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Abstract: Two antithetic terms, hypoxia and hyperoxia, i.e., insufficient and excess oxygen availability
with respect to needs, are thought to trigger opposite responses in cells and tissues. This review aims
at summarizing the molecular and cellular mechanisms underlying hypoxia and hyperoxia in brain
and cerebral tissue, a context that may prove to be useful for characterizing not only several clinically
relevant aspects, but also aspects related to the evolution of oxygen transport and use by the tissues.
While the response to acute hypoxia/hyperoxia presumably recruits only a minor portion of the
potentially involved cell machinery, focusing into chronic conditions, instead, enables to take into
consideration a wider range of potential responses to oxygen-linked stress, spanning from metabolic
to genic. We will examine how various brain subsystems, including energetic metabolism, oxygen
sensing, recruitment of pro-survival pathways as protein kinase B (Akt), mitogen-activated protein
kinases (MAPK), neurotrophins (BDNF), erythropoietin (Epo) and its receptors (EpoR), neuroglobin
(Ngb), nitric oxide (NO), carbon monoxide (CO), deal with chronic hypoxia and hyperoxia to end-up
with the final outcomes, oxidative stress and brain damage. A more complex than expected pattern
results, which emphasizes the delicate balance between the severity of the stress imposed by hypoxia
and hyperoxia and the recruitment of molecular and cellular defense patterns. While for certain
functions the expectation that hypoxia and hyperoxia should cause opposite responses is actually
met, for others it is not, and both emerge as dangerous treatments.

Keywords: hypoxia; hyperoxia; chronic stress; cerebral tissue; signaling pathways; oxidative stress;
brain injury; oxygen sensing

1. Introduction

Hypoxia, or insufficient supply of oxygen (O2) with respect to the demand, represents a relevant
clinical and environment condition that afflicts millions of people worldwide and constitutes an
important source of social and economic distress. The burden imposed in 2010 in the US only by
chronic obstructive pulmonary disease, a single pathological situation that involves hypoxia, was
projected to be approximately US$49.9 billion [1], and cerebral palsy, caused by hypoxic-ischemic
encephalopathy, requires costs around US$9 million [2]. Patients suffering from hypoxia-linked
conditions are often treated by inhalation of hyperoxic or hyperbaric atmospheres, thereby potentially
establishing a reversed condition of excessive O2 supply with respect to demand, which may not
be free of deleterious effects [3,4]. Besides constituting a specific clinical entity, hyperoxia may also
represent a valuable experimental bench to test various hypotheses on the mechanism of action of
hypoxia. In theory, O2 shortage and O2 excess should have divergent effects, but if this pattern is not
observed, then it is likely that other stressors not directly linked to the lack/excess of O2 are involved,
leading to a condition where the responses to hypoxia and hyperoxia depart from divergence and may
even overlap. Thus, comparing the responses to hypoxia and hyperoxia may facilitate the identifying
of areas of research that clarify the role of O2 in various cellular and molecular mechanisms.
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The purpose of this review article is to assess the molecular and cellular responses to hypoxia and
hyperoxia in cerebral tissue, a reliable experimental model for several reasons. First, most the systemic
responses to stress converge into the defense of the brain function, which emphasizes that this function
is one of the most protected ones in the body. For example, the observations that cerebral blood flow
is not coupled to the metabolic rate for O2 in physiologically activated brain states [5] and that the
brain possesses efficient blood flow autoregulatory potential to preserve its oxygenation at varying
hematocrits [6] point to the paradigm that the evolution has placed the brain in a high-priority rank.
Second, the low regenerative potential of neurons enables apoptosis to emerge as reliable marker of brain
injury. Third, the high metabolic rate and the extensive recruitment of the oxidative metabolism as the
major source for biologic energy production, as well as the lack of O2 stores, force cerebral tissue to rely
entirely on continuous supply of O2 and on cerebral perfusion for its function [7]. Whenever the O2

availability is altered for any environmental or pathophysiological cause, the ensuing condition may surge
as a potentially harmful challenge for brain function, against which tissue must react in order to preserve
its viability. Whether the hypoxic challenge is well known to be deleterious for brain tissue from several
studies performed in vitro, in vivo and in humans (reviewed later in Section 12 Brain injury), it is still
controversial if hyperoxia may be considered dangerous, although the apparent trend is that hyperoxia
increases apoptosis [8], decreases neuroprotection [9], and favors the pro-oxidant state [10].

In addition to the hypoxia vs. hyperoxia comparison, the concept of chronic vs. acute stress
deserves further consideration. Indeed, although hypoxia represents a potentially lethal condition,
most mammal tissues have a considerable reserve that enables recruitment of defense mechanisms
to grant survival during acute episodes. But clearly, when sustained or chronic, hypoxia is predicted
to imply greater effort to balance its harmful effects through recruitment of gene- and protein-based
compensatory mechanisms. Here, we review the existing literature regarding the ability of brain to
adapt to chronic hypoxia and chronic hyperoxia with analysis of the metabolic and molecular changes.

In this article, we will focus primarily in published findings gathered in brain tissue, but the lack
of information may sometimes force the use of findings gathered in tissues other than brain, which will
be accurately identified for the sake of clarity. We apologize for neglecting many valuable contributions
in this expanding sector.

2. Metabolic Response

Any protective mechanism triggered by hypoxia or hyperoxia should in principle be centered in
the re-establishment of the altered O2 supply/O2 demand balance. In the case of hypoxia, this goal
can be exploited by decreasing the O2 demand, increasing the O2 supply, or a combination of both.
Some animals have the ability to reduce the O2 demand through a condition called hypometabolism,
but in the human brain this condition is associated with almost immediate insurgence of neurological
disorders. Alternatively, the O2 demand can be reduced by increasing the recruitment of anaerobic
mechanisms, but in the brain tissue the aerobic-to-anaerobic switch is of limited value because of its
reduced glycolytic capacity [11], which impairs this kind of defense. Indeed, O2 shortage is always
associated to early signs of failure represented by marked falls in pH and tissue creatine phosphate
levels [12], followed by nearly immediate dysfunction of Na+/K+ ATPase that finally leads to lethal
ion imbalance [13]. The poor brain plasticity in terms of metabolic adjustment and its inability to
improve the metabolic efficiency by switching to anaerobic energy-yielding pathways [7] lead to a
situation whereby the defense of the brain function against O2 shortage is exploited either through
triggering pro-survival pathways, or through improving brain oxygenation. It should, however, be
pointed out that, although the brain is thought to be an insulin-insensitive organ, several studies [14]
are introducing the concept that insulin may play important roles in the central nervous system too,
thereby yielding a new light to glucose-dependent responses to altered O2 supply/O2 demand balance.
At present, though, it is difficult to focus on insulin as an anti-hypoxia/hyperoxia molecule.

With the exception of early observations, namely that of exposing rats to FIO2 = 1.0
[For consistency, we express the degree of hypoxia/hyperoxia as the fraction of O2 in the various



Int. J. Mol. Sci. 2017, 18, 1914 3 of 24

experimental models (FIO2). This notation comprises the fraction of O2 in inspired air in the case of
in vivo studies, the O2 content in the atmosphere where cells are cultured in the case of in vitro studies,
etc. FIO2 values <0.21 and >0.21 refer to hypoxia and hyperoxia, respectively] under hyperbaric
conditions (2.5 atm) reduces the blood glucose level in rats [15], only a few studies have examined
the effects of hyperoxia on bioenergetics metabolism. The prevalent context of such studies is a
post-stroke situation where hyperoxia is used as part the therapeutic interventions aimed at salvaging
neurons at risk. For example, treatment of patients with acute brain injury by administrating gas
mixtures with FIO2 = 0.6–1.0 for 2 h improves the redox state, reduces the lactate/pyruvate ratio,
a surrogate measurement for mitochondrial O2 availability, thus highlighting that in this clinical
setting the neurologic dysfunction arises as a O2 diffusion failure [16]. Clearly, experimental studies
in post-stroke patients imply that the damage inferred by the preceding ischemic condition may
considerably complicate data interpretation, and some reports indeed emphasize variable effects of
hyperoxia on the tissue lactate/pyruvate ratio [17]. In a preliminary clinical trial aimed at assessing
whether a conservative protocol for O2 supplementation could improve outcomes in patients admitted
to intensive care units, the majority of whom, however, were affected by respiratory failure rather
than brain injury, resulted in lower mortality than in patients receiving the conventional hyperoxia
treatment [18], but further multi-center trials are needed to assess this critical issue.

Hyperoxia-induced hypocapnia, or reduced carbon dioxide in the blood, usually resulting
from hyperventilation, deserves attention as it might reduce organ blood flow paradoxically
inducing hypoxia [19]. This possibility raised debate. On one hand, it was hypothesized that the
hypocapnia-induced decrease in cerebral blood flow may offset any increase in blood O2 content and
reduce actual O2 delivery [20]. On the other hand, it was observed that the magnitude of the effects led
by hypocapnia may be of little clinical relevance [4]. How to calculate the changes in blood O2 amounts
that are involved during hypoxia and hyperoxia? When healthy subjects with arterial O2 saturation
in the 95–100% range breath an atmosphere containing FIO2 > 0.21, the amount of O2 physically
dissolved in blood plasma increases linearly with FIO2, yet the amount of O2 bound to hemoglobin (Hb)
does not vary considerably because Hb is already almost fully saturated with O2 (Figure 1). While at
PO2 = 100 mmHg, close to the normal value in arterial blood when breathing FIO2 = 0.21, the amount
of dissolved O2 is roughly 1.5% of the total blood O2 content, this amount raises to 9.5% when breathing
FIO2 = 1. Therefore, increasing FIO2 from 0.21 to 1 corresponds to a six-time increase in dissolved O2, to
be compared to a 13% increase in the total blood O2 content. It remains matter of investigation if the
capillary O2 delivery relies more on free dissolved O2 (i.e., the O2 partial pressure or PO2) or on total
blood O2 content (i.e., the product [Hb] × the fractional O2 saturation). Clearly, for being released to
tissues, O2 must first unbind from red cell Hb and then cross the red cell membrane. An attempt to
model this process on a theoretical basis has limited validity due to the large number of assumptions
needed, but the red cell membrane does not emerge as a competitive element of resistance in the favor
of factors as the Bohr effect and the O2 unloading characteristic of Hb [21].
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Figure 1. Oxygen content in arterial blood at varying PO2. The O2 content is calculated assuming a blood
hemoglobin (Hb) concentration of 16 g/dL, the O2 solubility coefficient of 0.0014 millimoles/L/mmHg [22]
and the Hb-O2 equilibrium curve in healthy humans [23].
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3. Oxygen Sensing

An essential step in the body’s response to environment and systemic changes, the sensing system
triggers selected molecular and cellular mechanisms aimed at survival in response to the detected
alteration. In the brain, the availability of mechanisms that rapidly detect the changes in O2 supply and
orchestrate the response is of crucial importance to preserve viability [24]. Brief hypoxia is sensed by
modulating a few reactions, primarily those catalyzed by NADPH oxidase, nitric oxide (NO) synthases
(NOS) and heme oxygenase (HO):

NADPH + 2 O2 ↔ NADP+ + 2 O2
− + H+ (1)

2 L-arginine + 3 NAD(P)H + 3 H+ + 4 O2 ↔ 2 L-citrulline + 2 NO + 3 NAD(P)+ + 4 H2O (2)

Heme++ + 3 O2 + 4 NADPH + 4 H+ ↔ biliverdin + Fe++ + CO + 4 NADP+ + 3 H2O (3)

In these reactions, molecular O2 appears as one of the reactants, and at least one of the products
has a second messenger function: the superoxide anion, which rapidly converts into toxic reactive
O2 species (ROS) that also serve as messengers for a variety of functions, NO and carbon monoxide
(CO), respectively. However, these quickly activated systems presumably become insufficient to grant
survival for long-term or severe hypoxia, and are overruled by other more persisting transcriptional
systems such as those orchestrated by the hypoxia-inducible transcription factors (HIFs). HIFs’
are probably the most important transcription factors that mediate the hypoxic signaling, because
they regulate the expression of genes that mediate adaptation to low O2 as, for example, the genes
that form part of the neuroprotective response by enabling cells to activate erythropoiesis, growth
and proliferation.

HIFs are heterodimers formed by an α-subunit (HIF-α) and a β-subunit (HIF-β) [25]. Although
required for the hypoxic response, the β-subunit, constitutively expressed in all cells and also known
as aryl hydrocarbon receptor nuclear translocator (ARNT), is not affected by O2. By contrast, the
expression of the α-subunit is directly regulated by the O2 level. Under normal O2 conditions
corresponding to breathing gas mixtures with FIO2 = 0.21, the proline residues in the HIF
molecule are hydroxylated by prolyl-hydroxylases (PHD), which request O2 and 2-oxoglutarate
as substrates [26–28]:

L-proline + 2-oxoglutarate + O2 ↔ hydroxyproline + succinate + CO2 (4)

When the proline residues are hydroxylated, the HIF α-subunit interacts with the von
Hippel-Lindau protein tumor suppressor protein (pVHL) forming a complex that binds ubiquitin
ligase and is targeted for degradation by the proteasome [29]. By contrast, low O2 levels reduce the
activity of PHDs with consequent low hydroxylation of the proline residues and stabilization of the HIF
α-subunit, which translocates into the nucleus, forms a dimer with the β-subunit and, after recruiting
transcriptional coactivators, binds the hypoxia responsive element located in the target genes [30,31].
Remarkably, though, not only are the proline residues the HIF α-subunits hydroxylated as in reaction 4,
but the asparagine residues also undergo a similar reaction catalyzed by asparaginyl hydroxylase [32]:

L-asparagine + 2-oxoglutarate + O2 ↔ hydroxyasparagine + succinate + CO2 (5)

At odds with PHDs, the hydroxylation of an asparagine residue in the HIF α-subunits abrogates
its interaction with the ubiquitin system, preventing transcriptional activation, and is therefore labeled
as factor inhibiting HIF (FIH) [33]. Currently, three isoforms of α-subunit are known.

1. HIF-1α, discovered in liver tissue and described as a hypoxia-inducible nuclear factor able
to bind the erythropoietin (Epo) gene [34]. HIF-1α regulates more than 2% of the genes in
human vascular endothelial cells [35] and is today recognized as regulator of the vast majority of
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hypoxia-inducible genes responsible for the cell adaptation to hypoxia, including angiogenesis,
anaerobic metabolism, mitochondrial biogenesis and others. The Michaelis-Menten (Km) value
for O2 in the PHD reaction lies in the range 40–150 mmHg [36], which is above normal PO2 in
most organs. This implies not only that HIF-1α becomes activated even during normoxia, but
also that HIF-1α becomes stabilized almost linearly in a wide FIO2 range that includes moderate
hyperoxia. Thus, breathing normoxic (FIO2 = 0.21) atmospheres may induce some response in
terms of HIF-1α, which in brain is expressed principally in neurons, astrocytes, ependymal cells
and endothelial cells [37]. Chronic hypoxia (FIO2 = 0.1 for 15 days) has the capacity to overexpress
brain HIF-1α by at least 10 times with respect to normoxia, comparable to the overexpression
observed in the muscle and kidney cortex, and much higher than that observed in the heart, liver
and kidney medulla [38]. Later, we will review how hyperoxia has positive counterintuitive
effects on the accumulation of HIF-1α.

2. HIF-2α, also known as EPAS-1 (endothelial PAS domain protein 1), is principally expressed
in endothelial cells [39], including brain capillary endothelial cells [40] and, under hypoxia
induction, also in brain, heart, lung, kidney, liver, pancreas, and intestine [41]. HIF-2α, which
shares 48% sequence homology with HIF-1α [39], regulates less genes than HIF-1α, yet playing
a more important role in liver [42] and renal [43] erythropoiesis. While HIF-1α appears to be
the isoform more expressed under short periods of intense hypoxia, HIF-2α is active during
prolonged mild hypoxia [44]. In support of this view, the ability of the Tibetan population to
adapt to high altitude is related to a mutation of the gene encoding HIF-2α [45]. In addition, the
expression of Epo, a neuroprotective substance discussed below, is more dependent on HIF-2α
than HIF-1α [46,47].

3. HIF-3α [48] is expressed in the cerebellum Purkinje cells and in the eye corneal epithelium [49].
Its role, less clear than that of HIF-1α and HIF-2α, appears to linked to that of the inhibitory PAS
protein [50].

Despite their name, and the relationship with the Km of PHD outlined above, HIF’s accumulate
not only during hypoxia, but also during hyperoxia. In rats exposed to FIO2 = 0.5 for 3 weeks,
both HIF-1α and HIF-2α accumulate in the brain during the first week of exposure, followed by a
progressive decline [51]. In mice exposed to FIO2 = 0.3 for 28 days, neurons display marked increase
of nuclear HIF-2α, unrelated to oxidative stress [9]. These findings in brain tissue are indirectly
confirmed in other organs and tissues as growing prostate cancer [52], newborn rats hepatocytes
and liver hemopoietic cells [53] as well as myocardium [54]. The reasons for the HIF’s sensitivity
to hyperoxia are not yet clear. The observation that the increase in HIF proteins is not related with
HIF mRNA, but rather to the decreased expression of PHD-2, the major isoform that controls the
hydroxylation of HIF-1α and HIF-2α, indicates that HIF’s overexpression during hyperoxia is not
linked with increased protein synthesis but rather to diminished degradation [51]. As the Km value
for O2 in the PHD reaction is in the 40–150 mmHg range [36], a direct proportionality is expected
between O2 supply and the activity of PHDs, which translates into faster HIF’s degradation. Yet,
the apparent rate of HIF targeting to the ubiquitination pathways may not be the central feature for
HIF accumulation in the cell. Many reports show that the increase in HIF may be associated with
ROS production at complex III of the mitochondrial respiratory chain, that inhibits PHD-2 [55,56].
However, it was also observed that long-term breathing FIO2 = 0.3 causes less oxidative stress than
breathing FIO2 = 0.1, yet the level of HIF-2α is similar in the two situations [9]. Therefore, more
work is needed to elucidate this critical aspect, and the recent finding of a molecular mechanism for
HIF-1α activation that is alternative to hydroxylation and rather depends on the cyclic adenosine mono
phosphate-protein kinase A (cAMP-PKA) pathway, could provide an explanation for this apparently
contradictory behavior [57].

The hyperoxia-dependent increase of the HIF machinery was indirectly confirmed in experiments
performed in hemorrhaged rats that were exchange-transfused with a solution containing Hb molecules
engineered in order to favor persistence in the vascular bed [58] and reduced reactivity toward NO [59].
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The increase in the blood O2 capacity by 25–30% with respect to the control condition (hemorrhaged
rats transfused with a non-O2 carrying solution), doubled both the brain level of HIF-1α and the
number of neurons over-expressing HIF-1α in a setting where Hb-related toxicity was reduced to a
minimum [58]. Interestingly, the use of an Hb solution with higher oxidant power nearly blunted the
number of neurons over-expressing HIF-1α, indicating that the main controller of HIF-1α expression
in hyperoxia may not be simply referred to a post-translational hypoxia-driven effect, but rather to a
complex interaction of various players that is to be worked out.

4. Protein Kinase B

The PI3K-Akt signaling pathway plays a pivotal role to promote survival in a wide range
of neuronal cell types [60]. The signaling driven by Akt, also known as protein kinase B, a
serine/threonine kinase [61,62], is involved in a variety of neuronal protective mechanisms, including
those mediated by the nerve growth factor [63], the insulin-like growth factor I [64], adenosine [65] and
renin inhibitors [66]. The PI3K-Akt pathway is activated in human primary astrocytes cultured at FIO2

= 0.01 for 24 h to increase both the expression level of Akt and its phosphorylation [67]. In the in vivo
brain, chronic hypoxia (FIO2 = 0.1 for 28 days) represents a stressor able to induce phosphorylation,
hence activation, of Akt [9].

The main mechanism by which Akt prevents cell death is through the preservation of the
mitochondrial membrane integrity and the prevention of cytochrome c release from mitochondria [68].
Hypoxia-induced neuroprotection in cerebellar neurons cultured at FIO2 = 0.05 for 9 h indeed requires
Akt phosphorylation for its exploitation [69]. In human cerebral endothelial cells, a more complex
mechanism occurs that involves the phosphorylation and activation of the anti-apoptotic factor
survivin, via a PI3K/Akt-dependent process that reduces the cleavage of PARP-1, a substrate of
caspase, and hence attenuates caspase activation [70]. Akt phosphorylation is also involved in the
mechanism underlying the protection against anoxic neuronal death exploited by nicotinamide, which
activates the Akt-dependent phosphorylation of Bad, thereby preventing the increase in mitochondrial
permeability and the subsequent cytochrome c release [71].

A few investigations have shown that hyperoxia is associated with the reversed effect, i.e.,
decreases Akt expression and/or phosphorylation. For example, in rat pups breathing FIO2 = 0.4–0.8,
p-Akt decreases progressively with time until t = 12 h, followed by a partial return to baseline value
in the following 12 h [72]. The decrease in p-Akt was also observed in mice brains upon exposure
to FIO2 = 0.3 for 28 days [9]. As a whole, these observations suggest that the p-Akt signaling is
O2-dependent, i.e., it increases in hypoxia while it decreases in hyperoxia.

5. Mitogen-Activated Protein Kinases

In addition to the PI3K-Akt signaling pathway, another crucial survival pathway involved in
neuroprotection against a variety of stressors such as hypoxia, anoxia and the oxidative stress, is the
mitogen-activated protein kinases (MAPKs), a family of serine/threonine kinases that comprises the
extracellular signal-regulated kinases (ERK1/2), associated with survival as shown in suprachiasmatic
nucleus cells challenged with excess glutamate [73], and the stress-activated protein kinases JNK and
p38, implicated in cell death [74]. In cortical neuron cells challenged with anoxia for 24 h, the ERK
signaling and its upstream MAPK/extracellular signal-regulated kinase (MEK) confers protection via
phosphorylation/inactivation of Bad, a member of the pro-apoptotic mechanism [75]. The MAPK
pathway is also required to activate the brain-derived neurotrophic factor (BDNF) [76], which displays
relevant neuroprotective functions (see below). With the exception of a study in rat pups breathing
FIO2 = 0.4–0.8, where p-ERK1/2 decreases with time until t = 12 h followed by full recovery in the
following 12 h [72], no other studies, to our knowledge, have examined the effects of hyperoxia on
the MAPK signaling pathways. In a model constituted by lung epithelial cells, it was found that
FIO2 = 0.95 upregulates JNK and p38 thereby inducing oncosis rather than apoptosis, two processes
with similar upstream but divergent downstream events that may finally lead to hyperoxia-induced
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inflammatory lung injury [77]. Furthermore, FIO2 = 0.95 increases JNK and ERK1/2 activation in mice
lungs contributing to ventilator-induced lung injury, indicating that hyperoxia favors apoptotic cell
death through activation of the JNK and ERK1/2 pathways [78].

6. Brain-Derived Neurotrophic Factor

Neurotrophins, a family of growth factors essential for neuron development, differentiation,
maturation and survival, have the ability to rescue cerebellar granule neurons from oxidative
stress-mediated apoptotic death through recruitment of the PI3K-Akt and the MAPK pathways [79].
Among neurotrophins, the brain-derived neurotrophic factor (BDNF) plays an important role in
neurogenesis and synaptic transmission [80] by binding to TrkB and p75 receptors, both expressed in
brain [81]. BDNF protects cultured cortical neurons against hypoxia via activation of the ERK1/2 and
PI3K-Akt, but not the p38 pathways [82]. Negatively affected by pathological cognitive decline, BDNF
has been proposed as a molecular marker of neuroplasticity [83]. In addition, BDNF, together with the
calcium-binding protein B (S100B), is linked to the psychological and cognitive impairment common
in long-term (1–5 years) migrators to 4500 m altitude (FIO2 = 0.12 approximately) [84], despite possible
partial adaptation to altitude.

By contrast with hypoxia, acute (6 h) hyperoxia in the infant rat brain markedly down-regulates
BDNF, as well as neurotrophins 3 and 4, followed by near complete recovery in the subsequent 15–20 h,
thereby contributing to hyperoxia-linked apoptotic neurodegeneration [72]. A similar outcome was
observed in the carotid body of neonatal rats treated with FIO2 = 0.6 from 24–36 h prior to birth until 3
day of age: the BDNF protein, but not its mRNA level, reduced by 70%, potentially contributing to
carotid body hypoplasia [85]. The reported observations thus suggest that BDNF is O2-dependent
similarly to Akt and MAPK, i.e., it increases in hypoxia while decreasing in hyperoxia.

7. Erythropoietin

Erythropoietin (Epo), commonly known as a pleiotropic cytokine produced in the kidney [86],
is responsible for erythropoiesis through interaction with the Epo receptor (EpoR) of erythroid
progenitors [87]. Epo is also produced in brain astrocytes and neurons [88] and EpoR is expressed in the
brain [89]. Epo-EpoR binding, localized in several areas of the brain [90], was found to be upregulated
under hypoxic conditions [91]. Indeed, HIF-1α binds to the Epo enhancer sequence in response to
reduced O2 supply [92], suggesting the contribution of the Epo-EpoR system to neuroprotection
against hypoxia [93], ischemia [94] and hypoxia/reoxygenation injury [95]. The mechanism
underlying Epo-induced neuroprotection involves the prevention of DNA fragmentation through
direct modulation of Akt phosphorylation, which results into reduced mitochondrial membrane
depolarization and reduced cytochrome c release [96]. Up-regulation of the Epo-EpoR system in human
ischemic/hypoxic brains further suggests a key role of this system for endogenous neuroprotection [97],
as confirmed by independent studies performed in primary cultures of rat hippocampal neurons,
which also show a link with the BDNF response [98], as well as in a model of carotid clamping where
the Epo increase in the jugular vein blood is viewed as an endogenous protection mechanism aimed
at limiting the ischemia/reperfusion damage [99]. Epo therapy is presently under consideration to
improve neuroprotection against hypoxia/ischemia especially in pre-term babies [100]. In a mice pup
model (FIO2 = 0.1), treatment with human recombinant Epo rescues hypoxia-induced decrease in
hippocampal neurogenesis and oligodendrocyte progenitor populations, thereby providing clues for
Epo-based therapy in pediatric chronic hypoxia [101]. Furthermore, Epo therapy markedly improves
neurologic outcomes in newborns affected with hypoxic-ischemic encephalopathy [102]. To prevent
excessive erythropoiesis, an Epo derivative devoid of erythropoietic activity, e.g., carbamylated Epo,
was found to represent a pharmacological tool to protect brain in mice exposed to FIO2 = 0.1 for
15 days [103]. Interestingly, Epo is able to increase NO production by human umbilical vein endothelial
cells (HUVEC) cultured at FIO2 = 0.02 through activation of eNOS thereby potentially improving
vascular NO availability [104].
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The effect of hyperoxia on brain Epo production was examined in two studies with controversial
outcomes. While FIO2 = 0.5 for 3 weeks up-regulates Epo expression in mouse brain consequently to
increased HIF-2α [51], FIO2 = 0.3 for 4 week is unable to elevate Epo expression, but nevertheless it
increases the expression of EpoR [9]. As the Epo-EpoR system requires the simultaneous presence
of both Epo and EpoR for exploiting neuroprotection, it remains matter of investigation whether the
recruitment of this system depends directly on O2 availability or other components may eventually
come into play.

8. Neuroglobin

A vertebrate globin with high affinity for O2 [105], namely neuroglobin (Ngb), is expressed in
the neurons of the cerebral cortical regions, as well as in subcortical structures such as thalamus
and hypothalamus, nuclei of cranial nerves in the brainstem and cerebellum [106]. Induced by
hypoxia and ischemia, Ngb is believed to protect neurons from hypoxic and ischemic cell death.
Inhibiting its expression in cortical neuron cultures with an antisense oligodeoxynucleotide reduces
neuronal survival, whereas its overexpression provides protection against hypoxia [107]. However,
as a matter of facts, although Ngb mRNA expression is significantly enhanced in cultured neuronal
cell lines cultured at FIO2 = 0.01 or less for 24 h, its expression failed to increase in in vivo rat
brains after transient global ischemia [108]. Likewise, although Ngb expression occurs in focal
regions of the brain of the normoxic adult mouse, no significant changes are observed in response
to FIO2 = 0.1 for 2 weeks [109]. It was suggested [108] that these considerations do not contradict
the paradigm that Ngb is still neuroprotective in vivo by controlling O2 distribution in the cell,
perhaps in concert with ROS detoxification, but the exact role of Ngb in the response to hypoxia
deserves further investigation. However, it has been shown that Ngb mediates the hypoxia-driven
neuroprotective mechanisms via HIF-1α overexpression [110] and blunts the oxidative stress in
cultured mouse cortical neurons exposed to hypoxia/reoxygenation [111] and in Ngb-transgenic mice
exposed to ischemia/reperfusion [112]. As it binds to excess neurotoxic NO [113] and attenuates
ROS/RNS accumulation and lipid peroxidation in PC12 cells treated with H2O2 [114], Ngb may
be considered a powerful anti-oxidant molecule. Ngb is also under consideration as a target for
endogenous neuroprotection against stroke and neurodegenerative disorders [115]. Being a heme
protein, the redox state of Ngb might have relevant effects on downstream functions. Severe in vivo
hypoxia (FIO2 = 0.078 for 7 days), in facts, results into oxidation and degradation of Ngb, with marked
reflections on HIF-1α and the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) stabilization as well as
cytochrome c release, whose outcomes include Ngb-mediated triggering of neuronal apoptosis and
blunting of survival pathways [110].

As to our knowledge no data is available on the effect of hyperoxia on Ngb, further investigation
into the neuroprotective role of this molecule in response to hypoxia and hyperoxia is still needed.

9. Nitric Oxide

Well-known as a master regulator of the vascular tone and blood pressure, this endothelial-derived
relaxing factor improves the O2 delivery to cells by increasing the cerebral blood flow in the
microvasculature in several pathophysiological contexts, including acute and chronic hypoxia.
The formation of NO (reaction 2) is catalyzed by a family of nitric oxide synthases (NOS), which
is composed by at least three isoforms, with different intracellular localizations that reflect various
functions of NO.

1. nNOS (NOS1), constitutively expressed in the neuronal cells of the central and peripheral nervous
systems, drives the formation of NO that acts as neurotransmitter, enhancer of neuronal synaptic
activity, memory, release of other neurotransmitters and prevention of apoptosis [116].

2. iNOS (NOS2), expressed in glial cells, astrocytes, microglia and oligodendrocytes drives the
formation of NO that acts in response to inflammation and cytokines.
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3. eNOS (NOS3), expressed in the vascular endothelium drives the formation of NO that regulates
brain circulation, and is also found in neurons and astrocytes as well [117,118].

NO plays a crucial role during chronic hypoxia. Tibetan highlanders dwelling at FIO2 = 0.12
display higher exhaled NO [119] and higher blood concentration of the NO metabolites, nitrates
and nitrites [120], than sea-level dwellers. The mutation in the HIF-2α gene, critically linked to the
capacity of Tibetans to adapt to high altitude [121], has been postulated to increase NOS activity
and/or steady-state levels of NO signaling molecules such as nitrosothiols [122]. In addition to
these key observations, several clues converge in depicting tight regulation of NOS iso-enzymes by
hypoxia in the brain. The eNOS-driven signaling path plays a neuroprotective role by preserving the
cerebral blood flow and supporting the vessel autoregulation process [123]. Furthermore, eNOS-driven
NO protects neurons by triggering several alternative protective mechanisms that include: (a) the
regulation of BDNF expression [124,125]; (b) the stabilization of HIFs [126], key to the initiation of the
response to mild hypoxia [127]; (c) the S-nitrosylation of the HIF, PHD and pVHL proteins [128]; (d) the
inhibition of the activity of PHD by interacting with the iron-binding process, thereby blocking HIF-1α
degradation [129]; (e) the interaction with MAPK and PI3K signaling [130]; (f) the up-regulation
of EpoR expression contributing to the Epo-mediated neuroprotection, as observed in cultured
neurons [131]. When produced beyond critical levels, especially from hyperactivity of nNOS and
iNOS, however, NO becomes neurotoxic because, being a free radical, damages proteins, impairing
the mitochondrial function and inducing apoptosis [132].

The Km value for O2 of the overall NOS activity in brain, 17 mmHg [133], indicates that the NO
production rate is dynamically linked to FIO2. Therefore, breathing atmospheres with FIO2 > 0.21 is
expected to increase NO production due to the mass-action law. Indeed, increased NO production
represents the rationale underlying hyperbaric O2 therapy for wound healing [134]. Furthermore, the
Km value for O2 of the nNOS isoform (158 mmHg [135]) suggests that NO production by nNOS would
increase in hyperoxia. In support of this, hippocampal and striatal dialysates of rats treated for 2 h
with FIO2 = 1 at 3 atm show marked increase in the nitrite/nitrate level that is blocked by the NOS
competitive inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) [135]. Increased NO production
in acute hyperoxia may be viewed as a protective response because it balances the O2-induced
vasoconstriction. In fact, phosphodiesterase-5 blockers oppose normo- and hyperbaric hyperoxic
vasoconstriction and accelerates seizure development, side effect of O2 toxicity on the central nervous
system [136]. However, additional factors complicate the relationship of NO with hyperoxia. First,
hyperoxia regulates the expression of NOS isoforms. In two independent studies conducted on
immature rat pups, FIO2 = 0.8 for either 6 h or 6 days up-regulates iNOS mRNA in certain brain regions
causing cell damage via nitrating agents overproduction [137,138]. Second, hyperoxia inactivates NO
through excess release of superoxide anions suppressing the basal vasorelaxing action of NO and
leading to marked vasoconstriction in the brain capillary network [139]. Another consequence of
the reaction of NO with superoxide anions is the formation of peroxynitrite (ONOO−), a destructive
radical capable of nitrating tyrosine residues in many proteins to form nitrotyrosine adducts, which
therefore may become reliable markers of cell damage, because its level is inversely proportional to
neuroprotection [140]. While hypoxia, or neonatal asphyxia, upregulates nitrotyrosine formation [141],
the effect led by hyperoxia is not as clear. On one hand, immature rat pups exposed to FIO2 = 0.8 for 6 h
display higher nitrotyrosine staining in the apical dendrites of neurons [137] (but the PO2-dependent
proteins nitration appears to be controlled consistently by NO concentration [142]). On the other hand,
human microvascular endothelial cells cultured at FIO2 = 0.95 for 72 h do not show appreciable
changes in neither the nitrotyrosine levels nor the eNOS mRNA and protein expression levels,
regardless of PO2 [143]. Observations gathered in rats exposed to 2.8 atm show that the augmented NO
synthesis is associated with increased nNOS activation, Hsp90 and intracellular calcium entry [144].
Another study shows that acute hyperbaric oxygenation (5 atm) suppresses cerebral vessel vasodilation
through inactivation of eNOS by superoxide anions, whereas late effects depend upon both eNOS and
nNOS [145]. It should be pointed out that most of these studies concerned rather extreme situations,
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and inhalation of NO at low doses (5 ppm) is instead neuroprotective in rat pups exposed to hyperoxia
(FIO2 = 0.8 for 8 days), because NO upregulates BDNF, thereby decreasing white matter inflammation
and cell death [146]. NO was also found to counteract the hyperoxia-induced proliferation and
pro-inflammatory responses of mouse astrocytes through inhibition of the activity of cycloxygenase-2
and prostaglandin E2 [147].

10. Carbon Monoxide

Recognized mainly as a toxic molecule because it binds to hemeproteins with an affinity greater
than that of O2, carbon monoxide (CO) is considered deleterious for brain function [148]. But when
the partial pressure of CO (pCO) is below a threshold level, CO has an important role in the activation
of the carotid bodies [149] and in triggering neuroprotection [150]. More specifically, whereas free
plasma CO contributes to pCO and is dangerous, the toxic effects of the same amount of CO is
attenuated, if not suppressed, when CO is bound to Hb [151]. This pioneer observation reinforces the
consideration of CO as a small gaseous molecule with a potential number of remarkable protective
effects [152]. This vision led to the development of engineered CO-releasing molecules or CORM with
anti-inflammatory, anti-apoptotic and vasodilatory mechanisms [153–155]. The same goal of delivering
minute amounts of CO in the circulation is exploited also by infusing Hb molecules bound to CO
(CO-Hb), with marked cardioprotective features [156].

A physiological amount of CO-Hb, which occurs in the blood of non-smoker healthy subjects,
is a fundamental messenger needed for normal brain function [154]. The small increase in CO-Hb
consequent to the inhalation of atmospheres containing 125–250 ppm CO protects the brain from the
injury derived from 90-min transient focal ischemia followed by 48 h reperfusion [154]. Likewise,
transfusion of CO-Hb is beneficial during transient focal cerebral ischemia [157]. Endogenous CO is
produced in reaction [3] catalyzed by heme oxygenases (HO), a family of iso-enzymes that convert
heme to biliverdin using O2 and NADPH as substrates. Three different isoforms of HO are expressed
in brain:

1. HO-1, inducible by oxidative stress, hypoxia, heavy metals, cytokines, which is expressed
constitutively only in few cerebral cell types [158,159] but nevertheless confers substantial
protection via Nrf2-mediated transcriptional control of protective factors [160].

2. HO-2, expressed constitutively in brain, whose expression is much higher than that of HO-1 and
HO-3, and covers nearly the entirety of the brain HO activity and CO production [161]. HO-2
expression is up-regulated in the hypoxic and ischemic brain, with increased CO production and
consequent neuroprotection [162,163].

3. HO-3, a poorly known isoform that shares high homology with HO-2 at the nucleotide (88%) and
protein (81%) levels, seems be a non-functional isoform as the HO-3a and HO-3b genes have the
characteristics of pseudogenes derived from HO-2 transcripts [164].

The beneficial effect of CO has been associated to the overexpression of the Nrf2 transcription
factor responsible for up-regulating HO-1 [150] as well as to the positive effect of Bcl-2 on mitochondrial
oxidative metabolism to enhance cytoprotection against apoptosis in astrocytes [165,166]. The very
high affinity for O2 of HO-1 and HO-2 [167] and the apparent Km value of 5 mmHg [168] suggest that
O2 determines HO activity only at PO2 values < 10 mmHg, i.e., very severe hypoxia. Unlike NOS,
which has a Km for O2 of 17 mmHg (see above), endogenous CO production by HO can thus occur in
moderate hypoxia, thereby suggesting a potential role for CO as a vasodilator during tissue hypoxia,
and lack of significant effects led by hyperoxia.

At present, little data univocally support a role of CO in hyperoxia, but the competition of O2

with CO for the same binding site in the heme proteins indicates a potential relationship between
O2 and CO. On one hand, this leads to the employment of hyperbaric O2 as elective therapy for CO
poisoning [169], because the restoration of cerebral energy metabolism may become an important
factor for brain activity recovery [170]. On the other hand, the inverse correlation expected between O2
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and CO, e.g., the Warburg hypothesis, was not confirmed on an experimental ground, possibly because
of a complex relationship between heme release and the stimulation of endogenous CO production by
HO [171].

11. Oxidative Stress

An expression that describes the outcome of excessive oxidative challenge with respect to
antioxidant defenses, the oxidative stress results from enzymatic or non-enzymatic transfer of a
single electron to the O2 molecule to form the superoxide anion, which rapidly dismutes to form
ROS. Although many enzyme-catalyzed biological reactions may be involved, the mitochondrial
electron transport chain is considered the main site of superoxide formation as it contains several redox
centers that leak electrons to O2, thereby constituting the major source of ROS in most tissues [55,172].
Hypoxia is known to cause ROS formation through mitochondrial uncoupling [173]. The crosstalk
between mitochondria and plasma membrane NADPH oxidase [174] engages NADPH oxidase as an
additional relevant source of ROS [175] and a target for several neurodegenerative disorders [176].
Neurons are highly vulnerable to the ROS deleterious effects [51,177]. Because the rate of superoxide
anion formation is primarily controlled by O2 availability as for the mass-action law, it is expected that
hyperoxia eventually leads to higher ROS formation than hypoxia just for this cause [178]. FIO2 = 0.95
for 3 h indeed stimulates superoxide anion and NO production in the caudal solitary complex of
rat brain slices [179]. Early observations showed that FIO2 = 1.0 for up to 48 h causes significant
pro-oxidant damage in rat brain [180]. Additionally, FIO2 = 1.0 for 60 h causes significant oxidative
stress damage in guinea pig brain mitochondria with lipid peroxidation and protein modification, that
was associated to insufficient increase in antioxidant superoxide dismutase activity [10]. Consistent
divergence exists, however, as for the response of cells and organs to less extreme hyperoxic conditions,
which led to the hypothesis that the localization of anti-oxidant systems and the activity of the
various isoforms of superoxide dismutase may control differently the upregulation of pro-survival
pathways [181]. In chronic conditions, the changes in antioxidant defenses are expected to become
critical. Besides their toxic effects, ROS often have second messenger actions by up-regulating the
expression or activating of protective genes or proteins in a feedback loop where ROS fuel the defense
mechanisms against ROS themselves. However, the timing of this loop may vary considerably, leading
to considerable literature controversy, and many studies failed in documenting a ROS-driven damage
in short-term hyperoxia [182,183]. When moderate hypoxia (FIO2 = 0.1) and hyperoxia (FIO2 = 0.3)
are applied for the same time duration in the same type of mice, they induce comparable neuronal
apoptosis [9]. Although hypoxia increases ROS by a greater extent than hyperoxia, concomitantly
hypoxia also increases the antioxidant defenses a greater extent than hyperoxia. The overall result is
that the outcome in terms of neuronal apoptosis is comparable in the two conditions (Figure 2).

An additional important role may be attributed to glutathione, a tripeptide thiol with many
physiological functions including defense and detoxification against ROS. The ratio between the
oxidized (GSSG) and the reduced (GSH) form reflects the cell redox status [184]. The high vulnerability
of neurons to ROS is also linked to the rather low activity of glutathione peroxidase at least with respect
to other districts of the brain [185]. Both hypoxia and hyperoxia impair the defense constituted by
glutathione. On one hand, FIO2 = 0.07 for 6 h reduces GSH and glutathione peroxidase activity in brain
extracts [186]. On the other hand, the abnormally high GSSG/GSH ratio in weaning rat pups exposed
to hyperoxia was associated with cell death [72]. Furthermore, studies performed at FIO2 = 0.95 for
5 days in weaning rats treated with a glutathione synthesis inhibitor showed a direct link between the
reduced antioxidant defense of glutathione and the hyperoxia-induced pro-apoptotic changes [187].
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Figure 2. Balance between harmful oxidative stress (Ox stress, right box) and protective antioxidant
defense (left box). With respect to a normoxic condition, moderate chronic hypoxia increases oxidative
stress to a greater extent than moderate chronic hyperoxia, as indicated by different grey intensities.
But it also increases the protective antioxidant defense to a greater extent than moderate hyperoxia
(see the behavior of the various markers). The overall result is that both hypoxia and hyperoxia lead
to an imbalance of the equilibrium between reactive O2 species (ROS) generation and the anti-ROS
defense, which finally cause neuronal apoptosis and damage. Downward arrows, upward arrows and
question marks mean decrease, increase and unclear effect, respectively.

12. Brain Injury

Whenever the defense mechanisms become exhausted for too severe/prolonged hypoxia/hyperoxia,
or the collapse of the physiological reserve, tissue injury ensues with consequent neuronal damage. Due to
their low regenerative potential, neuron apoptosis surges as a reliable marker of brain injury, with or
without associated changes in HIF-1α [38]. Chronic hypoxia is well known to impair neuron apoptosis
and damage, and a few underlying putative mechanisms have been worked out, including the depression
of the NO/cGMP pathway with associated increase in p-ERK1/2 and p-p38 [188], morphological changes
in hippocampal rat neurons and cell degeneration and death [189], p-Akt, NADPH oxidase subunit 4,
and Nrf2 [9], synaptic connectivity [190], and others. In addition, in human models, brain injury can be
assessed by investigating cognitive impairment. Although BDNF may represent a reliable plasma marker
of brain damage [84], few human studies have been performed using this biomarker.

Brain injury in hyperoxia has not yet been as studied. FIO2 = 0.5 for 21 days reduces
the expression of angiogenic vascular endothelial growth factor (VEGF) signaling and capillary
density [51]. Unfortunately, brain damage data are lacking in this study, but neuroprotective EPO
signaling is augmented in parallel with HIF-1α and HIF-2α, suggesting that brain microvascular
density is controlled by HIF-independent mechanisms and is continuously adjusted by tissue O2

availability [51]. However, a study conducted in newborn piglets exposed to FIO2 = 1.0 for 1 h
showed increased expression of the pro-apoptotic proteins Bax and Bad and reduced activation of
anti-apoptotic proteins Bcl-2 and Bcl-xl, as mechanisms underlying the loss of anti-apoptotic defense
in hyperoxia [8]. FIO2 = 0.3 for 28 days in mice increases neuronal apoptosis concomitantly with
decreased protective p-Akt and EPO signaling [9]. Exposing pigs to FIO2 = 1.0 for 60 h resulted in
accumulation of oxidized lipids and proteins and in stimulation of superoxide dismutase activity in
brain mitochondria, suggesting that hyperoxia increases the anti-oxidant defense [10]. In rats pups
exposed to FIO2 = 0.6–0.8 for 24 h, excess O2 is a potent trigger for apoptotic neuronal death in the
developing brain, caused by oxidative stress and down-regulation of neurotrophins that provide tropic
support to developing neurons, along two distinct mechanisms: (1) impairment of the antioxidant
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protection system (as from the increased GSSG/GSH ratio) and ROS production which leads to
DNA damage, mitochondrial membranes damage and release of cytochrome C into cytoplasm;
(2) gene expression changes and decrease of phosphorylation of pro-survival pAKT and pERK1/2 [72].
Ferroptosis, a newly discovered iron-dependent form of cell death that differs from apoptosis because
it does not require caspases, ATP depletion, mitochondrial ROS generation, Bax/Bak or elevations
in intracellular Ca++, may represent an important contributor to brain damage [191], but no data at
present support a specific role of this process during hypoxia or hyperoxia.

To defend its function during O2 supply fluctuations, the brain may trigger mechanisms that
increase the capillary density and cerebral blood flow through vascular remodeling processes driven by
HIF-1α overexpression with concomitant activation of an array of HIF-1α downstream genes, especially
the vascular endothelial growth factor (VEGF) [192]. Sustained hypoxia (28 days at FIO2 = 0.12) causes
remodeling of capillary vessels by increasing their diameter and length [193], and 28-days exposure
to FIO2 = 0.1 increases the vascular markers CD34 and PECAM-1 [9]. By contrast, in rats exposed to
FIO2 = 0.5 for 3 weeks, the brain capillary density decreases with decreasing levels of VEGF protein
and VEGF mRNA, despite increased HIF-1α and HIF-2α proteins [51]. Brief periods of hyperbaric
hyperoxia induce vasoconstriction, thereby reducing the cerebral blood flow, as a consequence of
reduced NO availability due to increased production of superoxide anions, which inactivate NO [194].

There is increasing evidence that O2 regulates the fate of the precursors of the central nervous
system through activation of the neural stem cells (NSC) that reside in niches within the brain, whose
proliferation and multipotency is enhanced by mild hypoxia [195]. The role of HIF-1α is controversial.
While in some studies HIF-1α appears to be required [196], in others it only facilitates the signal
transduction pathways that promote NSC self-renewal and inhibit differentiation and apoptosis [197].
Alternative mechanisms under study involve the canonical Wnt/β-catenin signaling, which is effective
in HIF-1α knock-out models [198], the calcium-regulated Calcineurin-NFATc4, which is particularly
enriched in hypoxic NSC [199], and ROS [200]. However, it should be pointed out that no studies
were performed to assess the effects of higher than normal PO2, with the exception of one showing
that relieving hypoxia in the developing cerebral cortex by ingrowth of blood vessels coincides
with NSC differentiation, suggesting that vascularization in the hypoxic niches might regulate NSC
differentiation by providing O2 [201].

13. Conclusions

Although chronic hypoxia is well known as a common feature in several environmental and
pathologic situations, the reverse condition, hyperoxia, is not as well studied and still presents many
controversial features, at least for the brain and the cerebral functions. For some functions, including the
metabolic responses and the pathways related to protein kinase B and the brain-derived neurotrophic
factor, hyperoxia acts as an antagonist of hypoxia and may even have positive effects. However,
for other functions, including O2 sensing, the oxidative stress and apoptotic brain injury, both the
O2 lack and the O2 excess appear to have synergistic harmful effects. As a matter of fact, however,
the relative roles of hypoxia and hyperoxia is not yet clear for a number of functions. The most
relevant clinically outcome is that hypoxia and hyperoxia appear both dangerous and challenging.
Under the evolutionary point of view, and after geological eras of tremendous FIO2 fluctuations [202],
it appears that Earth’s mammals are now adapted to survive in an atmosphere containing FIO2 = 0.21,
and that any deviation in either direction from this value may have the potential to disrupt the
pro-oxidant/anti-oxidant balance, which is very delicate in the brain.
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Akt Protein kinase B
ARNT Aryl hydrocarbon receptor nuclear translocator
atm Atmosphere
Bad Bcl2 associated death promoter
Bax Bcl2 associated X protein
BDNF Brain-derived neurotrophic factor
cAMP-PKA Cyclic adenosine mono phosphate-protein kinase A
CO Carbon monoxide bound to hemoglobin
CO-Hb Carbon monoxide
CORM Carbon monoxide-releasing molecules
Hb Hemoglobin
HIF Hypoxia-inducible factor
eNOS Endothelial isoform NO synthase or NOS3
EPAS-1 Endothelial PAS domain protein 1
Epo Erythropoietin
EpoR Erythropoietin receptor
ERK1/2 Extracellular signal-regulated kinases
FIH Factor inhibiting HIF
FIO2 Inspired fraction of oxygen
GSH Reduced glutathione
GSSG Oxidized glutathione
HO Heme oxygenase
HUVEC Human umbilical vein endothelial cells
iNOS Inducible isform of NO synthase or NOS2
JNK c-Jun N-terminal kinase
L-NAME Nω-nitro-L-arginine methyl ester
Km Michaelis-Menten constant
O2 Oxygen
NADP+ Nicotinamide adenine dinucleotide phosphate (oxidized from)
NADPH Nicotinamide adenine dinucleotide phosphate (reduced form)
MAPK Mitogen-activated protein kinase
Ngb Neuroglobin
NO Nitric oxide
NOS NO synthase
nNOS Neuronal isoform NO synthase or NOS1
Nrf2 Nuclear factor (erythroid-derived 2)-like 2
NSC Neural stem cells
p-Akt Phosphorylated protein kinase B
p-ERK1/2 Phosphorylated extracellular signal-regulated kinases
pCO Carbon monoxide partial pressure
PHD Prolyl hydroxylase
PI3K Phosphatidyl inositol 3-phophate kinase
PO2 Oxygen partial pressure
pVHL Von Hippel-Lindau protein tumor suppressor protein
ROS Reactive oxygen species
VEGF Vascular endothelial growth factor
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