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Abstract

Mixing dynamical maps describing open quantum systems can lead from Markovian to non-
Markovian processes. Being surprising and counter-intuitive, this result has been used as argument
against characterization of non-Markovianity in terms of information exchange. Here, we
demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully
consistent with existing theories of memory effects. In particular, we show how mixing-induced non-
Markovianity can be interpreted in terms of the distinguishability of quantum states, system-
environment correlations and the information flow between system and environment.

1. Introduction

In quantum as well as in classical mechanics the isolation of the system of interest is never perfectly achievable.
The effect of external noise or of the interaction with uncontrolled environmental degrees of freedom makes the
dynamics stochastic. In quantum mechanics the environmental influence appears as an additional layer of
stochasticity, on top of the inherently probabilistic description of any quantum experiment, and cannot be
generally described by means of classical stochastic processes. Quantum processes, which can be taken as the
description of the evolution of an open quantum system dynamics [1], are described by time dependent
collections of completely positive trace preserving (CPT) maps, called quantum dynamical maps. The
characterization of quantum processes in view of the relationship of these maps at different times, in analogy to
the correlations of a classical process at different times, which allow to introduce the very definition of
Markovian process, is an important and difficult issue due to the special role of measurement in quantum
mechanics.

In recent times a lot of work has been devoted to the study of quantum non-Markovianity (see e.g. [2-5]). In
particular, a notion of memory for quantum processes has been introduced which can be physically interpreted
in terms of the flow of information between the open system and its environment [6, 7]. The information flow is
defined by means of the behavior in time of the distinguishability of two open system states and non-
Markovianity is characterized by a non-monotonic time evolution of the distinguishability. Experimental
control and measurements of non-Markovian quantum dynamics and of the closely connected impact of initial
system-environment correlations have been reported for photonic systems [8—14], nuclear magnetic resonance
[15], and trapped ion systems [16, 17].

However, mixing of quantum dynamical maps leads to new time evolutions, whose Markovianity properties
can be related in a quite counter-intuitive way to the Markovianity of the original maps [18-23]. In particular
one can consider random mixtures of unitary evolutions showing up memory effects, so that objections have
been raised about the validity of the interpretation of non-Markovianity in terms of information flow [24, 25].
On the contrary, here we demonstrate that the procedure of mixing dynamical maps can be understood in a
natural way which is fully consistent with the existing theoretical characterization of quantum non-
Markovianity. In particular, employing a microscopic representation of the open system dynamics we show how
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mixing-induced quantum non-Markovianity can be interpreted and analyzed in terms of the trace distance
based measure for distinguishability of quantum states, determined by the correlations and the information flow
between the system and its environment.

The paper is organized as follows. In section 2 we define the mixing of quantum dynamical maps and the
concept of quantum non-Markovianity which is used in this paper. Section 3 is devoted to the interpretation and
analysis of mixing-induced non-Markovianity in terms of the information flow. An example illustrating the
various features of mixing-induced memory effects is discussed in section 4. Finally, we draw our conclusions in
section 5. Appendix A contains the relevant mathematical proofs, and appendices B and C some generalizations
of the presentation of the main text.

2. Mixtures of quantum processes and quantum non-Markovianity

We consider two quantum processes given by one-parameter families of quantum dynamical maps ®{") and ®{*)
with ¢ > 0. A natural way to construct a new map is to consider the convex linear combination

& = ‘h@gl) + ‘J2(I)52)> (6]
where g, > 0andq, + g, = 1.Itiseasy to show that @, is, in fact, a CPT map provided that dY and &2 are

CPT maps. The map ®, will be called mixture of the maps ®{" and ®{?). This construction can be extended to an
arbitrary number of dynamical maps ® in an obvious way (see appendix B). To keep the notation simple we
will restrict here to the case of mixtures of two dynamical maps. A simple but well-known example of this
construction is obtained by taking all maps ®{"' to be unitary transformations, in this case the resulting mixture
®,is known as random unitary map [26, 27]. We note that such random unitary maps naturally arise in many
physical situations, e.g. in experiments in which one has some uncontrollable external noise in the parameters of
the system Hamiltonian. Considering then the average of the dynamics taken over the realizations of the external
noise one is lead to a convex mixture of unitary transformations, i.e. a random unitary map.

To explain the concept of quantum non-Markovianity to be used in the following [6, 7] we consider two
parties, Alice and Bob. Alice prepares a quantum system S in one of two states pls, pé with probability of 1/2
each, and then sends the system to Bob (the generalization to the biased case of unequal probabilities is discussed
in appendix C). Itis Bob’s task to figure out by a single measurement whether the system has been prepared in
state pls or pé. It can be shown that by an optimal strategy Bob can find the correct state with a maximal success
probability given by

1
Buax = —(1+ D(py, p3))» )
where
1
D(py, p3) = Ellpfg -l 3)

denotes the trace distance of the quantum states. The trace distance thus represents a measure for the
distinguishability of quantum states. In these relations it is assumed that Bob receives the quantum system in
states plS or pé. However, if we assume that Alice prepares her states as states of an open system S which is
coupled to some environment E, Bob receives instead the states pé(t) =, [pg] or p§ t)=o [pé], where ®,
denotes the quantum dynamical map describing the evolution of S. The trace distance of the states available to
Bob is then given by D (py(t), p3(t)) and, hence, the maximal probability with which he can correctly identify
the state is given by

PEL (1) = %(1 +2lB 1 - p§]||). )

A quantum process given in terms of a family of quantum dynamical maps @, is defined to be Markovian if
the trace distance D ( ,015 (1), ,0§ (t)) isa monotonically decreasing function of time ¢ for all pairs of initial states.
Hence, quantum non-Markovianity is characterized by a temporary increase of the trace distance for a certain
pair of initial states. Since the trace distance represents a measure for the distinguishability of quantum states, a
decrease of the trace distance can be interpreted as aloss of information from the open system S into the
environment E. Correspondingly, any increase of the trace distance corresponds to a flow of information from
the environment back to the open system which is characteristic of the presence of memory effects. On the basis
of these concepts one can also define a measure for the degree of non-Markovianity by means of

N@) = max [ dt o, )
ps’ a>0
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where
o(t) = ZD(@iply, B0} 6)

Thus, M(®) quantifies the amount of the total information which flows back from the environment into the
open system during the time evolution.

How does this concept of memory effects in quantum mechanics and the associated measure of non-
Markovianity behave under mixing of quantum dynamical maps? It is quite natural to expect that mixing always
makes quantum processes more Markovian. According to several examples constructed in the literature [20, 22]
this intuitive expectation is false. Indeed, it is even possible that ®,is non-Markovian although the dynamical
maps O are Markovian, and even represent quantum dynamical semigroups. Thus, the set of Markovian
processes is not convex and the following questions arise: how can memory effects emerge through the simple
process of mixing quantum processes, and how can this be interpreted in terms of a backflow of information
from the environment to the open system? To discuss these issues we first design an appropriate microscopic
description for the mixing procedure.

3. Information flow interpretation of mixing

3.1. Microscopic representation of mixtures of dynamical maps
We start from the following representations for the dynamical maps ®{" and ®:

OO [ps] = Tre[UPps ® pr,UDT, =1, 2. %)

These maps act on the density matrices pg of the state space of the open system which we denote by S(H), where
H is the underlying Hilbert space. For each i, p . is a fixed environmental state taken from the state space S(HE,)

of environment E;, and the unitary time-evolution operator U,(i) is taken to be
U = exp(—iH;t), (8)

where H;is the Hamiltonian for the composite system S + E; with Hilbert space Hs ® Hg,. For simplicity we
assume the Hamiltonians to be time-independent. The generalization to time-dependent Hamiltonians is
straightforward. Finally, Trg, denotes the partial trace over environment E;.

Our goal is to develop a microscopic representation of the time evolution corresponding to the convex linear
combination (1). We note that a similar construction has been discussed in [28]. We couple our open system S to
the two different environments E;, E, and, additionally, to an ancilla system A with a two-dimensional Hilbert

space Hy,. The Hilbert space of the total system is thus given by Hs ® Hp, ® Hg, ® Ha, and the total system
Hamiltonian is taken to be

H=HI +H o IL. 9

Here, H; describes, as above, the coupling between the open system S and environment E;, while IT; = [i) (i| are
orthogonal rank-one projections corresponding to some basis |), i = 1, 2, of the ancilla Hilbert space H,. Taking
as initial state of the ancilla system the fixed state

pa = q1L + q,1L, (10)

one can introduce a microscopic representation for the mixture of dynamical maps equation (1) which is
illustrated in figure 1. Indeed, denoting by U, = exp(—iHt) the unitary time-evolution operator of the total
system, one can consider the map

Ailpgl = TrgTrp[Uipg ® py, ® pp, ® py U/, (11)

which can be written as (see appendix A.1)
Ailpsl = 4,2V [ps] @ Th + 4,97 [pg] © Th. (12)

Taking the partial trace with respect to the ancilla degrees of freedom one obtains from this equation (see
appendix A.1)

®;[pg] = Trg, Trg, Tra[Us ps @ pp, @ pp, ® pyUf . (13)

Thus, we have shown that any mixture of quantum dynamical maps of the form of equation (1) admits a
microscopic representation of the form (13) with the help of an additional ancilla qubit system. To explain the
physical interpretation of this construction we consider again the two parties Alice and Bob. Alice prepares the
quantum system S in a certain state pgand sends it to Bob through quantum channels ®” with respective
probabilities g;. Thus, Bob receives the states & [ psl with corresponding probability g;.

3
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Alice (1) ® ITy Bob

Ay
(PA = qi1I1 + golly psa(t)
o[ ps ® I,
q1 g
D,
2 oV [ps]

Figure 1. Scheme of the microscopic interaction leading to the maps A,and ®,. In both cases the system state is coupled to two
environments and an ancilla in a fixed state. The map A, describes the state of both system and ancilla at time ¢, while ®, provides the
transformed state of the system only.

T
v st
‘ — o4 — P (t)

gF—— 8D
_— — Prax(t)
—/

Figure 2. Given a pair of initial states pé’z prepared by Alice, Bob has two different optimal measurement strategies to discriminate
between them for the two maps A,and ®,. In particular P2, (1) > (t) since in the first case Bob can also access the degrees of
freedom of the ancilla.

%, P%

max

Let us suppose first that Bob has access not only to the degrees of freedom of S, but also to the degrees of
freedom of the ancilla system A. Bob can then obviously figure out which channel has acted on the input state
ps. This is due to the correlations in the system-ancilla state A, [ps ] shown in equation (12). In fact, if Bob
measures, for example, I} he will find II; = 1 with probability g, and in this case he knows that the channel
@M [pg]has acted on the input state. Accordingly, he will get the outcome IT; = 0 with probability g, in
which case he knows that the channel & [ps] has acted on the input state. Hence, the map A, describes the
situation in which Bob does know the channel which has acted on the input state. Note that the ancilla
represents, essentially, a classical degree of freedom which does not change in time because of
TrA[ps] = p,, and that the correlations between system and ancilla are purely classical correlations (no
entanglement and zero quantum discord).

Hence, if Bob has access to the ancilla degree of freedom (see figure 2) the maximal success probability with
which he can correctly identify the state is given by

PAL(D) = qP2(D) + 4, PLan(D). (14)

Employing expression (4) and the general relation (see appendix A.2)

IAAX] = q 19V X + g, /|26 1X])] (15)
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we obtain
A 1 1 | 2
Pmax(t) = 5(1 + E”At[ps - ps]”) (16)

Thus we see that the distinguishability under A, is equal to the weighted sum of the distinguishabilities under
®WM and &2, Therefore, if PV and ®? are Markovian, then A, is also Markovian. On the other hand, if ®{" or
®? is non-Markovian, then A, can be Markovian or non-Markovian, depending on whether or not the increase
of the trace distance under e.g. ®{" is compensated by a corresponding decrease of the trace distance under ®{.
In this sense on can say that, in general, A, is more Markovian than ®{" and ®{*. Formally, this result can be
expressed by the general relation (see appendix A.3)

NA) < g N@WY) + g, M(@P). 17)

3.2.Non-Markovianity induced by mixing
Let us now suppose that Bob has no access to the ancilla degrees of freedom and, hence, has no information
about whether the channel ®" or ®® has been used by Alice. Bob only knows the corresponding probabilities
q: and q,. In this situation he has to describe the channel by the convex linear combination (1) since the states he
receives are the statistical mixtures g, Sl psl + 4, Y[ psl- It follows that the maximal probability for correct
state identification by Bob is now given by

1

p? =
() 5

1
5 ) = 21+ 2w, - ) (1)
Using @, = Ty o A, aswell as the fact that the trace operation is a contraction under the trace norm [29], we
immediately obtain (see also figure 2)

(1) (2)
P (1) < Phu(t) = qPas(t) + 4, P (D). (19)

According to this inequality the process ®,, in contrast to the process A, acting on both system and ancilla degree
of freedom, can be non-Markovian even though both ®{" and ®{® are Markovian. In fact, the inequality gives
room for the trace distance under ®, to behave non-monotonically although the trace distances under ®{" and
@ are monotonically decreasing corresponding to Markovian dynamics. The reason for this is obviously the
partial trace over the ancilla, which leads to aloss of information about the channel acting on the system states.
Hence, in the case of non-Markovian dynamics of ®, with & and ®* Markovian the interpretation is that
there is a backflow of information from the ancilla A to the open system S.

This idea of information backflow from the ancilla to the system can be made more precise as follows. We
define the quantities

1
Lt (t) = 5||<I>t[p§ — palls (20)

1 1
Iext (1) = EIIAt[plS - p3lll = Ellq)t[p; - p3lll. 1

The quantity I;, () is the distinguishability in the case that Bob has no access to the ancilla degrees of freedom.
This quantity may thus be interpreted as the internal information, i.e. as the information available if only access
to the open system Sis possible. On the other hand, the quantity I.(¢) is the distinguishability including the
ancilla degrees of freedom minus the distinguishability without ancilla. Hence, we can interpret L,(f) as external
information, i.e. as the information which is gained if one includes the ancilla degrees of freedom. Note that
Ix(t) > Oandthat A,_o[ps] = pg @ p, from which it follows that I.,(0) = 0. Moreover, we have

TraAi[ps] = P [psland TA,[ps] = p, which shows that ;[p] ® p, is the product of the marginals of the
state A ps]. Now, one can prove the inequality (see appendix A.4)

Iexe (1) < D(A:Lp), 10051 @ py) + D(Aclpel, Plp3l @ py)s (22)

where the quantity D(A;[pg], ®[p5] ® p,), representing the trace distance between the state A[ps] and the
product of its marginals, provides a measure for the system-ancilla correlations in the state A [ ps]. We recall that
these correlations are of purely classical nature.

The inequality (22) shows that the external information is bounded from above by the sum of the correlation
measures of the states A, [pls] and A;[ pé]. In particular, when I (#) starts to increase over the initial value
I.«(0) = 0 correlations between the open system and the ancilla are created. In other words, any nonzero
external information implies that there are system-ancilla correlations which are inaccessible to Bob if he can
only measure the observables of the open system S.

For the interesting special case referred to above, namely that ®{" and ®{® are Markovian while the convex
mixture P, is non-Markovian, the trace distance %| [A L pé — pé] || decreases monotonically, so that we have

5
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Iine () + st (1) < 0. (23)
However, the quantity L, (t) = %| | D[ pé - pé] || must be a non-monotonic function of time ¢ for a certain pair

of initial states pls’z. Hence, it follows that L, () > 0 for certain times t which implies I, (t) < 0,i.e. thereisa
nonzero backflow of information from the ancilla into the open system. This clearly supports our interpretation
of mixing-induced non-Markovianity. We note that for f;,;(t) < 0 we cannot generally draw any conclusion
about the sign of the external information I, (t) from inequality (23). This is due to the fact that the open system
can lose information both to the ancilla and to the environments E;. Finally, we consider the particularly relevant
case of arandom mixture of unitary maps. In this case the trace distance %| [A, [p}g — pé] || is constant in time
and, hence, the inequality of equation (23) actually becomes an equality, corresponding to the fact that now the
system can lose information only to the ancilla.

4. Example

We introduce a simple example which serves to illustrate the various features of mixing-induced memory effects
discussed above. We consider a qubit system and two different maps labeled by k=1, 2,

P [pg] = () ps + (1 — () > QipsQ;s (24)

j=0,1

where Q; = |j) ( jlare the projections onto the eigenstates of the operator o, for the system and the complex
coefficients ju (f) are given by

Mk(t) = e~ tidot, (25)

These maps describe pure dephasing of the qubit, obeying a Markovian semigroup dynamics with Hamiltonian
contribution () /2)0,, and a single Lindblad operator o, with corresponding rate ;. Considering a convex
mixture of ®{" and ®{* as in equation (1) one finds that coherences evolve as

(1lps()10) = k() (1]psl0), (26)
where
k() = gy (8) + (). 27)

The distinguishability of an optimal pair of states (a pair of states for which the maximum in equation (5) is
attained) is given by the modulus of k(¢),

k()] = \Jg’e 21t + gZe %' + 2q,q,e O cos(Ay). (28)

For the case A\ = )\, — A = 0 this distinguishability can indeed exhibit a non-monotonic behavior,
corresponding to a backflow of information, even though both ®! and ®? describe a Markovian dynamics.
Examples are shown in figures 3 and 4. Note in particular that for the special case y; = 7, = 0 one recovers an
example of arandom unitary map.

To further illustrate the dynamics let us consider equal weights q; = ¢, = 1/2 in the convex mixture of
dynamical processes, so that ®, is simply given by the average of ® and ®*. We choose Y =Y = 1/3and
A1 = 7/2, A, = 0and, asinitial states, the orthogonal pair of states

Is + o Is — o
pls - %, Pé - %, (29)
which evolve in the equatorial plane of the Bloch sphere. In figures 5 and 6 we visualize the dynamics under the
various maps and how the mixing process leads to non-Markovian dynamics.
Let us analyze the flow of information by means of the quantities

1
Lt (t) = 5||<I>t[p§ - pallls (30)
1
Lot(t) = Lt () + Iee(t) = EllAt[pg = pall. (31)

For the choice (29) the internal information is given by |k(¢)| which reads in this specific case

Line (1) = /| cos(mt /4], (32)
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while using equation (15) we obtain

1 1
Lot = 2112 [ps = o311+ S112E [ps — P

= le_'ht + le—’}’zt = e_t/?’.
2

These expressions are plotted in figure 7.

(33)
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Figure 5. Dynamics of the initial states (29) under the maps ®{", &2 and @, . The thin lines show the trajectories of the states, while
the bold straight lines represent the trace distance at the given time. The semigroups ®{" and & yield a monotonically decreasing
distinguishability, while we obtain revivals of the distinguishability for the convex mixture ®; = %[CPEU + ®?]. In fact, the value of
distinguishability decreases and reaches zero for t = 2,as &, pg] = d_,[ pé], and then grows back to positive values at later times.

(I)gl) <I)§2)

Figure 6. Visualization of the dynamics of the initial pair of states (29), together with their trace distance under the maps ®{", ®® and
®,. Asin figure 5 we indicate the trace distance by straight bold lines at times t = 0, 1,2, 3.

Finally, we consider the external information
Iext (t) = Itot (t) - Iint (t)

= e 13[1 — |cos(mt/4)]]. (34)
This quantity satisfies inequality (22):
Lext(t) < DALPS), Pilpl] @ py) + DA pgl, @lpgl © po). (35)
In the present case the right-hand side of this inequality is found to be (see appendix A.5)
DAPLL, Bilps ® py) + DONPL, L2l © ) = e/ sin(rt /4)]. (36)

Inequality (35) is illustrated in figure 8.

5. Conclusions

We have constructed a microscopic representation for a quantum dynamical map arising as a convex mixture of
dynamical maps. Our construction allows to understand the relationship between the Markovianity of the
quantum dynamical map obtained by mixing and the Markovianity of the single elements of the mixture. The

8
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Figure 7. Internal and total information as functions of time. The internal information (32) oscillates and is bounded by the total
information (33). Note the decrease of the total information, signaling the loss of information towards the dissipative environments
generating the single semigroups ®{" and ®®.

1.0
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08 + D(A¢[p3], ®e[pz] ® pa)

" —— Tet(t)

0.4 y

0.2 /.’

u.o('; 5 r t 6 3 10 12

Figure 8. Illustration of inequality (35). Note that the bound for the external information (34) is tight, as the equality sign in (35) holds

whenever cos(wt/2) = +1.

analysis shows in particular that counterintuitive behaviors, such as the emergence of non-Markovianity by
mixing Markovian semigroups or unitary dynamics, can be clearly explained and understood within a consistent
characterization of non-Markovianity in terms of the flow of information between the open system and its
environment.

The crucial point of our construction is the fact that the operation of mixing involves an ancilla system which
behaves essentially as a classical degree of freedom, acting as a random number generator which determines the
choice of the quantum channel. It therefore plays a similar role as the classical device considered in the seminal
work on quantum correlations [30]. While the reduced state of the ancilla does not change in time, correlation
between the open system and the ancilla are built up during the time evolution. Thus, the open system can
exchange information with the ancilla degree of freedom by virtue of these correlations, and it is this exchange of
information which leads to mixing-induced quantum non-Markovianity. These results clearly reinforce the
physical motivation underlying the description of quantum memory in terms of distinguishability of quantum

states, system-environment correlations and information flow between system and environment.
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Appendix A. Proofs

A.1.Proof of equations (12) and (13)
In order to prove equation (12) we start from the definition

Ailps]l = TrpTre[Uips ® pp, ® pp, @ paUf.
Note that thisisa CPT map
A S(Hs) — S(Hs @ Ha).
SinceII;IT, = 0we can split the unitary time-evolution operator as
U, = e Ht — g-iHilhte—ifILt,
Using also equation (10) we find
Ailpsl = q,TrgTrg,[Us pg @ PE, ® pp, @ 1L UzT]
+ @, TreTrg U ps @ pg, ® pg, @ TLU/]
= q1TrE1TrEz[Ut(1)ps ® pp, ® pg, @ L Ut(lﬁ]
+ @, TR Tre U2 ps @ pp, ® pr, ® ILUZT
= q,Trg[U"ps @ pp, UV @ TH
+ 4, Tre[Ups @ pp, UPT] @ T,
Employing equation (7) we can rewrite this as
Ailpsl = %‘I)gl)[Ps] ® I + ‘Zz@gz) [ps] ® 1L
which proves equation (12). Tracing over the ancilla degree of freedom we find
Tradelpsl = 4, @1 [ps] + 4,87 [ps] = @il ]
= TrgTreTilU ps © pg, @ pg, @ pyUf],

which proves equation (13).

A.2.Proof of equation (15)
To prove equation (15) we start from

AIX] = ¢ @V [X] ® T + ¢, [X] ® T,

where X is any system operator. Note that the operators & [X] ® IT, and ®® [X] @ II, have orthogonal

supportin Hg ® H, and, hence, we have
IA[X]]] = q,l10 [X] @ Th]| + /|8 [X] ® IL]|.
Using||A ® B|| = [|A]| - ||B||and [|I; ;|| = 1we obtain equation (15).

A.3. Proof of equation (17)
To prove equation (17) we use the definition of the non-Markovianity measure for the map A

N(A) = max f dt on(0),
s ay>0

p

where

_1d 1 2
UA(t) = EE”At[ps - ps] ”
Let pé’z be an optimal state pair for which the maximum in equation (A9) is attained. Then we can write

NA) = f dr op(b).

op>0
Using equation (15) we get
UA(t) = qlal(t) + 11202(1‘),

where

1d, .
ai(t) = Ea”q)g)[Pls - Pé]”-

(AL)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(Al1)

(A12)

(A13)
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Thus, we find

NAA) = g, f . dt o(t) + q, f . dt oy (). (A14)

OpN> opN>

Now, we have
f dt o(t) < f dt o,(t). (A15)
or>0 01>0

This is due to the fact that the integration on the right-hand side is extended over all regions in which the
function o,(f) is positive and, hence, the integral on the right-hand side is larger or equal to the integral of o, (¢)
over any other region, in particular over the region given by o (f) > 0. Moreover, we obtain directly from the
definition of quantum non-Markovianity that

f dt (1) < M@W). (A16)
01>0
Together with (A15) this yields
f dr a1(1) < M@W). (A17)
oA>0
In the same manner we obtain
f dr o (t) < M(@D). (A18)
oy >0

Using equations (A17) and (A18) in (A14) we finally get the desired result:
N < g N@DY) + ¢, MDD). (A19)

A.4. Proof of equation (22)
To prove equation (22) we start from the definition

1 1
Lea () = ZllAdlps = A3l = ZH1iLe5 = A1 (A20)
Since p, € S(H,) has unit trace norm we have
1:[pg — P31 = [1B:Lps — pgl @ pall- (A21)
Using the triangular inequality for the trace norm,
Al — IBIIl < [lA — BIl, (A22)

we obtain

L () < %llAt[pg = 05l = ®lpl — 1 @ pyll = %II(Az[pls] = ulpgl @ py)
— (Mlpdd — Belp3] © poll- (A23)
Employing the triangular inequality
llA = Bl < llAll + [1Bll (A24)
we finally get equation (22):

1 1
Text () < EIIAt[pls] - q’t[ﬂ}g] Q@ pull + EHAt[pé] - @,[pé] @ pull- (A25)

A.5. Proof of equation (36)

Lemma. Suppose we have a bipartite Hilbert space Hs @ Ha, a probability distribution {q;}, a collection of statistical

operators { pg} on Hs, and a collection of orthogonal projections { IT; } on Ha, wherei = 1,2, ..., n. Then, for
composite states of the form

Psa = 2 q;05 ® II; (A26)
i
the trace distance between the state and the product of its marginals obeys the bound

D(psas ps @ pa) <23 4;4;D(ps pb), (A27)

i>j

11
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which is saturated for the casen = 2
D(pgs» ps @ py) = 24,9,D(p p3). (A28)

Proof. Orthogonality of the projections leads to the following identities

D(pgps ps @ pa) = D[Z .05 @ i, ) q]'Pé ® %HiJ
i F i

1 ; ,
=5 || ek e =3 ga i@ 1L
1 L]
1 . .
=3 ‘ Zq,-{(l —q)p5 — quﬂé} ® II;
i j=i

(= q)ps— > 4P}

1
—EZi)qi

j=i
1 L
=7 >4 || 2245 = || - (A29)
1 ]II

For n = 2 asingle term remains and we have the identity

D(pss> ps © pa) = 2:4,D (P ), (A30)
for the general case the triangular inequality implies

D(psps ps @ py) <23 4:4;D (Pl pY)s (A31)

i>j
which proves the lemma.
Using equation (A30) forq; = ¢, = 1/2we find

1 1
D(Adpyl, ®lpy] ® py) + D(A[pil, Blpi] ® py) = gD@ﬁ”[pEL PP [pL]) + ED@?) [pzl, © [p3)).

(A32)
Because of the symmetric time evolution of py and p§ under O and B (see figures 5 and 6) we have
D@ [p4], 2P [p§]) = D@V [p3], P [p3) (A33)
and thus
D(ALpsl, Bilps] @ py) + D(Alpl, ©ilpld ® py) = D@ [p4l, D[4 (A34)
The trace distance D (<I>§1) [ pls] , ‘IDEZ) [pls]) is easily found to be given by the expression
D@ [py], PP[p5]) = e~/ sin(nt /4)]. (A35)

Substituting this into equation (A34) we obtain equation (36).

Appendix B. Mixing quantum processes

For simplicity, the presentation has been restricted to the mixing of two dynamical maps. Our results can easily
be generalized to an arbitrary number 7 of dynamical maps <I>§’), wherei = 1,2, ..., n. The convex mixture of
such maps is defined by

=3 g, (B1)
i=1

where g;is a probability distribution, i.e. g, > 0and >, g; = 1.Inorder to construct the corresponding
microscopic representation we take an ancilla A with n-dimensional Hilbert space H,4. Introducing an
orthonormal basis |i) in this space we define rank-one projection operators II; = [i) (i| and a fixed initial state of
the ancilla system

12
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pa = a1l (B2)
i=1
The Hamiltonian of the total system is taken to be

H=YH®l, (B3)
i=1

where H; describes the interaction of the open system S with environment E;. The time evolution operator factorizes,

U, = exp(—iHt) = H exp(—iH;I1;t), (B4)

i=1

because of II;1I; = 6;11;. The map defined by

Adlps]l = Trg, .. Trg [Uips @ pp, @ ... @ pp @ pyU/] (B5)
can thus be written as

n
Adlpsl =32 4,9 [ps] ® 1. (B6)
i=1

Taking the partial trace over the ancilla degrees of freedom we find

Tralilpsl = > 4,27 [ps]

i =1
= (I)t[Ps]
=Trg,... Trg, TalUs ps @ pg, ... pp, ® py U/ (B7)

which is the desired microscopic representation of the mixture ®, analogous to equation (13).

Appendix C. Generalized non-Markovianity

In the main text we have used the concept of quantum non-Markovianity based on the trace distance which
represents a measure for the distinguishability of quantum states pls and p§ prepared with equal probabilities of
1/2. Recently, this concept of non-Markovianity has been extended to include the case that p}g and pg are
prepared with different probabilities p; and p; [4, 7]. It can be shown that by an optimal strategy Bob can now
distinguish the states with a maximal probability given by

1
Prax () = (L + [19[A]ID, (1)
where
A= p1pls - D Pg (C2)
is the Helstrom matrix [31]. Consequently, the generalized measure of non-Markovianity is defined by means of
N(®) = max f dr 5(1), (C3)
prps Y5>0
where
.. d
a(t) = —I[1D[A]l. (C4H
dt

The discussion presented in the main text can be generalized straightforwardly to this more general notion of
quantum non-Markovianity. For example, it can be shown that equation (17) becomes

N < gN(@D) + g, N (@?), (C5)
while equation (22) now takes the form
L (1) < pylIALpg] — @ilp5] © pull + pollAilp3] — @:lp] © pyll, (C6)

where I (1) = [|AJLATI] — 1| [AT]l.
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