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Abstract
Mixing dynamicalmaps describing open quantum systems can lead fromMarkovian to non-
Markovian processes. Being surprising and counter-intuitive, this result has been used as argument
against characterization of non-Markovianity in terms of information exchange.Here, we
demonstrate that, quite the contrary,mixing can be understood in a natural waywhich is fully
consistent with existing theories ofmemory effects. In particular, we showhowmixing-induced non-
Markovianity can be interpreted in terms of the distinguishability of quantum states, system-
environment correlations and the information flowbetween system and environment.

1. Introduction

In quantumaswell as in classicalmechanics the isolation of the systemof interest is never perfectly achievable.
The effect of external noise or of the interactionwith uncontrolled environmental degrees of freedommakes the
dynamics stochastic. In quantummechanics the environmental influence appears as an additional layer of
stochasticity, on top of the inherently probabilistic description of any quantum experiment, and cannot be
generally described bymeans of classical stochastic processes. Quantumprocesses, which can be taken as the
description of the evolution of an open quantum systemdynamics [1], are described by time dependent
collections of completely positive trace preserving (CPT)maps, called quantumdynamicalmaps. The
characterization of quantumprocesses in view of the relationship of thesemaps at different times, in analogy to
the correlations of a classical process at different times, which allow to introduce the very definition of
Markovian process, is an important and difficult issue due to the special role ofmeasurement in quantum
mechanics.

In recent times a lot of work has been devoted to the study of quantumnon-Markovianity (see e.g. [2–5]). In
particular, a notion ofmemory for quantumprocesses has been introducedwhich can be physically interpreted
in terms of theflowof information between the open system and its environment [6, 7]. The information flow is
defined bymeans of the behavior in time of the distinguishability of two open system states and non-
Markovianity is characterized by a non-monotonic time evolution of the distinguishability. Experimental
control andmeasurements of non-Markovian quantumdynamics and of the closely connected impact of initial
system-environment correlations have been reported for photonic systems [8–14], nuclearmagnetic resonance
[15], and trapped ion systems [16, 17].

However,mixing of quantumdynamicalmaps leads to new time evolutions, whoseMarkovianity properties
can be related in a quite counter-intuitive way to theMarkovianity of the originalmaps [18–23]. In particular
one can consider randommixtures of unitary evolutions showing upmemory effects, so that objections have
been raised about the validity of the interpretation of non-Markovianity in terms of information flow [24, 25].
On the contrary, herewe demonstrate that the procedure ofmixing dynamicalmaps can be understood in a
natural waywhich is fully consistent with the existing theoretical characterization of quantumnon-
Markovianity. In particular, employing amicroscopic representation of the open systemdynamics we showhow
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mixing-induced quantumnon-Markovianity can be interpreted and analyzed in terms of the trace distance
basedmeasure for distinguishability of quantum states, determined by the correlations and the information flow
between the system and its environment.

The paper is organized as follows. In section 2we define themixing of quantumdynamicalmaps and the
concept of quantumnon-Markovianity which is used in this paper. Section 3 is devoted to the interpretation and
analysis ofmixing-induced non-Markovianity in terms of the information flow. An example illustrating the
various features ofmixing-inducedmemory effects is discussed in section 4. Finally, we draw our conclusions in
section 5. Appendix A contains the relevantmathematical proofs, and appendices B andC some generalizations
of the presentation of themain text.

2.Mixtures of quantumprocesses and quantumnon-Markovianity

Weconsider two quantumprocesses given by one-parameter families of quantumdynamicalmaps F( )
t
1 and F( )

t
2

with t 0. A natural way to construct a newmap is to consider the convex linear combination

F = F + F ( )( ) ( )q q , 1t t t1
1

2
2

where q 01,2 and q1+q2=1. It is easy to show thatΦt is, in fact, a CPTmap provided that F( )
t
1 and F( )

t
2 are

CPTmaps. ThemapΦtwill be calledmixture of themaps F( )
t
1 and F( )

t
2 . This construction can be extended to an

arbitrary number of dynamicalmaps F( )
t
i in an obvious way (see appendix B). To keep the notation simplewe

will restrict here to the case ofmixtures of two dynamicalmaps. A simple butwell-known example of this
construction is obtained by taking allmaps F( )

t
i to be unitary transformations, in this case the resultingmixture

Φt is known as randomunitarymap [26, 27].We note that such randomunitarymaps naturally arise inmany
physical situations, e.g. in experiments in which one has some uncontrollable external noise in the parameters of
the systemHamiltonian. Considering then the average of the dynamics taken over the realizations of the external
noise one is lead to a convexmixture of unitary transformations, i.e. a randomunitarymap.

To explain the concept of quantumnon-Markovianity to be used in the following [6, 7]we consider two
parties, Alice and Bob. Alice prepares a quantum system S in one of two states rS

1 , rS
2 with probability of 1/2

each, and then sends the system to Bob (the generalization to the biased case of unequal probabilities is discussed
in appendix C). It is Bob’s task tofigure out by a singlemeasurement whether the systemhas been prepared in
state rS

1 or rS
2. It can be shown that by an optimal strategy Bob canfind the correct state with amaximal success

probability given by

r r= +( ( )) ( )P D
1

2
1 , , 2S Smax

1 2

where

r r r r= -( ) ∣∣ ∣∣ ( )D ,
1

2
3S S S S

1 2 1 2

denotes the trace distance of the quantum states. The trace distance thus represents ameasure for the
distinguishability of quantum states. In these relations it is assumed that Bob receives the quantum system in
states rS

1 or rS
2. However, if we assume that Alice prepares her states as states of an open system Swhich is

coupled to some environment E, Bob receives instead the states r r= F( ) [ ]tS t S
1 1 or r r= F( ) [ ]tS t S

2 2 , whereΦt

denotes the quantumdynamicalmap describing the evolution of S. The trace distance of the states available to
Bob is then given by r r( ( ) ( ))D t t,S S

1 2 and, hence, themaximal probability withwhich he can correctly identify
the state is given by

r r= + F -F ⎜ ⎟⎛
⎝

⎞
⎠( ) ∣∣ [ ]∣∣ ( )P t

1

2
1

1

2
. 4t S Smax

1 2

Aquantumprocess given in terms of a family of quantumdynamicalmapsΦt is defined to beMarkovian if
the trace distance r r( ( ) ( ))D t t,S S

1 2 is amonotonically decreasing function of time t for all pairs of initial states.
Hence, quantumnon-Markovianity is characterized by a temporary increase of the trace distance for a certain
pair of initial states. Since the trace distance represents ameasure for the distinguishability of quantum states, a
decrease of the trace distance can be interpreted as a loss of information from the open system S into the
environment E. Correspondingly, any increase of the trace distance corresponds to a flowof information from
the environment back to the open systemwhich is characteristic of the presence ofmemory effects. On the basis
of these concepts one can also define ameasure for the degree of non-Markovianity bymeans of

 ò sF =
r s>

( ) ( ) ( )t tmax d , 5
0

S

1,2

2
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where

s r rº F F( ) ( ) ( )t
t

D
d

d
, . 6t S t S

1 2

Thus,  F( ) quantifies the amount of the total informationwhich flows back from the environment into the
open systemduring the time evolution.

Howdoes this concept ofmemory effects in quantummechanics and the associatedmeasure of non-
Markovianity behave undermixing of quantumdynamicalmaps? It is quite natural to expect thatmixing always
makes quantumprocessesmoreMarkovian. According to several examples constructed in the literature [20, 22]
this intuitive expectation is false. Indeed, it is even possible thatΦt is non-Markovian although the dynamical
maps F( )

t
i areMarkovian, and even represent quantumdynamical semigroups. Thus, the set ofMarkovian

processes is not convex and the following questions arise: how canmemory effects emerge through the simple
process ofmixing quantumprocesses, and how can this be interpreted in terms of a backflowof information
from the environment to the open system? To discuss these issues wefirst design an appropriatemicroscopic
description for themixing procedure.

3. Informationflow interpretation ofmixing

3.1.Microscopic representation ofmixtures of dynamicalmaps
We start from the following representations for the dynamicalmaps F( )

t
1 and F( )

t
2 :

r r rF = Ä =[ ] [ ] ( )( ) ( ) ( ) †U U iTr , 1, 2. 7t
i

S E t
i

S E t
i

i i

Thesemaps act on the densitymatrices ρS of the state space of the open systemwhichwe denote by  ( )S , where
S is the underlyingHilbert space. For each i, rEi

is afixed environmental state taken from the state space  ( )Ei

of environment Ei, and the unitary time-evolution operator ( )Ut
i is taken to be

= -( ) ( )( )U H texp i , 8t
i

i

whereHi is theHamiltonian for the composite system +S Ei withHilbert space ÄS Ei
. For simplicity we

assume theHamiltonians to be time-independent. The generalization to time-dependentHamiltonians is
straightforward. Finally, TrEi

denotes the partial trace over environment Ei.
Our goal is to develop amicroscopic representation of the time evolution corresponding to the convex linear

combination (1).We note that a similar construction has been discussed in [28].We couple our open system S to
the two different environments E1,E2 and, additionally, to an ancilla systemAwith a two-dimensionalHilbert
spaceA. TheHilbert space of the total system is thus given by   Ä Ä ÄS E E A1 2

, and the total system
Hamiltonian is taken to be

= Ä P + Ä P ( )H H H . 91 1 2 2

Here,Hi describes, as above, the coupling between the open system S and environment Ei, whileP = ñá∣ ∣i ii are
orthogonal rank-one projections corresponding to some basis ñ∣i , i= 1, 2, of the ancillaHilbert spaceA. Taking
as initial state of the ancilla system the fixed state

r = P + P ( )q q , 10A 1 1 2 2

one can introduce amicroscopic representation for themixture of dynamicalmaps equation (1)which is
illustrated infigure 1. Indeed, denoting by = -( )U Htexp it the unitary time-evolution operator of the total
system, one can consider themap

r r r r rL = Ä Ä Ä[ ] [ ] ( )†U UTr Tr , 11t S E E t S E E A t1 2 1 2

which can bewritten as (see appendix A.1)

r r rL = F Ä P + F Ä P[ ] [ ] [ ] ( )( ) ( )q q . 12t S t S t S1
1

1 2
2

2

Taking the partial trace with respect to the ancilla degrees of freedomone obtains from this equation (see
appendix A.1)

r r r r rF = Ä Ä Ä[ ] [ ] ( )†U UTr Tr Tr . 13t S E E A t S E E A t1 2 1 2

Thus, we have shown that anymixture of quantumdynamicalmaps of the formof equation (1) admits a
microscopic representation of the form (13)with the help of an additional ancilla qubit system. To explain the
physical interpretation of this constructionwe consider again the two parties Alice and Bob. Alice prepares the
quantum system S in a certain state ρS and sends it to Bob through quantum channels F( )

t
i with respective

probabilities qi. Thus, Bob receives the states rF [ ]( )
t
i

S with corresponding probability qi.

3
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Let us suppose first that Bob has access not only to the degrees of freedomof S, but also to the degrees of
freedomof the ancilla systemA. Bob can then obviously figure out which channel has acted on the input state
ρS. This is due to the correlations in the system-ancilla stateΛt [ρS ] shown in equation (12). In fact, if Bob
measures, for example,Π1 he will findΠ1=1 with probability q1 and in this case he knows that the channel

rF [ ]( )
t S
1 has acted on the input state. Accordingly, he will get the outcomeΠ1=0 with probability q2 in

which case he knows that the channel rF [ ]( )
t S
2 has acted on the input state. Hence, themapΛt describes the

situation in which Bob does know the channel which has acted on the input state. Note that the ancilla
represents, essentially, a classical degree of freedomwhich does not change in time because of

r rL =[ ]TrS t S A, and that the correlations between system and ancilla are purely classical correlations (no
entanglement and zero quantumdiscord).

Hence, if Bob has access to the ancilla degree of freedom (see figure 2) themaximal success probability with
which he can correctly identify the state is given by

= +L F F( ) ( ) ( ) ( )
( ) ( )

P t q P t q P t . 14max 1 max 2 max

1 2

Employing expression (4) and the general relation (see appendix A.2)

L = F + F     [ ] [ ] [ ] ( )( ) ( )X q X q X 15t t t1
1

2
2

Figure 1. Scheme of themicroscopic interaction leading to themapsΛt andΦt. In both cases the system state is coupled to two
environments and an ancilla in a fixed state. ThemapΛt describes the state of both system and ancilla at time t, whileΦt provides the
transformed state of the system only.

Figure 2.Given a pair of initial states rS
1,2 prepared byAlice, Bob has twodifferent optimalmeasurement strategies to discriminate

between them for the twomapsΛt andΦt. In particular L F( ) ( )P t P tmax max since in thefirst case Bob can also access the degrees of
freedomof the ancilla.

4
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we obtain

r r= + L -L  ⎜ ⎟⎛
⎝

⎞
⎠( ) [ ] ( )P t

1

2
1

1

2
. 16t S Smax

1 2

Thuswe see that the distinguishability underΛt is equal to theweighted sumof the distinguishabilities under
F( )

t
1 and F( )

t
2 . Therefore, if F( )

t
1 and F( )

t
2 areMarkovian, thenΛt is alsoMarkovian.On the other hand, if F( )

t
1 or

F( )
t
2 is non-Markovian, thenΛt can beMarkovian or non-Markovian, depending onwhether or not the increase

of the trace distance under e.g. F( )
t
1 is compensated by a corresponding decrease of the trace distance under F( )

t
2 .

In this sense on can say that, in general,Λt ismoreMarkovian than F( )
t
1 and F( )

t
2 . Formally, this result can be

expressed by the general relation (see appendix A.3)

  L F + F( ) ( ) ( ) ( )( ) ( )q q . 171
1

2
2

3.2. Non-Markovianity induced bymixing
Let us now suppose that Bob has no access to the ancilla degrees of freedom and, hence, has no information
aboutwhether the channel F( )

t
1 or F( )

t
2 has been used byAlice. Bob only knows the corresponding probabilities

q1 and q2. In this situation he has to describe the channel by the convex linear combination (1) since the states he
receives are the statisticalmixtures r rF + F[ ] [ ]( ) ( )q qt S t S1

1
2

2 . It follows that themaximal probability for correct
state identification by Bob is now given by

r r= + F -F ⎜ ⎟⎛
⎝

⎞
⎠( ) ∣∣ [ ]∣∣ ( )P t

1

2
1

1

2
. 18t S Smax

1 2

Using F = L◦Trt A t aswell as the fact that the trace operation is a contraction under the trace norm [29], we
immediately obtain (see alsofigure 2)

 = +F L F F( ) ( ) ( ) ( ) ( )
( ) ( )

P t P t q P t q P t . 19max max 1 max 2 max

1 2

According to this inequality the processΦt, in contrast to the processΛt acting on both system and ancilla degree
of freedom, can be non-Markovian even though both F( )

t
1 and F( )

t
2 areMarkovian. In fact, the inequality gives

room for the trace distance underΦt to behave non-monotonically although the trace distances under F( )
t
1 and

F( )
t
2 aremonotonically decreasing corresponding toMarkovian dynamics. The reason for this is obviously the

partial trace over the ancilla, which leads to a loss of information about the channel acting on the system states.
Hence, in the case of non-Markovian dynamics ofΦtwith F( )

t
1 and F( )

t
2 Markovian the interpretation is that

there is a backflowof information from the ancillaA to the open system S.
This idea of information backflow from the ancilla to the system can bemademore precise as follows.We

define the quantities

r r= F -( ) ∣∣ [ ]∣∣ ( )I t
1

2
, 20t S Sint

1 2

r r r r= L - - F -( ) ∣∣ [ ]∣∣ ∣∣ [ ]∣∣ ( )I t
1

2

1

2
. 21t S S t S Sext

1 2 1 2

The quantity Iint(t) is the distinguishability in the case that Bob has no access to the ancilla degrees of freedom.
This quantitymay thus be interpreted as the internal information, i.e.as the information available if only access
to the open system S is possible. On the other hand, the quantity Iext(t) is the distinguishability including the
ancilla degrees of freedomminus the distinguishability without ancilla. Hence, we can interpret Iext(t) as external
information, i.e.as the informationwhich is gained if one includes the ancilla degrees of freedom.Note that
Iext(t)�0 and that r r rL = Ä= [ ]t S S A0 fromwhich it follows that Iext(0)=0.Moreover, we have

r rL = F[ ] [ ]TrA t S t S and r rL =[ ]TrS t S A which shows that r rF Ä[ ]t S A is the product of themarginals of the
stateΛt[ρS]. Now, one can prove the inequality (see appendix A.4)

 r r r r r rL F Ä + L F Ä( ) ( [ ] [ ] ) ( [ ] [ ] ) ( )I t D D, , , 22t S t S A t S t S Aext
1 1 2 2

where the quantity r r rL F Ä( [ ] [ ] )D ,t S t S A , representing the trace distance between the stateΛt[ρS] and the
product of itsmarginals, provides ameasure for the system-ancilla correlations in the stateΛt[ρS].We recall that
these correlations are of purely classical nature.

The inequality (22) shows that the external information is bounded fromabove by the sumof the correlation
measures of the states rL [ ]t S

1 and rL [ ]t S
2 . In particular, when Iext(t) starts to increase over the initial value

Iext(0)=0 correlations between the open system and the ancilla are created. In otherwords, any nonzero
external information implies that there are system-ancilla correlations which are inaccessible to Bob if he can
onlymeasure the observables of the open system S.

For the interesting special case referred to above, namely that F( )
t
1 and F( )

t
2 areMarkovianwhile the convex

mixtureΦt is non-Markovian, the trace distance r rL -∣∣ [ ]∣∣t S S
1

2
1 2 decreasesmonotonically, so thatwe have

5
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+˙ ( ) ˙ ( ) ( )I t I t 0. 23int ext

However, the quantity r r= F -( ) ∣∣ [ ]∣∣I t t S Sint
1

2
1 2 must be a non-monotonic function of time t for a certain pair

of initial states rS
1,2. Hence, it follows that >˙ ( )I t 0int for certain times twhich implies <˙ ( )I t 0ext , i.e. there is a

nonzero backflowof information from the ancilla into the open system. This clearly supports our interpretation
ofmixing-induced non-Markovianity.We note that for <˙ ( )I t 0int we cannot generally draw any conclusion
about the sign of the external information ˙ ( )I text from inequality (23). This is due to the fact that the open system
can lose information both to the ancilla and to the environments Ei. Finally, we consider the particularly relevant
case of a randommixture of unitarymaps. In this case the trace distance r rL -∣∣ [ ]∣∣t S S

1

2
1 2 is constant in time

and, hence, the inequality of equation (23) actually becomes an equality, corresponding to the fact that now the
system can lose information only to the ancilla.

4. Example

We introduce a simple examplewhich serves to illustrate the various features ofmixing-inducedmemory effects
discussed above.We consider a qubit system and two differentmaps labeled by k= 1, 2,

år m r m rF = + -
=

[ ] ( ) ( ( )) ( )( ) t t Q Q1 , 24t
k

S k S k
j

j S j
0,1

where = ñá∣ ∣Q j jj are the projections onto the eigenstates of the operatorσz for the system and the complex
coefficientsμk (t) are given by

m = g l- +( ) ( )( )t e . 25k
tik k

Thesemaps describe pure dephasing of the qubit, obeying aMarkovian semigroup dynamics withHamiltonian
contribution l s( )2k z , and a single Lindblad operatorσzwith corresponding rate γk. Considering a convex
mixture of F( )

t
1 and F( )

t
2 as in equation (1) onefinds that coherences evolve as

kr rá ñ = á ñ∣ ( )∣ ( ) ∣ ∣ ( )t t1 0 1 0 , 26S S

where

k m m= +( ) ( ) ( ) ( )t q t q t . 271 1 2 2

The distinguishability of an optimal pair of states (a pair of states for which themaximum in equation (5) is
attained) is given by themodulus of k( )t ,

k = + + Dg g g g
l

- - - +∣ ( )∣ ( ) ( )( )t q q q q te e 2 e cos . 28t t t
1
2 2

2
2 2

1 2
1 2 1 2

For the case l lD = - ¹l 02 1 this distinguishability can indeed exhibit a non-monotonic behavior,
corresponding to a backflowof information, even though both F( )

t
1 and F( )

t
2 describe aMarkovian dynamics.

Examples are shown infigures 3 and 4.Note in particular that for the special case γ1=γ2=0 one recovers an
example of a randomunitarymap.

To further illustrate the dynamics let us consider equal weights q1=q2=1/2 in the convexmixture of
dynamical processes, so thatΦt is simply given by the average of F( )

t
1 and F( )

t
2 .We choose g g= = 1 31 2 and

λ1=π/2,λ2=0 and, as initial states, the orthogonal pair of states

r
s

r
s

=
+

=
-

( )
I I

2
,

2
, 29S

S y
S

S y1 2

which evolve in the equatorial plane of the Bloch sphere. Infigures 5 and 6we visualize the dynamics under the
variousmaps and how themixing process leads to non-Markovian dynamics.

Let us analyze theflowof information bymeans of the quantities

r r= F -( ) ∣∣ [ ]∣∣ ( )I t
1

2
, 30t S Sint

1 2

r r= + = L -( ) ( ) ( ) ∣∣ [ ]∣∣ ( )I t I t I t
1

2
. 31t S Stot int ext

1 2

For the choice (29) the internal information is given by k∣ ( )∣t which reads in this specific case

p= -( ) ∣ ( )∣ ( )I t te cos 4 , 32t
int

3

6
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while using equation (15)we obtain

r r r r= F - + F -

= + =g g- - -

( ) ∣∣ [ ]∣∣ ∣∣ [ ]∣∣

( )

( ) ( )I t
1

2

1

2
1

2
e

1

2
e e . 33

t S S t S S

t t t

tot
1 1 2 2 1 2

31 2

These expressions are plotted infigure 7.

Figure 3.The distinguishability (28) of optimal state pairs as a function of time. In these graphsλ1=2π andλ2=0 .

Figure 4.The distinguishability (28) of optimal state pairs as a function of time forλ1=2π andλ2=0 , in the case γ1=γ2=0
corresponding to a randomunitarymap.
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Finally, we consider the external information

p
= -
= --

( ) ( ) ( )
[ ∣ ( )∣] ( )

I t I t I t

te 1 cos 4 . 34t

ext tot int

3

This quantity satisfies inequality (22):

 r r r r r rL F Ä + L F Ä( ) ( [ ] [ ] ) ( [ ] [ ] ) ( )I t D D, , . 35t S t S A t S t S Aext
1 1 2 2

In the present case the right-hand side of this inequality is found to be (see appendix A.5)

r r r r r r pL F Ä + L F Ä = -( [ ] [ ] ) ( [ ] [ ] ) ∣ ( )∣ ( )D D t, , e sin 4 . 36t S t S A t S t S A
t1 1 2 2 3

Inequality (35) is illustrated infigure 8.

5. Conclusions

Wehave constructed amicroscopic representation for a quantumdynamicalmap arising as a convexmixture of
dynamicalmaps. Our construction allows to understand the relationship between theMarkovianity of the
quantumdynamicalmap obtained bymixing and theMarkovianity of the single elements of themixture. The

Figure 5.Dynamics of the initial states (29) under themaps F( )
t
1 , F( )

t
2 andΦt . The thin lines show the trajectories of the states, while

the bold straight lines represent the trace distance at the given time. The semigroups F( )
t
1 and F( )

t
2 yield amonotonically decreasing

distinguishability, while we obtain revivals of the distinguishability for the convexmixture F = F + F[ ]( ) ( )
t t t

1

2
1 2 . In fact, the value of

distinguishability decreases and reaches zero for t=2, as r rF = F= =[ ] [ ]t S t S2
1

2
2 , and then grows back to positive values at later times.

Figure 6.Visualization of the dynamics of the initial pair of states (29), together with their trace distance under themaps F( )
t
1 , F( )

t
2 and

Φt . As infigure 5we indicate the trace distance by straight bold lines at times t=0, 1, 2, 3.
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analysis shows in particular that counterintuitive behaviors, such as the emergence of non-Markovianity by
mixingMarkovian semigroups or unitary dynamics, can be clearly explained and understoodwithin a consistent
characterization of non-Markovianity in terms of the flowof information between the open system and its
environment.

The crucial point of our construction is the fact that the operation ofmixing involves an ancilla systemwhich
behaves essentially as a classical degree of freedom, acting as a randomnumber generatorwhich determines the
choice of the quantum channel. It therefore plays a similar role as the classical device considered in the seminal
work on quantum correlations [30].While the reduced state of the ancilla does not change in time, correlation
between the open system and the ancilla are built up during the time evolution. Thus, the open system can
exchange informationwith the ancilla degree of freedomby virtue of these correlations, and it is this exchange of
informationwhich leads tomixing-induced quantumnon-Markovianity. These results clearly reinforce the
physicalmotivation underlying the description of quantummemory in terms of distinguishability of quantum
states, system-environment correlations and information flowbetween system and environment.
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Figure 7. Internal and total information as functions of time. The internal information (32) oscillates and is bounded by the total
information (33). Note the decrease of the total information, signaling the loss of information towards the dissipative environments
generating the single semigroups F( )

t
1 and F( )

t
2 .

Figure 8. Illustration of inequality (35). Note that the bound for the external information (34) is tight, as the equality sign in (35) holds
whenever p = ( )tcos 2 1.
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AppendixA. Proofs

A.1. Proof of equations (12) and (13)
In order to prove equation (12)we start from the definition

r r r r rL = Ä Ä Ä[ ] [ ] ( )†U UTr Tr . A1t S E E t S E E A t1 2 1 2

Note that this is a CPTmap

    L  Ä( ) ( ) ( ): . A2t S S A

SinceΠ1Π2=0we can split the unitary time-evolution operator as

= =- - P - P ( )U e e e . A3t
iHt H t H ti i1 1 2 2

Using also equation (10)we find

r r r r

r r r

r r r

r r r

r r

r r

L = Ä Ä Ä P

+ Ä Ä Ä P

= Ä Ä Ä P

+ Ä Ä Ä P

= Ä Ä P

+ Ä Ä P

[ ] [ ]

[ ]

[ ]

[ ]

[ ]

[ ] ( )

†

†

( ) ( ) †

( ) ( ) †

( ) ( ) †

( ) ( ) †

q U U

q U U

q U U

q U U

q U U

q U U

Tr Tr

Tr Tr

Tr Tr

Tr Tr

Tr

Tr . A4

t S E E t S E E t

E E t S E E t

E E t S E E t

E E t S E E t

E t S E t

E t S E t

1 1

2 2

1
1

1
1

2
2

2
2

1
1 1

1

2
2 2

2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1

2 2

Employing equation (7)we can rewrite this as

r r rL = F Ä P + F Ä P[ ] [ ] [ ] ( )( ) ( )q q A5t S t S t S1
1

1 2
2

2

which proves equation (12). Tracing over the ancilla degree of freedomwe find

r r r r

r r r r

L = F + F = F

= Ä Ä Ä

[ ] [ ] [ ] [ ]
[ ] ( )

( ) ( )

†

q q

U U

Tr

Tr Tr Tr , A6

A t S t S t S t S

E E A t S E E A t

1
1

2
2

1 2 1 2

which proves equation (13).

A.2. Proof of equation (15)
Toprove equation (15)we start from

L = F Ä P + F Ä P[ ] [ ] [ ] ( )( ) ( )X q X q X , A7t t t1
1

1 2
2

2

whereX is any systemoperator. Note that the operators F Ä P[ ]( ) Xt
1

1 and F Ä P[ ]( ) Xt
2

2 have orthogonal
support in ÄS A and, hence, we have

L = F Ä P + F Ä P∣∣ [ ]∣∣ ∣∣ [ ] ∣∣ ∣∣ [ ] ∣∣ ( )( ) ( )X q X q X . A8t t t1
1

1 2
2

2

Using Ä =∣∣ ∣∣ ∣∣ ∣∣ · ∣∣ ∣∣A B A B and P =∣∣ ∣∣ 11,2 we obtain equation (15).

A.3. Proof of equation (17)
Toprove equation (17)we use the definition of the non-Markovianitymeasure for themapΛt:

 ò sL =
r s >

L
L

( ) ( ) ( )t tmax d , A9
0

S

1,2

where

s r rº L -L( ) ∣∣ [ ]∣∣ ( )t
t

1

2

d

d
. A10t S S

1 2

Let rS
1,2 be an optimal state pair for which themaximum in equation (A9) is attained. Thenwe canwrite

 ò sL =
s >

L
L

( ) ( ) ( )t td . A11
0

Using equation (15)we get

s s s= +L( ) ( ) ( ) ( )t q t q t , A121 1 2 2

where

s r rº F -( ) ∣∣ [ ]∣∣ ( )( )t
t

1

2

d

d
. A13i t

i
S S
1 2
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Thus, wefind

 ò òs sL = +
s s> >L L

( ) ( ) ( ) ( )q t t q t td d . A141
0

1 2
0

2

Now,we have

ò òs s
s s> >L

( ) ( ) ( )t t t td d . A15
0

1
0

1
1

This is due to the fact that the integration on the right-hand side is extended over all regions inwhich the
functionσ1(t) is positive and, hence, the integral on the right-hand side is larger or equal to the integral ofσ1(t)
over any other region, in particular over the region given byσΛ(t)>0.Moreover, we obtain directly from the
definition of quantumnon-Markovianity that

ò s F
s >

( ) ( ) ( )( )t td . A16
0

1
1

1

Togetherwith (A15) this yields

ò s F
s >L

( ) ( ) ( )( )t td . A17
0

1
1

In the samemannerwe obtain

ò s F
s >L

( ) ( ) ( )( )t td . A18
0

2
2

Using equations (A17) and (A18) in (A14)we finally get the desired result:

  L F + F( ) ( ) ( ) ( )( ) ( )q q . A191
1

2
2

A.4. Proof of equation (22)
Toprove equation (22)we start from the definition

r r r r= L - - F -( ) ∣∣ [ ]∣∣ ∣∣ [ ]∣∣ ( )I t
1

2

1

2
. A20t S S t S Sext

1 2 1 2

Since  r Î ( )A A has unit trace normwehave

r r r r rF - = F - Ä∣∣ [ ]∣∣ ∣∣ [ ] ∣∣ ( ). A21t S S t S S A
1 2 1 2

Using the triangular inequality for the trace norm,

- -∣∣∣ ∣∣ ∣∣ ∣∣∣ ∣∣ ∣∣ ( )A B A B , A22

we obtain

 r r r r r r r r

r r r

L - - F - Ä = L - F Ä

- L - F Ä

( ) ∣∣ [ ] [ ] ∣∣ ∣∣( [ ] [ ] )

( [ ] [ ] )∣∣ ( )

I t
1

2

1

2
. A23

t S S t S S A t S t S A

t S t S A

ext
1 2 1 2 1 1

2 2

Employing the triangular inequality

- +∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ( )A B A B A24

wefinally get equation (22):

 r r r r r rL - F Ä + L - F Ä( ) ∣∣ [ ] [ ] ∣∣ ∣∣ [ ] [ ] ∣∣ ( )I t
1

2

1

2
. A25t S t S A t S t S Aext

1 1 2 2

A.5. Proof of equation (36)

Lemma. Suppose we have a bipartite Hilbert space ÄS A, a probability distribution { }qi , a collection of statistical

operators r{ }S
i onS, and a collection of orthogonal projections{Πi} onA, where i=1, 2,K, n. Then, for

composite states of the form

år r= Ä P ( )q A26SA
i

i S
i

i

the trace distance between the state and the product of its marginals obeys the bound

 år r r r rÄ
>

( ) ( ) ( )D q q D, 2 , , A27SA S A
i j

i j S
i

S
j
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which is saturated for the case n=2

r r r r rÄ =( ) ( ) ( )D q q D, 2 , . A28SA S A S S1 2
1 2

Proof.Orthogonality of the projections leads to the following identities

å å å

å å

å å

å å

å å

r r r r r

r r

r r

r r

r r

Ä = Ä P Ä P

= Ä P - Ä P

= - - Ä P

= - -

= -

¹

¹

¹

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

{( ) }

( )

( ) ( )

D D q q q

q q q

q q q

q q q

q q

, ,

1

2

1

2
1

1

2
1

1

2
. A29

SA S A
i

i S
i

i
j

j S
j

i
i i

i
i S

i
i

i j
j i S

j
i

i
i i S

i

j i
j S

j
i

i
i i S

i

j i
j S

j

i
i

j i
j S

i
S
j

,

For n=2 a single term remains andwe have the identity

r r r r rÄ =( ) ( ) ( )D q q D, 2 , , A30SA S A S S1 2
1 2

for the general case the triangular inequality implies

 år r r r rÄ
>

( ) ( ) ( )D q q D, 2 , , A31SA S A
i j

i j S
i

S
j

which proves the lemma.

Using equation (A30) for q1=q2=1/2we find

r r r r r r r r r rL F Ä + L F Ä = F F + F F( [ ] [ ] ) ( [ ] [ ] ) ( [ ] [ ]) ( [ ] [ ])

( )

( ) ( ) ( ) ( )D D D D, ,
1

2
,

1

2
, .

A32

t S t S A t S t S A t S t S t S t S
1 1 2 2 1 1 2 1 1 2 2 2

Because of the symmetric time evolution of rS
1 and rS

2 under F( )
t
1 and F( )

t
2 (seefigures 5 and 6)wehave

r r r rF F = F F( [ ] [ ]) ( [ ] [ ]) ( )( ) ( ) ( ) ( )D D, , A33t S t S t S t S
1 1 2 1 1 2 2 2

and thus

r r r r r r r rL F Ä + L F Ä = F F( [ ] [ ] ) ( [ ] [ ] ) ( [ ] [ ]) ( )( ) ( )D D D, , , . A34t S t S A t S t S A t S t S
1 1 2 2 1 1 2 1

The trace distance r rF F( [ ] [ ])( ) ( )D ,t S t S
1 1 2 1 is easily found to be given by the expression

r r pF F = -( [ ] [ ]) ∣ ( )∣ ( )( ) ( )D t, e sin 4 . A35t S t S
t1 1 2 1 3

Substituting this into equation (A34)we obtain equation (36).

Appendix B.Mixing quantumprocesses

For simplicity, the presentation has been restricted to themixing of two dynamicalmaps.Our results can easily
be generalized to an arbitrary number n of dynamicalmaps F( )

t
i , where i=1, 2,K, n. The convexmixture of

suchmaps is defined by

åF = F
=

( )( )q , B1t
i

n

i t
i

1

where qi is a probability distribution, i.e. q 0i and å =q 1i i . In order to construct the corresponding
microscopic representationwe take an ancillaAwith n-dimensionalHilbert spaceA. Introducing an
orthonormal basis ñ∣i in this spacewe define rank-one projection operatorsP = ñá∣ ∣i ii and afixed initial state of
the ancilla system
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år = P
=

( )q . B2A
i

n

i i
1

TheHamiltonian of the total system is taken to be

å= Ä P
=

( )H H , B3
i

n

i i
1

whereHidescribes the interactionof theopen systemSwith environmentEi. The timeevolutionoperator factorizes,

= - = - P
=

( ) ( ) ( )U Ht H texp i exp i , B4t
i

n

i i
1

because of dP P = Pi j ij i. Themap defined by

r r r r rL = Ä Ä¼Ä Ä[ ] [ ] ( )†U UTr ... Tr B5t S E E t S E E A tn n1 1

can thus bewritten as

år rL = F Ä P
=

[ ] [ ] ( )( )q . B6t S
i

n

i t
i

S i
1

Taking the partial trace over the ancilla degrees of freedomwefind

år r

r

r r r r

L = F

= F

= Ä ¼ Ä

=

[ ] [ ]

[ ]
[ ] ( )

( )

†

q

U U

Tr

Tr ... Tr Tr B7

A t S
i

n

i t
i

S

t S

E E A t S E E A t

1

n n1 1

which is the desiredmicroscopic representation of themixtureΦt analogous to equation (13).

AppendixC.Generalized non-Markovianity

In themain text we have used the concept of quantumnon-Markovianity based on the trace distance which
represents ameasure for the distinguishability of quantum states rS

1 and rS
2 preparedwith equal probabilities of

1/2. Recently, this concept of non-Markovianity has been extended to include the case that rS
1 and rS

2 are
preparedwith different probabilities p1 and p2 [4, 7]. It can be shown that by an optimal strategy Bob can now
distinguish the states with amaximal probability given by

= + F DF ( ) ( ∣∣ [ ]∣∣) ( )P t
1

2
1 , C1tmax

where

r rD = - ( )p p C2S S1
1

2
2

is theHelstrommatrix [31]. Consequently, the generalizedmeasure of non-Markovianity is defined bymeans of

 ò sF =
r s>

˜ ( ) ˜ ( ) ( )
˜

t tmax d , C3
p , 0i S

i

where

s º F D˜ ( ) ∣∣ [ ]∣∣ ( )t
t

d

d
. C4t

The discussion presented in themain text can be generalized straightforwardly to thismore general notion of
quantumnon-Markovianity. For example, it can be shown that equation (17) becomes

  L F + F˜ ( ) ˜ ( ) ˜ ( ) ( )( ) ( )q q , C51
1

2
2

while equation (22)now takes the form

 r r r r r rL - F Ä + L - F Ä( ) ∣∣ [ ] [ ] ∣∣ ∣∣ [ ] [ ] ∣∣ ( )I t p p , C6t S t S A t S t S Aext 1
1 1

2
2 2

where º L D - F D( ) ∣∣ [ ]∣∣ ∣∣ [ ]∣∣I t t text .
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