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S U M M A R Y
We model the geoid anomalies excited during a megathrust earthquake cycle at subduction
zones, including the interseismic phase and the contribution from the infinite series of pre-
vious earthquakes, within the frame of self-gravitating, spherically symmetric, compressible,
viscoelastic Earth models. The fault cuts the whole 50 km lithosphere, dips 20◦, and the slip
amplitude, together with the length of the fault, are chosen in order to simulate an Mw = 9.0
earthquake, while the viscosity of the 170 km thick asthenosphere ranges from 1017 to 1020 Pa s.
On the basis of a new analysis from the Correspondence Principle, we show that the geoid
anomaly is characterized by a periodic anomaly due to the elastic and viscous contribution
from past earthquakes and to the back-slip of the interseismic phase, and by a smaller static
contribution from the steady-state response to the previous infinite earthquake cycles. For as-
thenospheric viscosities from 1017–1018 to 1019–1020 Pa s, the characteristic relaxation times
of the Earth model change from shorter to longer timescales compared to the 400 yr earthquake
recurrence time, which dampen the geoid anomaly for the higher asthenospheric viscosities,
since the slower relaxation cannot contribute its whole strength within the interseismic cycle.
The geoid anomaly pattern is characterized by a global, time-dependent positive upwarping of
the geoid topography, involving the whole hanging wall and partially the footwall compared to
the sharper elastic contribution, attaining, for a moment magnitude Mw = 9.0, amplitudes as
high as 6.6 cm for the lowermost asthenospheric viscosities during the viscoelastic response
compared to the elastic maximum of 3.8 cm. The geoid anomaly vanishes due to the back-slip
of the interseismic phase, leading to its disappearance at the end of the cycle before the next
earthquake. Our results are of importance for understanding the post-seismic and interseismic
geoid patterns at subduction zones.

Key words: Seismic cycle; Subduction zone processes; Dynamics: gravity and tectonics;
Dynamics: seismoctectonics.

1 I N T RO D U C T I O N

The 2004 Sumatra, 2010 Maule and 2011 Tohoku megathrust
earthquakes have caused the flourishing of studies on the gravity
signatures caused by the earthquake-induced mass redistribution,
nowadays detectable by GRACE and GOCE satellite missions. The
co-seismic gravity anomalies caused by earthquakes with moment
magnitude greater than 8.5 have been examined by means of long-
wavelength gravity data from GRACE (Gross & Chao 2001; Sun &
Okubo 2004; Matsuo & Heki 2011) and explained in terms of mass
redistribution, volume variations and topography perturbations by
De Linage et al. (2009), Cambiotti et al. (2011a) and Broerse et al.
(2011). For the case of the 2011 Tohoku earthquake, GRACE data
have been used for estimating its focal mechanism and hypocentre
(Wang et al. 2012; Cambiotti & Sabadini 2013), and, jointly with

GPS and GOCE data, to improve the constraint of its slip distribu-
tion over fault surface (Fuchs et al. 2016).

In addition to the co-seismic signature, the post-seismic response
associated to stress relaxation by viscous flow of the 2004 Suma-
tra earthquake has been investigated in a series of work (Pollitz
et al. 2006; Chen et al. 2007; Han et al. 2008; Broerse et al. 2015;
Tanaka et al. 2015) with the aim of constraining the viscosity strat-
ification of the lithosphere and of the asthenosphere. Due to the
monthly resolution of the GRACE satellite mission, estimates of
the co-seismic jump at the earthquake time in the data time series
are usually performed jointly with the estimate of the post-seismic
response after the earthquake. Nevertheless, the interpretation of
the latter requires a full understanding of all the contributions from
the seismic cycle. Indeed, the time-dependent signature after the
earthquake, in addition to the post-seismic response to the earth-
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quake, is affected also by stress relaxation by viscous flow from past
seismicity, as well as by strain accumulation due to the locking of
the fault during the interseismic phase. As it concerns the topogra-
phy changes at subduction zones, this issue has been first addressed
by Savage (1983), accounting for both strain accumulation and re-
lease within the frame of viscoelastic, flat Earth models (Thatcher
& Rundle 1979). According to Savage & Burford (1973) and
Savage (1983) and as shown by Matsu’ura & Sato (1989) and Sato
& Matsu’ura (1993) for old subduction zones, the long term average
motion between the overriding and subducting plates is responsible
for static vertical displacements, as for the peculiar bipolar gravity,
geoid and topography patterns at subduction zones (Zhong & Gur-
nis 1992; Song & Simons 2003; Marotta et al. 2006), but it does
not contribute to observable changes through time. In addition to
the instantaneous elastic response at the earthquake time, changes
in time during the interseismic phase are the results of the post-
seismic response to the last earthquake, as well as to all the past
seismicity and to the viscoelastic response to strain accumulation.
Only for young subduction zones (i.e. for timescales smaller than
the characteristic relaxation time of the high viscosity lithosphere)
this relative motion yields a growth rate of the topography of island
arc-trench systems.

In this work, we will consider geoid anomalies at subduction
zones due to both seismic and interseismic processes. Particularly,
in order to simulate the geoid anomalies due to the locking of
the fault during the interseismic phase, we follow the approach
first proposed by Savage & Burford (1973) for strike-slip faults
and, then, generalized to dip-slip faults in Savage (1983) (see also
Segall 2010). According to this approach, the strain accumulation
due to the locking of the fault is taken into account by imposing
a constant in time slip rate on the fault system associated to the
plate boundary that is opposite to the average slip rate necessary to
accommodate the relative motion between plates.

Compared to Savage (1983), we implement a compressible vis-
coelastic Earth model which is spherically symmetric and self-
gravitating, thus allowing for a self-consistent treatment of the
geoid anomalies, and builds on the elastic and density stratifications
of the preliminary reference Earth model (PREM, Dziewonski &
Anderson 1981). Furthermore, rather than considering separately
the response to each earthquake and to the strain accumulation,
we take advantage of the Correspondence Principle between the
viscoelastic problem in the time domain and the equivalent elas-
tic problem in the Laplace domain (Tanaka et al. 2006; Cam-
biotti et al. 2011c) in order to evaluate analytically the static geoid
anomaly over which the periodic changes during the interseismic
phase are superimposed.

2 S L I P T I M E H I S T O RY

As shown in Fig. 1, we approximate the fault surface at the sub-
duction zone with a planar fault dipping with an angle α = 20◦ and
we assume that the locked portion during the interseismic phase
extends through the whole 50 km thick outermost elastic layer of
the Earth model.

For the sake of simplicity and with the aim of providing a first
estimate of the geoid anomaly due to seismic and interseismic pro-
cesses at subduction zones, we assume that thrust earthquakes occur
at a constant recurrence period, T, and break uniformly the locked
portion of the fault, with the same amount U of dip-slip at each
earthquake. We thus write the stick-slip time history of the earth-

Figure 1. Schematicdepicting the 50 km thick outermost elastic layer, the
170 km thick asthenosphere and upper and lower mantle below. The locked
portion of the fault, indicated by the dashed line, dips with angle α = 20◦
and extends from the Earth surface down to a depth Z = 50 km. Its width is
W = Z/sin α = 146 km. The coordinate x perpendicular to the line of strike,
that is the distance from the trench over the Earth surface, is also shown.
Positive and negative values identify points on the sides of the subducting
(foot wall) and (hanging wall) plates, as indicated by the dash-dotted arrow.

quake sequence as follows:

δue(t) = U
∞∑

n=1

H (t − n T ), (1)

where t is the time and H is the Heaviside function. Herein we
assume that the first earthquake occurs at time t = T and, by con-
vention, we start to count the seismic cycles from this time, This
means that the nth seismic cycle is from n T to (n + 1) T. The initial
period, from 0 to T, must be regarded as an arbitrary loading phase
before the occurrence of the first earthquake.

In addition to the stick-slip from each earthquake and according
to Savage (1983), we consider also a back-slip distributed uniformly
over the locked portion of the fault which grows linearly in time,
starting from t = 0,

δub(t) = −χ v t H (t) (2)

where χ is the seismic coupling coefficient and v is the conver-
gence velocity between the subducting and overriding plates. This
back-slip accounts for the strain accumulation process due to plate
tectonics and constitutes the supplemental forcing that, once su-
perimposed to the contribution from the steady state subduction
(i.e. the long-term average motion that is not responsible for ob-
servable changes), describes the locking of the fault during the
interseismic phase. Depending on the seismic coupling coefficient,
this locking can be complete (χ = 1) or partial (χ < 1). For con-
sistency, we equal the back-slip accumulated during one period,
δub(t + T) − δub(t) = −χ v T to the stick-slip of one earthquake
changed in sign, −U, and we obtain the following relation:

U = χ v T . (3)

The dip-slip time history for which we will compute the geoid
anomalies is the sum of the stick-slip and back-slip time histories:

δu(t) = δue(t) + δub(t) = U f (t) (4)
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with

f (t) = − t

T
+

∞∑
n=1

H (t − n T ). (5)

In view of the arbitrariness of the choice of the initial time, the
simulations that we show are significant only in the limit for
t → ∞, after an infinite number of seismic cycles.

We note that eq. (5) is equivalent to eq. (3) of Matsu’ura &
Sato (1989) and, as in our case, it describes the slip history re-
sponsible for the periodic motion associated to the infinite sequence
of seismic cycles within the seismogenic zone. Matsu’ura & Sato
(1989) further account for the relative motion across the whole
plate boundary between the subducting and overriding plates, their
eq. (2). Nevertheless, as discussed by Matsu’ura & Sato (1989) and
Sato & Matsu’ura (1993) for the case of old subduction zones, this
relative motion is responsible only for a static contribution and, so,
it does not yield any observable changes, in agreement with the
assumptions underlying the back-slip approach proposed by Sav-
age (1983). In this work, in order to focus on the fastest periodic
changes within one seismic cycle, we do not consider the case of
young subduction zones where this relative motion yields a growth
rate of the topography of island arc-trench systems from one seismic
cycle to the next one.

3 V I S C O E L A S T I C R E S P O N S E

From eq. (A6) and as discussed in Appendix A, within the frame-
work of self-gravitating spherically symmetric viscoelastic Earth
models with Maxwell rheology (Tanaka et al. 2006; Cambiotti
et al. 2011c; Cambiotti & Sabadini 2015), the geoid anomaly at
a point of the Earth surface, G, can be expressed as follows:

G(t) = (K � δu)(t), (6)

where � stands for the time convolution and K is the viscoelastic
Green function for a unitary, impulsive dip-slip over the whole
locked portion of the fault.

In order to compute the viscoelastic Green function, we consider
a spherically symmetric Earth model based on PREM (table 3 of
Dziewonski & Anderson (1981)) characterized by a 50 km thick
elastic outermost layer and a 170 km thick (up to 220 km depth)
asthenosphere, as portrayed in Fig. 1, with viscosity νa varied from
1017 to 1020 Pa s. The viscosities of the upper (from 220 km depth
to the 670 km discontinuity) and lower (from the 670 km discon-
tinuity to the core mantle boundary) mantle are set to 1021 and
3 × 1022 Pa s. This rheological stratification is consistent with
most glacial isostatic adjustment and mantle convection studies
(Cambiotti et al. 2011b; Tosi et al. 2005) and includes a low
viscosity asthenosphere that mainly controls the relaxation of the
earthquake-induced stress by viscous flow (Broerse et al. 2015). Fur-
thermore, the initial density and bulk modulus are slightly modified
in order to satisfy the Williamson–Adams equation (Wolf 1991;
Wolf & Kaufmann 2000) and avoid Rayleigh–Taylor instabilities
or compositional modes at large timescales (Plat & Jüttner 1995;
Cambiotti & Sabadini 2010; Cambiotti et al. 2013).

As shown by eqs (A12), (B10), (B11), (B13) and (A13a) and
as discussed in Appendices A and B, eq. (6) with the dip-slip time
history given by eq. (4) can be decomposed into three contributions:

G(t) = U
(
KE f (t) + P(t) + C(t)

)
, (7)

where KE is the elastic Green function, P(t) is a periodic function
with period T

P(t) = P(t + n T ) (8)

such that P(n T) = 0, and C(t) has the following asymptotic limit

lim
t→∞

C(t) = C∞. (9)

The periodic function P(t) and this asymptotic limit can be expressed
analytically, eqs (B14) and (B11), once the Laplace transform of the
viscoelastic Green function has been evaluated at specific values of
the Laplace variable.

In view of the periodicity in time of the functions f(t) and P(t), the
response of the Earth during the nth seismic cycle can be rewritten
as

Gn(t) = G(t + n T ) = U (E(t) + P(t) + Sn(t)) (10)

with t ∈ [0, T) and

E(t) = (1 − t/T ) KE (11a)

Sn(t) = C(t + n T ) − KE . (11b)

We note that Sn(t) depends on the seismic cycle, while E(t) and P(t)
do not. On the other hand, in view of eq. (9), we have

S∞ = lim
n→∞

Sn(t) = C∞ − KE (12)

and, then, the geoid anomaly after an infinite number of seismic
cycles becomes a fully periodic function

G∞(t) = lim
n→∞

Gn(t) = U
(
E(t) + P(t) + S∞

)
. (13)

From the latter formulation, we realize that E(t) and P(t) control
the periodic changes of the geoid anomaly during one seismic cycle
due to the instantaneous elastic response of the Earth and to the
stress relaxation by viscous flow. Particularly, these periodic changes
account for the instantaneous elastic response at the earthquake
time, t = 0, and for the following changes during the interseismic
phase which become zero just before the next earthquake, t = T−,

E(0) + P(0) = KE (14a)

E(T −) + P(T −) = 0. (14b)

We note also that the instantaneous elastic response, E(t), starts
with the elastic response to stick-slip at the earthquake time and de-
creases linearly in time to zero just before the next earthquake. The
constant S∞, instead, controls the static geoid anomaly over which
these periodic changes are superimposed. This contribution results
from stress relaxation by viscous flow due to the previous (infinite)
seismic cycles and corresponds to the geoid anomaly evaluated just
before the next earthquake that, as implied by eq. (12), reaches an
asymptotic value after an infinite number of seismic cycles

G∞(T −) = U S∞. (15)

This static geoid anomaly must not be confused with that caused by
the steady state subduction. Our model, in fact, only focus on the
strain accumulation and release process and does not account for the
long-term relative motion between the subducting and overriding
plates as in Matsu’ura & Sato (1989) and Sato & Matsu’ura (1993)
and for the density heterogeneities of the subducting slab into the
mantle and the induced mantle flow as in Ricard et al. (1993).
Rather, as we are going to show in Section 5, it is a much smaller
contribution resulting from the specific setting of the dip-slip time
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history describing the strain accumulation and release and that,
although small and negligible, should be added to the static geoid
anomaly caused by the steady state subduction.

This analysis of the geoid anomaly after an infinite number of
seismic cycles has allowed us to understand the physical meaning of
E(t), P(t) and S∞. This understanding can now be used to gain insight
into the response of the Earth after a finite number of seismic cycles.
In this case, there is a net gain of the geoid anomaly accumulated
during one interseismic period

Gn+1(t) − Gn(t) = Sn+1(t) − Sn(t) (16)

which involves only the function Sn(t). This net gain results from
the fact that the stress relaxation by viscous flow due to all previous
(finite) earthquakes and to the back-slip simulating the locking of
the fault during the interseismic phase has not reached the steady
state yet. Increasing the number of seismic cycles, in the limit for
n → ∞, this net gain tends to zero and, then, there are no longer
differences between a seismic cycle and the next one.

4 T H E C A S E O F A S I M P L E
R E L A X AT I O N S P E C T RU M

In order to gain insight into the interaction between the stress relax-
ation and the dip-slip time history of the sequence of seismic cycles,
it is useful to consider a heuristic Maxwell Earth model with a dis-
crete relaxation spectrum. Within this assumption, the viscoelastic
Green function can be expressed as follows:

K (t) = KE δ(t) + H (t)
∑

j

k j e−t/Tj (17)

where δ(t) is the Dirac delta function, and kj and Tj are the residue
and characteristic relaxation time of the jth relaxation mode. This
specific form allows us to obtain the analytical expression for the
time-dependent geoid anomaly. Particularly, as discussed in Ap-
pendix C, eq. (C5a), the periodic change due only to stress relaxation
by viscous flow reads

P(t) =
∑

j

r j p j (t) (18)

where rj = Tj Kj is the response to a stick-slip earthquake in the
fluid limit, for t → ∞, associated to the jth relaxation mode (the so
called strength) and pj(t) is a non-dimensional function describing
the time evolution of this contribution during the seismic cycle

p j (t) = 1 − e−t/Tj

1 − e−T/Tj
− t

T
. (19)

This function is zero at the earthquake time, t = 0, increases to a
maximum value p∗

j at t = t∗
j , and then decreases to zero at the end

of the seismic cycle, t = T. It is straightforward to obtain

p∗
j = 1

1 − e−T/Tj
+ t∗

j − Tj

T
(20a)

t∗
j = Tj

[
log

(
T

Tj

)
− log

(
1 − e−T/Tj

)]
. (20b)

Fig. 2(a) shows the evolution in time of the function pj(t) for
different relaxation times Tj = 0.01, 0.03, 0.1, 0.3, 1 and 3 T. We
note that, increasing the relaxation times, the maximum amplitude
p∗

j decreases, while the time t∗
j at which this maximum amplitude

is attained increases. Fig. 2(b) shows also the maximum amplitude
p∗

j and the time t∗
j at which this value is attained as function of the

(a)

(b)

Figure 2. (a) The contribution of the jth relaxation mode per unit strength
during one seismic cycles of period, pj(t), for different relaxation times
Tj = 0.01, 0.1, 0.3, 1 and 3 T. (b) The maximum amplitude of this contri-
bution (left vertical axis, solid line) and the time at which this maximum is
reached (right vertical axis, dashed line) as function of the relaxation time.

relaxation time Tj. We note that

lim
Tj /T →0

p∗
j = 1 (21a)

lim
Tj /T →∞

p∗
j = 0. (21b)

This means that, for relaxation times smaller than the interseismic
period, Tj � T, the contribution of the relaxation mode corresponds
almost to its strength, while for greater relaxation times, Tj 	 T, its
contribution is almost filtered out. This damping is already effective
for relaxation times comparable with the interseismic period and,
particularly, p∗

j ≈ 1/2 for Tj ≈ T/5. As it concerns the time t∗
j at

which the contribution attains its maximum, it is always smaller than
T/2 and this upper bound is reached only for relaxation times greater
than the interseismic period, in the limit for Tj/T → ∞. In contrast,
for relaxation time smaller than the interseismic period, Tj � T, the
time t∗

j is about the relaxation time Tj scaled by log (T/Tj).

5 R E S U LT S

We consider an interseismic period of T = 400 yr and, from
eq. (3), assuming a partial seismic coupling of χ = 0.5 and a con-
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Figure 3. Periodic geoid anomaly during one seismic cycle due to stress relaxation by viscous flow, U P(t), along a transect over the Earth surface centred with
the fault and perpendicular to line of strike. The interseismic period and the stick-slip of each earthquake are set to T = 400 yr and U = 20 m. The locked fault
crosses the whole elastic layer, down to a depth Z = 50 km. Each panel shows the geoid anomaly as function of the distance from the trench, x, at increasing
time (from top to bottom and from left to right; see the label in each panel) for asthenosphere viscosities of 1017, 1018, 1019 and 1020 Pa s (solid, dashed,
dashed-dotted and dotted lines, respectively). The vertical grey line indicates the trench, at x = 0.

vergence velocity of v = 10 cm/yr−1, we set the stick-slip of each
earthquake at U = 20 m. Considering a fault segment of (along
strike) length L = 260 km and the shear modulus profile of PREM,
each earthquake has moment magnitude Mw = 9.0.

In the following we will focus first on the periodic geoid anomaly
during one seismic cycle due to stress relaxation by viscous flow,

U P(t), and we will consider the results for different asthenospheric
viscosities in order to quantify the impact of the latter on the
time-dependent pattern of this contribution. Then, once we will
have clarified this issue, we will consider the whole periodic geoid
anomaly, U (E(t) + P(t)), including the instantaneous elastic re-
sponse, U E(t).
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Fig. 3 shows the periodic geoid anomaly during one seismic cycle
due to stress relaxation by viscous flow, U P(t), along a transect
over the Earth surface centred with the fault and perpendicular to
the line of strike, according to Fig 1. This simulation is run for
four asthenospheric viscosities (νa = 1017, 1018, 1019 and 1020 Pa s)
and the geoid anomaly is shown as function of the distance from
the trench, x, as depicted in Fig. 1. This periodic contribution is
zero at the earthquake time, t = 0, and manifests itself only at
later times according to the characteristic relaxation times of the
Maxwell Earth model. For νa = 1017 Pa s, in the early phase of
the seismic cycle, we have a positive geoid anomaly centred at
around x = −150 km on the side of the overriding plate. This
positive anomaly extends for about 600 ∼ 1000 km perpendicularly
to the line of strike, mainly over the overriding plate. Elsewhere,
instead, the geoid anomaly is negative, although small, less than a
few millimetres at all times. The maximum geoid anomaly is about
1.7 cm already at t = 0.1 yr (about one month after the earthquake)
and grows in time until t = 1 yr, when there is a maximum geoid
anomaly of about 5.2 cm. At later times, the geoid anomaly begins
to decrease and, at the same time, a local (positive) minimum close
to the trench, at around x = −50 km on the side of the overriding
plate, appears between two (positive) maxima, one on the side of
the overriding plate, at around x = −200 km, and the other on the
side of the subducting plate, at around x = 150 km. The main geoid
anomaly remains positive in proximity of the trench until t = 10 yr
and, successively, becomes negative in correspondence of the local
minimum, reaching a minimum value of about −1.8 mm at y = 70 yr.
Then, the amplitude of the geoid anomaly continues to decrease for
all the distances from the trench until it is zero everywhere at the
end of the seismic cycle.

The pattern of the geoid anomaly for νa = 1018 Pa s is similar,
although delayed in time by about a factor of 10 with respect to the
case of νa = 1017 Pa s. This means that the relaxation times of the
Maxwell Earth model are mainly controlled by the asthenospheric
viscosity. The maximum geoid anomaly is about 1.7 cm after one
year, t = 1 yr, and grows up to 5.2 cm at 10 yr. Afterwards, the local
positive minimum close to the trench and between the two local
maxima begins to appear. Then, it becomes negative at 150 yr and
reaches its minimum value of −0.3 cm at 250 yr, when the amplitude
of the geoid anomaly is already decreasing for all distance from the
trench until it is zero everywhere at the end of the seismic cycle.
The cases of νa = 1019 and 1020 Pa s are simpler because the geoid
anomalies consist mainly of positive geoid anomalies in proximity
of the trench, the amplitudes of which grow in time until t = 70 and
150 yr, when they reach the maximum values of 4.2 and 0.9 cm,
respectively. At later times, the amplitudes of these positive geoid
anomalies begin to decrease for all distances from the trench and
are zero at the end of the seismic cycle.

It is noteworthy that the maximum amplitudes of the geoid
anomaly over the whole seismic cycle for both cases of νa = 1017

and 1018 Pa s are similar (about 5.2 cm), although they are at-
tained at different times (t = 1 and 10 yr, respectively). In contrast,
the maximum amplitude of the geoid anomaly obtained for νa =
1019 Pa s is less by about the 20 and 80 per cent than this value,
only 4.2 and 0.9 cm at t = 70 and 150 yr, respectively. This re-
duction of the amplitude of the geoid anomaly by increasing the
asthenospheric viscosity is consistent with the discussion of Sec-
tion 4 and is explained considering that the main relaxation modes
of the Maxwell Earth models with νa = 1017 and 1018 Pa s have
relaxation modes with characteristic relaxation times smaller than
the interseismic period T = 400 yr and, then, they contribute with
almost their complete strengths during the interseismic phase. In

contrast, the main relaxation modes of the Maxwell Earth model
with νa = 1019 have larger characteristic relaxation times and their
contribution is partially filtered out. This is further confirmed by
the simulation obtained for asthenospheric viscosity of 1020 Pa s.
In this case, the temporal evolution is similar to that obtained for
νa = 1019 Pa s, but the maximum amplitude is even smaller.

Having discussed the periodic geoid anomaly due to stress relax-
ation by viscous flow, we now consider the whole periodic geoid
anomaly, U (E(t) + P(t)), including the instantaneous elastic re-
sponse as shown in Fig. 4. The geoid anomaly at the earthquake
time, t = 0, is the same for all asthenospheric viscosities and cor-
responds to the elastic response to the stick-slip earthquake, U KE.
It is characterized by a positive geoid anomaly in proximity of the
trench, with a maximum of about 3.8 cm on the side of the overrid-
ing plate, at around x = −40 km, and a negative geoid anomaly on
the side of the overriding plate, with a minimum of about −1.3 cm at
around x = −180 km. According to eq. (11a), this elastic response
decreases linearly in time during the interseismic phase and yields
zero at the end of the seismic cycle.

At the early stage, the stress relaxation increases the positive
geoid anomaly caused by the elastic response in proximity of the
trench, and, being wider in space, compensates the negative geoid
anomaly at around x = −150 km, on the side of the overriding plate.
In particular, this compensation of the negative geoid anomaly due
to the instantaneous elastic response occurs at t = 0.1, 1, 10 and
150 yr for νa = 1017, 1018, 1019 and 1020 Pa s. The maximum geoid
anomaly attained during the seismic cycle is 6.6 cm at t = 1 yr,
6.5 cm at 10 yr and 5.6 cm at 40 yr for νa = 1017, 1018 and 1019 Pa s.
For the case of νa = 1020, instead, the maximum geoid anomaly
decreases at later times due to the fact that the positive contribution
due to stress relaxation by viscous flow, U P(t), is smaller than the
reduction, linearly in time, of the elastic response to the stick- and
back-slips, U E(t). The short wavelengths of the elastic response
remain visible at all times and make the maximum geoid anomaly
always greater than that from the periodic contribution due to stress
relaxation by viscous flow. This pattern is not altered even when
the local minimum close to the trench between the two maxima
appears at t = 2 and 20 yr for νa = 1017 and 1018 Pa s (Fig. 3).
Furthermore, we note that the periodic geoid anomaly for νa =
1017 Pa s becomes smaller than that for νa = 1018, 1019 and 1020 Pa s
between 2 to 4 yr, 4 to 10 yr and 10 to 20 yr. Particularly, at t = 200 yr
which is one half the interseismic period, T/2, the amplitude of the
geoid anomaly for νa = 1017 Pa s does not exceed 0.7 cm along
the whole transect. At this time, instead, the geoid anomalies for
νa = 1018, 1019 and 1020 Pa s reach maximum values of 1.6, 3.2 and
2.4 cm close to the trench. This results from the faster decay of the
geoid anomaly due to stress relaxation for the lowest asthenospheric
viscosity of 1017 Pa s. At later times, the geoid anomalies for all the
asthenospheric viscosities decay to zero everywhere, as expected on
the basis of the results obtained in Section 4 for the heuristic case of
a discrete relaxation spectrum. In fact, the contribution from each
relaxation mode reaches its maximum amplitude before one half
the interseismic period, T/2 = 200 yr.

In order to provide a clearer description of our results, we show
in Fig. 5 the periodic geoid anomaly as function of time at two rep-
resentative points on the side of the overriding plates, at x = −150
and −50 km. The point at x = −150 km is about where the maxi-
mum geoid anomaly during the early stage of the seismic cycle is
located. The point at x = −50 km, instead, is about where the local
minimum between the two maxima for the cases of νa = 1017 and
1018 Pa s is located. As expected, the periodic geoid anomaly due
to only stress relaxation resembles that of the functions pj control-
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Figure 4. As Fig. 3, but including the instantaneous elastic response, U (E(t) + P(t)).

ling the time evolution of the contributions of the relaxation modes,
within the framework of the heuristic Earth model with a discrete
relaxation spectrum. Differences, like the change in sign in Fig. 5(b)
for νa = 1017 Pa s and in Fig. 5(d) for νa = 1017 and 1018 Pa s and
the different concavities after the early phase of the seismic cycle
for νa = 1017 and 1018 Pa s, are the result of the superimposition of
relaxation modes with strengths of opposite signs.

At the end, for the sake of completeness, we show in Fig. 6
also the static geoid anomaly from the steady-state response af-

ter the infinite series of seismic cycles, U S∞, on which the pe-
riodic change shown in Fig. 4 is superimposed. As anticipated
at the end of Section 3, this contribution is smaller, with ampli-
tudes of at most 3.2 cm, than the static geoid anomaly due to
the long term average steady state motion at subduction zones
and to the mantle density heterogeneities and the induced man-
tle flow, which is of the order of tens of meters (Matsu’ura
& Sato 1989; Sato & Matsu’ura 1993; Zhong & Gurnis 1992;
Marotta et al. 2006).
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(a)

(c)

(b)

(d)

Figure 5. (a,c) Periodic geoid anomaly during one seismic cycle due to both the instantaneous elastic response and stress relaxation by viscous flow
U (E(t) + P(t)); (b,d) as in (a,c) but limited to relaxation by viscous flow U P(t), at the distances from the trench x = −150 (a,b) and −50 km for (c,d). Solid,
dashed, dashed-dotted and dotted lines refer to the case of asthenospheric viscosities of νa = 1017, 1018, 1019 and 1020 Pa s. The thick solid line in panels (a)
and (c) indicates the instantaneous elastic response, U E(t).

Figure 6. The static contribution due to stress relaxation by viscous flow
after an infinite number of seismic cycles, U S∞, for asthenospheric viscosi-
ties of νa = 1017, 1018, 1019 and 1020 Pa s (solid, dashed, dashed-dotted,
and dotted lines).

6 C O N C LU S I O N

We have extended the approach proposed by Savage (1983) from
gravitating and flat to self-gravitating and spherically symmetric
Earth models in order to quantify the geoid anomaly caused by
the strain accumulation and release at subduction zones. Different
from Savage (1983) that considered periodic topography changes
during the seismic cycles, we have focused on the geoid anomaly
and obtained analytical expressions for the periodic geoid anomaly
after an infinite number of seismic cycles, as well as for the a smaller
static contribution from the steady-state response over which this
periodic change is superimposed. These analytical expressions do
not require to calculate the viscoelastic response to each earthquake

in the time domain, as done instead by Savage (1983) on the basis
of the solution provided by Thatcher & Rundle (1981). Instead, they
are based on the Correspondence Principle between the viscoelastic
problem in the time domain and an equivalent elastic problem in
the Laplace domain, and the analysis of the singularities of the
geoid anomaly in the Laplace domain discussed in Appendix B.
Further, within the heuristic assumption of a Maxwell Earth model
with a discrete relaxation spectrum, we have understood how the
contribution to the periodic geoid anomaly from relaxation modes
with characteristic relaxation times comparable or greater than the
interseismic period is damped, until it is completely filtered out
when the relaxation times are greater than the interseismic period.

We have applied this methodology to the case of an infinite se-
quence of megathrust earthquakes with moment magnitude Mw = 9
and an interseismic period of T = 400 yr, and computed the periodic
geoid anomaly during the seismic cycle. The elastic response at the
earthquake time yields a positive geoid anomaly with a maximum
value of 3.8 cm close to the trench and on the side of the overriding
plate and a negative geoid anomaly further away from the trench
with a minimum value of −1.3 cm (Fig. 4 at t = 0 yr). At later
times, this instantaneous elastic response decreases to zero linearly
in time due to the elastic contribution associated with the locking
of the fault during the interseismic phase.

During the interseismic phase, the periodic geoid anomaly is af-
fected also by stress relaxation by viscous flow. The latter provides
a peculiar pattern of global upwarping of the geoid that is broader
in space compared to the elastic contribution and has its maximum
close to the trench and on the side of the overriding plate (Fig. 3).
This positive geoid anomaly grows in the early stage up to val-
ues that can be two times greater than the maximum amplitude of
the elastic response to the earthquakes for low asthenospheric vis-
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cosities. Particularly, the maximum geoid anomalies due to stress
relaxation attain maximum values of 5.2 at 1 and 10 yr after the
earthquake for asthenospheric viscosities of 1017 and 1018 Pa s. In
contrast, for the case of an asthenospheric viscosities of 1019 and
1020 Pa s, the maximum positive geoid anomalies attain maximum
values of 4.2 and 0.9 cm at 70 and 150 yr after the earthquake. This
is consistent with the finding that the interaction between stress re-
laxation by viscous flow and the periodic dip-slip history describing
strain accumulation and release damps the contribution from those
relaxation modes which have relaxation times comparable or greater
than the interseismic period (Fig. 2). Once the geoid anomaly due
to stress relaxation has attained its maximum, it starts to decrease
to zero. In this second phase of the seismic cycle, we note that the
lowermost asthenospheric viscosity of 1017 Pa s yields the fastest
collapse of the geoid maximum which is splitted into two reduced
maxima intermingled by a local minimum close to the trench, finally
developing into a negative geoid anomaly starting from t = 10 yr
after the earthquake.

These results constitutes a first step towards the interpretation
of time-dependent geoid anomalies in the surroundings of subduc-
tion zones and can be used as a theoretical framework for explaining
data time series from the GRACE and GOCE satellite missions even
at those locations where no megathurst earthquakes have occurred
during the time in which these two missions have been operative,
from 2002 to present and from 2009 to 2013. Particularly, an im-
proved time series analysis by Meyer et al. (2016), based on the
optimization of the GRACE data, leads to the new release AIUB
(Astronomical Institute of the University of Bern) — RL02 and
allows to estimate the standard deviation (formal errors) for the
time-dependent geoid evaluation up to the harmonic degree � = 60.
This standard deviation, evaluated from the difference between the
time-dependent geoid and a static reference geoid, which is concor-
dant with our approach where the time-dependent geoid must be
considered as superimposed to the static geoid due to steady-state
subduction, is about 1 mm (fig. 2 of Meyer et al. 2016) and indi-
cates that our co-, post- and interseismic signals are detectable from
GRACE, since in the interseismic phase the geoid anomaly grows
to several centimetres on timescales ranging from one year to a few
decades, depending on the asthenospheric viscosities. Although our
results take into account all the wavelengths of the geoid anomaly,
in view of its large spatial scale, the filtering in the bandwidth up
to the harmonic degree � = 60 of GRACE does not affect this con-
clusion. Indeed, this filtering reduces the amplitude of the geoid
anomalies due to the elastic response, U E, and to stress relaxation
by viscous flow, U P, by about a factor of 4 and 2, respectively, with
the largest reduction affecting the elastic response because of its
shorter wavelengths.

The comparison of our modelling with space gravity data, in ad-
dition to proper wavelength filtering, requires specific assumptions
on the locked portion of the fault during the interseismic phase,
which does not necessarily coincide with that adopted in this work
(extending form the Earth surface down to the outermost 50 km),
and the knowledge of past seismicity back in time as far as the
post-seismic contribution significantly affects the data time series.
The sensitivity analysis to different locking of the fault and to the
realistic earthquake sequences will be the subject of future works.
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A P P E N D I X A : E L A S T I C A N D
V I S C O E L A S T I C G R E E N ’ s F U N C T I O N S

Within the framework of self-gravitating spherically symmetric
elastic Earth models and adapting the formalism presented in
Cambiotti & Sabadini (2015) for the case of a time-dependent uni-
form slip over the fault surface (i.e. the slip varies through time but
it does not depend on the position over the fault), the geoid anomaly
at a point of the Earth surface can be expressed as follows:

G(θ, ϕ, t) =
2∑

j=1

δu j (t) K j
E (θ, ϕ) (A1)

where δuj are the along strike (j = 1) and along dip (j = 2) com-
ponents of the uniform slip, and K j

E (θ, ϕ) are the elastic Green
functions for the geoid anomaly at colatitude θ and longitude ϕ

given by

K j
E (θ, ϕ) =

∞∑
�=0

�∑
m=−�

K j
E�m Y�m(θ, ϕ). (A2)

Here, Y�m are the normalized real spherical harmonics of degree �

and order m, and K j
E�m are the spherical harmonic coefficients of

K j
E (θ, ϕ). The latter can be obtained as follows:

K j
E�m = a−2

2∑
p=0

∫
S

k�,p(a, r ′) 
D
�m,pj (r

′) dS′ (A3)

where a is the Earth radius, S is the fault surface, dS′ is the infinites-
imal area, r′ is the vector position identifying a point of the fault
surface, k�, p(a, r′) is the (elastic) gravitational seismic Love num-
ber governing the polar (p = 0), bipolar (p = 1) and quadrupolar
(p = 2) patterns of the response at the Earth surface to a point-like
seismic force at the radial distance from the Earth centre r ′ = ‖r′‖,
and 
�m, pj is the following factor:


�m,pj (r
′) = D p

j (r′) F p
�m(θ ′, ϕ′) + D−p

j (r′) F−p
�m (θ ′, ϕ′)

1 + δp0
(A4)

which accounts for the geometry (dip and strike angles) and location
(colatitude θ ′ and longitude ϕ′) of the infinitesimal surface element,
with F p

�m and D p
j given by eqs (31) and (33) of Cambiotti & Sabadini

(2015). In order to perform the integration over depth z′ (or the radial
distance from the Earth surface r′ = a − z′) we interpolate the
seismic Love numbers sampled every 1 km, but for the shallowest
3 km where the sampling is gradually refined up to 0.1 km.

In the main text we will not explicit the dependence on the co-
latitude and longitude of the point at which the geoid anomaly is
computed and, as far as we will focus only on dip-slip faults, we
will omit the indexing for distinguishing between strike-slip and
dip-slip and we simply write

G(t) = KE δu(t) (A5)

where it is understood that δu and KE correspond to δu2 and K 2
E in

the formulation used in this appendix.
According to the correspondence principle (Tanaka et al. 2006),

these results can be generalized to Maxwell Earth models as fol-
lows:

G(t) = (K � δu)(t) (A6)

denoting the time convolution between the slip time history δu and
the viscoelastic Green function K. The latter is defined as the inverse
Laplace transform of the equivalent elastic Green functions K̃ in
the Laplace domain

K (t) = L−1[K̃ (s)] (A7)

where K̃ (s) is obtained solving the equivalent elastic problem where
the shear modulus μ is replaced by the equivalent shear modulus
μ̂(s),

μ̂(s) = μs

s + 1/τ
, (A8)

providing the dependence on the Laplace variable s. The lambda
parameter λ, instead, is replaced by

λ̂(s) = κ − 2

3
μ̂(s). (A9)

In order to distinguish between the instantaneous elastic response
and the contributions caused by stress relaxation by viscous flow,
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the viscoelastic Green function is usually decomposed as follows:

K (t) = KE δ(t) + KV (t) (A10)

with

KV (t) = L−1[K̃V (s)] (A11a)

K̃V (s) = K̃ (s) − KE . (A11b)

Then, substituting eq. (A10) into eq. (A6), we obtain

G(t) = G E (t) + GV (t), (A12)

where GE and Gv are the instantaneous elastic response and the
response due to only stress relaxation by viscous flow,

G E (t) = δu(t) KE (A13a)

GV (t) = L−1[G̃V (s)] (A13b)

with

G̃V (s) = K̃V (s) δũ(s). (A14)

Here, we have made use of the fact that the time convolution between
two functions corresponds to the product of their Laplace transforms
in the Laplace domain.

In the summation over the harmonic degrees in eq. (A2) we have
considered the harmonic degrees up to 5 × 105 and 2 × 103 in
order to obtain the elastic, GE, and viscous, Gv , Green functions,
respectively. We note that the viscous Green function requires a
much lower truncation than the elastic one because it reflects the
stress relaxation by viscous flow that occurs, within the assumption
of the present work, at depths greater than 50 km.

A P P E N D I X B : G E O I D A N O M A LY

In order to estimate the geoid anomaly due to only stress relaxation
by viscous flow, we first consider the Laplace transform of the dip-
slip time history that, by making use of the expression for geometric
series, we rearrange as follows:

δũ(s) = U

(
− 1

s2 T
+

∞∑
n=1

e−n s T

s

)
= U

g̃(s)

s
(B1)

with

g̃(s) = − 1

1 − es T
− 1

s T
(B2)

Then, substituting eq. (B1) into eq. (A14), we obtain

G̃V (s) = U
K̃V (s) g̃(s)

s
. (B3)

In order to perform the inverse Laplace transform of G̃V (s),
we must first investigate its singularities in the Laplace domain.
They are depicted in Fig. B1. The function K̃V (s) has singularities
on the negative half of the real axis of the Laplace domain and,
particularly, they are confined to the interval (−1/τmin) ⊂ R

−. These
singularities depend on the specific viscoelastic stratification of
the Earth model and can be isolated poles, clusters of poles and
continuous not-Lipschitzian intervals (Tanaka et al. 2006; Cambiotti
et al. 2011c). The function g̃(s), instead, has singularities at the
isolated poles s = i ωn (n = ±1, . . . , ±∞) with

ωn = 2 π n

T
(B4)

Figure B1. Schematic depicting the singularities of the function K̃V (s) g̃(s)
in the Laplace domain. The black circles indicate the poles along the imag-
inary axis due to g̃(s), which are at s = i ωn (n = ±1, . . . , ±∞). The white
circles and rectangles indicate the poles and the not-Lipschitzian intervals
due to K̃V (s). The latter lay on the negative half of the real axis of the Laplace
domain and, particularly, within the interval (−1/τmin, 0) ⊂ R

− identified
by the thick solid line. The dashed rectangle is the closed contour � that
includes the origin of the Laplace domain and all the singularities due to
K̃V (s).

and its residues are

lim
s→∞

g̃(s) (s − i ωn) = 1

T
. (B5)

We note that s = 0 is not a singularity for g̃(s) and, in fact, its limit
for s → 0 exists

lim
s→0

g̃(s) = −1

2
. (B6)

We can take advantage of the fact that we have analytical ex-
pressions for the poles and the residues of g̃(s) and that K̃V (s) is
analytical at these poles decomposing the product K̃V (s) g̃(s) as
follows:

K̃V (s) g̃(s) = p̃(s) + c̃(s), (B7)

where p̃(s) accounts for all the poles at s = i ωn:

p̃(s) = 1

T

∞∑
n=1

(
K̃V (i ωn)

s − i ωn
+ K̃ ∗

V (i ωn)

s + i ωn

)
. (B8)

Here ∗ stands for the complex conjugate and we have made use
of the fact that the Laplace transforms of real functions has the
following property: KV (s∗) = K ∗

V (s). The function c̃(s), instead, is
simply the difference between the product K̃ V (s) g̃(s) and p̃(s),

c̃(s) = K̃V (s) g̃(s) − p̃(s). (B9)

This function has the same singularities of K̃V (s), but it has not those
from g̃(s) because they are removed by subtracting P̃(s). Indeed,
the residues of C̃(s) at s = i ωn are zero.

Within this decomposition, the geoid anomaly due to stress re-
laxation by viscous flow, eq. (A13b), that is the inverse Laplace
transform of eq. (B3), can be written as follows:

GV (t) = U (P(t) + C(t)), (B10)
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where P(t) is the inverse Laplace transform of p̃(s)/s, which reads

P(t)=L−1
[

p̃(s)/s
]=

∞∑
n=1

[
In (1−cos(ωn t))+Rn sin(ωn t)

]
(B11)

with

Rn = �[KV (i ωn)]

π n
(B12a)

In = �[KV (i ωn)]

π n
(B12b)

and C(t) is the inverse Laplace transform of c̃(s)/s, which can be
obtained by integration in the Laplace domain over a closed contour
�, containing all its singularities,

C(t) = L−1[c̃(s)/s] = 1

2 π i

∫
�

c̃(s)

s
es t ds. (B13)

We note that, as depicted in Fig. B1, the closed contour � must
contain the origin s = 0 and the interval (−1/τmin, 0) ⊂ R

− of the
negative half of the real axis of the Laplace domain.

As implied by the sine and cosine functions in eq. (B11), P(t)
is a periodic function with period T and yields zero at t = n T. On
the contrary, due to the singularities of c̃(s) having negative real
part and zero imaginary part, C(t) has an asymptotic limit for t
→ ∞, say C∞, that we can estimate by taking the limit of c̃(s)
for s → ∞

C∞ = lim
t→∞

C(t) = lim
s→0

c̃(s) = − K̃V (0)

2
− p̃(0)

= − K̃V (0)

2
+

∞∑
n=1

In (B14)

by making use of eqs (B6), (B8) and (B9).

A P P E N D I X C : D I S C R E T E R E L A X AT I O N
S P E C T RU M

The expression obtained in Appendix A greatly simplifies when we
consider the case in which the relaxation spectrum of the Maxwell
Earth model is discrete. In this case, the viscoelastic Green function
takes the following form:

K (t) = KE δ(t) + H (t)
∑

j

k j e−t/Tj, (C1)

where δ(t) is the Dirac delta, and kj and Tj are the residue and the
characteristic relaxation time of the jth relaxation mode. This form,
in the Laplace domain, becomes

K̃ (s) = KE +
∑

j

k j

s − s j
(C2)

with sj = −1/Tj being the pole of the jth relaxation mode, confined
on the interval [−1/τmin, 0] ⊂ R

− of the negative half of the real
axis of the Laplace domain.

In this case and considering the dip-slip time history
describing the infinite earthquake sequence and back-slip,

making use of the residue theorem, the geoid anomaly
becomes

G(t) = U
∑

j

[
KE f (t) + r j

(
1 − e−t/Tj

T/Tj
− t

T

)

+
∞∑

n=1

r j

(
1 − e−(t−n T )/Tj

)
H (t − n T )

]
(C3)

where rj = −kj/sj = kj Tj is the so called strength of the jth relaxation
mode, that is the contribution of the mode to the geoid anomaly due
to a stick-slip earthquake in the fluid limit, for t → ∞.

The first term in the square brackets of the RHS of eq. (C3) is
the instantaneous elastic response, the second term is the response
to the back-slip due to only stress relaxation and the third term is
the summation of the post-seismic response to each earthquake.

Considering a time during the nth seismic cycle, t + n T with t ∈
[0, T), and using the expression for finite geometric series for dealing
with the post-seismic contribution of the first nth earthquakes, after
some algebra, the geoid anomaly during the nth seismic cycle,
eq. (10), becomes

Gn(t) = U

[
− KE

t

T
+

∑
j

r j

(
1 − e−(t+n T )/Tj

T/Tj
− t

T

−e(T −t)/Tj
1 − e−n T/Tj

1 − e−T/Tj

)]
. (C4)

Then, reorganizing this result as in eq. (10), we obtain spe-
cific analytical expressions for P(t) and Sn(t), with E(t) given by
eq. (11a). Particularly, we have

P(t) =
∑

j

r j p j (t) (C5a)

Sn(t) =
∑

j

r j

(
1 − e−(n T +t)/Tj

) (
Tj

T
− 1

1 − e−T/Tj

)
− KE (C5b)

with

p j (t) = 1 − es j t

1 − es j T − t

T
. (C6)

We note that

S∞ =
∑

j

r j

(
Tj

T
− 1

1 − e−T/Tj

)
− KE . (C7)

It can be verified that these expressions are consistent with
eqs (B11) and (B14), considering that, in view of eq. (C2), eq.
(B12) becomes

Rn = 1

π n

∑
j

r j

1 + (Tj ωn)2
(C8a)

In = −
∑

j

2 r j Tj/T

1 + (Tj ω2
n)

(C8b)

and we have

K̃V (0) =
∑

j

r j . (C9)
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