in managed 568 

stands to the same degree. Our results, focused on the comparative analyses between managed and 569 

un-managed forest patches are therefore highly reliable.  570 

 571 

Conclusions 572 

Our results support the evidence that logging may exert short-term negative effects on C. olympiae 573 

ground beetles (as suggested by the increase in bare ground, and changes in climatic conditions and 574 
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movements). However, the preference for tree bases and deadwood suggests that forest 575 

management, concurrently, may also be beneficial, on the condition that: i) the coppice,  576 

which provides more suitable microhabitats, prevails over conversion to high forest, and ii) 577 

deadwood originating from cutting (branches and treetops) is properly accumulated. 578 

To our knowledge, this is the first time that radio-telemetry has been used as a tool to assess the 579 

effect of forest management on ground dwelling insects. In methodological terms, this study 580 

indicates therefore that radio-tracking may be successfully used as a tool to assess the effect of 581 

forest management on relatively large ground dwelling insects, and to identify the logging practices 582 
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the latter, this is a poor way to end 
a paper; rather end with a clear 
management statement, such as 
the one I suggest above. This is 
not a methodological paper, and 
the usefulness of telemetry has 
been shown over 20 years ago 
already (Riecken & Raths 
1996/Ann.Zool. Fennici, etc.). 
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Appendix I. Ranking matrices of Compositional Analysis for ground beetles based on comparing 894 
proportional microhabitat use of fixes with proportions of total available microhabitat types in 895 
Control (C) and Managed (M1, M2, M3) stands. Microhabitat codes as follows: shrubs (SH), 896 
stumps (ST), deadwood (DW), grass (G), bare ground (BG), rocks (R) and litter (L). Each mean 897 
element in the matrix was replaced by its sign; a triple sign represents significant deviation from 898 
random at P < 0.05.  899 
 900 

Habitat type                                 
                                  
C                 M1               
                                  
  SH ST G L DW R BG     ST L DW R BG     
SH 0 - +++ +++ + +++ +++   ST 0 +++ + +++ +++     
ST + 0 +++ +++ + +++ +++   L --- 0 --- +++ +++     
G --- --- 0 --- --- +++ +++   DW - +++ 0 +++ +++     
L --- --- +++ 0 --- +++ +++   R --- --- --- 0 +++     
DW - - +++ +++ 0 +++ +++   BG --- --- --- --- 0     
R --- --- --- --- --- 0 ---                   
BG --- --- --- --- --- +++ 0                   
                                  
                                  
M2                 M3               
                                  
  SH ST L DW R BG       SH ST G L DW R BG 
SH 0 - - --- +++ +++     A 0 --- - - --- +++ +++ 
ST + 0 + - +++ +++     C +++ 0 +++ +++ - +++ +++ 
L + - 0 --- +++ +++     E + --- 0 + --- +++ +++ 
DW +++ + +++ 0 +++ +++     L + --- - 0 --- +++ +++ 
R --- --- --- --- 0 ---     N +++ + +++ +++ 0 +++ +++ 
BG --- --- --- --- +++ 0     P --- --- --- --- --- 0 +++ 
                  SN --- --- --- --- --- --- 0 
 901 

 902 

 903 
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Appendix II. Results of the eigenanalysis of selection ratio carried out to highlight microhabitat 905 
selection by Carabus olympiae individuals radiotracked in Control (C) and Managed (M1, M2 and 906 
M3) stands. Top panel: microhabitat type loadings on the first two factorial axes. Bottom panel: 907 
animal scores on the first factorial plane (see Calenge & Dufour 2006 for further details). 908 
Microhabitat codes as follows: shrubs (SH), stumps (ST), deadwood (DW), grass (G), bare soil 909 
(BG), rocks (R) and litter (L). Numbers indicate animals in each treatment (i.e. 13 individuals in 910 
controls, 6 in M1, 8 in M2 and 13 in M3). The distance of the label from the center of the graph in 911 
the top panel indicates microhabitat preference (those close to the origin not being selected), the 912 
length and direction of the arrows in the bottom panel indicates the preferred selection for each 913 
individual. 914 
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Appendix III. Even distribution of angles in shrubbery, control and managed stands.  956 
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