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ABSTRACT
TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses
pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was
developed to mimic pathogens infection and boost immune system activation to promote anti-cancer
therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of
immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on
immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer
cells expressing TLR3.

This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer
cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by
poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells.

Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for
the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater
resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis.
Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be
considered in combinations with TLR3 agonists in clinical trials.
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Introduction

Toll-like receptor 3 (TLR-3) is a member of the Toll-like recep-
tor family, which comprises 10 members in human and is char-
acterized by the presence of an extracellular leucine-rich
repeats (LLR) domain that mediates the recognition and bind-
ing of pathogen-associated molecular patterns (PAMPs) and a
cytoplasmic tail that contains a conserved region, called the
Toll/IL-1 receptor (TIR) domain.1 TLR-3 is expressed by senti-
nel cells of the innate immune system, such as dendritic cells
and macrophages, and by nonimmune cells, including epithe-
lial cells, fibroblasts, and endothelial cells. In contrast, TLR3 is
absent from neutrophils and is minimally expressed in T
cells.2,3 TLR3 localizes to the endosomes, where it senses viral
and host-derived nucleic acids and initiates inflammatory path-
ways, activating the innate immune response and establishing
an antiviral state to prevent viral replication. Its expression
modulates rapidly in response to pathogens, various cytokines,
and environmental stress.

TLR3 expression on immune cells has been widely exploited
to promote an antitumor immune response, and various TLR3
agonists are being examined in clinical trials for their ability to
orchestrate antitumor immunity. Several phase I and II clinical
trials are in progress, in which TLR agonists are being used as
an adjuvant for antigen-peptide vaccination and in combina-
tion with radiotherapy.4 The antitumor responses that are
induced by TLR3 agonists are attributed to their capability to
stimulate antigen-presenting cells (APCs), such as DCs, which

in turn activate tumor-specific T cell responses and to their
capacity to switch the phenotype of myeloid suppressor cells
and tumor-associated macrophages from immunosuppressive
to immunosupportive.5-7

TLR3 signaling can also occur on nonimmune cells, contrib-
uting to an antitumor response. Many types of cancer express
TLR3, including breast carcinoma, oral cell squamous and
esophageal carcinoma, cervical carcinoma, ovarian carcinoma,
prostate carcinoma, head and neck carcinoma, lung squamous
cell carcinoma and adenocarcinoma, hepatocellular carcinoma,
and melanoma.8 Like normal cells, cancer cell lines respond to
TLR3 ligands by secreting inflammatory cytokines, type I inter-
feron (IFN I), and chemokines, which enhance the recruitment
and activation of immune cells.

Moreover, TLR3 agonists were found to promote the direct
inhibition of tumor growth in vitro in several murine and
human cancer cell models through 2 mechanisms: decreasing
proliferation and inducing apoptotic cell death. TLR agonists
slow tumor cell proliferation in breast and prostate cancer cell
lines, and many studies have reported the apoptotic effects of
TLR3 agonists in several tumor histotypes, including breast,
melanoma, head and neck, prostate, renal carcinoma, colon,
cervical, and lung cancer cells.8

Altogether, these studies indicate that several mechanisms
contribute to the efficacy of TLR3 agonists in cancer therapy
and that targeting TLR3 on tumor cells to induce their apopto-
sis is a potential therapeutic approach for directly interfering
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with cancer progression in patients whose immune systems fail
to generate a protective response. This review summarizes our
knowledge on the induction of apoptosis by TLR3 agonists and
focuses on new strategies to promote this effect in cancer cells.

TLR3 signaling pathways

TLR3 is activated by extracellular double-stranded RNA
(dsRNA), which is recognized by the receptor in a sequence-
independent manner. TLR3 initiates a protective response
against dsRNA viruses including PV (polio virus), coxsackievi-
rus group B and serotype 3, encephalomyocarditis virus, and
DNA virus infections, such as herpes simplex virus 1 and
murine cytomegalovirus.9-11 In addition, TLR3 recognizes
dsRNA that has been transcribed in vitro and its synthetic ana-
logs, such as poly (I:C) (polyriboinosinic:polyribocytidylic acid)
and poly (A:U) (polyadenylic:polyuridylic acid), which have
thus been used to mimic the response to RNA virus infection
and are commonly administered in in vitro and in vivo studies
on TLR3-mediated cellular responses.

In myeloid dendritic cells, TLR3 localizes exclusively to the
early endosome, whereas macrophages, fibroblasts, and certain
epithelial cells also express it on the cell surface. The signal
transduction pathway that is mediated by TLR3 begins in the
acidic environment of endosomal compartments.12 Recent
evidence has shown that in addition to recognizing dsRNA, cell
membrane-bound TLR3 triggers a predominantly proinflam-
matory response.13 The ability of exogenous RNAs to induce
cellular responses depends primarily on their stability in the
extracellular space and their mode of entry into cells. Unlike
single-stranded RNA (ssRNA), dsRNA is resistant to degrada-
tion, and thus, the viral dsRNA that is released from infected
cells can be a potent activator of uninfected surrounding cells,
leading to the establishment of an antiviral state.

dsRNA enters cells by clathrin-dependent endocytosis,
mediated by Raftlin14; or in a complex with the antimicrobial
peptide LL-37 through FPRL-115; or through internalization of
apoptotic bodies that are derived from virus-infected cells.16

Once the TLR3-dsRNA species forms in the endosome, TLR3
signaling is then initiated by ligand-induced dimerization of
TLR3 receptors. Unlike other TLRs, TLR3 must be tyrosine-
phosphorylated after binding to dsRNA,17 for which the tyro-
sine kinases EGFR and Src cooperate.18

Subsequently, the Toll/interleukin-1 (IL-1) receptor (TIR)
domain of TLR3 engage TIR domain-containing adaptor pro-
tein inducing IFNb (TRIF) and TRIF-related adaptor molecule
(TRAM). TLR3 is the only TLR that recruits TRIF directly to
its TIR domain to initiate signaling. TLR4 can signal indepen-
dently of MyD88 via TRIF,19 but it requires the bridging adap-
tor TRAM. Another peculiarity of TLR3 is that by using TRIF
as its principal adaptor, it signals exclusively through a
MyD88-independent pathway, whereas TLR4 transduces sig-
nals through the MyD88 and TRIF pathways; all other TLRs
require MyD88 recruitment (review in1).

Recruitment of TRIF to TLR3 is considered the step that dic-
tates downstream signaling processes. TRIF signaling activates
the serine/threonine kinase TANK-binding kinase-1 (TBK-1),
which phosphorylates the transcription factor interferon regu-
lating factor 3 (IRF3).20 TNF Receptor Associated Factor 3

(TRAF3) recruitment links TRIF and the TBK-1 kinase com-
plex. IRF3-phosphorylated translocates to the nucleus and
activates specific proinflammatory target genes, the most signif-
icant of which are type I IFNs.20 In addition to activating IRF3,
TLR3 signaling via TRIF also activates NF-kB.21,22 The NF-kB
branch of TLR3 signaling is activated by TRIF-dependent
recruitment of 2 separate pathways—mediated by RIP1 (also
referred to as RIPK1)23 or TRAF6—both of which converge on
Transforming growth factor beta-activated kinase 1 (TAK1)
and the IkB kinase (IKK) complex. TAK1 phosphorylates IKK
alpha and beta, which in turn phosphorylates Ikb, the NFkB
inhibitor, resulting in IKb degradation and the nuclear translo-
cation of NFkB.24

Ultimately, several transcription factors are activated, such
as interferon-regulatory factors (IRFs) and cyclic AMP-respon-
sive element-binding protein (CREB), and translocate to the
nucleus, where they bind to their respective elements in the
promoters of target genes (eg, IFN beta, IL-6, IL-12, and
CCL3).25 Engagement of TAK1 and signaling adaptors also
activates mitogen-activated protein kinases (MAPKs) and JUN
N-terminal kinase (JNK). p38 MAPK autoactivates on interact-
ing with TAK1-binding protein 1,26 stimulating AP-1, which
induces the transcription of several cytokines and chemokines.
Overall, the most significant outcome of all 3 modules of TLR3
signaling is the induction of inflammatory molecules, includ-
ing proinflammatory cytokines (eg, TNF and IL-1), chemokines
(eg, CCL2 and CXCL8), endothelial adhesion molecules (eg,
E-selectin), and type I IFNs (IFNa and IFNb) crucial for antivi-
ral responses.

In addition to triggering an inflammatory response, dsRNA
elicits cell survival/apoptotic mechanisms in several mamma-
lian cell types, apparently through disparate pathways.

TLR3-mediated apoptosis in cancer cells

Salaun B. et al. (2006) first showed that activation of TLR3
effects apoptosis in vitro in various breast cancer cell lines and
that IFN type I is necessary but not sufficient to activate the
apoptotic pathway.27 Similarly, in vitro studies in melanoma
models demonstrated that in TLR3-expressing cancer cells,
receptor activation by its agonist directly inhibits cell prolifera-
tion and induces apoptosis when the agonist is combined with
type I IFN.28 The primary TLR3-mediated mechanism of apo-
ptosis in cancer cells is dependent on caspase-8 activation.
Estornes Y. et al. reported that stimulation of TLR3 in lung
tumor cell lines by dsRNA induces the formation of an atypical
complex that contains caspase-8 and that interacts with TLR3,
although TLR3 lacks a death domain (DD).29 The model that
was proposed by this group considered the requirement of
RIP1 for the recruitment of caspase-8 to TLR3. RIP1 is nega-
tively regulated by ubiquitination by the cIAP2 (cellular inhibi-
tor of apoptosis protein)-TRADD-TRAF2 complex.30-32

The TRIF-RIP1 axis, which is fundamental for inflammatory
processes that originate from TLR3 activation, also governs cell
death and survival—RIP1 associates with Fas-associated death
domain (FADD) via the death domain.33 TRIF-RIP1-FADD is
central to the assembly of a death-inducing signaling complex
that contains caspase-8, the fate of which determines which of
the 3 outcomes of TLR3 signaling occurs.33 Homodimerization
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of caspase-8 leads to its autocatalytic activation, RIP1 cleavage
and inactivation, and apoptotic cell death.33 If caspase-8 activ-
ity is compromised, RIP1 cleavage is inhibited, allowing RIP1
to interact with RIPK3 and form a necrosome, causing necrop-
totic cell death. In the third outcome, if caspase-8 heterodimer-
izes with FLIP, a noncatalytically active homolog of caspase-8,
partial activation of caspase-8 prevents complete cleavage of
RIP1, resulting in cell survival.34,35

Paone et al. also described that TLR3 can trigger apoptosis
through a PKC alpha-dependent mechanism in prostate cancer
cells, which converges on caspase-8. Activation of the down-
stream targets of PKC alpha—p38 MAPK and c-JUN—
increases the autocatalytic activity of caspase-8 and ¡3.36

It has been reported that TLR3 activation can induce apoptosis
in cancer cells by the intrinsic pathway. Indeed, in melanoma
cells, beside TRIF-dependent activation of proapoptotic signal-
ing,31 Bcl2 expression declines on cotreatment with poly(I:C) and
INF-a, suggesting the involvement of the mitochondrial pathway.
Moreover, in another study, Bcl2 and Noxa levels are downregu-
lated in endothelial cells that are treated with poly(I:C).37

Finally, discrepancy in results in cancer in vitro models
might be attributed to the use of poly(I:C) with varying
lengths,38,39 moreover, differences between intra- and extracel-
lular administration of such TLR3 ligands implicate other cyto-
solic dsRNA receptors, such as Melanoma Differentiation-
Associated protein 5 (MDA5) and Retinoic acid-inducible gene
I (RIG-I), that could affect the poly(I:C) cytotoxic effect.

RIG-I and MDA5 are dsRNA recognition receptors located
in the cytoplasm, that concur to mediate anti-viral response
together with TLR3, and thus their increase and activation
could improve poly(I:C) cytotoxic activity.

Prognostic significance of TLR3 expression in cancer

Few studies have examined the expression of TLR3 in cancer
specimens by immunohistochemistry, especially due to the
lack of reagents with proven specificity. Moreover, the function
of TLR3 on cancer cells must be distinguished from that on
immune cells.

In Hepatocellular Carcinoma (HCC), TLR3 positivity was
observed in 52.7% of 74 cases by immunohistochemistry.40

Chew V. et al.41 confirmed this frequency in 172 HCC patients
by qPCR, reporting that TLR3 expression in patients with HCC
was associated with greater survival. Moreover, in tumor sec-
tions of patients with HCC, TLR3 levels correlated with NK cell
activation and an increase in T and NK cell infiltration and was
inversely associated with the vitality of tumor parenchyma cells.
Similarly, TLR3 activation in in vivo models of HCC upregulates
chemokines intratumorally and increases the activation of
tumor-infiltrating immune cells. In vitro evidence from these
studies implicates TLR3-induced apoptosis as a mechanism that
explains the good prognosis of TLR3-expressing patients.40,42

An immunohistochemical study of cancer specimens from
106 patients with gastric cancer showed a positivity for TLR3
expression in 60.4% of the cases. In contrast with evidence in
HCC, TLR3 expression was significantly associated with poor
overall survival in patients with resectable gastric tumors.43

In 74 breast cancer cases, Gonz�alez-Reyes44 reported a high
percentage of TLR3-positive cases (79%) evaluated by IHC and

that TLR3 expression by tumor cells was significantly associ-
ated with a great rate of distant metastasis. Moreover, they
noted a link also between elevated TLR3 mRNA levels and
tumor recurrence. A randomized clinical trial of 194 women
with breast cancer evaluated the effectiveness of the TLR3 ago-
nist poly (A:U), showing that adjuvant treatment with this ago-
nist was associated with a significantly lower risk of metastatic
relapse in TLR3-positive tumors.45 The stratification of breast
cancer patients, according to the TLR3 expression, was per-
formed by using an anti-TLR3 antibody (40F9.6) accurately
validated by the authors.

Immunohistochemical study on archival tissues of neuro-
blastomas showed TLR3 positivity in 70/99 (70.7%) patients
and that positive TLR3 expression was associated with favor-
able histology and prognosis.46

By PCR array, TLR3 expression has been reported to be high
in established human melanoma lines and in human melanoma
cells isolate from single-cell suspensions obtained from mela-
noma tumor biopsies.47

With regard to the TLR3 expression and tumor progres-
sion, studies on tumor specimens have shown that TLR3 is
maintained in the most differentiated neuroblastoma cells in
the tumor mass48; moreover, tumors with high grades of
differentiation generally showed a higher level of TLR3
mRNA expression and positive immunoreactivity suggesting
that TLR3 expression in Neuroblastoma (NB) tumor tissues
may be correlated with differentiation of NB cells.46 In con-
trast, histological grade and TLR3 positivity do not differ in
HCC, despite the minor change in TLR3 staining patterns
between normal and tumor tissues.40.In breast cancer, TLR3
was significantly and positively associates with tumor size
and tumor stage.44 Collectively, the prognostic significance of
TLR3 remains unresolved by the few studies in cancer
patients that are available. Moreover, these studies have not
allowed us to determine whether its inverse relationship with
the prognosis in various cancer histotypes depends on the
balance between apoptosis and survival, as mediated by TLR3
activation, or on other factors. Particularly, to define the
potential of TLR3 expression on cancer cells as a therapeutic
target, its signaling cascade must be examined for each spe-
cific tumor to develop strategies to enhance apoptosis.

Upmodulation of TLR3 to increase apoptosis

The first level of regulation of TLR3-mediated apoptosis com-
prises the upmodulation of TLR3 expression. In recent years,
many studies have focused on the mechanisms of the transcrip-
tional regulation of TLR3, and several molecules involved in
TLR3 modulation has been identified. TLR3 expression is mod-
ulated by IFN-a, a cytokine that activates dendritic cells (DCs),
NK cells, and macrophages.49 demonstrated that IFN-a upregu-
lates TLR3 in endothelial and epithelial cells and, following stim-
ulation of TLR3 with its ligand, increases the production of
cytokines that mediate the antiviral response, such as IFN-b. An
IFN-responsive element (ISRE), located approximately ¡30 bp
from the promoter region of human TLR3, drives the expression
of IFN-a-induced TLR3.50 Another study reported that inhibi-
tion of the JAK/STAT pathway decreases the induction of TLR3
by IFN-a, implicating JAK/STAT signaling in IFN-a-induced
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TLR3 transcription.51 Moreover, it has been observed that IFN-a
treatment can upregulate TRAIL, resulting in cancer cell death.52

However, death receptors (DRs) are not involved in poly(I:C)-
triggered cell death, and Fas, DR4/DR5, and TNFRI are not asso-
ciated with caspase-8 after TLR3 activation.29

Histamine is a biogenic amine that is synthetized and
released by mast cells and acts as a vasodilator in several patho-
logical processes. Its function in cancer is not fully understood,
because high levels of histamine have been associated with the
promotion and inhibition of growth in various tumors.53 Hista-
mine, a key mediator of allergic inflammation, upregulates
TLR3 mRNA and protein in airway epithelial cells and lung
cancer cells and enhances the cellular response to poly (I:C),
based on IL-8 secretion.54,54 In contrast, histamine reduces
TLR3 levels in cultured human skin fibroblasts.55

Priming of esophageal epithelial cells with poly (I:C) induces
robust histamine receptor (HR) expression and enhances hista-
mine-induced secretion of GM-CSF, TNFa, and IL-8, implicat-
ing the existence of crosstalk between histamine and TLR3
signaling.56 Moreover, a histamine-forming enzyme, histidine
decarboxylase (HDC), is activated in mice that have been
primed with various Toll-like receptor agonists, including poly
(I:C), resulting in the production of histamine.57 The response
of airway epithelial cells to histamine rises significantly after
treatment with poly(I:C).58 Thus, epithelial sensitivity to hista-
mine might be enhanced during TLR3-mediated inflammation,
increasing the expression of HRs, the stimulation of which
could in turn upregulate TLR3 expression.

IL-27 is another cytokine that potentially regulates TLR3
expression and function in tumor cells. IL-27 belongs to the IL-
12 family and is a heterodimeric cytokine that comprises 2 sub-
units: Epstein-Barr virus (EBV)-induced gene 3 (EBI3) (also
known as IL-27B) and IL27-p28 (known as IL-30).59 IL-27 is
produced by (APCs)60 and governs the activity of B- and T-
lymphocytes, based on its ability to induce pro- and anti-
inflammatory immune responses. It can induce tumor-specific
antitumor and protective immunity through cytotoxic T lym-
phocyte (CTL) and natural killer (NK) cells, but it has also anti-
angiogenic and direct antiproliferative activity against tumors
by regulating several chemokines.

Recently, Chiba and colleagues demonstrated that IL-27
enhances the expression of TRAIL and TLR3 in human melano-
mas and inhibits tumor growth in vitro and in vivo in coopera-
tion with poly(I:C), partly in a TRAIL-dependent manner. This
mechanism might approximate that of IFN-a, which induces cell
death in cancer cells by stimulating them to produce TRAIL.52

IL-27 has been hypothesized to effect IRF-1 expression through
WSX-1/STAT1 signaling, resulting in the upregulation of
TRAIL. IL-27 also augments TLR3 levels IRF-1-dependently and
-independently. Treatment with IL-27 increases RIG-I and
MDA5 mRNA and protein levels. However, knockdown of RIG-
I or MDA5 does not affect IL-27-mediated suppression of tumor
growth, indicating the necessity of the TLR3/TRAIL axis.

Overcoming TLR3-mediated apoptosis

Several molecules dampen dsRNA-mediated TLR3 activation
and impair signaling downstream of TLR3, decreasing
apoptosis.

Mucin 1 (MUC1) is a pleiotropic molecule that is expressed
in nearly all epithelial tissues in the respiratory, gastrointestinal,
urogenital, and hepatobiliary tracts; in sebaceous and salivary
glands; and in hematopoietic cells.61,62 Like other membrane-
associated mucins, MUC1 hydrates, protects, and provides
lubrication to mucosal and epithelial luminal surfaces of ducts,
rendering it central to the maintenance of homeostasis and
promotion of cell survival in response to harsh environments.
In addition, MUC1 functions in the immune system in chronic
inflammatory diseases (regulating DCs, monocytes, T cells, and
B cells).63,64

In cancer, altered MUC1 expression impedes efficient lysis
by neutrophils, NK cells, and cytotoxic T cells and limits
tumor cell adhesion, allowing them to escape, thus leading to
cancer metastasis.65 Overexpression of MUC1 is associated
with tumor progression and a poor prognosis in colon,
breast, ovarian, lung, prostate, and pancreatic cancers.66-70

MUC1 is expressed in airway epithelial cells, extinguishing
host inflammatory responses that are initiated by pathogens
and protecting tissue from injury. To perform these regula-
tory functions, MUC1 interacts directly with TLRs to hamper
MyD88 or TRIF recruitment and halt the production of
inflammatory factors that lie downstream of TLRs. In addi-
tion, Kato and colleagues recently demonstrated that similar
to what occurs during attenuation of the immune response,
MUC1 overexpression impairs poly(I:C)-induced apoptosis,71

based on evidence that blockade of MUC1 activity decreases
TRIF engagement on the TLR3 apoptosome complex.

Another mechanism by which cancer cells contrast poly(I:
C)-mediated apoptosis is through HIF-1a. HIF-1a mediates
the resistance to several apoptotic stimuli by directly inducing
antiapoptotic genes, such as Bcl-xL, survivin, and MCL-1.72-74

Certain molecular components that are derived from bacteria
and viruses, such as dsRNA, activate HIF-1a under normoxic
conditions through TLRs.75-77 In particular, the I.3 isoform of
hif-1a is upregulated at the mRNA and protein levels follow-
ing poly(I:C) stimulation of TLR3 in prostate cancer cells.
Activation of HIF-1a upregulates VEGF78 resulting in angio-
genesis in several types of cancer. HIF1 alpha is stabilized and
activated by MUC179 and the link between these pathways,
both of which regulate TLR3 expression, should be considered
to propose a therapy including TLR3 agonists. Thus, the levels
of HIF-1a in cancer cells might be critical to the antitumor
potential of poly(I:C).

Another molecule that impair dsRNA-induced signaling is
ADAM15. ADAM15 belongs to the disintegrin and metallo-
proteinase (ADAM) family. ADAM15 is overexpressed in sev-
eral types of solid tumors, including breast, bladder, lung,
colorectal, ovarian, and prostate cancer80-83; however, its func-
tion in promoting or suppressing cancer progression differs
between tumor types. High expression of ADAM15 correlates
with a poor prognosis in NSCLC and bladder cancer patients,
in which it contributes to metastatic tumor progression
through various mechanisms, including direct activation of
MMP9.84

Recently, ADAM15 was identified as a TRIF-interacting
protein by liquid chromatography (LC)/mass spectrometry
(MS) following immunoprecipitation of the TRIF complex in
HEK293 cells that were transfected with TLR3 and stimulated
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with poly(I:C).85 ADAM15 mediates the proteolytic cleavage of
TRIF, resulting in the downregulation of NFkB and IFNbeta
activity. Accordingly, its suppression increases proinflamma-
tory cytokine production. Similar to other molecules that gov-
ern TRIF recruitment to dsRNA-activated TLR3, the assembly
of the apoptosome complex is expected to be impaired by
ADAM15-catalyzed cleavage of TRIF. The demonstration of
the relevance of ADAM15 in TLR3-mediated apoptosis could
provide the rationale for combining ADAM15 inhibitors and
poly(I:C) to boost cancer cell apoptosis.

Strategies to improve poly(I:C)-induced apoptosis

A dissection of TLR3 signaling would contribute to greater res-
olution of the critical steps that impede full exploitation of the
poly(I:C)-induced apoptosis. Based on comprehension of the
elements in the poly(I:C)-induced apoptotic program, strategies
have been proposed to increase its cytotoxic effect in cancer
cells.

Several lines of evidences highlight the importance of recep-
tor-interacting protein 1 (RIP1) and inhibitor of apoptosis pro-
teins (IAPs) in the TLR3 apoptotic cascade. Apoptosis is tightly
regulated at several levels, and IAPs are key negative regulators of
the intrinsic and extrinsic apoptosis pathways.86 cIAP1 and
cIAP2 are E3 ubiquitin ligases that suppress apoptosis by directly
inhibiting the activities of caspases and mediating the ubiquitina-
tion of several substrates, including RIP1-4.87,88 RIP1 is necessary
for poly(I:C)-induced apoptosis, serving as a docking site for cas-
pase-8 recruitment to the TLR3/TRIF apoptosome complex.29

On TLR3 activation, RIP1 associates with TRIF and caspase-8,
and subsequently, E3 ubiquitin ligases, including cIAP2, complex
with RIP1 that undergoes polyubiquitination, resulting in the
negative regulation of death complex formation and then apopto-
sis. RIP1 ubiquitination by cIAP1 and cIAP2 is a critical event,
because it prevents RIP1 from forming a cytosolic complex with
caspase-8 and Fas-associated protein with death domain (FADD)
(complex II) and thus the subsequent activation of caspases.89,90

This regulatory mechanism evolved to protect immune cells
from death due to pathogenic microorganisms. Conte et al.
induced c-IAP2 expression in macrophages with LPS and found
that depletion of c-IAP drove apoptosis in them.91. Cancer cells
exploit this mechanism to circumvent poly(I:C)-induced apopto-
sis.92 c-IAP2 is overexpressed in many types of cancer and is
associated with disease progression, poor prognosis, and
chemoresistance.

SMAC mimetics are small-molecule drugs that mimic
Smac, a mitochondrial inhibitor of cIAPs, and were developed
to fight cancer.93 The goal of SMAC mimetics is to suppress
cIAPs, re-establishing the extrinsic apoptotic pathways to
induce cancer cell death. Suppression of cIAP2 by SMAC mim-
etics increases TLR3-mediated apoptosis in lung cancer cells.29

Considering that SMAC mimetics have demonstrated their effi-
cacy as anticancer agents in the clinic, the combination of poly
(I:C) and SMAC mimetics is a promising strategy to enhance
TLR3-mediated apoptosis.30,94

Based on the crosstalk between the TLR3 and retinoic acid
receptor (RAR) pathways, 2 separate studies suggested the co-
administration of retinoids as a promising approach to
increase the cytotoxic effects of poly(I:C). Bernardo and

colleagues observed that dsRNA receptors are retinoic acid
(RA)-inducible genes, demonstrating that treatment of breast
cancer cells with RA upregulates RIG1, MDA5, PKR, and
TLR3.95 Accordingly, the levels of all of the main downstream
mediators of such dsRNA receptors rose, enhancing poly(I:C)-
induced apoptosis. RA also stimulates type I IFNs, which ulti-
mately upregulate TRAIL. More recently, the same group
reported RA/poly(I:C) cotreatment in breast cancer cell lines
synergized in activating IRF3 through TLR3.96

Galli et al. described an unexpected relationship between the
RA- and poly(I:C)-activated pathways through miRNAs.97 Poly
(I:C) increases the expression of 4 miRNAs (microRNA-29b,
¡29c, ¡148b, and ¡152) that target DNA methyltransferases,
effecting the demethylation of several genes, including RAR-
beta. Through this mechanism, they demonstrated that epige-
netic silencing of retinoic acid receptor beta-2 (RARbeta) could
be reverted in prostate and breast cancer cells by poly(I:C).
Accordingly, the reconstituted expression of silenced RARbeta
sensitizes cancer cells to RA- induced apoptosis. This coregula-
tion between the poly(I:C) and RAR pathways could be exam-
ined further to evaluate the combined administration of
retinoids and dsRNA to induce apoptosis in cancer cells.

IL-24 is a cytokine that belongs to the IL-10 family. Adeno-
viral expression of IL24 (Ad-IL-24) was initially developed as
an antiviral agent, but interest in its antitumor potential has
risen, based on its ability to induce apoptosis in several types of
cancer, including lung, liver, kidney, melanoma, breast, and
glioma. Ad-IL-24 appears to control cell survival and prolifera-
tion by rapidly activating several proapoptotic molecules, such
as Bcl-2, Bax, p-38 MAPK, and ERK.

Discrepancies have emerged with regard to the antitumor
efficacy of nonvirally administrated IL-24 and Ad-IL-24. IL-24
requires a secondary stimulus to induce apoptosis, which in
Ad-IL-24 is provided by viral structural components that are
necessary for its intracellular delivery.98 In Ad-IL-24 adminis-
tration, active replication of virus occurs solely to present
dsRNA in the cell and activate TLR3. The cytotoxic effects of
Ad-IL-24 are exerted specifically through the TLR3/TRIF com-
plex, as demonstrated by the decrease in cell death in the pres-
ence of a TRIF inhibitor or TLR3 siRNA. Expression of cFLIP
and cIAPs were did not observed in the TLR3 complex in cells
treated with IL-24, enabling it to initiate the apoptotic signaling
cascade. These results indicate that IL-24 does not mediate the
cytotoxic effects per se but sensitize cancer cells to TLR3-medi-
ated apoptosis. Further, RPKs are upregulated in glioma and
lung cancer cells by Ad-IL-2499—a mechanism that contributes
to dsRNA-induced apoptosis. These data suggest that Ad-IL-24
is a promising anticancer therapy, although the mechanisms by
which it acts requires further study.

The tumor suppressor gene TP53 is a transcription factor
for TLR3 in several epithelial and hematopoietic cancer cell
lines.100,101 The consensus sequence for p53 lies in the pro-
moter of the TLR3 gene; consequently, p53 status in cancer has
emerged as a fundamental determinant of TLR3 pathway acti-
vation by dsRNA agonists. There is little or no expression of
TLR3 transcripts in p53 ¡/¡ cells or cells that carry p53 loss-
of-function mutations. Mutations that do not alter p53 function
were recently demonstrated to induce the expression of TLR3
and its downstream partners.102 Accordingly, the apoptotic
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response that is elicited by poly(I:C) depends on functional p53.
The relationship between p53 and TLR3 is further complicated
by findings that p53 is in turn activated by transfection with
poly(I:C)103 and that the regulation of its transcriptional activ-
ity depends strictly on other components, such as p21.104

There are several clinical considerations that must be made
with regard to the link between p53 and TLR3 when developing
a dsRNA-based cancer therapeutic. p53-inducing chemothera-
pies can upregulate TLR3 expression and activation, and conse-
quently, poly(I:C) can synergize with genotoxic agents. Many
anticancer treatments, such as 5-fluorouracil (5-FU), cisplatin,
etoposide,51 doxorubicin (DXR), UV and ionizing radiation,101

potentiate in vitro poly(I:C)-induced cancer cell death. How-
ever, approximately 50% of tumors bear loss-of-function p53
mutations or are p53 null, which could explains the failure of
dsRNA-based therapy without stratification of patients, based
on p53 status.

As discussed, TLR3 levels are tightly regulated by IFNs, and
IFN-a, -b, and -g can increase TLR3 expression and the apo-
ptotic efficacy of dsRNA through signaling pathways other
than p53. Accordingly, IFN-a additively enhances the apoptotic
effects of poly(I:C) in p53C/C and p53¡/¡ cells; thus, it has
become a more applicable drug candidate for overcoming the
need for p53 activation. However, the combination of p53-
inducing agents, IFN-a and poly(I:C) has been demonstrated
in vitro to be the most effective strategy.

Another approach to improving the efficacy of TLR3-
mediated apoptosis is the combination of a dsRNA agonist
with p53-reactivating drug RITA (reactivation of p53 and
induction of tumor cell apoptosis). This small molecule res-
cues the apoptosis-inducing functions of mutant p53 in sev-
eral cancer cell lines.105,106 RITA can pharmacologically
restore p53 activity in hotspot mutants that have lost the abil-
ity to interact with p53 binding sequences and then increase
poly(I:C)-mediated apoptosis. Genotoxic agents, such as DXR
and 5-FU, can not affect alone TLR3 expression in p53¡/¡
cells. Whereas, the combination of RITA and DXR or 5-FU
upregulates TLR3 expression, and the addition of poly(I:C)
further increases cell death.

Complicating the relationship between TLR3 and p53,
TAp63 is a crucial regulator of TLR3-induced apoptosis in
human umbilical vein endothelial cells (HUVECs).37 P63
belongs to the p53 family, and TAp63 is a transactivation
domain p63 isoform, which does not differ structurally from
p53 and acts as a tumor suppressor.107,108 Sun and colleagues
reported the upregulation of TAp63 followed TLR3 activation
and, after the translocation of TAp63 into the nucleus, its bind-
ing to p53- or p63-responsive elements to initiate extrinsic and
intrinsic apoptosis. Moreover, in immortalized HUVECs, p53
does not contribute to poly(I:C)-induced apoptosis—pretreat-
ment with the p53 inhibitor pifithrin and p53 shRNA does not
repress the cell death that is induced by poly(I:C). These results
are consistent with the relevance of p53 to TLR3-mediated apo-
ptosis, because p63 and p53 are not functionally redundant and
because the former has been implicated in many p53-indepen-
dent pathways. Thus, we speculate that the apoptosis that was
observed by Taura et al. in p53 ¡/¡ colon carcinoma cells that
were treated with IFN-a and poly(I:C)51 is attributed to the
involvement of TAp63.

To incorporate a TLR agonist, such as poly(I:C), into a ther-
apeutic antitumor strategy, the interaction between TLRs and
their agonists must be considered, so that the appropriate com-
binations of TLR ligands are used. Preclinical studies have sug-
gested that various TLRs can stimulate the same signaling
pathway to enhance the desired effect; yet, the functions of
each TLR might counteract each other when they are activated
together. CpG-ODNs are recognized by Toll-like receptor 9
(TLR9) leading to strong immunostimulatory effects correlated
with NK cell expansion at tumor site.109,110 Since CpG-ODN
can enhance the antitumor activity of DNA-damaging chemo-
therapy and radiation therapy in preclinical mouse models,111

it is largely used in anti-cancer regimens. Zhang and colleagues
showed that simultaneous cotransfection of poly(I:C) and
ODN M362, a TLR9 agonist, had less proapoptotic effect on
HCCs than transfection with poly(I:C) alone. Further studies
indicated that these effects were due in part to the phosphoro-
thioate modification to CpG-ODN, which blocked the entry of
poly(I:C) into tumor cells. By administering poly(I:C) after
CpG-ODN this restriction was lifted and the poly(I:C)-medi-
ated proapoptotic effects were increased in vitro and in vivo.112

Forming a therapeutic strategy that is based on TLR3-medi-
ated apoptosis also requires the effects on normal cells to be
taken into account. No studies have systematically compared
the apoptotic effects of TLR3 ligands on cancer cells and their
normal histotype counterparts. The little data that exist suggest
that normal cells are less sensitive to poly I:C-induced apoptosis
than transformed cells.113,114

Conclusions

TLR3 recognizes dsRNA and its synthetic ligands and primarily
drives the response against viral infections. Although TLR3 was
first identified in immune cells, several studies have shown that
it is also expressed by tumor cells. The TRIF-dependent path-
way of TLR3 signaling might contribute to counteract tumor
growth triggering apoptosis in cancer cells—an effect that could
be exploited to promote the direct killing of tumor cells and the
generation of a specific memory response against apoptotic
tumor cell-derived antigens.

Based on the ability of TLR3 to activate the immune system,
TLR3 agonists (Ampligen�, Hiltonol�, poly IC-LC) are already
being examined in clinical studies on cancer therapies as single
agents and in combination with chemo- or immunotherapeutic
drugs. Considering the capacity to mediate tumor cells apopto-
sis, TLR3 ligands have become an even more attractive thera-
peutic option for the treatment of cancer and novel therapies
might incorporate TLR3 agonists with molecules that enhance
their direct cytotoxic effects against tumors, still not taken into
account.

We have provided an overview of the molecules that are
positively linked to the activation of the TLR3 apoptotic pro-
gram, including the modulation of its expression and signal-
ing—both of which are potential targets for therapeutic
interventions to improve the direct apoptotic effects of TLR3
on cancer cells. We have also focused on the critical negative
regulators of TLR3-mediated apoptosis that could extinguished
its activation and on approaches for overcoming this event.
Attention should be paid to combinations of TLR3 agonists
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and proven antitumor molecules to implement TLR3 ligand-
based therapies in clinical trials.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding details

This work was supported by the Associazione Italiana Ricerca sul Cancro
under Grant 15190 to Balsari A.; fellowship from Fondazione Umberto
Veronesi 2017 to Bianchi F.

ORCID

Francesca Bianchi http://orcid.org/0000-0001-5197-5279
Elda Tagliabue http://orcid.org/0000-0001-9877-2903
Andrea Balsari http://orcid.org/0000-0002-3250-2668
Lucia Sfondrini http://orcid.org/0000-0003-0350-5402

References

1. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol.
2003;21:335-76. doi:10.1146/annurev.immunol.21.120601.141126

2. Tamassia N, Le M, V, Rossato M, Donini M, McCartney S, Calzetti F,
Colonna M, Bazzoni F, Cassatella MA. Activation of an immunoreg-
ulatory and antiviral gene expression program in poly(I:C)-trans-
fected human neutrophils. J Immunol. 2008;181(9):6563-73.
doi:10.4049/jimmunol.181.9.6563

3. Wesch D, Beetz S, Oberg HH, Marget M, Krengel K, Kabelitz D.
Direct costimulatory effect of TLR3 ligand poly(I:C) on human
gamma delta T lymphocytes. J Immunol. 2006;176(3):1348-54.
doi:10.4049/jimmunol.176.3.1348

4. Kang J, Demaria S, Formenti S. Current clinical trials testing the
combination of immunotherapy with radiotherapy. J Immunother
Cancer. 2016;4:51. eCollection;%2016.:51-0156. doi:10.1186/s40425-
016-0156-7

5. Le Noci V, Tortoreto M, Gulino A, Storti C, Bianchi F, Zaffaroni N,
Tripodo C, Tagliabue E, Balsari A, Sfondrini L. Poly(I:C) and CpG-
ODN combined aerosolization to treat lung metastases and counter
the immunosuppressive microenvironment. OncoImmunology.
2015;4(10):e1040214. doi:10.1080/2162402X.2015.1040214

6. Le Noci V, Sommariva M, Tortoreto M, Zaffaroni N, Campiglio M,
Tagliabue E, Balsari A, Sfondrini L. Reprogramming the lung micro-
environment by inhaled immunotherapt forsters immune destruc-
tion of tumor. OncoImmunology. 2016;5:e1234571. doi:10.1080/
2162402X.2016.1234571

7. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura
Y, Tahara H, Inoue N, Seya T. Toll-like receptor 3 signaling converts
tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl
Acad Sci U S A. 2012;109(6):2066-71. doi:10.1073/pnas.1113099109

8. Estornes Y, Micheau O, Renno T, Lebecque S. Dual role of TLR3 in
inflammation and cancer cell apoptosis. In: Siregar Y, editor. Onco-
gene and Cancer - from Bench to Clinic. Novi Sad (Croatia).
INTECH; 2013. p. 247-70.

9. Oshiumi H, Okamoto M, Fujii K, Kawanishi T, Matsumoto M, Koike
S, Seya T. The TLR3/TICAM-1 pathway is mandatory for innate
immune responses to poliovirus infection. J Immunol. 2011;187
(10):5320-7. doi:10.4049/jimmunol.1101503

10. Abe Y, Fujii K, Nagata N, Takeuchi O, Akira S, Oshiumi H, Matsu-
moto M, Seya T, Koike S. The toll-like receptor 3-mediated antiviral
response is important for protection against poliovirus infection in
poliovirus receptor transgenic mice. J Virol. 2012;86(1):185-94.
doi:10.1128/JVI.05245-11

11. Negishi H, Osawa T, Ogami K, Ouyang X, Sakaguchi S, Koshiba R,
Yanai H, Seko Y, Shitara H, Bishop K, et al. A critical link between
Toll-like receptor 3 and type II interferon signaling pathways in

antiviral innate immunity. Proc Natl Acad Sci U S A. 2008;105
(51):20446-51. doi:10.1073/pnas.0810372105

12. Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establish-
ment of a monoclonal antibody against human Toll-like receptor 3
that blocks double-stranded RNA-mediated signaling. Biochem Bio-
phys Res Commun. 2002;293(5):1364-9. doi:10.1016/S0006-291X
(02)00380-7

13. Pirher N, Pohar J, Mancek-Keber M, Bencina M, Jerala R. Activation
of cell membrane-localized Toll-like receptor 3 by siRNA. Immunol
Lett. 2017;(17):10

14. Itoh K, Watanabe A, Funami K, Seya T, Matsumoto M. The clathrin-
mediated endocytic pathway participates in dsRNA-induced IFN-
beta production. J Immunol. 2008;181(8):5522-9. doi:10.4049/
jimmunol.181.8.5522

15. Watanabe A, Tatematsu M, Saeki K, Shibata S, Shime H, Yoshimura
A, Obuse C, Seya T, Matsumoto M. Raftlin is involved in the nucleo-
capture complex to induce poly(I:C)-mediated TLR3 activation. J
Biol Chem. 2011;286(12):10702-11. doi:10.1074/jbc.M110.185793

16. Singh D, Qi R, Jordan JL, San ML, Kao CC. The human antimicro-
bial peptide LL-37, but not the mouse ortholog, mCRAMP, can stim-
ulate signaling by poly(I:C) through a FPRL1-dependent pathway. J
Biol Chem. 2013;288(12):8258-68. doi:10.1074/jbc.M112.440883

17. Chattopadhyay S, Sen GC. dsRNA-activation of TLR3 and RLR sig-
naling: gene induction-dependent and independent effects. J Inter-
feron Cytokine Res. 2014;34(6):427-36. doi:10.1089/jir.2014.0034

18. Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel JL, Sen
GC. Epidermal growth factor receptor is essential for Toll-like receptor
3 signaling. Sci Signal. 2012;5(233):ra50. doi:10.1126/scisignal.2002581

19. Dunne A, O’Neill LA. Adaptor usage and Toll-like receptor sig-
naling specificity. FEBS Lett. 2005;579(15):3330-5. doi:10.1016/j.
febslet.2005.04.024

20. Takeda K, Akira S. TLR signaling pathways. Semin Immunol.
2004;16(1):3-9. doi:10.1016/j.smim.2003.10.003

21. Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3-mediated activa-
tion of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-
containing adapter inducing IFN-beta. Proc Natl Acad Sci U S A.
2004;101(10):3533-8. doi:10.1073/pnas.0308496101

22. Sasai M, Oshiumi H, Matsumoto M, Inoue N, Fujita F, Nakanishi M,
Seya T. Cutting Edge: NF-kappaB-activating kinase-associated pro-
tein 1 participates in TLR3/Toll-IL-1 homology domain-containing
adapter molecule-1-mediated IFN regulatory factor 3 activation. J
Immunol. 2005;174(1):27-30. doi:10.4049/jimmunol.174.1.27

23. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F,
Kelliher M, Tschopp J. RIP1 is an essential mediator of Toll-like
receptor 3-induced NF-kappa B activation. Nat Immunol. 2004;5
(5):503-7. doi:10.1038/ni1061

24. Cusson-Hermance N, Khurana S, Lee TH, Fitzgerald KA, Kelliher
MA. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-
induced NF-{kappa}B activation but does not contribute to inter-
feron regulatory factor 3 activation. J Biol Chem. 2005;280:36560-6.
doi:10.1074/jbc.M506831200

25. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golen-
bock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are
essential components of the IRF3 signaling pathway. Nat Immunol.
2003;4(5):491-6. doi:10.1038/ni921

26. Matsumoto M, Seya T. TLR3: interferon induction by double-
stranded RNA including poly(I:C). Adv Drug Deliv Rev. 2008;60
(7):805-12. doi:10.1016/j.addr.2007.11.005

27. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T. TLR3 can
directly trigger apoptosis in human cancer cells. J Immunol.
2006;176(8):4894-901. doi:10.4049/jimmunol.176.8.4894

28. Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P. Toll-like
receptor 3 expressed by melanoma cells as a target for therapy? Clin
Cancer Res. 2007;13(15 Pt 1):4565-74. doi:10.1158/1078-0432.CCR-
07-0274

29. Estornes Y, Toscano F, Virard F, Jacquemin G, Pierrot A, Vanberv-
liet B, Bonnin M, Lalaoui N, Mercier-Gouy P, Pacheco Y, et al.
dsRNA induces apoptosis through an atypical death complex associ-
ating TLR3 to caspase-8. Cell Death Differ. 2012;19(9):1482-94.
doi:10.1038/cdd.2012.22

CANCER BIOLOGY & THERAPY 753

http://orcid.org/0000-0001-5197-5279
http://orcid.org/0000-0001-9877-2903
http://orcid.org/0000-0002-3250-2668
http://orcid.org/0000-0003-0350-5402
https://doi.org/10.1146/annurev.immunol.21.120601.141126
https://doi.org/10.4049/jimmunol.181.9.6563
https://doi.org/10.4049/jimmunol.176.3.1348
https://doi.org/10.1186/s40425-016-0156-7
https://doi.org/10.1186/s40425-016-0156-7
https://doi.org/10.1080/2162402X.2015.1040214
https://doi.org/10.1080/2162402X.2016.1234571
https://doi.org/10.1080/2162402X.2016.1234571
https://doi.org/10.1073/pnas.1113099109
https://doi.org/10.4049/jimmunol.1101503
https://doi.org/10.1128/JVI.05245-11
https://doi.org/10.1073/pnas.0810372105
https://doi.org/10.1016/S0006-291X(02)00380-7
https://doi.org/10.1016/S0006-291X(02)00380-7
https://doi.org/10.4049/jimmunol.181.8.5522
https://doi.org/10.4049/jimmunol.181.8.5522
https://doi.org/10.1074/jbc.M110.185793
https://doi.org/10.1074/jbc.M112.440883
https://doi.org/10.1089/jir.2014.0034
https://doi.org/10.1126/scisignal.2002581
https://doi.org/10.1016/j.febslet.2005.04.024
https://doi.org/10.1016/j.febslet.2005.04.024
https://doi.org/10.1016/j.smim.2003.10.003
https://doi.org/10.1073/pnas.0308496101
https://doi.org/10.4049/jimmunol.174.1.27
https://doi.org/10.1038/ni1061
https://doi.org/10.1074/jbc.M506831200
https://doi.org/10.1038/ni921
https://doi.org/10.1016/j.addr.2007.11.005
https://doi.org/10.4049/jimmunol.176.8.4894
https://doi.org/10.1158/1078-0432.CCR-07-0274
https://doi.org/10.1158/1078-0432.CCR-07-0274
https://doi.org/10.1038/cdd.2012.22


30. Friboulet L, Pioche-Durieu C, Rodriguez S, Valent A, Souquere S,
Ripoche H, Khabir A, Tsao SW, Bosq J, Lo KW, et al. Recurrent
overexpression of c-IAP2 in EBV-associated nasopharyngeal carci-
nomas: critical role in resistance to Toll-like receptor 3-mediated
apoptosis. Neoplasia. 2008;10(11):1183-94. doi:10.1593/neo.08590

31. Weber A, Kirejczyk Z, Besch R, Potthoff S, Leverkus M, Hacker G.
Proapoptotic signalling through Toll-like receptor-3 involves TRIF-
dependent activation of caspase-8 and is under the control of inhibi-
tor of apoptosis proteins in melanoma cells. Cell Death Differ.
2010;17(6):942-51. doi:10.1038/cdd.2009.190

32. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C,
Hupe M, Cain K, MacFarlane M, Hacker G, Leverkus M. cIAPs block
Ripoptosome formation, a RIP1/caspase-8 containing intracellular
cell death complex differentially regulated by cFLIP isoforms. Mol
Cell. 2011;43(3):449-63. doi:10.1016/j.molcel.2011.06.011

33. Kaiser WJ, Offermann MK. Apoptosis induced by the toll-like recep-
tor adaptor TRIF is dependent on its receptor interacting protein
homotypic interaction motif. J Immunol. 2005;174(8):4942-52.
doi:10.4049/jimmunol.174.8.4942

34. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, ey-Bauer
LP, Hakem R, Caspary T, Mocarski ES. RIP3 mediates the embryonic
lethality of caspase-8-deficient mice. Nature. 2011;471(7338):368-72.
doi:10.1038/nature09857

35. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop
C, Hakem R, Salvesen GS, Green DR. Catalytic activity of the cas-
pase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature.
2011;471(7338):363-7. doi:10.1038/nature09852

36. Paone A, Starace D, Galli R, Padula F, De CP, Filippini A, Ziparo E,
Riccioli A. Toll-like receptor 3 triggers apoptosis of human prostate
cancer cells through a PKC-alpha-dependent mechanism. Carcino-
genesis. 2008;29(7):1334-42. doi:10.1093/carcin/bgn149

37. Sun R, Zhang Y, Lv Q, Liu B, Jin M, Zhang W, He Q, Deng M, Liu X,
Li G, et al. Toll-like receptor 3 (TLR3) induces apoptosis via death
receptors and mitochondria by up-regulating the transactivating p63
isoform alpha (TAP63alpha). J Biol Chem. 2011;286(18):15918-28.
doi:10.1074/jbc.M110.178798

38. Avril T, de TM, Leberre C, Quillien V. Not all polyriboinosinic-poly-
ribocytidylic acids (Poly I:C) are equivalent for inducing maturation
of dendritic cells: implication for alpha-type-1 polarized DCs. J
Immunother. 2009;32(4):353-62. doi:10.1097/CJI.0b013e31819d29bf

39. McNally B, Willette M, Ye F, Partida-Sanchez S, Flano E. Intranasal
administration of dsRNA analog poly(I:C) induces interferon-alpha
receptor-dependent accumulation of antigen experienced T cells in
the airways. PLoS One. 2012;7(12):e51351. doi:10.1371/journal.
pone.0051351

40. Yoneda K, Sugimoto K, Shiraki K, Tanaka J, Beppu T, Fuke H,
Yamamoto N, Masuya M, Horie R, Uchida K, et al. Dual topology of
functional Toll-like receptor 3 expression in human hepatocellular
carcinoma: differential signaling mechanisms of TLR3-induced NF-
kappaB activation and apoptosis. Int J Oncol. 2008;33(5):929-36.

41. Chew V, Tow C, Huang C, Bard-Chapeau E, Copeland NG, Jenkins
NA, Weber A, Lim KH, Toh HC, Heikenwalder M, et al. Toll-like
receptor 3 expressing tumor parenchyma and infiltrating natural
killer cells in hepatocellular carcinoma patients. J Natl Cancer Inst.
2012;104(23):1796-807. doi:10.1093/jnci/djs436

42. Chew V, Abastado JP. Immunomodulation of the tumor microenvi-
ronment by Toll-like receptor-3 (TLR3) ligands. Oncoimmunology.
2013;2(4):e23493. doi:10.4161/onci.23493

43. Fernandez-Garcia B, Eiro N, Gonzalez-Reyes S, Gonzalez L, Aguirre
A, Gonzalez LO, Del Casar JM, Garcia-Muniz JL, Vizoso FJ. Clinical
significance of toll-like receptor 3, 4, and 9 in gastric cancer. J
Immunother. 2014;37(2):77-83. doi:10.1097/CJI.0000000000000016

44. Gonzalez-Reyes S, Marin L, Gonzalez L, Gonzalez LO, Del Casar
JM, Lamelas ML, Gonzalez-Quintana JM, Vizoso FJ. Study of
TLR3, TLR4 and TLR9 in breast carcinomas and their associa-
tion with metastasis. BMC Cancer. 2010;10:665. doi:10.1186/
1471-2407-10-665

45. Salaun B, Zitvogel L, sselin-Paturel C, Morel Y, Chemin K, Dubois C,
Massacrier C, Conforti R, Chenard MP, Sabourin JC, et al. TLR3 as a
biomarker for the therapeutic efficacy of double-stranded RNA in

breast cancer. Cancer Res. 2011;71(5):1607-14. doi:10.1158/0008-
5472.CAN-10-3490

46. Hsu WM, Huang CC, Wu PY, Lee H, Huang MC, Tai MH, Chuang
JH. Toll-like receptor 3 expression inhibits cell invasion and migra-
tion and predicts a favorable prognosis in neuroblastoma. Cancer
Lett. 2013;336(2):338-46. doi:10.1016/j.canlet.2013.03.024

47. Goto Y, Arigami T, Kitago M, Nguyen SL, Narita N, Ferrone S, Mor-
ton DL, Irie RF, Hoon DS. Activation of Toll-like receptors 2, 3, and
4 on human melanoma cells induces inflammatory factors. Mol Can-
cer Ther. 2008;7(11):3642-53. doi:10.1158/1535-7163.MCT-08-0582

48. Chuang JH, Chuang HC, Huang CC, Wu CL, Du YY, Kung ML, Chen
CH, Chen SC, Tai MH. Differential toll-like receptor 3 (TLR3) expres-
sion and apoptotic response to TLR3 agonist in human neuroblastoma
cells. J Biomed Sci. 2011;18:65. doi:10.1186/1423-0127-18-65

49. Tissari J, Siren J, Meri S, Julkunen I, Matikainen S. IFN-alpha enhan-
ces TLR3-mediated antiviral cytokine expression in human endothe-
lial and epithelial cells by up-regulating TLR3 expression. J
Immunol. 2005;174(7):4289-94. doi:10.4049/jimmunol.174.7.4289

50. Tanabe M, Kurita-Taniguchi M, Takeuchi K, Takeda M, Ayata M,
Ogura H, Matsumoto M, Seya T. Mechanism of up-regulation of
human Toll-like receptor 3 secondary to infection of measles virus-
attenuated strains. Biochem Biophys Res Commun. 2003;311(1):39-
48. doi:10.1016/j.bbrc.2003.09.159

51. Taura M, Fukuda R, Suico MA, Eguma A, Koga T, Shuto T, Sato T,
Morino-Koga S, Kai H. TLR3 induction by anticancer drugs potenti-
ates poly I:C-induced tumor cell apoptosis. Cancer Sci. 2010;101
(7):1610-7. doi:10.1111/j.1349-7006.2010.01567.x

52. Papageorgiou A, Dinney CP, Mcconkey DJ. Interferon-alpha induces
TRAIL expression and cell death via an IRF-1-dependent mechanism
in human bladder cancer cells. Cancer Biol Ther. 2007;6(6):872-9.
doi:10.4161/cbt.6.6.4088

53. Faustino-Rocha AI, Ferreira R, Gama A, Oliveira PA, Ginja M. Anti-
histamines as promising drugs in cancer therapy. Life Sci.
2017;172:27-41. Epub;%2016 Dec 14.:27-41. doi:10.1016/j.
lfs.2016.12.008

54. Hou YF, Zhou YC, Zheng XX, Wang HY, Fu YL, Fang ZM, He SH.
Modulation of expression and function of Toll-like receptor 3 in
A549 and H292 cells by histamine. Mol Immunol. 2006;43(12):1982-
92. doi:10.1016/j.molimm.2005.11.013

55. Jang S, Park JS, Won YH, Yun SJ, Kim SJ. The Expression of Toll-
Like Receptors (TLRs) in Cultured Human Skin Fibroblast is Modu-
lated by Histamine. Chonnam Med J. 2012;48(1):7-14. doi:10.4068/
cmj.2012.48.1.7

56. Merves J, Chandramouleeswaran PM, Benitez AJ, Muir AB, Lee AJ,
Lim DM, Dods K, Mehta I, Ruchelli ED, Nakagawa H, et al. Altered
esophageal histamine receptor expression in Eosinophilic Esophagi-
tis (EoE): implications on disease pathogenesis. PLoS One. 2015;10
(2):e0114831. doi:10.1371/journal.pone.0114831

57. Funayama H, Huang L, Asada Y, Endo Y, Takada H. Enhanced
induction of a histamine-forming enzyme, histidine decarboxylase,
in mice primed with NOD1 or NOD2 ligand in response to various
Toll-like receptor agonists. Innate Immun. 2010;16(4):265-72.
doi:10.1177/1753425909341070

58. Kimura G, Ueda K, Eto S, Watanabe Y, Masuko T, Kusama T, Barnes
PJ, Ito K, Kizawa Y. Toll-like receptor 3 stimulation causes cortico-
steroid-refractory airway neutrophilia and hyperresponsiveness in
mice. Chest. 2013;144(1):99-105. doi:10.1378/chest.12-2610

59. Larousserie F, Bardel E, Pflanz S, Arnulf B, Lome-Maldonado C,
Hermine O, Bregeaud L, Perennec M, Brousse N, Kastelein R, et al.
Analysis of interleukin-27 (EBI3/p28) expression in Epstein-Barr
virus- and human T-cell leukemia virus type 1-associated lympho-
mas: heterogeneous expression of EBI3 subunit by tumoral cells. Am
J Pathol. 2005;166(4):1217-28. doi:10.1016/S0002-9440(10)62340-1

60. Lucas S, Ghilardi N, Li J, de Sauvage FJ. IL-27 regulates IL-12 respon-
siveness of naive CD4C T cells through Stat1-dependent and -inde-
pendent mechanisms. Proc Natl Acad Sci U S A. 2003;100
(25):15047-52. doi:10.1073/pnas.2536517100

61. Seregni E, Botti C, Massaron S, Lombardo C, Capobianco A, Bogni
A, Bombardieri E. Structure, function and gene expression of epithe-
lial mucins. Tumori. 1997;83(3):625-32.

754 F. BIANCHI ET AL.

https://doi.org/10.1593/neo.08590
https://doi.org/10.1038/cdd.2009.190
https://doi.org/10.1016/j.molcel.2011.06.011
https://doi.org/10.4049/jimmunol.174.8.4942
https://doi.org/10.1038/nature09857
https://doi.org/10.1038/nature09852
https://doi.org/10.1093/carcin/bgn149
https://doi.org/10.1074/jbc.M110.178798
https://doi.org/10.1097/CJI.0b013e31819d29bf
https://doi.org/10.1371/journal.pone.0051351
https://doi.org/10.1371/journal.pone.0051351
https://doi.org/10.1093/jnci/djs436
https://doi.org/10.4161/onci.23493
https://doi.org/10.1097/CJI.0000000000000016
https://doi.org/10.1186/1471-2407-10-665
https://doi.org/10.1186/1471-2407-10-665
https://doi.org/10.1158/0008-5472.CAN-10-3490
https://doi.org/10.1158/0008-5472.CAN-10-3490
https://doi.org/10.1016/j.canlet.2013.03.024
https://doi.org/10.1158/1535-7163.MCT-08-0582
https://doi.org/10.1186/1423-0127-18-65
https://doi.org/10.4049/jimmunol.174.7.4289
https://doi.org/10.1016/j.bbrc.2003.09.159
https://doi.org/10.1111/j.1349-7006.2010.01567.x
https://doi.org/10.4161/cbt.6.6.4088
https://doi.org/10.1016/j.lfs.2016.12.008
https://doi.org/10.1016/j.lfs.2016.12.008
https://doi.org/10.1016/j.molimm.2005.11.013
https://doi.org/10.4068/cmj.2012.48.1.7
https://doi.org/10.4068/cmj.2012.48.1.7
https://doi.org/10.1371/journal.pone.0114831
https://doi.org/10.1177/1753425909341070
https://doi.org/10.1378/chest.12-2610
https://doi.org/10.1016/S0002-9440(10)62340-1
https://doi.org/10.1073/pnas.2536517100


62. Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol
Neoplasia. 2001;6(3):339-53. doi:10.1023/A:1011379725811

63. Apostolopoulos V, Stojanovska L, Gargosky SE. MUC1 (CD227): a
multi-tasked molecule. Cell Mol Life Sci. 2015;72(23):4475-500.
doi:10.1007/s00018-015-2014-z

64. Sousa AM, Grandgenett PM, David L, Almeida R, Hollingsworth
MA, Santos-Silva F. Reflections on MUC1 glycoprotein: the hidden
potential of isoforms in carcinogenesis. APMIS. 2016;124(11):913-
24. doi:10.1111/apm.12587

65. Hilkens J, Wesseling J, Vos HL, Storm J, Boer B, van der Valk SW,
Maas MC. Involvement of the cell surface-bound mucin, episialin/
MUC1, in progression of human carcinomas. Biochem Soc Trans.
1995;23(4):822-6. doi:10.1042/bst0230822

66. Sipaul F, Birchall M, Corfield A. What role do mucins have in the
development of laryngeal squamous cell carcinoma? A systematic
review. Eur Arch Otorhinolaryngol. 2011;268(8):1109-17. doi:10.1007/
s00405-011-1617-8

67. Paszkiewicz-Gadek A, Porowska H, Anchim T, Wolczynski S, Gind-
zienski A. Biosynthesis of MUC1 mucin in human endometrial ade-
nocarcinoma is modulated by estradiol and tamoxifen. Gynecol
Endocrinol. 2003;17(1):37-44. doi:10.1080/gye.17.1.37.44

68. Weissenbacher T, Kuhn C, Mayr D, Pavlik R, Friese K, Scholz C,
Jeschke U, Ditsch N, Dian D. Expression of mucin-1, galectin-1 and
galectin-3 in human leiomyosarcoma in comparison to leiomyoma
and myometrium. Anticancer Res. 2011;31(2):451-7.

69. Brossart P, Schneider A, Dill P, Schammann T, Grunebach F, Wirths
S, Kanz L, Buhring HJ, Brugger W. The epithelial tumor antigen
MUC1 is expressed in hematological malignancies and is recognized
by MUC1-specific cytotoxic T-lymphocytes. Cancer Res. 2001;61
(18):6846-50.

70. Teruya-Feldstein J, Donnelly GB, Goy A, Hegde A, Nanjangud G,
Qin J, Thaler H, Gilles F, Dyomin VG, Lloyd KO, et al. MUC-1
mucin protein expression in B-cell lymphomas. Appl Immunohisto-
chem Mol Morphol. 2003;11(1):28-32. doi:10.1097/00129039-
200303000-00005

71. Kato K, Lillehoj EP, Kim KC. MUC1 regulates epithelial inflammation
and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-
domain-containing adapter-inducing IFN-beta (TRIF) recruitment to
Toll-like receptor 3. Am J Respir Cell Mol Biol. 2014;51(3):446-54.
doi:10.1165/rcmb.2014-0018OC

72. Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, Lu Y, Zhao F,
Wang L, Zhou Q. BCL-xL is a target gene regulated by hypoxia-
inducible factor-1{alpha}. J Biol Chem. 2009;284(15):10004-12.
doi:10.1074/jbc.M805997200

73. Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L. Cross-talk
between epidermal growth factor receptor and hypoxia-inducible
factor-1alpha signal pathways increases resistance to apoptosis by
up-regulating survivin gene expression. J Biol Chem. 2006;281
(36):25903-14. doi:10.1074/jbc.M603414200

74. Piret JP, Minet E, Cosse JP, Ninane N, Debacq C, Raes M, Michiels
C. Hypoxia-inducible factor-1-dependent overexpression of myeloid
cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-
induced apoptosis. J Biol Chem. 2005;280(10):9336-44. doi:10.1074/
jbc.M411858200

75. Blouin CC, Page EL, Soucy GM, Richard DE. Hypoxic gene activa-
tion by lipopolysaccharide in macrophages: implication of hypoxia-
inducible factor 1alpha. Blood. 2004;103(3):1124-30. doi:10.1182/
blood-2003-07-2427

76. Nicholas SA, Sumbayev VV. The involvement of hypoxia-inducible
factor 1 alpha in Toll-like receptor 7/8-mediated inflammatory
response. Cell Res. 2009;19(8):973-83. doi:10.1038/cr.2009.44

77. Ramanathan M, Luo W, Csoka B, Hasko G, Lukashev D, Sitkovsky
MV, Leibovich SJ. Differential regulation of HIF-1alpha isoforms in
murine macrophages by TLR4 and adenosine A(2A) receptor ago-
nists. J Leukoc Biol. 2009;86(3):681-9. doi:10.1189/jlb.0109021

78. Paone A, Galli R, Gabellini C, Lukashev D, Starace D, Gorlach A, De
CP, Ziparo E, Del BD, Sitkovsky MV, et al. Toll-like receptor 3 regu-
lates angiogenesis and apoptosis in prostate cancer cell lines through
hypoxia-inducible factor 1 alpha. Neoplasia. 2010;12(7):539-49.
doi:10.1593/neo.92106

79. Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhak-
rishnan P, Liu X, Zhang B, Mehla K, Brown RB, Caffrey T, et al.
MUC1 mucin stabilizes and activates hypoxia-inducible factor 1
alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad
Sci U S A. 2012;109(34):13787-92. doi:10.1073/pnas.1203339109

80. Kuefer R, Day KC, Kleer CG, Sabel MS, Hofer MD, Varambally S,
Zorn CS, Chinnaiyan AM, Rubin MA, Day ML. ADAM15 disinte-
grin is associated with aggressive prostate and breast cancer disease.
Neoplasia. 2006;8(4):319-29. doi:10.1593/neo.05682

81. Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, Rocken C. The
disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15
are upregulated in gastric cancer. Int J Oncol. 2005;26(1):17-24.

82. Ortiz RM, Karkkainen I, Huovila AP. Aberrant alternative exon use
and increased copy number of human metalloprotease-disintegrin
ADAM15 gene in breast cancer cells. Genes Chromosomes Cancer.
2004;41(4):366-78. doi:10.1002/gcc.20102

83. Lorenzatti Hiles G, Bucheit A, Rubin JR, Hayward A, Cates AL, Day
KC, El-Sawy L, Kunju LP, Daignault S, Lee CT, et al. ADAM15 is
functionally associated with the metastatic progression of human
bladder cancer. PLoS One. 2016;11(3):e0150138. doi:10.1371/
journal.pone.0150138

84. Dong DD, Zhou H, Li G. ADAM15 targets MMP9 activity to pro-
mote lung cancer cell invasion. Oncol Rep. 2015;34(5):2451-60.
doi:10.3892/or.2015.4203

85. Ahmed S, Maratha A, Butt AQ, Shevlin E, Miggin SM. TRIF-medi-
ated TLR3 and TLR4 signaling is negatively regulated by ADAM15. J
Immunol. 2013;190(5):2217-28. doi:10.4049/jimmunol.1201630

86. Saleem M, Qadir MI, Perveen N, Ahmad B, Saleem U, Irshad T,
Ahmad B. Inhibitors of apoptotic proteins: new targets for anticancer
therapy. Chem Biol Drug Des. 2013;82(3):243-51. doi:10.1111/
cbdd.12176

87. Bertrand MJ, Lippens S, Staes A, Gilbert B, Roelandt R, De Medts J,
Gevaert K, Declercq W, Vandenabeele P. cIAP1/2 are direct E3
ligases conjugating diverse types of ubiquitin chains to receptor
interacting proteins kinases 1 to 4 (RIP1-4). PLoS One. 2011;6(9):
e22356. doi:10.1371/journal.pone.0022356

88. Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK, Kastirr M,
Rieser E, Rickard JA, Bankovacki A, Peschel C, et al. The ubiquitin
ligase XIAP recruits LUBAC for NOD2 signaling in inflammation
and innate immunity. Mol Cell. 2012;46(6):746-58. doi:10.1016/j.
molcel.2012.04.014

89. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K,
Deshayes K, Fairbrother WJ, Vucic D. c-IAP1 and c-IAP2 are critical
mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-
kappaB activation. J Biol Chem. 2008;283(36):24295-9. doi:10.1074/
jbc.C800128200

90. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Dur-
kin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA. cIAP1 and cIAP2
facilitate cancer cell survival by functioning as E3 ligases that promote
RIP1 ubiquitination. Mol Cell. 2008;30(6):689-700. doi:10.1016/j.
molcel.2008.05.014

91. Conte D, Holcik M, Lefebvre CA, Lacasse E, Picketts DJ, Wright KE,
Korneluk RG. Inhibitor of apoptosis protein cIAP2 is essential for
lipopolysaccharide-induced macrophage survival. Mol Cell Biol.
2006;26(2):699-708. doi:10.1128/MCB.26.2.699-708.2006

92. Hassan M, Watari H, buAlmaaty A, Ohba Y, Sakuragi N. Apoptosis
and molecular targeting therapy in cancer. Biomed Res Int.
2014;2014:150845. Epub;%2014 Jun 12.:150845. doi:10.1155/2014/
150845

93. Bai L, Smith DC, Wang S. Small-molecule SMAC mimetics as new
cancer therapeutics. Pharmacol Ther. 2014;144(1):82-95. doi:10.1016/j.
pharmthera.2014.05.007

94. Verillaud B, Gressette M, Morel Y, Paturel C, Herman P, Lo KW,
Tsao SW, Wassef M, Jimenez-Pailhes AS, Busson P. Toll-like recep-
tor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas:
consistent expression and cytotoxic effects of its synthetic ligand
poly(A:U) combined to a Smac-mimetic. Infect Agent Cancer.
2012;7(1):36-7. doi:10.1186/1750-9378-7-36

95. Bernardo AR, Cosgaya JM, Aranda A, Jimenez-Lara AM. Synergy
between RA and TLR3 promotes type I IFN-dependent apoptosis

CANCER BIOLOGY & THERAPY 755

https://doi.org/10.1023/A:1011379725811
https://doi.org/10.1007/s00018-015-2014-z
https://doi.org/10.1111/apm.12587
https://doi.org/10.1042/bst0230822
https://doi.org/10.1007/s00405-011-1617-8
https://doi.org/10.1007/s00405-011-1617-8
https://doi.org/10.1080/gye.17.1.37.44
https://doi.org/10.1097/00129039-200303000-00005
https://doi.org/10.1097/00129039-200303000-00005
https://doi.org/10.1165/rcmb.2014-0018OC
https://doi.org/10.1074/jbc.M805997200
https://doi.org/10.1074/jbc.M603414200
https://doi.org/10.1074/jbc.M411858200
https://doi.org/10.1074/jbc.M411858200
https://doi.org/10.1182/blood-2003-07-2427
https://doi.org/10.1182/blood-2003-07-2427
https://doi.org/10.1038/cr.2009.44
https://doi.org/10.1189/jlb.0109021
https://doi.org/10.1593/neo.92106
https://doi.org/10.1073/pnas.1203339109
https://doi.org/10.1593/neo.05682
https://doi.org/10.1002/gcc.20102
https://doi.org/10.1371/journal.pone.0150138
https://doi.org/10.1371/journal.pone.0150138
https://doi.org/10.3892/or.2015.4203
https://doi.org/10.4049/jimmunol.1201630
https://doi.org/10.1111/cbdd.12176
https://doi.org/10.1111/cbdd.12176
https://doi.org/10.1371/journal.pone.0022356
https://doi.org/10.1016/j.molcel.2012.04.014
https://doi.org/10.1016/j.molcel.2012.04.014
https://doi.org/10.1074/jbc.C800128200
https://doi.org/10.1074/jbc.C800128200
https://doi.org/10.1016/j.molcel.2008.05.014
https://doi.org/10.1016/j.molcel.2008.05.014
https://doi.org/10.1128/MCB.26.2.699-708.2006
https://doi.org/10.1155/2014/150845
https://doi.org/10.1155/2014/150845
https://doi.org/10.1016/j.pharmthera.2014.05.007
https://doi.org/10.1016/j.pharmthera.2014.05.007
https://doi.org/10.1186/1750-9378-7-36


through upregulation of TRAIL pathway in breast cancer cells. Cell
Death Dis. 2013;4:e479. doi:10.1038/cddis.2013.5

96. Bernardo AR, Cosgaya JM, Aranda A, Jimenez-Lara AM. Pro-apo-
ptotic signaling induced by Retinoic acid and dsRNA is under the
control of Interferon Regulatory Factor-3 in breast cancer cells. Apo-
ptosis. 2017;22(7):920-32. doi:10.1007/s10495-017-1377-z

97. Galli R, Paone A, Fabbri M, Zanesi N, Calore F, Cascione L, Acunzo
M, Stoppacciaro A, Tubaro A, Lovat F, et al. Toll-like receptor 3
(TLR3) activation induces microRNA-dependent reexpression of
functional RARbeta and tumor regression. Proc Natl Acad Sci U S A.
2013;110(24):9812-7. doi:10.1073/pnas.1304610110

98. Weiss R, Sachet M, Zinngrebe J, Aschacher T, Krainer M, Hegedus B,
Walczak H, Bergmann M. IL-24 sensitizes tumor cells to TLR3-medi-
ated apoptosis. Cell Death Differ. 2013;20(6):823-33. doi:10.1038/
cdd.2013.15

99. Hu CW, Yin GF, Wang XR, Ren BW, Zhang WG, Bai QL, Lv YM, Li
WL, Zhao WQ. IL-24 Induces Apoptosis via Upregulation of RNA-
Activated Protein Kinase and Enhances Temozolomide-Induced Apo-
ptosis in Glioma Cells. Oncol Res. 2014;22(3):159-65. doi:10.3727/
096504015X14298122915628

100. Taura M, Eguma A, Suico MA, Shuto T, Koga T, Komatsu K,
Komune T, Sato T, Saya H, Li JD, et al. p53 regulates Toll-like recep-
tor 3 expression and function in human epithelial cell lines. Mol Cell
Biol. 2008;28(21):6557-67. doi:10.1128/MCB.01202-08

101. Shatz M, Menendez D, Resnick MA. The human TLR innate immune
gene family is differentially influenced by DNA stress and p53 status
in cancer cells. Cancer Res. 2012;72(16):3948-57. doi:10.1158/0008-
5472.CAN-11-4134

102. Menendez D, Lowe JM, Snipe J, Resnick MA. Ligand dependent res-
toration of human TLR3 signaling and death in p53 mutant cells.
Oncotarget. 2016;7(38):61630-61642. doi:10.18632/oncotarget.11210

103. Harashima N, Minami T, Uemura H, Harada M. Transfection of
poly(I:C) can induce reactive oxygen species-triggered apoptosis and
interferon-beta-mediated growth arrest in human renal cell carci-
noma cells via innate adjuvant receptors and the 2–5A system. Mol
Cancer. 2014;13:217. doi:10.1186/1476-4598-13-217

104. Pang LY, Scott M, Hayward RL, Mohammed H, Whitelaw CB, Smith
GC, Hupp TR. p21(WAF1) is component of a positive feedback loop
that maintains the p53 transcriptional program. Cell Cycle. 2011;10
(6):932-50. doi:10.4161/cc.10.6.15012

105. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci
M, Pramanik A, Selivanova G. Small molecule RITA binds to p53,
blocks p53-HDM-2 interaction and activates p53 function in tumors.
Nat Med. 2004;10(12):1321-8. doi:10.1038/nm1146

106. Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G. Res-
cue of the apoptotic-inducing function of mutant p53 by small mole-
cule RITA. Cell Cycle. 2010;9(9):1847-55. doi:10.4161/cc.9.9.11545

107. Yang A, Zhu Z, Kapranov P, McKeon F, Church GM, Gingeras TR,
Struhl K. Relationships between p63 binding, DNA sequence, tran-
scription activity, and biological function in human cells. Mol Cell.
2006;24(4):593-602. doi:10.1016/j.molcel.2006.10.018

108. Su X, Chakravarti D, Flores ER. p63 steps into the limelight: crucial
roles in the suppression of tumorigenesis and metastasis. Nat Rev
Cancer. 2013;13(2):136-43. doi:10.1038/nrc3446

109. Sfondrini L, Sommariva M, Tortoreto M, Meini A, Piconese S, Cal-
varuso M, Van RN, Bonecchi, R, Zaffaroni N, Colombo MP, et al.
Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases.
Int J Cancer. 2013;133:383-93. doi:10.1002/ijc.28028

110. De Cesare A, Sfondrini L, Pennati M, De Marco C, Motta V, Taglia-
bue E, Deraco M, Balsari A, Zaffaroni N. CpG-oligodeoxynucleotides
exert remarkable antitumor activity against diffuse malignant perito-
neal mesothelioma orthotopic xenografts. J Transl Med. 2016;14:25.
doi:10.1186/s12967-016-0781-4

111. Sommariva M, De Cecco L, De Cesare M, Sfondrini L, M�enard S,
Melani C, Delia D, Zaffaroni N, Pratesi G, Uva V, et al. TLR9-ago-
nists oppositely modulate DNA-repair genes in tumor vesus immune
cells and ehance chemotherapy effects. Cancer Res. 2011;71:6382-90.
doi:10.1158/0008-5472.CAN-11-1285

112. Zhang Y, Lin A, Sui Q, Zhang C, Tian Z, Zhang J. Phosphorothioate
modification of the TLR9 ligand CpG ODN inhibits poly(I:C)-
induced apoptosis of hepatocellular carcinoma by entry blockade.
Cancer Lett. 2014;355(1):76-84. doi:10.1016/j.canlet.2014.09.013

113. Gambara G, Desideri M, Stoppacciaro A, Padula F, De CP, Starace D,
Tubaro A, Del BD, Filippini A, Ziparo E, et al. TLR3 engagement
induces IRF-3-dependent apoptosis in androgen-sensitive prostate
cancer cells and inhibits tumour growth in vivo. J Cell Mol Med.
2015;19(2):327-39. doi:10.1111/jcmm.12379

114. Wang S, Liu D, Jin R, Zhu Y, Xu A. Differential responses of normal
human melanocytes to intra- and extracellular dsRNA. DNA Cell
Biol. 2015;34(6):391-9. doi:10.1089/dna.2014.2711

756 F. BIANCHI ET AL.

https://doi.org/10.1038/cddis.2013.5
https://doi.org/10.1007/s10495-017-1377-z
https://doi.org/10.1073/pnas.1304610110
https://doi.org/10.1038/cdd.2013.15
https://doi.org/10.1038/cdd.2013.15
https://doi.org/10.3727/096504015X14298122915628
https://doi.org/10.3727/096504015X14298122915628
https://doi.org/10.1128/MCB.01202-08
https://doi.org/10.1158/0008-5472.CAN-11-4134
https://doi.org/10.1158/0008-5472.CAN-11-4134
https://doi.org/10.18632/oncotarget.11210
https://doi.org/10.1186/1476-4598-13-217
https://doi.org/10.4161/cc.10.6.15012
https://doi.org/10.1038/nm1146
https://doi.org/10.4161/cc.9.9.11545
https://doi.org/10.1016/j.molcel.2006.10.018
https://doi.org/10.1038/nrc3446
https://doi.org/10.1002/ijc.28028
https://doi.org/10.1186/s12967-016-0781-4
https://doi.org/10.1158/0008-5472.CAN-11-1285
https://doi.org/10.1016/j.canlet.2014.09.013
https://doi.org/10.1111/jcmm.12379
https://doi.org/10.1089/dna.2014.2711

	Abstract
	Introduction
	TLR3 signaling pathways
	TLR3-mediated apoptosis in cancer cells
	Prognostic significance of TLR3 expression in cancer
	Upmodulation of TLR3 to increase apoptosis
	Overcoming TLR3-mediated apoptosis
	Strategies to improve poly(I:C)-induced apoptosis
	Conclusions
	Disclosure of potential conflicts of interest
	Funding details
	References

