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Abstract

We present an investigation of vibrational features in water clusters performed by means of our recently

established divide-and-conquer semiclassical approach (M. Ceotto, G. Di Liberto, R. Conte Phys. Rev. Lett.

119, 010401 (2017)). This technique allows to simulate quantum vibrational spectra of high dimensional

systems starting from full-dimensional classical trajectories and projection of the semiclassical propagator

onto a set of lower dimensional subspaces. The potential energy surface employed is a many-body repre-

sentation up to three-body terms, in which monomers and two-body interactions are described by the high

level WHBB water potential, while, for three-body interactions, calculations adopt a fast permutationally-

invariant ab initio surface at the same level of theory of the WHBB 3-body potential. Applications range

from the water dimer up to the water decamer, a system made of 84 vibrational degrees of freedom. Results

are generally in agreement with previous variational estimates in the literature. This is particularly true for

the bending and the high-frequency stretching motions, while estimates of modes strongly influenced by

hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the dynamical

and global picture provided by the semiclassical approach.
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I. INTRODUCTION

The water molecule has often attracted the attention of the scientific community due to the

fundamental role it plays for life on our planet.1–7 In chemical and physical processes involving

water, hydrogen bonding is crucial8,9 allowing the formation of supra-molecular structures (made

of several water molecules) known as water clusters.10–12 Water clusters are major players in atmo-

spheric photocatalytic processes,13,14 and they have been largely investigated by both theoretical

and experimental approaches focused on their structure and interaction network. Many studies

have been also devoted to protonated water clusters, which represent suitable and realistic models

for understanding the proton transfer mechanism in aqueous solutions.15 Furthermore, the inter-

est in water clusters and systems where one or more water molecules interact with other species

has recently involved methane and hydrogen clathrates,16–18 HCl hydrates,19–21 or even solvated

ions.22–25

Focusing on homogeneous water clusters, experimental investigations involving systems of

different size ranging from the dimer up to the decamer have shown that the vibrational spectral

features of the OH bonds are extremely sensitive to hydrogen interactions and dependent on the

specific cluster network,26–28 while deuteration studies have demonstrated that the OH vibrational

frequencies may serve as a probe for hydrogen bonding.29 Experimental findings also include the

evidence that the OH stretches involved in the hydrogen bonds undergo a red shift sometimes as

large as 600-700 cm-1,30,31 while the frequency of vibration of the free OH stretches is almost un-

changed and the bending region characterized by a slight but progressive blue shift with increasing

cluster size.32 The main vibrational features of these clusters are distributed in the 1500-4000 cm-1

region. The lowest in frequency (at about 1600 cm-1) can be assigned to the bending motion,33

while the other features are associated to the OH stretch and situated at around 3000, 3500, and

3700 cm-1.34

From a theoretical point of view, important and pioneering work has been performed by Xanth-

eas and co-workers, who revealed that the potential energy surface (PES) of even small clusters is

very complicated because of the many minima that can be located on it. They also showed that for

properly studying these systems a high level of electronic structure theory must be employed, and

that the zero-point-energy correction is definitely not negligible to determine the relative stability

between the several minima.35 Energy differences among these minima are often smaller than a

fraction of kcal/mol, so an investigation based exclusively on the global minimum is probably not
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accurate enough to properly account for the overall properties.36–41

The complexity of the water cluster PESs makes their construction difficult, while the high level

of electronic theory required rules out the possibility to resort to on-the-fly ab initio approaches.

However, the development in the past years of precise fitting procedures has opened up the way to

many theoretical investigations of variously-sized water clusters.42–50 Among them we recall the

work done by Partridge and Schwenke51 in which they developed an accurate one body potential,

the parametrization of the water model by Burnham and Leslie,52 or, more recently, the effort

profused by the groups of Xantheas and Bowman which led to more and more accurate water

potentials.53–60

A practical way to describe the PES of a water cluster is through a many-body representa-

tion. Several studies, including those by Xantheas, Clary, Paesani and their co-workers to name

a few remarkable ones, demonstrated that the representation can be truncated to the three-body

terms without significant loss of accuracy.48,61,62 In particular, Bowman’s HBB,55 WHBB,60,63 and

WHBB2 PESs60 include terms up to the three-body interaction and were shown to be very accu-

rate and flexible for water clusters of any size, thus permitting state-of-art VCI calculations for the

vibrational frequencies.58 These calculations were based on the local monomer approach which

permits to accurately simulate spectra and to deal with even large water clusters which otherwise

would not be computationally affordable.

We deem that an alternative, quantum dynamical theoretical approach for spectroscopy cal-

culations of water clusters could more realistically describe the hydrogen bonding among water

monomers and better uncover possible resonances between overtones and fundamental vibrations.

The latter may for instance involve the OH bending overtones and the OH stretching fundamen-

tal vibrations, which occur at nearby frequency values. Such a quantum dynamical approach can

be provided by the semiclassical theory (SC) in its initial value representation version (SCIVR).

SCIVR builds a bridge between classical and quantum physics, since it allows to approximate the

quantum propagator reliably by using only dynamical quantities that are generated from a clas-

sical simulation.64–76 Specifically, the time averaged version of the quantum propagator is able to

detect quantum effects on small- and medium-sized molecules accurately.77–90 Recently, we have

proposed a method called Divide-and-Conquer Semiclassical Initial Value Representation (DC

SCIVR)91,92 which makes semiclassical dynamics viable also for large molecules. In DC SCIVR

the full-dimensional problem is divided into a set of lower dimensional ones before proceeding

with a proper set of SC calculations constrained within the low-dimensional subspaces but still

3



based on the full-dimensional classical trajectory.

In this work we present a theoretical investigation of variously sized water clusters by means

of our recently established DC SCIVR. Results show that quantum anharmonic effects are not

negligible and dynamical effects associated to the strong hydrogen-bond interactions are relevant.

We also illustrate a methodology for selecting a few relevant minima in order to run semiclassical

simulations with very reduced computational costs yet retaining good accuracy. In the next Section

we describe the computational approach employed. Then we report our results starting from the

investigation of the vibrational features of the smallest water clusters: the dimer and the trimer.

Finally the focus shifts to the water hexamer prism, for which we present some evidences of the

important role of hydrogen bond interactions, and to the water decamer, whose vibrational features

we are able to precisely describe by employing just a few selected trajectories. The paper ends

with a brief summary and the presentation of our conclusions.

II. COMPUTATIONAL METHODS

The global PES employed in the calculations has been constructed according to the many-body

representation (truncated at the three-body level) reported in Eq. (1)

V (q) =
N∑

i

V W (qi) +
N∑

j>i

V W−W (qi,qj) +
N∑

k>j>i

V W−W−W (qi,qj ,qk), (1)

where the W superscripts stand for “water”, N indicates the number of water monomers in the

cluster, q represents the collection of all atomic coordinates, while qi is the set of coordinates

corresponding to atoms exclusively belonging to the i-th water monomer. Specifically, we used

the Partridge-Schwenke potential for the 1-body (W ) term;51 the 2-body (W − W ) interaction

surface has been extracted from the highly accurate WHBB potential;59 a new, computationally-

efficient potential was built for the 3-body (W − W − W ) interaction starting from the same

database of about 40,000 ab initio points used for the WHBB 3-body potential but employing a

previously developed fitting procedure for many-body interaction potentials.16,17,93–96 This new 3-

body potential is based on 1,181 polynomials, it has an rms of 46 cm-1 calculated with respect to

the database of ab initio points (51 cm-1 for WHBB with maximum polynomial order 5), and it

is about 70 times faster than the 3-body potential (maximum polynomial order 5) included in the
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WHBB suite. A W −W −W potential very similar in speed to the one employed here has been

recently and independently developed by Bowman and coworkers and included in a new version

of their water potential, named WHBB2.60

Vibrational frequencies have been determined upon calculation of semiclassical power spectra.

Semiclassical approaches aim at regaining quantum information starting from classically-evolved

trajectories and their mathematical formalism is obtained by approximating Feynman’s quantum

propagator. Feynman’s path integral formulation97 is a renowned way to represent the quantum

propagator in which the probability of going from an initial state q0 to a final one qt can be

obtained by summing up over all the paths that connect the two states. A weight that depends on

its action is associated to each path

〈
qt

∣∣∣e−iĤt/~
∣∣∣q0

〉
=
ˆ qt

q0

D [q (t)] eiSt[q0,qt]/~ (2)

Upon stationary-phase approximation, the integral in Eq. (2) becomes a sum over the paths that

give the major contribution. Such paths are the classical ones and the approximation is exact

up to quadratic potentials.98 The result coincides with the van Vleck version of the semiclassical

propagator,99 which is reported in Eq. 3.

〈
qt

∣∣∣e−iĤt/~
∣∣∣q0

〉
≈

∑

cl. paths

√
1

(2πi~)F

∣∣∣∣−
∂2Scl

t (q0,qt)

∂qt∂q0

∣∣∣∣e
iScl

t
(q0,qt)/~−iνπ/2

=
∑

cl. paths

√
1

(2πi~)F

∣∣∣∣
∂qt

∂p0

∣∣∣∣
−1

eiS
cl
t
(q0,qt)/~−iνπ/2, (3)

where F is the number of degrees of freedom, p0 is the initial momentum of the classical path,

and υ is the Maslov index, which ensures the continuity of the complex square root. A more user-

friendly version of the SC propagator has been worked out by Miller, who introduced the Initial

Value Representation (IVR)100 of the van Vleck propagator. Application of this SCIVR propagator

to the survival amplitude of a generic reference wavefunction |χ〉 leads to

〈
χ
∣∣∣e−iĤt/~

∣∣∣χ
〉
≈

ˆ ˆ

dp0dq0

√
1

(2πi~)F

∣∣∣∣
∂qt

∂p0

∣∣∣∣χ
∗ (qt)χ (q0) e

iScl
t
(p0,q0)/~−iνπ/2 (4)

Eq. (4) points out the two main advantages of an IVR approach, i.e. the difficult quest for a solution

to a double-boundary problem is substituted by the easy generation of the classical trajectory

starting from its initial phase-space conditions (p0,q0), plus the removal of the partial derivative

at the denominator of Eq. (3) which may lead to an unphysical divergence of the propagator.
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Another milestone contribution to SC dynamics came from Heller with the introduction of the

coherent state representation. Coherent states are suitable to describe bound as well as unbound

systems since their projection onto the coordinate space consists in a Gaussian-shaped real part

and a free-particle imaginary part as follows101,102

〈x |ptqt 〉=
(
det(Γ)

πF

) 1

4

e−
1

2
(x−qt)

TΓ(x−qt)+
i

~
pT
t
(x−qt) (5)

The width of the multidimensional coherent state is generally chosen to be a diagonal matrix (Γ).

In the case of vibrational studies the width matrix can be built by setting its diagonal elements

equal to the square roots of the eigenvalues of the Hessian matrix at the equilibrium geometry, i.e.

the harmonic frequencies. The semiclassical propagator in the coherent state representation is the

Herman Kluk (HK) propagator103

〈
χ
∣∣∣e−iĤt/~

∣∣∣χ
〉
≈

(
1

2π~

)F ¨

dp0dq0Ct (p0,q0) e
i

~
St(p0,q0) 〈χ |ptqt 〉〈p0q0| χ〉, (6)

where the pre-exponential factor - Ct (p0,q0) - accounts for quantum effects but is affected by the

possible chaotic behavior of the classical trajectories initiated from the phase space points (p0,q0).

Ct (p0,q0)=

√
det

[
1

2

(
Mqq + Γ−1MppΓ+

i

~Γ
Mpq − i~ΓMqp

)]
, (7)

where Mij = ∂it/∂j0 i, j = p,q is itself a matrix which represents a generic element of the

monodromy matrix.98,104

The power spectrum of the Hamiltonian Ĥ is the Fourier transform of Eq. (6), i.e.

I(E)=
(

1

2π~

)F+1 ˆ +∞

−∞

dt eiEt/~

¨

dp0dq0Ct (p0,q0) e
i

~
St(p0,q0) 〈χ |ptqt 〉〈p0q0| χ〉. (8)

Unfortunately the standard formulation of the HK propagator is difficult to converge and compu-

tationally very demanding.105,106 To overcome this issue, Kaledin and Miller demonstrated that it

is possible to time-average (TA) Eq. (6) to arrive to an expression for the spectral density I(E) -

see Eq. (9) - where the phase-space integrand is positive-definite and, consequently, the integral is

much easier to converge77

I(E)=
(

1

2π~

)F ¨

dp0dq0
1

2π~T

∣∣∣∣∣∣

T̂

0

dte
i

~
[St(p0,q0)+Et+φ(t)] 〈χ |ptqt 〉

∣∣∣∣∣∣

2

. (9)

Eq (9) is very accurate for small and medium sized molecules, but, unfortunately, runs out of steam

when the system dimensionality gets higher than 25-30 degrees of freedom due to the so-called
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curse of dimensionality. To overcome this issue we have recently developed a Divide-and-Conquer

semiclassical method, which allows to obtain the overall power spectrum as a composition of

partial spectra.91

In the following, we briefly recall how DC SCIVR works. The basic idea is to compute a

set of power spectra by operating in lower-dimensional subspaces but keeping the dynamics full-

dimensional. Among the approaches we have recently illustrated for an effective grouping of the

modes into different subspaces,92 in this work we have adopted the so-called Hessian approach,

which consists in averaging the Hessian off-diagonal elements H̃ij along a preliminary trajectory

with harmonic zero-point energy and in comparing them to a threshold value ε. If the vibrational

modes i and j satisfy the condition H̃ij ≥ ε, they are enrolled in the same subspace. Also, they

belong to the same subspace if a third mode k exists such that the conditions H̃ik ≥ ε and H̃kj ≥ ε

are both satisfied. Eq. (9) consequently changes to

Ĩ (E)=
(

1

2π~

)M ¨

dp̃ (0)dq̃ (0)
1

2π~T

∣∣∣∣∣∣

T̂

0

e
i

~
[S̃t(p̃(0),q̃(0))+Et+φ̃t] 〈χ̃ |p̃ (t) q̃ (t)〉 dt

∣∣∣∣∣∣

2

, (10)

where f̃ indicates the projection of the generic f quantity onto an M-dimensional subspace. Matri-

ces (Hessian and Gaussian width ones) as well as vectors (momentum and position) can be easily

projected by means of Hinsen and Kneller’s singular value decomposition.91,107,108 Projection of

the action is more elaborated due to the general non-separability of the potential energy. In fact,

the projected action is calculated through straightforward projection of the kinetic energy, which

is separable, and by means of a projected potential - see Eq. (11). In the projected potential the

variables external to the M-dimensional subspace (qF−M) are treated as parameters and a time-

dependent field (λ), able to account for the non-separability of the potential and to regain the exact

potential in separable instances, is introduced.91,92

V (q̃M) = V (q̃M ;qeq
F−M) + λ(t);

λ(t) = V (q̃M ;qF−M)− V (q̃eq
M ;qF−M)− V (q̃M ;qeq

F−M)
(11)

For water clusters, due to the large number of low frequency modes which may make spectra

very noisy, it is necessary to introduce an additional device consisting in giving no initial kinetic

energy to modes different from bendings and OH stretchings. Several of these modes present very

low vibrational features associated to the libration motions of frustrated translations and rotations.

Below we will show that this ad-hoc approximation does not spoil the accuracy of the calculated
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frequencies for bendings and stretchings. Furthermore, we employed a recently developed and

accurate approximation to the pre-exponential factor,79 which has permitted to retain the chaotic

trajectories that in a basic application of DC SCIVR would have been otherwise discarded. The

approximation exploits the exact Log-derivative formulation of the pre-exponential factor109 in

which the latter depends on a matrix Rt determined by solving an appropriate Riccati equation

Ct (p0,q0)=

√
det

[
1

2

(
I +

i

~Γ
Rt

)]
e

1

2

´

t

0
dτTr[Rτ ], (12)

where Rt can be approximated as

Rt=-
i

2

[
Kt

~Γ
+ ~Γ

]
+
i

4

(
~Γ− Kt

~Γ

)2
(
~Γ+ Kt

~Γ

) , (13)

and Kt is the Hessian matrix.

According to the convergence pattern of TA-SCIVR, the power spectra would require genera-

tion of a number of trajectories of the order of a thousand per degree of freedom to reach conver-

gence. A reliable procedure to alleviate computational overheads is needed for application of DC

SCIVR to large molecular systems. For this purpose, we implemented the Multiple Coherent State

(MC) approach into DC-SCIVR by running one trajectory per each of the Nst coherent states that

make up the reference state |χ〉 according to Eq. (14).

|χ〉 =
Nst∑

k=1

M∏

j=1

∣∣∣p(k)eq,jq
(k)
eq,j

〉
+ξ(k)j

∣∣∣−p
(k)
eq,jq

(k)
eq,j

〉
, (14)

where ξ(k)j is a parameter that allows to distinguish between different vibrational signals according

to their symmetry or parity. In this way, as demonstrated in the literature,80,81,83,110 accurate spectra

can be recovered by running just a few or even a single classical trajectory provided it is close

in energy to the actual quantum vibrational frequency. To get more information than a traditional

discrete Fourier transform, the time integration of Eq.(10) is performed using the compress sensing

signal processing technique.111

The divide-and-conquer approach can be also implemented to calculate classical-like spectral

densities from the Fourier transform of the velocity-velocity correlation function

I (E) =

ˆ

dteiEt
〈
v (t)v (0)

〉
=

ˆ +∞

−∞

dteiEt

ˆ

dq0dp0ρ (q0,p0)v (t)v (0) (15)

By adding a further integration ( 1
T

´ T

0
dt) we can derive the time-averaged version of Eq. (15),

similarly to what Miller and co-workers have obtained for semiclassical spectral densities,77,78 and

Kaledin and Bowman for classical simulations112
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I (E) = limT→+∞

ˆ

dq0dp0ρ (p0,q0)
1

2T

∣∣∣∣
ˆ T

0

dteiE(t)v (t)

∣∣∣∣
2

. (16)

Reduced dimensional spectra can be calculated by means of the projected classical quantities

obtained with the same procedure employed in DCSCIVR.91,92 The final working formula is

I (E) = limT→+∞

ˆ

dq̃0dp̃0ρ̃ (q̃0, p̃0)
1

2T

∣∣∣∣
ˆ T

0

dteiE(t)ṽ (t)

∣∣∣∣
2

, (17)

where ρ̃(p0,q0) is the sampling phase-space distribution function in reduced dimensionality.

III. RESULTS AND DISCUSSION

We start off by demonstrating the reliability of our DC-SCIVR calculations of small water clus-

ters such as the dimer and trimer, for which accurate MultiMode and experimental energy levels

are available. Then, we move to the water hexamer showing the influence of dynamical effects on

spectral densities. Finally, as an application to a larger system, we calculate the vibrational energy

levels of the water decamer.

A. Water Dimer (H2O)2

The smallest water cluster - the dimer - has 12 vibrational degrees of freedom, two of which

are bendings while other four are OH stretchings. To calculate these six relevant frequencies

of vibration, we first tried to employ a 6-dimensional work subspace to collect all bendings and

stretchings together but, unfortunately, it was not possible to get a well-resolved spectroscopic

signal. To overcome this issue, we applied the DC-SCIVR partitioning to decrease the maximum

subspace dimension down to 2 as suggested by the large plateau which can be easily identified from

the analysis of the maximum subspace dimensionality vs Hessian threshold dependence shown in

Figure (1).

In our calculations we employed a threshold value ε = 1.8 ·10−5. Table (I) presents experimen-

tal values,27 MultiMode (MM) and Local Monomer Model (LMM) data,58 and our semiclassical

DC-SCIVR results based on different sets of trajectories. The outcomes of single-trajectory simu-

lations (based on a dynamics 30,000 atomic time units long) that employed the multiple coherent

procedure within the subspaces (MC-DC SCIVR) are reported in the last column of the Table.

The mean absolute error (MAE) with respect to experimental values (78 cm-1) is not satisfactory
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especially if compared to the MAE values of the benchmark MM and LMM calculations (25 and

23 cm-1 respectively). To understand the reasons of such inaccuracy and try to improve results,

we investigated the presence of additional minima on the surface which may be neglected in a

single-trajectory simulation but, at the same time, may influence the semiclassical results. This

is true if these local minima are very close in energy to the global minimum.110 For this purpose

we explored the PES by means of damped-dynamics runs, and found 4 local minima just about

200 cm-1 higher in energy than the global minimum. The damped dynamics was performed by

sampling 1,000 trajectories according to a Husimi distribution around the global minimum. The

damping parameter has been chosen according to a trade-off between the necessity of exploring

large regions of the PES and the need to limit the simulation times. In practice, we decreased

the kinetic energy by a factor equal to 0.99 at each step of the dynamics and checked that it was

terminated in a minimum (either local or global) by looking at the sign of the eigenvalues of the

Hessian matrix calculated at that geometry. Then, we re-applied the MC-DC-SCIVR approach by

running 5 trajectories per subspace this time, with each trajectory starting from a different mini-

mum and the MAE shifts from 78 to a much improved 48 cm-1, which is not far from the accuracy

obtained in other previous semiclassical calculations.80 This outcome will be exploited in treat-

ing much larger clusters for which semiclassical calculations can be performed only if based on a

small number of trajectories. The multiple-minima effect can also partially explain the difference

between DC-SCIVR simulations (that visit all 5 minima) and the single-well reference MM or

LMM calculations.

To check the reliability of MC-DC-SCIVR simulations we also performed standard, fully con-

verged, DC-SCIVR simulations. Convergence has been reached by employing 10,000 trajectories,

but 5,000-trajectory simulations were found to be already reliable. We started all the trajectories

with the cluster in its equilibrium geometry. Initial atomic velocities were extracted, for each sub-

space calculation, from the chosen distribution of the normal mode initial kinetic energy. Specif-

ically, for modes included in the subspace under investigation a Husimi distribution centered on

momentum values corresponding to one quantum of harmonic excitation was employed; other

bending and stretching motions belonging to different subspaces were instead assigned the corre-

sponding harmonic zero-point energy contribution. Finally, as anticipated in the previous Section,

all other low frequency modes were given no initial kinetic energy. Furthermore, harmonic fre-

quencies served to define the coherent state and Husimi distribution widths. Each trajectory was

evolved for a total of 30,000 atomic time units. Semiclassical investigations performed on trajecto-
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ries twice as long provided no significant differences in the vibrational frequencies indicating that

30,000 atomic units is a long enough evolution time to achieve numerical convergence. MAE val-

ues for simulations based on 10,000 and 5,000 trajectories are equal to 32 and 39 cm-1respectively.

The MAE value obtained with MC-DC-SCIVR based on 5 tailored trajectories (48 cm-1) is not

far from those values, confirming the reliability of the computationally-cheaper approach. From

the results it is evident the separation between the bending and stretching frequencies, and that

MC-DC SCIVR must be adopted upon identification of all relevant minima. A final comparison

to the experiment demonstrates that standard DC SCIVR is also able to detect the high frequency

stretching overtones with reasonable accuracy.

Figure (2) shows the peaks obtained with MC-DC SCIVR employing 5 trajectories per sub-

space, and reports MultiMode and harmonic frequency estimates for a visual comparison. We

observe that in our semiclassical spectra, because of the interaction between different modes,

multiple-peak features appear as, for instance, in the case of mode 10 (which shows a shoulder

at the frequency of mode 9), or as in the case of mode 9 and overtones of modes 7 and 8. The

interaction between the bending overtones and the lower frequency stretches involved in hydro-

gen bondings is a general feature of water clusters which we found also in larger ones and which

complicates the aspect of the simulated spectra.

B. Water Trimer (H2O)3

The water trimer is made of 21 vibrational degrees of freedom, 3 of which are bendings and 6

are OH stretches. In order to reduce the computational burden, we employed a version of the three

body potential which is, as anticipated, very fast to compute and retains quite well the accuracy

of the original WHBB 3-body potential. A first analysis of the trimer is obtained by looking at its

Hessian threshold trend. We observe that employing the same threshold value used for the dimer

would lead to label all vibrational modes as indepedent ones, reflecting the decrement in magni-

tude of the off-diagonal elements of the trimer Hessian. Furthermore, for the trimer, three plateau

can be clearly identified at maximum subspace dimensionality values of 8, 6 and 1. However, simi-

larly to the dimer case, spectra projected onto high-dimensional subspaces cannot be well resolved

and the maximum subspace dimensionality still consistent with a resolved spectrum is 3. For this

reason and to keep working with subspaces as high dimensional as possible, we used a threshold

value for the trimer equal to 1.5 · 10−5. The relevant 9-dimensional space has been consequently
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Figure 1. Dependence of the maximum subspace dimensionality on the arbitrary Hessian threshold for the

water dimer.

divided into mono, bi- and tri-dimensional subspaces. In particular, modes 17,18,19 have been

enrolled into a 3-dimensional subspace, while modes 16 and 20 into a bidimensional one. Gener-

ation of the initial conditions and the subsequent dynamics have been performed according to the

methodology already described for the dimer. Table (II) shows our DC-SCIVR (based on 10,000

trajectories, 30,000 atomic time units long) and MC-DC-SCIVR results compared to the Multi-

Mode and Local Monomer Model ones.58 Once again, a single trajectory is insufficient to recover

the correct semiclassical spectral features, and a preliminary exploration of the Potential Energy

Surface is required for application of MC-DC SCIVR. We found nine different local minima very

close in energy to the global one. We repeated the same MC-DC-SCIVR procedure described in

the dimer section, running in this case 10 trajectories for each subspace, each one centered on a

different minimum (global or local).

The energy range of the vibrational levels is very similar between the two oligomers so far in-

vestigated, with the trimer having the bending frequencies slightly blue shifted with respect to the

dimer, in agreement with results reported in the literature.32,60,113 Larger differences may be found

for the OH stretchings which are in general red shifted with respect to the dimer. Semiclassical re-

sults show a strong red-shift of mode 18 and, more mildly, of modes 16 and 17 with respect to MM
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Table I. Vibrational frequencies of the water dimer, in cm−1. Assignments of mode excitations are reported

in the first column; the following columns present, in order, the experimental results (Exp), the harmonic

estimates (HO), Multimode (MM) and Local Monomer Model (LMM) results, DC-SCIVR frequencies

obtained from 5,000 and 10,000 trajectories, MC-DC-SCIVR frequencies based on 5 trajectories, and MC-

DC-SCIVR results from a single trajectory started from the global minimum. The mean absolute errors

(MAE) are relative to the experimental values. a from Ref. 27; b from Ref. 58.

Index Expa HO MMb LMMb DC SCIVR10k DC SCIVR5k MC-DC SCIVR5 trajs, multmin MC-DC SCIVR1 traj

71 1600 1650 1588 1595 1597 1597 1562 1572

81 1617 1669 1603 1602 1585 1578 1588 1578

72 3163 3300 3144 3153 3154 3178 3128 3156

82 3194 3338 3157 3168 3130 3100 3180 3156

91 3591 3758 3573 3550 3550 3539 3526 3356

101 3661 3828 3627 3637 3690 3693 3680 3540

111 3734 3917 3709 3701 3670 3671 3582 3628

121 3750 3935 3713 3724 3764 3764 3717 3690

MAE - 136 25 23 32 39 48 78

7207 7266

7362 7336

5328 5375

values, which is responsible for most of the MAE values reported in Table (II). The red shift found

with semiclassical calculations can be explained by looking at Figure (3), where for modes 16-21

we compare the distributions of intramolecular (O-H) distances to (O..H) distances involved in the

hydrogen bonds along trajectories with mode-specific excitation. Modes 19 and 20 seem to be not

affected at all by long range interactions, as expected by their free OH stretching nature. Mode 21

is also a high-frequency free stretch. It has a broader distribution of the intramolecular O-H dis-

tance which contributes to the appearance of a tail at shorter distances for the intermolecular O..H

distance. The intramolecular motion for mode 21 is dominant, while the tail of the distribution

is not directional and hydrogen bonding is not effective. On the opposite, for modes 16, 17, 18

(with particular emphasis for the latter) the short O..H distances are related to a strong dynamical

hydrogen interaction. Because of it, a bond weakening is expected resulting into a red-shift of

13
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Figure 2. MC-DC-SCIVR vibrational spectra of bendings and stretches of the water dimer based on 5

trajectories per subspace. The vertical solid lines indicate the harmonic estimates, while the dashed vertical

lines the MultiMode results. The bending fundamental and overtone signals were obtained by tuning the

reference state according to Eq. (14).

the vibrational frequency. This is clearly seen upon comparison with MM results. The dynam-

ical effect that influences modes involved in hydrogen bonds justifies a large part of the 54 (or

65 for MC-DC-SCIVR) wavenumbers of MAE with respect to MM values, since if only bending

and free OH frequencies (which are not affected by hydrogen bonding) are compared, then the

MAE reduces to 20 (or 40 for MC-DC-SCIVR) cm−1. As anticipated, single-trajectory MC-DC-

SCIVR simulations are not reliable and the major improvement we have found upon moving to

a MC-DC-SCIVR approach based on multiple minima (and trajectories) concerns the low-energy

red-shifted OH stretches because of the non-local hydrogen interactions. Such non-local behavior

could justify the differences that arise between our results and MM ones, while another source

of discrepancy might come from the fact we employed a different (even if similar) PES for the

three-body interaction. Furthermore, as already pointed out for the dimer, these low frequency
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Table II. Main fundamental vibrational frequencies of the water trimer, in cm−1. Labels are the same as in

Table (I). Last column shows classical-like results from Eq. (17) based on the Fourier transform (FT) of the

velocity-velocity autocorrelation function (Cvv). MAE values are relative to MultiMode (MM) results.

Index HO MM58 LMM58 DC SCIVR10k MC-DC SCIVR10trajs,multmin MC-DC SCIVR1 traj FT (Cvv)

131 1661 1597 1602 1584 1575 1534 1520

141 1664 1600 1614 1595 1637 1528 1520

151 1681 1623 1615 1627 1634 1530 1516

161 3664 3486 3489 3440 3386 3426 3536

171 3703 3504 3500 3450 3400 3547 3548

181 3711 3514 3510 3247 3380 3151 3480

191 3911 3709 3718 3640 3610 3706 3676

201 3916 3715 3718 3700 3675 3652 3697

211 3918 3720 3719 3736 3760 3684 3640

MAE 151 - 6 54 65 88 58

OH stretches show much more complex spectral features with respect to modes 13-16 and 19-21

owing to the interactions with the bending overtones (which are in the same energy range) or other

stretches as depicted by Figure (4). Figure (4) shows the computed spectra employing the MC-

DC-SCIVR approach (solid lines) and reports MM (dashed vertical lines) and harmonic (solid

vertical lines) frequencies. Bending overtones are very sensitive to the energy of the trajectories

employed in the semiclassical calculations and they cannot be precisely detected when employing

a dynamics energetically tailored on the OH stretchings, and this adds to the complexity of the

resulting spectra. In particular, mode 18 presents several low-frequency spectral features due to

the overtone bendings and a peak which is blue shifted compared to the MM frequency and that is

due to mode 19.

To point out the importance of a semiclassical approach we have also computed classical-like

spectra obtained from the Fourier transform of velocity-velocity correlation functions. The trajec-

tory starting conditions were sampled using the same strategy adopted for semiclassical simula-

tions with the aim to make the comparison between the different approaches as straightforward as

possibile. In the classical-like case, 5,000 classical trajectories for each fundamental mode were

enough to get reliable results. We notice that the classical estimates for the three OH bending
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Figure 3. Distribution of the OH distance during a dynamics where the i-th mode is initially excited in order

to enhance its motion. The left side of the panel reports the OH distance of bound atoms, while in the right

side of the panel the distribution of OH involved in the hydrogen bonds (O...H) is presented. The different

colors refer to different modes.

frequencies are substantially red-shifted with respect to MM, LMM, and DC SCIVR ones, while

free OH stretches are found in better agreement. Looking at modes 16-18, the red-shift is less

prominent when the outcomes of classical-like simulations are compared with DC SCIVR results.

Furthermore, as expected, no overtone features are present in these classical-like spectra.

Finally, we compare in Table (III) our results to available experimental data, and find low dis-

crepancies (about 30 cm−1 on average) within the typical semiclassical accuracy. As anticipated,

classical-like results are off the mark in the bending region.

C. Water Hexamer prism (H2O)6

In this Section we explore the vibrational features of the water hexamer prism. It presents 48

degrees of freedom, 18 of which are bendings and OH stretches. Similarly to what happens moving
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Figure 4. Vibrational spectra of the water trimer. The solid lines refer to MC-DC-SCIVR simulations based

on 10 trajectories for each subspace; vertical solid lines indicate the harmonic estimates, while dashed ones

the benchmark MultiMode values. The bending fundamental and overtone signals were obtained by tuning

the reference state according to Eq. (14).

Table III. Experimental vibrational frequencies available for the water trimer, in cm−1, and calculated ones.

Experimental data are not assigned to a specific vibrational mode, so for each theoretical approach the

closest frequency has been chosen for comparison. Labels are the same as in previous Tables. MAE is the

mean absolute error referred to experimental data.

Exp.113,114 MM58 LMM58 DC SCIVR10k MC-DC SCIVR10trajs,multmin FT (Cvv)

1608 1597 1602 1584 1575 1520

1609 1600 1614 1595 1637 1520

1629 1623 1615 1627 1634 1516

3533 3514 3510 3640 3610 3536

3726 3720 3719 3736 3760 3697

MAE - 10 11 31 35 64

17



from the dimer to the trimer, the magnitude of interactions becomes less intense going from the

trimer to the hexamer. Indeed, with the same Hessian threshold value adopted for the trimer, all the

modes of the hexamer have been treated independently, with the exception of a couple of modes

(number 35 and 45) which have been still enrolled into a bi-dimensional subspace.

We computed the hexamer DC-SCIVR spectra with 5,000 trajectories per subspace, and, sim-

ilarly to the case of the dimer and trimer, we also checked the reliability of a MC-DC-SCIVR

approach based on just a few trajectories. However, from our damped dynamics simulations it was

soon evident that too many local minima had to be taken into consideration. Running a trajectory

from each minimum would have not provided a real computational advantage over DC-SCIVR, so

we introduced a different approach to select the most relevant minima for our calculations.

We adopted a strategy inspired by Habershon’s recent work on correlation distributions.115 As

anticipated, the many-body PES of the hexamer is characterized by several local minima, very

close in energy to each other. To assess the “vicinity” of each minimum to the global one, we

chose a connection criterion based on structural considerations. Specifically, we introduced a

correlation parameter computed as a sum of molecular distances. In fact, by defining a proper set

of distances {di}i=1,...,Ndistances
between the atoms, the correlation parameter σ2 can be calculated

as

σ2 =

Ndistances∑

i=1

(d− drefi )2, (18)

where drefi is the i-th distance calculated at the global minimum geometry. In the set of distances

we included the length of OH bonds for each of the six monomers plus the O-O distances of

adjacent oxygen atoms. By looking at Eq. (18) it is expected that minima very correlated to the

global one have σ2 → 0, while higher values identify less correlated wells.

We took into consideration σ2 values up to 0.011 Å2, which is enough to cover more than 80%

of the located local minima. Those which are further away from the global minimum (in σ2 terms)

are expected to contribute less significantly to the spectral features, and are neglected. Figure

(5) shows the correlation distribution as a function of σ2 for different sets of damped-dynamics

trajectories employed. As in previous cases, the initial conditions of the damped trajectories are

sampled by means of a Husimi distribution around the PES global minimum, and a damping factor

equal to 0.99 is adopted. Peaks in the distribution, sampled along the σ2 range studied, are used to

select the most relevant minima for the MC-SCIVR calculations.

Table (IV) shows our results compared to the Local Monomer Model ones.58 Vibrations are
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Figure 5. Correlation distribution between the global minimum and the local minima found by exploring the

hexamer many-body PES. The plots report the results for 1,000 (black) and 10,000 (red) damped-dynamics

trajectories. Data have been interpolated by means of a cubic spline. The black asterisks represent the

correlation peaks corresponding to the minima employed in the MC-DC-SCIVR calculations.

predicted by LMM at lower frequencies than the typical OH stretching region, approximately in

the range between 3,100 and 3,300 cm-1. Some semiclassical results were found in the 2,900-

3,100 cm-1 region of the spectrum. Therefore our dynamics-based results for the lower-frequency

stretches are red shifted with respect to the time-independent ones. We ascribe the main reason for

this discrepancy to the different impact of hydrogen interactions, which weaken such OH bonds.

In a dynamical approach, the effect of hydrogen bonding is enhanced, as already evinced for the

trimer. A further evidence of this is reported in Figure (6) where we compare the distributions of

intramolecular (O-H) distances to (O..H) distances involved in the hydrogen bonds for modes 37-

41 along trajectories with specific mode excitation. Modes 37-39, which are semiclassically the

most red-shifted ones, present a more prominent tail at short O..H distances with respect to modes

40-41, which are not red shifted. These features point to a stronger OH..O hydrogen interaction

for modes 37-39 than for the other stretches. Consequently, the corresponding OH bonds are

weakened and their frequencies red shifted. MAE values relative to the LMM ones are around 60

cm-1for DC-SCIVR and MC-DC-SCIVR based on 11 trajectories, while the MAE is substantially
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Table IV. Vibrational frequencies of the water hexamer prism, in cm−1. The first column refers to the

mode-excitation label; the second column is the harmonic estimate; the third column reports the Local

Monomer Model results; from the fourth column on, the semiclassical values are listed. The MC-DC-

SCIVR simulation based on 11 trajectories has been performed upon selection of 10 local minima from the

correlation distribution. MAE values are referred to LMM ones.

Index HO LMM58 DC SCIVR5k MC-DC SCIVR11trajs,multmin MC-DC SCIVR1traj

311 1661 1606 1617 1602 1606

321 1672 1612 1623 1620 1592

331 1676 1620 1622 1622 1588

341 1701 1633 1664 1636 1682

351 1715 1654 1661 1640 1684

361 1739 1677 1715 1712 1722

371 3377 3092 2925 2956 3011

381 3494 3256 3052 3060 3012

391 3619 3372 3182 3168 2940

401 3638 3442 3516 3395 3198

411 3714 3482 3573 3556 3200

421 3735 3521 3640 3616 3500

431 3792 3579 3592 3606 3680

441 3809 3588 3580 3574 3608

451 3827 3630 3678 3650 3602

461 3915 3697 3771 3610 3578

471 3923 3706 3698 3750 3768

481 3925 3728 3677 3712 3700

MAE 169 - 64 57 102

higher (~100 cm-1) when a single trajectory is employed. These values are much lower if only

modes not involved in hydrogen bonding, i.e. modes 31-36 and 43-48, are considered. In fact the

MAE decreases to 25 cm-1for DC SCIVR, and to 22 cm-1for MC-DC SCIVR with 11 trajectories.

Figures (7), (8), and (9) show the spectra computed for the hexamer employing the MC-DC-
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Figure 6. Distribution of the OH distance during a dynamics where the i-th mode is initially excited in order

to enhance its motion. The left side of the panel reports the OH distance of bound atoms, while in the right

side of the panel the distribution of OH involved in the hydrogen bonds (O...H) is presented. The different

colors refer to different modes.

SCIVR approach with 11 trajectories (solid line) together with the LMM (dashed vertical lines)

and harmonic (solid vertical lines) frequency estimates. Specifically, in Figure (7) the six bendings

and their overtones are reported, while Figures (8) and (9) are dedicated to the low-frequency

and free OH stretches respectively. If, for bendings, spectral features are well resolved, peaks

associated to the stretches are instead broader and have a more complex shape due to the intermode

couplings involving both stretches and overtones of bendings. This was also observed in the trimer

and it is evident in the hexamer too. In particular, power spectra of modes 39 and 40 present a

double peak feature due to the coupling between these two modes. A similar instance occurs for

spectra of modes 41 and 42 which, in addition, show a shoulder at the frequency of mode 37. The

effects of coupling fade away when moving to the free OH stretches, a characteristic which has

been already found in the trimer.
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Figure 7. Vibrational spectra of the water hexamer prisms in the bending region. The solid lines refer to

MC-DC-SCIVR simulations based on 11 trajectories for each subspace; vertical solid lines indicate the

harmonic estimates, while dashed ones the Local Monomer values. The bending fundamental and overtone

signals were obtained by tuning the reference state according to Eq. (14).

In summary, the semiclassical information about the hexamer energy levels based on thousands

of trajectories can be basically regained by means of a MC-DC-SCIVR treatment that employs

just 11 selected trajectories. A single-trajectory approach is instead not enough to recover the

correct spectral features due to the strong influence of local minima similar in both energy and

connectivity to the global one. Therefore, our MC-DC-SCIVR approach is very promising for

dealing with higher-dimensional clusters for which a DC-SCIVR calculation is out of reach as in

the case of the water decamer (H2O)10.

D. Water Decamer (H2O)10

Our last application concerns the water decamer which has 10 bendings and 20 OH stretches,

and a total of 84 vibrational degrees of freedom. Due to the computational overhead of the sim-
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Figure 8. Vibrational spectra of the water hexamer prism in the OH stretching region. The solid lines refer

to MC-DC-SCIVR simulations based on 11 trajectories for each subspace; vertical solid lines indicate the

harmonic estimates, while dashed ones the Local Monomer values.

ulations, for the decamer we only performed MC-DC-SCIVR calculations based on multiple tra-

jectories starting from a set of minima located by means of the damped-dynamics approach. We

identified several minima on the surface and calculated a correlation distribution dependent on

intramolecular OH distances and OO distances of adjacent monomers according to Eq. (18), from

which we extracted the 10 most relevant local minima. By employing the same Hessian thresh-

old value adopted for the trimer and the hexamer, all 30 degrees of freedom have been treated as

independent ones. This is in agreement with the trend of weakening interactions between vibra-

tional modes associated with an increase in the dimensionality of the system. For each subspace

we performed our MC-DC-SCIVR calculations based on 11 trajectories initiated from the global

minimum and the 10 chosen local minima. Results are reported in Table (V) which shows a

comparison of the decamer semiclassical fundamental frequencies with the corresponding values

calculated with the Local Monomer Model.58
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Figure 9. Vibrational spectra of the water hexamer prism in the free OH stretching region. The solid lines

refer to MC-DC-SCIVR simulations based on 11 trajectories for each subspace; vertical solid lines indicate

the harmonic estimates, while dashed ones the Local Monomer values.

In this case we observe that our results for the bendings are generally in good agreement with

LMM ones with a MAE equal to 36 wavenumbers. Both MC-DC-SCIVR and LMM predict more

red-shifted stretches than in the case of the smaller clusters, but they are in closer agreement with

respect to the trimer or the hexamer.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a semiclassical investigation of the vibrational features of some

water clusters ranging from the dimer to the decamer by means of our recently established Divide-

and-Conquer semiclassical approach. Semiclassical simulations employ several thousand classi-

cal trajectories to reach convergence of results, but a computationally-cheaper MC-DC-SCIVR

approach based on few, selected trajectories was demonstrated to provide quite acceptable results.

The caveat here is that, differently from other molecular systems studied in the past, a single-
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Table V. Fundamental frequencies of vibration for the water decamer (cm−1). HO is the label for the har-

monic frequencies; LMM are the Local Monomer Model results; MC-DC-SCIVR refers to our semiclassical

estimates.

HO LMM58 MC-DC-SCIVR11 trajs, multmin HO LMM58 MC-DC-SCIVR11 trajs, multmin

1670 1600 1590 3571 3382 3337

1675 1602 1624 3659 3417 3379

1678 1608 1624 3666 3419 3400

1686 1609 1628 3676 3420 3406

1692 1617 1660 3682 3429 3448

1712 1647 1663 3727 3518 3492

1713 1664 1674 3741 3525 3496

1720 1665 1690 3756 3534 3522

1738 1669 1708 3774 3566 3532

1748 1691 1714 3781 3568 3565

3335 3013 2936 3914 3706 3640

3352 3036 3006 3920 3734 3668

3383 3046 3022 3924 3736 3672

3387 3050 3052 3925 3741 3680

3554 3286 3121 3926 3744 3800

minimum/single-trajectory semiclassical calculation is usually not accurate. Therefore, we have

explored the potential energy surface looking for local minima and presented a way to select them

according to their “resemblance” to the global minimum and their expected contribution to the

calculations. The application of semiclassical methods to water clusters demonstrates that these

techniques can be employed also for large (H2O)n ones as well as for rather floppy systems,

and not only for quite rigid ones. The divide-and-conquer method is able to simplify the full-

dimensional problem recovering part of the interactions between the low-dimensional subspaces

thanks to the maintained full-dimensional nature of the trajectories on which the subspace calcu-

lations are based. Spectral features though are very sensitive to intermode couplings and multiple

peak structures are often present especially in the case of low frequency stretches. Furthermore,

vibrational angular momentum due to the floppy nature of the system contributes to increase the

25



width of peaks, which is substantially larger than what is commonly found in semiclassical calcu-

lations of single molecules.

Results show that the outcomes of experiments and previous theoretical studies are regained

with quantitative agreement for bendings and free OH stretches, while frequencies of OH stretches

influenced by hydrogen-bond interactions are red shifted with respect to the estimates provided by

other theoretical approaches. This can be clearly seen in the assignment of the trimer experi-

mental frequency at 3533 cm-1. We assign it semiclassically to mode 19, while VCI calculations

yield a closer estimate for the frequency of mode 18, and classical-like simulations point to mode

16. The difference between semiclassical and classical-like estimates is evident and confirms the

need to undertake a semiclassical approach able to regain quantum effects. The presence of a

set of semiclassical frequencies around 3,000 cm-1 for the hexamer and the decamer is consis-

tent with previous studies even if the red shift is more accentuated in our simulations. This is

due to dynamical effects (confirmed by the short-distance tails of the O..H distance distributions

for modes involved in hydrogen bonds) and to the multi-reference nature of the semiclassical ap-

proach. Compared to the isolated water molecule, bending frequencies are more and more blue

shifted and low-frequency stretches more and more red-shifted as the cluster size increases. Agree-

ment between semiclassical and VCI calculations for modes in the red-shift region is better for the

decamer than for smaller clusters.

SUPPLEMENTARY MATERIAL

See Supplementary Material for the new 3-body water-water-water PES employed in this work.
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