PHYSICAL REVIEW E 96, 042402 (2017)

Model of chromosomal loci dynamics in bacteria as fractional diffusion with intermittent transport
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The short-time dynamics of bacterial chromosomal loci is a mixture of subdiffusive and active motion, in the
form of rapid relocations with near-ballistic dynamics. While previous work has shown that such rapid motions
are ubiquitous, we still have little grasp on their physical nature, and no positive model is available that describes
them. Here, we propose a minimal theoretical model for loci movements as a fractional Brownian motion subject

to a constant but intermittent driving force, and compare simulations and analytical calculations to data from
high-resolution dynamic tracking in E. coli. This analysis yields the characteristic time scales for intermittency.
Finally, we discuss the possible shortcomings of this model, and show that an increase in the effective local noise
felt by the chromosome associates to the active relocations.
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I. INTRODUCTION

The motion of chromosomal loci of the bacterium
Escherichia coli on time scales 0.1-100 s shows intriguingly
complex patterns [1]. These fluctuations contain key evidence
on the complex physical nature of the intracellular crowded
medium made of genome and cytoplasm [2,3], a stimulating
riddle of soft-matter physics with large biological significance.
On top of a basal subdiffusive dynamics [4-6], the loci are
subject to active forces that have been characterized as both
active noise [7] and rapid excursions of near-ballistic nature
[8-10]. The nature of the background motion and of the active
relocation is still under debate, and both issues are likely deeply
connected with the recent finding that the bacterial cytoplasm
shows some glasslike properties [11].

The rapid relocations emerge as distinct from the subdif-
fusive background motion of the loci. It is widely accepted
that the background motion is compatible with fractional
Brownian motion (fBm) or fractional Langevin behavior, i.e.,
with directionally anticorrelated steps that witness viscoelastic
behavior, and with a mobility that is locus and cell-cycle
dependent [4,5,7]. Consequently, a precise quantification of
the fact that rapid relocations deviate from the expected
behavior of pure viscoelastic subdiffusion is possible by
comparing the behavior of experimental single tracks to a
parameter-matched fractional Brownian motion [8]. However,
no positive model describing such rapid relocations is currently
available. Building such a description is important to address
relevant outstanding questions on the nature of the driving
force and the relevant time scales that play a role in the
process. To this aim, a physical model may be difficult at
this stage. The main obstacles are that we still know very little
about both the nature of cytoplasmic diffusion [11,12] and the
nature of the nonequilibrium forces driving the chromosome
[8,13]. In addition, the contribution of chromosome folding to
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subdiffusion is an open question [6,14,15]. In this context, a
phenomenological model realizing the main pertinent features
can be a useful first step [16].

Importantly, the trajectories showing rapid movements
in these data clearly produce superlinear behavior of the
mean-square displacement (MSD) [8]. It is well known that in
the case of viscoelastic subdiffusion, an object under constant
driving force has to produce a sublinear mean-square displace-
ment (drift), in order to follow a fluctuation-dissipation relation
[16—18]. This constraint is realized by the fractional Langevin
equation [17,19,20]. Thus, given the superdiffusive stretches of
motion over a sub-Rouse basal diffusion, it is not clear whether
a Stokes-Einstein relation should apply in this situation. The
validity of a generalized Einstein relation is ultimately due
to the precise nature of the drive, which in this case may act
both on the probe and on the environment. For example, a
possibility is that the rapid relocations are due to large-scale
rearrangements of the chromosome [8,9].

The recent theoretical literature has focused on active noise,
modeled as colored fluctuations violating the fluctuation-
dissipation theorem, and on its effect on a Rouse model in a
viscoelastic medium [21,22]. However, this framework cannot
capture the ballistic stretches observed in the E. coli data.
In this system, rapid relocations emerge as distinct from the
subdiffusive background motion of the loci, as can be seen by
comparing experimental single tracks to a parameter-matched
fractional Brownian motion (fBm) [8].

Here, we take the complementary assumption that active
behavior is due to an intermittent force. For simplicity, we
give up the description of the polymer degrees of freedom
and concentrate on the superposition of subdiffusion with
an intermittent driving force. This approach cannot explicitly
address the stress propagation between different chromosomal
loci, measurable from joint tracking, which is being addressed
in the current literature for the equilibrium case [14,15].
Other modeling approaches in the recent literature have
explicitly described the dynamics of an active polymer, but
represented the active drive as nonthermal noise or as contact
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FIG. 1. Illustration of the model. An intermittent process switches
on and off a constant driving force, acting on top of a basal
subdiffusive process with viscoelasticlike behavior, modeled as
fractional Brownian motion. The resulting tracks are compared with
experimental data from Ref. [8].

of different sets of monomers with two different thermostats
[22-24]. We define a minimal description of the movement
of chromosomal loci as a basal fractional Brownian motion
superposed to an intermittent process imposing a constant
driving force. Comparing with high-resolution tracking data
in E. coli, we set out to identify the key behaviors and relevant
parameters.

Similar intermittent processes have been proposed in the
literature as models for search processes [25] and complex
reaction diffusion [26-28], as well as for describing the
interplay between diffusion and active transport in cells
[29-31]. However, the case of the superposition between
subdiffusion and active transport has never been considered,
giving a wider motivation to our investigation.

II. MODEL: INTERMITTENT TRANSPORT AND
SUBDIFFUSION

Figure 1 illustrates the basic ingredients of the model.
A point particle is subject to fractional Gaussian noise
[32], which captures the viscoelasticlike subdiffusion [7]
of chromosomal loci, and to an external driving velocity
of constant intensity and orientation, but active only at
intermittent intervals.

In order to reproduce near-ballistic motion in the driven
stretches of motion, this phenomenological model gives up
the Einstein relation and uses fractional Brownian motion
as a model for the basal subdiffusion. The combination
of these ingredients produces the following Langevin-type
equation of motion (for each, assumed independent, coordinate
)Cl')i

(1) = &'(1) + Vio (), (1)
where V is the constant velocity caused by an external force

(drag and temperature are incorporated in &/). The fractional
noise SiH () is a Gaussian noise with the following correlation
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properties:
(g w) =0,
(" EN (") = 2Dy HQRH — D]t — 1?7725
+ 4Dy Ht — 1'PP718( — )8, (2)

where H is the Hurst exponent (or coefficient) and Dy
is the apparent diffusion constant. When H < 1/2 noise at
different times is anticorrelated, with power-law relaxation
[see Ref. [33] for a justification of the expressions in Eq. (2)].
The stochastic process o () governing how the external force
switches on and off is a standard dichotomous telegraph
process, with states 0 and 1. It is specified by the two
characteristic switching times to, = wtg and o = (1 — w)7g
bringing the system from the on state to the off state and vice
versa, respectively. In what follows, when most convenient,
we use the variables w (average fraction of time in the “on”
state) and 7y (average length of a full “off”-“on”-“off” cycle)
to characterize this process.

The probability P, and P- that the force is switched on or
offattimer,i.e., thato(¢) = 1 or o (¢) = 0, respectively, obeys
the following master equation:

Pi() | P_(0)

0, PL(t) = .
 Pr(t) = F W 1 —w

In the stationary state of the telegraph process the probability
of the on state equals P = w (clearly, the probability of the
off state is P°* = 1 — w). We assume this stationary state as
the initial condition in what follows.

III. RESULTS

A. Analytical form of the mean-square displacement
in presence of active forces

Our first result is the derivation of an exact analytical
expression for the mean-square displacement of the model.
As we will show, this expression is very useful to compare the
model to experimental data.

The equation of motion of the process, Eq. (1), can be
integrated formally, obtaining

Axi(t) = Aximm(7) + ViTon(7),

where Ax;(t) stands for the net change of a coordinate
from the initial condition, Ax;m(7) is the contribution of
the fractional noise, and T,,(7) = for o(t)dt is a random
variable representing the time during which the active force
is switched on in the interval [0,7]. Considering the square
of this expression and averaging leads to an expression for
the mean-square displacement. By observing that mixed terms
average to zero, due to the random force and the telegraph
process being independent, and that the mean signed step of a
fractional Brownian motion is null, we obtain

MSD(t) = 2d Dyt + V(T2 (7)), 3)

where d is the dimensionality of the space. We choose d =
2, as the nature of essentially all experimental tracking data
is intrinsically two-dimensional, although loci move in three
dimensions.
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The computation of (Tozn(r)) relies on the fact that the
correlation function for a telegraph process is known:

(o(n)o(t2))

(03)% + Var (o) exp (—@)

C

h —1t
w? + w(l — w)exp (—M),

Tc

where we used the shorthand 7. = w(l — w)7y for the time
scale in the exponential. The second equality uses the analyti-
cal results for the average and the variance of o in the stationary
state. The mean-square waiting time can then be obtained
by double integration as (T2 (7)) = [/, (o ()0 (1)) dtdt
within the square 2 = {0 < #; < 7,0 < £, < t}. By substi-
tuting the result into Eq. (3) we obtain the final analytical
expression for the mean-square displacement in the presence
of the switching active force,

MSD(7) = 2d Dyppt*? + VZw?r?

2 T(? —1/7, T
+2Vi———— e =14+ —). &
w(l —w) Tc
For small lag times, namely when t < 1, the linear term
in parentheses cancels out with the term coming from the
first-order expansion of the exponential, giving

MSD(7) & V2w?t? + 2d Dyt 5)

The above formula shows that in the limit of small lag
times, since the lower power 2H dominates, the process is
increasingly similar to a fractional Brownian motion with
Hurst exponent H.

B. Quantitative agreement between model and data

We used the analytical expression for the mean-square
displacement to fix model parameters from experimental data.
In order to do so, we first determined separately an optimal
value of the subdiffusion exponent 2H for the background
properties. To obtain this value we defined a procedure based
on the fact that for time lags below ~10 s, the mean-square
displacements are compatible with pure subdiffusion [4,8].
Hence, by assuming varying values of H, we looked at the
coherence of 4Dp,(7) := MSD('L’)/TZH, by taking the mean
of its derivative with respect to T and verifying where it crossed
zero [Fig. 2(a)]. This procedure gives a value 2H ~ 0.4,
in line with previous studies focused on the subdiffusion
of E. coli chromosomal loci [4,5]. All our fits (including
the ones described below) were performed with a nonlinear
least-squares Marquardt-Levenberg algorithm minimizing the
chi-square residual, weighted on the standard errors of the
input data.

Subsequently, we performed a four-parameter fit of the data
with Eq. (4), thus fixing 1o, w, V, and Dyyp. The parameter
values obtained are reported in Table I(A). We also verified that
direct simulations of the model with this choice of parameters
agreed with the data. Figure 2(b) shows that the agreement
between the mean-square displacement curves given by the
analytical formula, by simulations of the model, and by
data is excellent. The ingredients of the model are therefore
sufficient to reproduce the experimental observations on the
mean-square displacement.
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FIG. 2. Model reproduces the mean-square displacement of
experimental data allowing one to fix all model parameters.
(a) Determination of the scaling exponent 2H of the background
subdiffusion. Purple circles are the mean of the discrete derivative
(1 s steps) of Dy := (r’(t)/t*"), for values of lag time below
10 s, where the averages are not affected by the influence of ballistic
stretches [8]. Since a well-defined D,,, should not vary with time
scale, the optimal estimated value for the scaling exponent H =~ 0.2 is
obtained when the plot crosses zero. (b) Large purple circles represent
mean-square displacement vs lag time for the data on the Ori3 locus
in Ref. [8] (error bars, SE, are smaller than symbols). Red line and
small black circles are, respectively, a fit with the analytical formula,
Eq. (4), and simulation results obtained with the parameter values
fixed by the fits [reported in Table I(A)]. 2H = 0.41 is fixed from the
analysis shown in panel (a). (c) Fits with w = 1/2 cannot reproduce
the data. The plot shows the ratio of the rms residual of fits imposing
w = 1/2 to the rms residual of the unconstrained fit shown in panel
(b), for different values of the time scale. The ratio between the two
values is in the range 50-70.

Importantly, a model with areduced parameter space, where
the two characteristic switching times (on and off) are equal,
cannot reproduce the mean-square displacement of the experi-
mental data. We considered a constrained fit with w = 1/2, by
varying this parameter in a wide range of values. The results,
shown in Fig. 2(c), clearly indicate that the performance of
this fit is much worse. Intuitively, if to, = 7o the number of
tracks in which the force is off all the time (i.e., the purely
subdiffusive ones) equals the number of tracks in which it is
always switched on. However, it is clear that the tracks showing
simple subdiffusive behavior are much more common in the
data than the tracks dominated by ballisticlike drift [8].

TABLE 1. (A) Parameter values for the theoretical curve and
simulations of the constrained model fit shown in Fig. 2. (B) Parameter
values from the alternative fitting procedure using the subtraction
of the subdiffusing contribution to the MSD, shown in Fig. 3.
(C) Parameter values for the systematic four-parameter (fit.
(D) Parameter values for the joint model fit considering the end-
to-end distance distribution. (E) Parameters of the best-fitting fBm.
(Estimated errors affect the last displayed digits.)

Param. 2H 4Dy, \ %4 Ton  Toft To w
units (none) (um?/s*™) (um/s) (s) (s) (s) (none)
Fits: A =04 0.00182 0.023 7 427 434 0.016
B 040 0.00180 0.024 7.0 443 450 0.016
C 0404 0.00182 0.020 7.7 412 420 0.018
D 048 0.00167 0.005 27 377 404 0.067
E 0.79 0.00063 NA NA NA NA NA
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FIG. 3. Subtraction procedure based on the model confirms the
superdiffusive nature of the observed rapid chromosomal movements.
Purple circles are mean-square displacement vs lag time from the
same data as in Fig. 1. Indigo squares are obtained by subtracting the
background fBm contribution from the mean-squared displacement
[Eqg. (3)]. The remaining contribution to the mean-square displace-
ment is superlinear (the red dashed line is the linear scaling), as
predicted by Eq. (4), consistent with the hypothesis of intermittent
active relocations.

C. Subtraction of subdiffusive noise unveils superdiffusive
behavior in the data

As a consistency check of the agreement between model
and data, we considered the possibility of disentangling
contributions to the mean-square displacement from active
force and subdiffusion [Egs. (3) and (4)].

We used this property to define an alternative analysis
of the experimental MSD. First, we fixed D,p,, and H by
fitting the mean-square displacement for time scales below
10 s averaged on all tracks. We then considered the subtracted
MSD, calculated as MSD(t) — 2d Dapprw , and fitted it with a
polynomial function (assuming the regime for the lag times
T > 19). Remarkably, this procedure leads to very similar
parameter values as the blind fit [Table I(B)]. By comparison,
the best-fitting fractional Brownian motion performs much
worse (Table II). The fact that the two procedures lead to
essentially the same parameters suggests that the parameter
region that can reproduce the experimental data is localized
and univocal, and the existence of a null manifold or multiple
solutions is unlikely. In order to further support this statement,
we performed systematic four-parameter fits of 7y, w, V, and
D,pp, by varying 2H in the interval (0,1). Comparing the
goodness-of-fit scores confirmed that there is a single global
best fit, corresponding to 2H = 0.404 [parameters are reported
in Table I(C)].

TABLE II. Comparison of the goodness-of-fit scores for the
MSD in the data with the best-fitting simple fBm model, with the
constrained active-force model fit, and with the joint fit keeping in
account the end-to-end distance distribution [Table I(D)]. The reduced
rms is defined as the chi-square residual divided by the number of
degrees of freedom.

Best-fit fBm Constr. fit Joint fit

Reduced rms 5.9 x 1079 2 x 107% 7.6 x 107%

PHYSICAL REVIEW E 96, 042402 (2017)

D. Model predictions beyond mean-square displacement

So far we considered constrained fits based exclusively on
the MSD curves fixing a priori H or both D, and H based on
the short-time behavior, which should estimate the background
process. This constrained procedure fixes all parameters, and
we verified that the model greatly improves the best fit of MSD
vs lag time compared to a normal fBm (Table II), by comparing
their reduced chi-square. These clear quantitative differences
mirror the important qualitative difference between the model
and the normal fBm. Indeed, the latter model simply cannot
reproduce the MSD curves observed in the data, which are
visibly bent in log-log scale.

However, while the ensemble-averaged MSD is useful to
establish that an improved model is needed, this mean quantity
is notoriously nondiscriminating. Importantly, the active-force
model also leads to different predictions for single-track
properties, so it could reproduce the data more effectively
than a simple fBm even if its performance on the MSD fit
were equivalent. Many models, each with a distinct physical
mechanism, may predict the same (bent) ensemble-averaged
MSD. For example, a “tempered” fBm [34] (with a time
cutoff in the noise autocorrelation function) would crossover
to diffusive behavior at a prescribed time scale. However, this
model would not be able to show superdiffusive behavior on a
subset of tracks, as it is visible in the data.

Hence more detailed comparisons with tracking data are
useful. We considered the single-track end-to-end distance,
and we verified that this gave an equivalent result to an effective
drift velocity based on the projection of the end-to-end distance
on the main track axis used in previous work [8] (not shown).
All these observables are independent predictions from the
model (whose parameters are fixed by the fitting procedure of
the ensemble-averaged MSD) and can be matched precisely in
track length and sampling to experimental data. Additionally,
these quantities should discriminate models that predict near-
ballistic behavior for a subset of tracks.

Figure 4(a) shows that the prediction for the distribution
of the track end-to-end distance R. improves the estimate
of the tails with respect to the background fBm, as well as
with respect to a best-fit fBm. Figure 4(b) shows mean-square
displacements as a function of lag times, both for all tracks
and as conditional averages on the subset of tracks whose R,
is in the top 30% and bottom 70% of the distribution shown in
Fig. 4(a).

The agreement is remarkable, since the model is adjusted
only through a fit of the mean-square displacement, so that the
agreement has to be regarded as an independent prediction.
However, the active force model tends to overestimate the tail
of the end-to-end distance and to underestimate the diffusivity
of tracks where the ballistic transport is not active. The former
effect becomes evident at long lag times, while the latter
appears at short lags [as visible in Figs. 4(a) and 4(b)]. The
best-fitting fBm, while not being able to capture the tails
present in the data, appears to give a better compromise (and
is definitely more parameter poor) between bulk behavior
and tails. However, this model cannot be considered a viable
alternative, since its performance is clearly much worse in
fitting the ensemble-averaged MSD, and it gives an unrealistic
value of the exponent 2H, close to 0.8 [Table I(E)].
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FIG. 4. Model predicts correctly the qualitative behavior of
single-track end-to-end distances and conditional mean-square dis-
placements. (a) Distribution of the track end-to-end distance R, in
experimental data (purple circles), the intermittent active force model
(black filled smaller circles), and fractional Brownian motion (open
smaller circles). Simulations have been matched with experimental
data, both in number and length of tracks (parameters shown in
Table I). (b) Conditional averages of mean-square displacements
on tracks within a given percentile of R. (diamonds, top 30%, and
squares, bottom 70%, shown as example) show qualitative agreement
and some quantitative discrepancies. Circles are the overall MSD
average shown in Fig. 2.

E. Joint optimization of model parameters on
end-to-end distance

To improve the agreement of model with single-track data,
we performed a joint fit where, instead of fixing the parameters
purely based on the analytical MSD fit, we also considered
explicitly the long-time end-to-end distances. Specifically, we
considered all the best fits of the model at fixed D,,, and H,
for a grid of these values, and we evaluated the manifold of
residuals on the histogram of end-to-end distance R.. The
parameters for the optimal fit with these criteria are given in
Table I(D), and the resulting distribution of R is plotted in
Fig. 4(a). Additionally, Table II shows that the trade-off in
the residuals of the MSD for this fit is acceptable, and gives
a better agreement with the data than the best-fit fBm.

One possible additional source of error overestimating the
tails of the end-to-end track length distribution is the fact that
the model assumes a constant force in direction and orientation
for the active process, which is not plausible in the data. The
discrepancy between model and data is expected to occur when
the force is active more than once in a single track. With the
model parameters, a simple estimate leads to the expectation
for this to happen in 2%-4% of the tracks (which are 100 s
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FIG. 5. Parameter values for different chromosomal loci. Top
panel: typical velocity of excursions V. Middle panel: characteristic
time 7,,,. Bottom panel: characteristic time 5. The results of the less
reliable fit of the Left] locus are shown in faded colors. The strong
differences observed for different chromosomal loci can be inter-
preted as local differences in the physical organization or in the action
of the active drive [4,8]. (Estimated errors are around the size of the
points.)

long), and thus we can predict that this factor only affects
the tail of the end-to-end distance distribution in this range of
percentiles.

F. Different chromosomal loci have
coordinate-specific parameters

The fitting procedures defined above are applicable to data
from different loci. We applied the constrained fit to all loci
from the data sets in Refs. [4,8], where 1 s lag data were
available. The results are shown in Fig. 5. We can obtain a
rough estimate of the errors in these results by considering
the range of variability of the fits analyzed above (Table 1),
which is of order 10% for V, t,,, and 7,5: the symbol size
in Fig. 5 reflects the estimated errors. The results indicate
a clear trend for the typical velocity V, which follows an
opposite trend to 7,,. Since the anticorrelation between V and
w [Eq. (5)] is intrinsic of the model, one may interpret this trend
as the variation of a single physical parameter. Conversely, the
characteristic off time 7.4 does not show a clear trend, and
tends to become very large in some loci. The differences in
the estimated process observed for different chromosomal loci
can be interpreted as differences in the physical organization
of the chromosome or in the action of the active drive [4,8,9].
In one specific case, the Left1 locus, the algorithm used for the
fit locates a very shallow minimum for 7., so it is difficult to
pinpoint a precise value for this parameter. We believe that the
applicability of the model to this particular locus is debatable
(the corresponding points are highlighted in Fig. 5). The values
for the apparent diffusion constant fits of the loci (not shown)
are coherent with the trends found in Ref. [4].
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G. Active movements carry additional noise

Finally, we addressed a second shortcoming of the
model, visible in Fig. 4. Namely, the predictions of the
conditional mean-square displacements for tracks with end-
to-end distance R. in the higher or lower tails of the
distribution show relevant differences between model and
data [Fig. 4(b)]. In particular, the mean-square displace-
ment in the model is essentially independent of track
end-to-end distance R, at short lag times, while the data are
not.

The fact that the model should behave this way is evident
from Eqgs. (1) and (5). At short time lags, fractional Brownian
motion dominates the displacement, and this process occurs
at fixed noise level. Hence the model at short lags behaves
precisely as an fBm with fixed noise amplitude, and therefore
it cannot show the variation in diffusivity found in the data.
In other words, for short enough lags, even trajectories where
the driving is switched on should show the same amount of
subdiffusion.

Instead, the lack of agreement between data and model
suggests that active movements may be also characterized by
increased noise levels, on top of a directional driving force.
Physically, this could be due to heterogeneity in the diffusion
coefficient, related to the active excursions (see below) [35].
In order to explore this hypothesis, we defined a variant of the
model, where active movements are also subject to increased
noise levels. This is described by the following equation of

(a) top 30% Re T T T T T T xl
® alldata N
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FIG. 6. Additional diffusivity of active excursions. (a) The model
variant including active noise (black filled symbols) fully captures
the conditional mean-square displacement at short time lags of
experimental data (large filled symbols), for trajectories that fall
in different percentiles of end-to-end distance R. (top 30% R.,
diamonds, vs bottom 70%, squares). (b) Conditional mean-square
displacement at 1 s time lag computed as a function of end-to-
end distance percentile, and compared with simulations. Model
parameters in Table I(B), ¢ = 0.78.
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motion:
Xi(t) = [1+qo ))& ram) + Vio(2), (6)

where ¢ describes a (nonthermal) contribution to noise
amplitude in the presence of active motion, and the other
quantities are identical to Eq. (1). The extra noise parameter
q determines an increased diffusivity in the presence of the
driving process and is determined by a fit of the extended
model. This modified model makes it qualitatively possible
for the MSD to vary with track end-to-end distance, as
observed in the data. Figure 6(a) shows that simulations of
this model variant reproduce the short time-lag changes in
the conditional mean-square displacement for trajectories with
varying end-to-end distance. To better capture the specificity
of this model variant, Fig. 6(b) shows the conditional mean-
square displacement at 1 s time lag for tracks in the bottom
and top tail of the end-to-end distance distribution, plotted
as a function of end-to-end distance percentile. In this plot,
the value of the x axis refers to the x% top and bottom tail
of the track end-to-end distance distribution. Hence the plot
tests the consistency of the agreement between model and data
if the cutoff is shifted lower or higher in the end-to-end distance
distribution. Comparison of data with simulations of both
models shows that only the variant with modified noise during
active stretches is able to modulate the diffusivity at short lags.

IV. DISCUSSION AND CONCLUSIONS

We considered a phenomenological model of subdiffusing
particles performing fractional Brownian motion and subject
to intermittent ballistic excursions and analyzed the validity
of this description for chromosomal loci movements. The
comparison procedure allows one to evaluate the relevant
time scales and to dissect some specific features of the data.
The model defined here potentially has a wider range of
applications, including eukaryotic chromosomal loci, where
similar active phenomena have been reported, and may or may
not have the same interpretation [36,37].

The first outcome of the model concerns the estimated
intensity and typical time scales of the active movements.
Different approaches and fits all suggest that the characteristic
times of active relocations span a few seconds, while the typical
waiting times between activations are of the order of a few
hundred seconds. Both processes occur below the typical time
scales of a cell interdivision time (tens of minutes to hours)
and hence should be observable in every cell, and overlap
with the key cell processes of replication and chromosome
segregation. Additionally, the typical speeds of the relocations
are estimated to be slightly over one micron per minute. These
figures are in agreement with previous reports [1,8—10], but
the present work is a systematic attempt to capture these time
scales quantitatively using a theoretical framework.

A second important feature of the model is its ability
to generate nontrivial testable predictions. We first used the
mean-square displacement to fix the parameters, and then
considered the behavior of the distributions of track end-to-end
distances and the conditional mean-square displacements. The
model captures the behavior of these quantities in experimental
data better than the best-fit fBm. However, some discrepancies
exist both at short and at long time scales. A model fit purely
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based on the mean-square displacement behavior tends to
overestimate the mobility of the tracks where the transport
is switched on, and this effect is particularly visible at long
time scales. To compensate for this behavior, we defined a
fitting procedure that also takes into account the end-to-end
distance distributions at these long time scales, which gives
a more satisfactory agreement. Additional differences at long
time scales may be attributed to simplifying hypotheses in the
definition of the model, such as the assumption of a single
relevant scale for the driving force and of a simple telegraph
process for the force switch. Focusing on short time scales, we
have isolated an increased diffusivity of faster-moving foci as
a potential relevant ingredient (see below).

Notably, we have compared different models with different
numbers of parameters. Admittedly, it may seem unsurprising
that models with more parameters give better results. The
important feature to note is that each extension considered
here is defined based on the ability to capture a different
qualitative behavior. For example, the intermittent force model
can produce MSD curves that are bent in a log-log scale, which
is impossible with a normal two-parameter fBm. Alternative
models that may include this qualitative feature (such as a
tempered fBm) would still entail adding more parameters.
Equally, the model variant with additional noise in active
movements can reproduce the qualitative feature of increased
diffusivity in tracks with increasing end-to-end distance, which
is not possible to reproduce in the simpler variant of the model.

Our analysis of different fitting procedures (compared in
Table I) can be used to produce a rough estimate of the errors
on these parameters. Considering the values of the different
fits, we expect the errors to be between 5% and 10% for the
typical velocity V, and the transition time scales 7o, and T,
and less than 1% for the scaling exponent H and the apparent
diffusion constant Dp,.

It is interesting to compare the value of the inferred
model parameters with some rates and durations of relevant
biological processes at play. The characteristic times for active
relocations (5-10 s) agree well with the time scales of the
pulses of density shift [9] observed along the nucleoid (~5 s).
These pulses were found to occur at about 20 min intervals, to
be compared with the 7-23 min of the fitted characteristic off
times. From our fits, these values appear to be locus dependent,
and to be closer to 20 min in the Right-Ter arm of the chromo-
some. Finally, the characteristic speed of the active process,
about a micron per minute, compares well with the speed of
these fast processes [8—10], happening at much faster time
scales than the average speed of segregation, which is on the
scale of microns per hour. These characteristic times vary along
the chromosome, coherent with previous findings [4,8] that
suggested differential organization and/or local noise along
the chromosomal coordinates. For some loci, the characteristic
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off time of the process becomes very large, indicating that the
active excursions could become extremely rare.

Finally, the comparison of model predictions and data
leads us to the conclusion that active relocation also carries
increased noise levels. Specifically, a model where noise
amplitude is constant in the presence of active excursions
cannot reproduce the increase in diffusivity at short lag times
observed in experimental data. This suggests that the processes
generating the active relocations are concurrent with the
noise-increasing processes. The microscopic interpretation of
this result is unclear. One possibility is that this increased
diffusivity is due to nonthermal active fluctuations [13].
However, nonthermal random forces are expected to dominate
at long time lags. The noise increase has been proven to be
ATP dependent, but not associated to any specific process
such as the activity to DNA gyrase (Topoisomerase favoring
relaxation of positive supercoiling) or depolymerization of
MreB (cell wall biosynthesis), and is only weakly linked
to RNA polymerase activity. Active relocations have been
previously interpreted as relaxation of stress (generated by
processes such as DNA replication and transcription) due to
release of internal tethering interactions (e.g., by bridging
proteins such as H-NS and Fis or condensins such as MukBEF)
[1,8,9]. This kind of motion is not necessarily associated to
increased noise, because the stress-release events might be
well separated temporally from the stress-generating ones.

Another possible interpretation (complementary to the
previous one) of the increased mobility in the presence of
active movements might explain this behavior. This is related
to the reported glassy properties of the cytoplasm system [11],
which should also affect the nucleoid. In this framework,
active relocation might cause a fluidization effect, releasing
local portions of cytoplasm and nucleoid from “cages” where
they are otherwise confined with limited mobility. In this case,
the differential noise would be due to heterogeneity in the
subdiffusion process [35,38]. Possibly more general sources
of heterogeneity than glassiness could also lead to similar
effects. Such kind of disorder has been recently implicated for
the motion of cytoplasmic particles [12]. A more precise dis-
section of such hypothesis requires a theoretical approach that
incorporates explicitly the more complex physical ingredient
of crowding and glassy behavior.
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