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ABSTRACT
We investigate the constraints on primordial non-Gaussianity with varied bispectrum shapes
that can be derived from the power spectrum of galaxies and clusters of galaxies detected
in future wide field optical/near-infrared surveys. Having in mind the proposed ESA space
mission Euclid as a specific example, we combine the spatial distribution of spectroscopically
selected galaxies with that of weak lensing selected clusters. We use the physically motivated
halo model in order to represent the correlation function of arbitrary tracers of the large-scale
structure in the Universe. As naively expected, we find that galaxies are much more effective
in jointly constrain the level of primordial non-Gaussianity f NL and the amplitude of the matter
power spectrum σ 8 than clusters of galaxies, due to the much lower abundance of the latter that
is not adequately compensated by the larger effect on the power spectrum. Nevertheless, com-
bination of the galaxy power spectrum with the cluster–galaxy cross-spectrum can decrease
the error on the determination of f NL by up to a factor of ∼2. This decrement is particularly
evident for the less studied non-Gaussian bispectrum shapes, the so-called enfolded and the
orthogonal ones. Setting constraints on these models can shed new light on various aspects of
the physics of the early Universe, and hence it is of extreme importance. By combining the
power spectra of clusters and galaxies with the cluster–galaxy cross-spectrum we find con-
straints on primordial non-Gaussianity of the order �f NL ∼ a few, competitive and possibly
superior to future cosmic microwave background experiments.

Key words: galaxies: clusters: general – cosmological parameters – cosmology: theory –
large-scale structure of Universe.

1 IN T RO D U C T I O N

It is now commonly accepted that the formation of structures in
the Universe originated from seed density fluctuations in the dark
matter fluid that were laid down during inflation (Hawking & Moss
1983). Gravitational instability has the effect of amplifying density
perturbations that at a given point enter the non-linear regime and
collapse to form clumps, voids and in more general the complex
large-scale structure (LSS henceforth) that we observe today. For a
given distribution of the initial conditions, the statistical properties
of the LSS are determined uniquely by the subsequent expansion
history of the Universe that is, ultimately, on its matter and energy
content. In the past decade much effort has been directed toward
understanding the effect of dark energy on the formation of struc-
tures (see Cunha, Huterer & Frieman 2009; Grossi & Springel 2009;
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Samushia & Ratra 2009; De Boni et al. 2010; Mortonson, Hu &
Huterer 2011 for recent examples) in order to gain insights on its
nature, specifically whether it is truly a cosmological constant or it
does have some kind of evolution with cosmic time.

After several pioneering works (Messina et al. 1990; Moscardini
et al. 1991; Weinberg & Cole 1992), only recently has the ques-
tion of the initial conditions gained renewed attention, specifically
about the shape of the primordial density fluctuations distribution.
While the simplest models of inflation (single slow-rolling scalar
field) predict this distribution to be virtually indistinguishable from
a Gaussian, a plethora of more complex models have been proposed
that, in addition to solving the standard cosmological problems, al-
low for significant and possibly scale-dependent deviations from
Gaussianity. The study of non-Gaussian cosmologies and the ef-
fect they have on the formation and evolution of cosmic structures
is thus extremely important in order to rule out inflationary mod-
els, and hence to have a better handle on the physics of the early
Universe. Moreover, studies on possible detectability of primor-
dial non-Gaussianity are very timely, given the recent claims for a
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positive skewness of the primordial density fluctuations distribution
coming from the cosmic microwave background (CMB) and from
the angular correlation function of radio-selected quasars (Xia et al.
2010).

The problem of constraining deviations from primordial Gaus-
sianity by means different from the CMB intrinsic anisotropies has
recently attracted much efforts in the literature, with studies di-
rected towards the abundance of non-linear structures (Matarrese,
Verde & Jimenez 2000; Verde et al. 2000; Mathis, Diego & Silk
2004; Grossi et al. 2007, 2009; Maggiore & Riotto 2010c), halo
biasing (Dalal et al. 2008; McDonald 2008; Fedeli, Moscardini &
Matarrese 2009), galaxy bispectrum (Sefusatti & Komatsu 2007;
Jeong & Komatsu 2009), mass density distribution (Grossi et al.
2008) and topology (Matsubara 2003; Hikage et al. 2008), cos-
mic shear (Fedeli & Moscardini 2010; Pace et al. 2011), integrated
Sachs–Wolfe effect (Afshordi & Tolley 2008; Carbone, Verde &
Matarrese 2008), Lyα flux from low-density intergalactic medium
(Viel et al. 2009), 21-cm fluctuations (Cooray 2006; Pillepich,
Porciani & Matarrese 2007) and reionization (Crociani et al. 2009).

In this work we focused attention on the spatial distribution of
galaxies and galaxy clusters as tracers of the LSS. We were par-
ticularly interested in comparing the performances of the power
spectra of the two individual tracers in constraining primordial
non-Gaussianity, and evaluate the improvements in forecasted con-
straints given by the addition of the cluster–galaxy cross power
spectrum. Throughout the paper we assumed a fiducial future all-
sky optical/near-infrared survey on the model of Euclid (Laureijs
2009; Beaulieu et al. 2010). In order to fully exploit the potentials
of both the imaging and the spectroscopy part of Euclid we consid-
ered galaxies as spectroscopically selected according to their Hα

flux, and galaxy clusters as selected to be the high signal-to-noise
ratio (S/N) peaks in full-sky cosmic shear maps. This approach
has the advantage of allowing treatment of the galaxy and cluster
samples as independent. The results obtained here are relevant for
other planned missions with a similar concept to Euclid, such as the
NASA Wide Field Infrared Survey Telescope (WFIRST).

The rest of the paper is organized as follows. In Sections 2 and 3
we summarize the non-Gaussian models that we have explored in
this work, as well as their effect on the mass function and large-scale
bias of dark matter haloes. In Section 4 we describe the halo model,
the physically motivated framework that we adopted for modelling
the power spectrum of clusters and galaxies as well as the cluster–
galaxy cross-spectrum. In Section 5 we summarize our results and
in Section 6 we discuss them, with particular emphasis on alter-
native survey configurations. Finally, in Section 7 we present our
conclusions. Throughout this work we refer to the fiducial cosmo-
logical model as the one defined by the parameter set derived by
the latest analysis of the Wilkinson Microwave Anisotropy Probe
(WMAP) data (Komatsu et al. 2011). This means that density pa-
rameters for matter, cosmological constant and baryons are equal
to �m,0 = 0.272, ��,0 = 0.728 and �b,0 = 0.046, respectively,
the Hubble constant equals h ≡ H0/(100 km s−1 Mpc−1) = 0.704
and the normalization of the matter power spectrum is set by σ 8 =
0.809.

2 N ON-GAU SSIAN COSMOLOGIES

Extensions of the most standard model of inflation (Starobinskiı̌
1979; Guth 1981; Linde 1982) can produce substantial deviations
from a Gaussian distribution of primordial density and potential
fluctuations (see Bartolo et al. 2004; Chen 2010; Desjacques &
Seljak 2010 for recent reviews). The amount and shape of this

deviation depend critically on the kind of non-standard inflationary
model that one has in mind, as will be detailed later on.

A particularly convenient (although not unique) way to describe
generic deviations from a Gaussian distribution consists in writing
the gauge-invariant Bardeeen’s potential � as the sum of a Gaussian
random field and a quadratic correction (Salopek & Bond 1990;
Gangui et al. 1994; Verde et al. 2000; Komatsu & Spergel 2001),
according to

� = �G + fNL ∗ (
�2

G − 〈
�2

G

〉)
. (1)

The parameter f NL in equation (1) determines the amplitude of
non-Gaussianity, and it is in general dependent on the scale. The
symbol ∗ denotes convolution between functions, and reduces to
standard multiplication upon constancy of f NL. In the following
we adopted the large-scale structure convention (as opposed to the
CMB convention; see Afshordi & Tolley 2008; Carbone et al. 2008;
Grossi et al. 2009; Pillepich, Porciani & Hahn 2010) for defining the
fundamental parameter f NL. According to this, the primordial value
of � has to be linearly extrapolated at z = 0, and as a consequence the
constraints given on f NL by the CMB have to be raised by ∼30 per
cent to comply with this paper’s convention (see also Fedeli et al.
2009 for a concise explanation).

In the case in which f NL �= 0 the potential � is a random field with
a non-Gaussian probability distribution. Therefore, the field itself
cannot be described by the power spectrum P�(k) = Bkn−4 alone,
rather higher order moments are needed. The dominant higher order
contribution is generically given by the bispectrum B�(k1, k2, k3).
Only in very peculiar situations the bispectrum vanishes, and one
has to resort to the trispectrum or higher order correlations. The
bispectrum is the Fourier transform of the three-point correlation
function 〈�(k1)�(k3)�(k3)〉 and it can hence be implicitly defined
as

〈�(k1)�(k3)�(k3)〉 ≡ (2π)3δD (k1 + k2 + k3) B�(k1, k2, k3). (2)

As mentioned above understanding the shape of non-Gaussianity
is of fundamental importance in order to pinpoint the physics of the
early Universe and the evolution of the inflation field in particular.
For this reason, in this work we considered four different shapes
of the potential bispectrum, arising from different modifications
of the standard inflationary scenario. They are all described in the
following.

2.1 Local shape

The standard single-field inflationary scenario generates negligibly
small deviations from Gaussianity. These deviations are said to be
of the local shape, and the related bispectrum of the Bardeen’s
potential is maximized for squeezed configurations, where one of
the three wavevectors has much smaller magnitude than the other
two. In this case the parameter f NL must be a constant (see Byrnes,
Enqvist & Takahashi 2010b; Byrnes et al. 2010a), and it is expected
to be of the same order of the slow-roll parameters (Falk, Rangarajan
& Srednicki 1993) that are very close to zero.

However non-Gaussianities of the local shape can also be gener-
ated in the case in which an additional light scalar field, different
from the inflation, contributes to the observed curvature perturba-
tions (Babich, Creminelli & Zaldarriaga 2004). This happens, for
instance, in curvaton models (Sasaki, Väliviita & Wands 2006;
Assadullahi, Väliviita & Wands 2007) or in multifields models
(Bartolo, Matarrese & Riotto 2002; Bernardeau & Uzan 2002;
Huang 2009). In this case the parameter f NL is allowed to be sub-
stantially different from zero, and the bispectrum of the primordial
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potential assumes the simple form

B�(k1, k2, k3) = 2fNLB2
[
kn−4

1 kn−4
2 + kn−4

1 kn−4
3 + kn−4

2 kn−4
3

]
. (3)

Because of its simplicity, the local model is the most studied one,
especially in terms of cosmological simulations (see Wagner, Verde
& Boubekeur 2010).

2.2 Equilateral shape

In some inflationary models the kinetic term of the inflation La-
grangian is not standard, containing higher order derivatives of
the field itself. One significant example of this is the DBI model
(Alishahiha, Silverstein & Tong 2004; Silverstein & Tong 2004;
see also Arkani-Hamed et al. 2004; Seery & Lidsey 2005; Li, Wang
& Wang 2008). In this case the primordial bispectrum is maxi-
mized for configurations where the three wavevectors have approx-
imately the same amplitude, and it takes the form (Creminelli et al.
2007)

B�(k1, k2, k3) = 6fNLB2γ (k1, k2, k3)
[
k

(n−4)/3
1 k

2(n−4)/3
2 kn−4

3

+ k
(n−4)/3
3 k

2(n−4)/3
1 kn−4

2 + k
(n−4)/3
2 k

2(n−4)/3
3 kn−4

1

+ k
(n−4)/3
1 k

2(n−4)/3
3 kn−4

2 + k
(n−4)/3
2 k

2(n−4)/3
1 kn−4

3

+ k
(n−4)/3
3 k

2(n−4)/3
2 kn−4

1 − kn−4
1 kn−4

2 − kn−4
1 kn−4

3

− kn−4
2 kn−4

3 − 2k
2(n−4)/3
1 k

2(n−4)/3
2 k

2(n−4)/3
3

]
. (4)

The function γ (k1, k2, k3) in the first line of the previous equa-
tion represents a running of the parameter f NL that we have the
liberty to insert since this parameter is not forced to be constant
in the present case. This running has been considered as an ac-
tual part of the equilateral bispectrum in all the calculations that
follow. It reads (Chen 2005; LoVerde et al. 2008; Crociani et al.
2009)

γ (k1, k2, k3) =
(

k1 + k2 + k3

kCMB

)−2κ

. (5)

We adopted the exponent κ = −0.2 that increase the level of non-
Gaussianity at scales smaller than that corresponding to kCMB =
0.086 h Mpc−1. This coincides with the larger multipole used in the
CMB analysis by the WMAP team (Komatsu et al. 2009, 2011),
� ∼ 700. When referring to the equilateral shape in the rest of this
paper we always mean the bispectrum given by equation (4) with
κ = −0.2, unless otherwise noted.

2.3 Enfolded shape

For deviations from Gaussianity evaluated in the regular Bunch–
Davies vacuum state, the primordial potential bispectrum is of local
or equilateral shape, depending on whether or not higher order
derivatives play a significant role in the evolution of the inflation
field. If the Bunch–Davies vacuum hypothesis is dropped, the re-
sulting bispectrum is maximal for squashed configurations (Chen
et al. 2007; Holman & Tolley 2008).

Meerburg et al. (2009) found a template that describes very
well the properties of this enfolded-shape bispectrum (see also

Creminelli et al. 2011) that reads

B�(k1, k2, k3) = 6fNLB2
[
kn−4

1 kn−4
2 + kn−4

1 kn−4
3 + kn−4

2 kn−4
3

+ 3
(
kn−4

1 kn−4
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3

)2/3
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(
k
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.

(6)

No running of the f NL parameter was introduced for both the en-
folded and orthogonal shapes. The reasons are discussed further
below.

2.4 Orthogonal shape

A shape of the bispectrum can be constructed that is nearly or-
thogonal to both the local and equilateral forms (Senatore, Smith
& Zaldarriaga 2010). In this case the potential bispectrum is well
approximated by the following template:

B�(k1, k2, k3) = 6fNLB2
[
3
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. (7)

Constraints on the level of non-Gaussianity compatible with the
CMB in the local, equilateral and orthogonal scenarios were recently
given by the WMAP team (Komatsu et al. 2011), while constraints
on enfolded non-Gaussianity from LSS were given by Verde &
Matarrese (2009).

Although there is no theoretical prescription against a running
of the f NL parameter with the scale in the enfolded and orthogonal
shapes, we decided not to include one. The reason for this is that
there is no first principle that can guide one in the choice of a
particular kind of running, and until now no work has addressed
the problem of a running for these shapes (Fergusson & Shellard
2009; Fergusson, Liguori & Shellard 2010). As can be noted, in
all non-local cases except the enfolded one we defined the level of
non-Gaussianity by equating the bispectrum normalization in the
equilateral limit to the same quantity for the local shape (see the
discussion in Fergusson & Shellard 2009).

3 H ALO MASS FUNCTI ON A ND LI NEAR BIAS

Primordial non-Gaussianity produces modifications in the statistics
of density peaks, resulting in differences in the mass function of
cosmic objects and the bias of dark matter haloes with respect to
the underlying smooth density field. In the following we summarize
how these modifications have been taken into account in the present
work.

3.1 Mass function

For the non-Gaussian modification to the mass function of cos-
mic objects we adopted the prescription of LoVerde et al. (2008).
The main assumption behind it is that the effect of primordial
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non-Gaussianity on the mass function is independent of the pre-
scription adopted to describe the mass function itself. This means
that, if n

(G)
PS (M, z) and nPS(M, z) are the non-Gaussian and Gaus-

sian mass functions, respectively, computed according to the Press
& Schechter (1974) recipe, we can define a correction factor
R(M, z) ≡ n

(G)
PS (M, z)/nPS(M, z). Then, the non-Gaussian mass

function computed according to an arbitrary prescription, n(M, z)
can be related to its Gaussian counterpart through

n(M, z) = R(M, z)n(G)(M, z). (8)

In order to compute nPS(M, z), and hence R(M, z), LoVerde et al.
(2008) performed an Edgeworth expansion (Blinnikov & Moessner
1998) of the probability distribution for the smoothed density fluc-
tuations field, truncating it at the linear term in σ M . The resulting
Press & Schechter (1974)-like mass function reads

nPS(M, z) = −
√

2

π

ρm

M
exp

[
− δ2

c (z)

2σ 2
M

] [
d ln σM

dM

(
δc(z)

σM

+ S3σM

6

(
δ4

c (z)

σ 4
M

− 2
δ2

c (z)

σ 2
M

− 1

))

+ 1

6

dS3

dM
σM

(
δ2

c (z)

σ 2
M

− 1

)]
. (9)

In the previous equation ρm = 3H 2
0 �m,0/8πG is the comoving

matter density in the Universe, σ M is the rms of density fluctuations
smoothed on a scale corresponding to the mass M and δc(z) =
�c/D+(z), where D+(z) is the growth factor and �c is the critical
linear overdensity for collapse. The function S3(M) ≡ μ3(M)/σ 4

M

is the reduced skewness of the non-Gaussian distribution, and the
skewness μ3(M) can be computed as

μ3(M) =
∫

R9
MR(k1)MR(k2)MR(k3)

× 〈�(k1)�(k2)�(k3)〉dk1dk2dk3

(2π)9
. (10)

The last thing that remains to be defined is the function MR(k)
that relates the density fluctuations smoothed on some scale R to
the respective peculiar potential:

MR(k) ≡ 2

3

T (k)k2

H 2
0 �m,0

WR(k), (11)

where T(k) is the matter transfer function and WR(k) is the Fourier
transform of the top-hat window function.

In this work we adopted the Bardeen et al. (1986) matter transfer
function, with the shape factor correction of Sugiyama (1995). This
reproduces fairly well the more sophisticated recipe of Eisenstein
& Hu (1998) except for the presence of the baryon acoustic oscilla-
tion, that anyway is not of interest here. We additionally adopted as
reference mass function the prescription of Sheth & Tormen (2002)
(see Jenkins et al. 2001; Warren et al. 2006; Tinker et al. 2008
for alternative prescriptions). Other approaches also exist for com-
puting the non-Gaussian correction to the mass function that give
results is in broad agreement with those adopted here (Matarrese
et al. 2000; D’Amico et al. 2011). These semi-analytic prescriptions
are known to be in good agreement with cosmological simulations
having local non-Gaussian initial conditions (Grossi et al. 2007,
2009; Desjacques & Seljak 2010), while more recently the same
has been proven to be true also for more generic primordial bispec-
trum shapes (Wagner et al. 2010).

In the left-hand panel of Fig. 1 we show the mass dependence of
the reduced skewness for the four non-Gaussian shapes that have
been detailed above. It is interesting to note that in the orthogonal
case the skewness for positive f NL would be negative, thus bringing
to a reduction in the abundance of massive objects. Furthermore, the
equilateral shape is the only case in which S3(M) is not monotonic.
In computing the non-Gaussian corrections to the mass function
we have taken into account the modification to the critical over-
density for collapse suggested by Grossi et al. (2009) (see also
Maggiore & Riotto 2010a,b,c), according to which �c → �c

√
q,

with q ∼ 0.8.

Figure 1. Left-hand panel: the normalized skewness in units of f NL as a function of mass, for different bispectrum shapes as labelled. In the orthogonal shape
case the skewness for f NL > 0 is negative, thus the absolute value is plotted. Right-hand panel: the scale-dependent part of the non-Gaussian correction to
the linear bias in units of f NL, for a 1014 M� h−1 halo mass. Different line types refer to different shapes of the primordial bispectrum, as labelled. Note that
the correction for the orthogonal shape is negative (for positive f NL), thus we plotted the absolute value. As specified in the text, here and for all subsequent
calculations the equilateral bispectrum shape comprehend the running of f NL.
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3.2 Halo bias

Recently much attention has been devoted to the effect of primordial
non-Gaussianity on halo bias, and the use thereof for constraining
f NL (Carbone et al. 2008; Dalal et al. 2008; Verde & Matarrese
2009). In particular, Matarrese & Verde (2008) have shown that
primordial non-Gaussianity introduce a scale dependence on the
large-scale halo bias. This peculiarity allows to place already strin-
gent constraints from existing data (Afshordi & Tolley 2008; Slosar
et al. 2008).

The non-Gaussian halo bias can be written in a relatively straight-
forward way in terms of its Gaussian counterpart as (Carbone, Mena
& Verde 2010)

b(M, z, k) = b(G)(M, z) + βR(k)σ 2
M

[
b(G)(M, z) − 1

]2
, (12)

where the function βR(k) encapsulates all the scale dependence of
the non-Gaussian correction to the bias, and reads

βR(k) = 1

8π2σ 2
MMR(k)

∫ +∞

0
ζ 2MR(ζ )

×
[∫ 1

−1
MR

(√
α
) B�

(
ζ,

√
α, k

)
P�(k)

dμ

]
dζ, (13)

where α ≡ k2 + ζ 2 + 2kζμ. In the simple case of local bispectrum
shape it can be shown that the function βR(k) should scale as ∝k−2

at large scales, so that a substantial boost (if f NL > 0) in the halo
bias is expected at those scales.

In the right-hand panel of Fig. 1 we show the scale dependence
of the function βR(k) for a fixed halo mass. In the remainder of this
paper we adopted the Sheth, Mo & Tormen (2001) formula for the
Gaussian bias. Thus, since we express the correction to the halo
bias as a function of the Gaussian bias itself, we did not need to take
into account the ellipsoidal collapse correction suggested by Grossi
et al. (2009).

4 H A L O M O D E L O F T H E LA R G E - S C A L E
STRUCTURE

The halo model (Ma & Fry 2000; Seljak 2000) is a physical frame-
work that allows the description of the correlation function of dark
matter as well of different tracers of the LSS such as galaxies and
galaxy clusters. It is based on the assumption that the power spec-
trum of particles (either dark matter particles or tracers) is given
by the sum of two contributions: particle pairs residing in the same
structure, and particle pairs residing in two different structures. The
implicit hypothesis underlying this assumption is that no particles
are found outside bound structures. Accordingly, the cross-spectrum
Pxy(k, z) of two different kinds of particles x and y (if x = y then
Pxx(k, z) is the power spectrum of particle-type x) can be written as
the sum of two terms:

Pxy(k, z) = Pxy,1(k, z) + Pxy,2(k, z). (14)

The first one is named 1-halo term, while the second is the 2-halo
term. From the discussion above, it is immediately obvious that
the first term dominates on very small scales, while the second is
dominant at large scales.

The exact form of the two terms depends on the exact kind of
particle that we are considering. However, a common feature is
that the 2-halo term should depend upon the bias of dark matter
haloes, since it should represents particle pairs residing in separated
structures (Cooray & Sheth 2002).

4.1 Galaxy spectrum

In this case we set x = y = g, and the terms contributing to the
galaxy power spectrum can be written as

Pgg,1(k, z) =
∫ +∞

0
n(M, z)

〈Ng(Ng − 1)|M〉
n2

g(z)
|ug(M, z, k)|p dM

(15)

and

Pgg,2(k, z) = PL(k, z)ϕ2
g (k, z), (16)

where

ϕg(k, z) =
∫ +∞

0
n(M, z)b(M, z, k)

〈Ng|M〉
ng(z)

ug(M, z, k) dM. (17)

Note that we have included a scale dependence in the halo bias,
in order to account for the effect of primordial non-Gaussianity.
The functions 〈Ng|M〉 and 〈Ng(Ng − 1)|M〉 are the first and second
moment, respectively, of the halo occupation distribution p(Ng, M),
which represents the probability that Ng galaxies reside inside a dark
matter halo of mass M. The function PL(k, z) = AknD2

+(z)T 2(k) is
the linear matter power spectrum.

We observe that the previous integrals do not actually extend
down to M = 0, since there is a minimum halo mass Mg below
which no galaxy formation is possible, i.e. p(Ng, M) = 0 for M <

Mg. Additionally, not all galaxies at all redshifts are accessible to
observations, hence Mg should be the minimum galaxy halo mass
that, at a given redshift, enters in our fiducial catalogue. We come
back on the issue of the minimum mass further below. The function
ng(z) is the mean number density of galaxies, and reads

ng(z) =
∫ +∞

0
n(M, z)〈Ng|M〉 dM. (18)

The quantity ug(M, z, k) in equations (15) and (17) represents in-
stead the Fourier transform of the galaxy number density inside dark
matter haloes of mass M and redshift z. We set it equal to the number
density of dark matter particles, i.e. ug(M, z, k) ≡ ρ̂(M, z, k)/M .
For the dark matter density profile we adopt a Navarro, Frenk &
White (1996) shape (NFW henceforth, see also Navarro, Frenk &
White 1995, 1997) with a concentration–mass relation that repro-
duces simulated matter power spectra (see Huffenberger & Seljak
2003; Fedeli & Moscardini 2010 for discussions). We discuss more
on the adopted density profile in Section 6.

We make the assumption that if a dark matter halo hosts at least
one galaxy, then one galaxy should sit at the centre of the halo
itself. As a consequence, the 1-halo term of the galaxy power spec-
trum consists of two contributions: galaxy pairs that involve the
central objects and all the other pairs. As discussed by Cooray
& Sheth (2002) we can self-consistently assign p = 1 to the first
class (〈Ng(Ng − 1)|M〉 < 1) and p = 2 to the second (〈Ng(Ng −
1)|M〉 ≥ 1). As for the moments of the halo occupation distribu-
tion we adopted simple fitting forms that reproduce the results of
semi-analytic galaxy formation models, i.e.

〈Ng|M〉 = Ng,0

(
M

M0

)θ

(19)

and

〈Ng(Ng − 1)|M〉 = f 2(M)〈Ng|M〉2 (20)

(Cooray & Sheth 2002; Cooray 2004; Hütsi & Lahav 2008), where
f (M) = log

√
M/1011 M� h−1 if M ≤ 1013 M� h−1 and f (M) =

1 otherwise. This corresponds at assuming a Poisson distribution at
high halo masses with deviations thereof occurring at low masses.
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The three free parameters Ng,0, M0 and θ depend on the type of
galaxy that is under consideration (Cooray & Sheth 2002). Typi-
cally, for blue galaxies Ng,0 = 0.7, M0 = 4 × 1012 M� h−1 and
θ = 0 for M ≤ M0 and θ = 0.8 otherwise. For red galaxies we have
instead Ng,0 = 1, M0 = 2.5 × 1012 M� h−1 and θ = 0.9. Obviously,
the average number of galaxies inside a halo of some mass M is
the sum of the average number of red galaxies and of blue galaxies.
Now, the distinction between blue and red galaxies can be rather
qualitative, and dependent on the framework we are interested in
(e.g. observations versus semi-analytic models). The slitless spec-
troscopic instrument planned for Euclid will be mainly sensitive to
the flux and equivalent width of emission lines, mainly Hα, and thus
will mostly observe star-forming galaxies. Although this category
includes dust-obscured starburst objects that are not properly blue,
we believe the parameter set for blue galaxies to be more suited for
the target of Euclid. Hence we shall adopt it in the remainder of this
work. In Section 6 we discuss how our results are changed if we
consider a multislit spectroscopic instrument that select a different
galaxy population.

4.2 Cluster spectrum

For galaxy clusters the situation is less elaborated, since it is com-
monly assumed that only one cluster is contained inside each dark
matter halo that is massive enough (this is obviously not true for
galaxies and dark matter particles). Consequently, the 1-halo term
vanishes, Pcc,1(k, z) = 0, while the 2-halo term reads

Pcc,2(k, z) = PL(k, z)ϕ2
c (k, z), (21)

where

ϕc(k, z) =
∫ +∞

0
n(M, z)

b(M, z, k)

nc(z)
dM. (22)

In this case as well there is a minimum halo mass Mc below which
no cluster is formed (or below which clusters are not observable),
and the integrals are to be evaluated above that mass. The function
nc(z) then reads

nc(z) =
∫ +∞

0
n(M, z) dM. (23)

Further below we detail how the issue of the minimum cluster mass
is addressed in this paper.

In Fig. 2 we show the power spectrum of galaxy clusters along-
side that for galaxies, and compare them to the dark matter power
spectrum obtained with the halo model (Fedeli & Moscardini 2010).
At linear scales clusters are more biased than galaxies as is to be
expected. Moreover, since the power spectrum of clusters is made
only by the 2-halo term, their correlation drops off substantially at
small scales as compared to other tracers.

4.3 Cluster–galaxy cross-spectrum

Extending the previous results, Hütsi & Lahav (2008) derived the
two-halo model contributions to the cross-correlation of clusters
and galaxies. They can be written, respectively, as

Pcg,1(k, z) =
∫ +∞

0
n(M, z)

〈Ng|M〉
ng(z)nc(z)

ug(M, z, k) dM (24)

and

Pcg,2(k, z) = PL(k, z)ϕc(k, z)ϕg(k, z). (25)

In Fig. 2 we also show the cross-spectrum of galaxy clusters and
galaxies. As can be seen, at large scales the cross-spectrum stays

Figure 2. The power spectra of galaxies and galaxy clusters obtained ac-
cording to our halo model at z = 0, compared to the matter power spectrum
and to the cluster–galaxy cross-spectrum at the same redshift, as labelled.

in between the spectra of galaxies and clusters. However, it shows
more power on small scales than both clusters and galaxies. The
fact that the scale dependence of the cross-spectrum is different
from that of the galaxy spectrum and cluster spectrum means that
it carries a different kind of information on the spatial distribution
of LSS tracers, thus the cross-correlation can make up an important
improvement when constraining cosmological parameters.

4.4 Minimum masses

As mentioned above, in order to compute the cluster and galaxy
power spectra it is necessary to select a minimum mass for both
classes of objects. In general this minimum mass depends on red-
shift. Let us start with clusters. Bergé, Amara & Réfrégier (2010)
have estimated the weak lensing selection function for galaxy clus-
ters given a Euclid-like survey and different S/N detection thresh-
olds (see also Laureijs 2009). In order to be conservative, we adopted
S/N ≥ 5, and fitted the corresponding curve in fig. 1 of Bergé et al.
(2010). The result is displayed by the red dashed curve in Fig. 3,
which represents the Mc(z) we adopted in this work.

For galaxies, we adopted the minimum halo mass Mg(z) =
1011 M� h−1 which, given the halo occupation moments reported
in equations (19) and (20), reproduces in the reference Gaussian
cosmology the effective bias predicted for Hα selected galaxies by
Euclid (Orsi et al. 2010). According to equation (16), the effec-
tive galaxy bias can be estimated within the framework of the halo
model as the large-scale limit of ϕg(k, z), i.e. be(z) ≡ limk→0ϕg(k,
z). The effective bias estimates reported in Orsi et al. (2010) have
been performed adopting semi-analytic models of galaxy formation
(Baugh et al. 2005; Bower et al. 2006), and assuming a spectroscopic
selection based on Hα emission. The latter is appropriate for our
scope, since we are considering star-forming galaxies only. The
points reported in Fig. 4 are the predictions performed by Orsi et al.
(2010) using the Baugh et al. (2005) model for two different Hα

flux thresholds (log (f Hα) = −15.4 and log (f Hα) = −15.5 in CGS
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Non-Gaussianity from future surveys 1551

Figure 3. The minimum mass as a function of redshift for spectroscopi-
cally selected galaxies (solid green line) and weak lensing selected clusters
(dashed red line) adopted in the present work. The points are the aver-
age galaxy halo masses derived from semi-analytic evolutionary models
for two different Hα flux thresholds, log (f Hα) = −15.4 (red triangles) and
log (f Hα) = −15.5 (blue circles, CGS units).

Figure 4. The effective bias as a function of redshift for spectroscopically
selected galaxies (solid black line). The points are the galaxy biases derived
from semi-analytic evolutionary models for two different Hα flux thresholds,
log (f Hα) = −15.4 (red triangles) and log (f Hα) = −15.5 (blue circles, CGS
units).

units). Obviously there is not much difference between the two
choices that are well reproduced by the solid line, representing the
outcome of our halo model. In Fig. 3 we also report the minimum
mass of galaxy haloes, compared to the average such mass found
again by Orsi et al. (2010).

5 R ESULTS

In this section we summarize our main results. First, we explored
what happens to the power and cross-spectra described above when
the distribution of primordial density fluctuations deviates from a
Gaussian. Then, we performed a Fisher matrix analysis in order to
forecast the constraints on the main cosmological parameters that
can be expected by a Euclid-like all-sky survey.

5.1 Effect of non-Gaussianity on the power and cross-spectra

As a first step of our analysis we computed the Euclid-expected
galaxy power spectrum, cluster power spectrum and cluster–galaxy
cross-spectrum for all the cosmological models considered in this
work, and investigated the modifications induced by primordial non-
Gaussianity on each one. In Fig. 5 we show the effect of the different
shapes of primordial non-Gaussianity examined in the present paper
on the power and cross-spectra for different tracers of the LSS. We
show results for f NL = ±100, since this roughly corresponds to
the best high confidence limits that are currently placed on this
parameter, and for f NL = ±200 as a comparison. We recall that the
power spectrum of dark matter haloes in cosmological simulations
with local non-Gaussian initial conditions has been studied in Grossi
et al. (2009) and Desjacques, Seljak & Iliev (2009). However, here
we are interested in a wider variety of bispectrum shapes, and in
specific classes of objects that are not necessarily in a one-to-one
relation with dark matter haloes.

The corrections to the power and cross-spectra that are due to
different kinds of primordial non-Gaussianity resemble the correc-
tions to the large-scale halo bias that have been shown in Fig. 1.
This is to be expected, since in the halo model the mass function is
normalized over (see Section 4), hence the largest effect is expected
to be due to the halo bias. In particular, for the local shape we ob-
serve a sharp increase of the power at large scales for all tracers.
A similar increase in power at large scales, although not as strong,
is also observed for the enfolded and orthogonal shapes. Note also
that the trend for the latter is reversed, due to the fact that in this
case a positive f NL implies a negative effect on the bias and the mass
function. Finally, for the equilateral shape we find a slight increase
in the power at intermediate scales, again in agreement with the
behaviour of the halo bias.

As one might expect, the larger effect is found in correspon-
dence of the tracers that are more biased with respect to the un-
derlying matter density field that are galaxy clusters. This can be
understood by looking at equation (12), where it is shown that the
difference between the non-Gaussian halo bias and its Gaussian
counterpart is in fact proportional to the square of the Gaussian
bias itself. On the other hand, the effect on the cluster–galaxy
cross power spectrum is at an intermediate level between the ef-
fect on the galaxy power spectrum and that on the cluster power
spectrum. Because of their low average bias, star-forming galax-
ies are very poorly affected by primordial non-Gaussianity, and
this is particularly true for the enfolded and orthogonal bispectrum
shapes.

A closer look to the first and third column panels of Fig. 5 re-
veals an interesting fact. While the change in the cluster–galaxy
cross-spectrum due to primordial non-Gaussianity is larger than
the change in the galaxy power spectrum, it is more so for the
enfolded and orthogonal bispectrum shapes, as compared to the
local and equilateral ones. This means that the inclusion of the
cross-correlation between clusters and galaxies should bring a bet-
ter improvement over the constraints on non-Gaussianity obtained
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1552 C. Fedeli et al.

Figure 5. The ratio of the power and cross-spectra for different tracers of the LSS computed in various non-Gaussian cosmologies to the same quantities
evaluated in the reference Gaussian case. From top to bottom: non-Gaussianities with local, equilateral, enfolded and orthogonal bispectrum shapes. From
left to right: the power spectrum of star-forming galaxies, galaxy clusters and the cross-spectrum of clusters and galaxies. For all non-Gaussian cosmologies
considered here values of f NL = 100 (solid red lines), f NL = 200 (solid green lines), f NL = −100 (dashed red lines) and f NL = −200 (dashed green lines)
were chosen. All results are shown at z = 0.

by using the galaxy spectrum alone in the first two cases than in
the second ones. Although it is difficult to gauge what the effect of
the additional inclusion of the cluster power spectrum would be, we
show in the next subsection that this expectation is to some extent
satisfied.

5.2 Fisher matrix analysis

For the Fisher information matrix of the cross-correlation between
clusters and galaxies we followed the calculations of Hütsi &
Lahav (2008), assuming perfect redshift knowledge for both galax-
ies and clusters. This assumption is justified since galaxies are
spectroscopically selected, while clusters, being chosen as the high-
est S/N cosmic shear peaks, should be very massive, thus making
follow-up confirmations relatively straightforward. In addition, we
assumed redshift space distortions to be sufficiently well understood
to be modelled away. Accordingly, the Fisher matrix for the redshift
bin centred at z can be well approximated as

F ij
cg(z) � V (z)

4π2

∫ kmax

kmin

k2dk wcg(k, z)
∂ ln Pcg(k, z)

∂ξi

∂ ln Pcg(k, z)

∂ξj

,

(26)

where wcg(k, z) = 2/[1 + γ cg(k, z)], and

γcg(k, z) = [1 + nc(z)Pcc(k, z)][1 + ng(z)Pgg(k, z)]

nc(z)ng(z)P 2
cg(k, z)

. (27)

In the above set of equations, the quantities nc(z) and ng(z) are
the average number densities of clusters and galaxies in the survey
at hand (equations 23 and 18, respectively), V(z) is the comoving
volume contained in the unit redshift around z and ξ i is the ith
parameter of our cosmological model. The two wavenumbers kmin

and kmax represent the boundaries of the wavenumber range used in
the analysis. The chosen redshift bins should be relatively narrow,
in order to treat the spatial number densities of tracers within each
bin as constants. The total Fisher matrix is then given by the sum
over the nz adopted redshift bins,

F ij
cg =

nz∑
�=1

F ij
cg(z�). (28)

In the case in which we are interested only in galaxies or only in
clusters, the formalism remains the same, with the only difference
being given by the replacements of Pcg(k, z) with Pxx(k, z) (with
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Non-Gaussianity from future surveys 1553

Table 1. The adopted parameter set for our fiducial Euclid-like survey.

Galaxies Galaxy clusters

Sky coverage 20 000 deg2 20 000 deg2

Redshift efficiency 0.5 –
Hα flux threshold 3 × 10−16 erg s−1 cm−2 –
Cosmic shear S/N threshold – 5
Redshift range [0.5, 2.1] [0.5, 2.1]
Minimum scale kmax = 0.3 Mpc−1 kmax = 0.3 Mpc−1

x = c or x = g) and of wcg(k, z) with

wxx(k, z) =
[

nx(z)Px(k, z)

1 + nx(z)Px(k, z)

]2

(29)

in equation (26). In our analysis we adopted a redshift range typical
for Hα galaxies selected by Euclid, 0.5 ≤ z ≤ 2.1 (cf. the Euclid
Yellow Book), and a range of scales corresponding to kmin ≤ k
≤ 0.3 Mpc−1, where kmin matches the largest scale available for
a given redshift bin. For completeness, in Table 1 we summarize
all the survey parameters that have been adopted in our Fisher
matrix analysis including the redshift efficiency, that is the fraction
of spectroscopically selected galaxies for which a reliable redshift
measurement is expected.

In Fig. 6 we show the joint 68 per cent confidence level contours
in the f NL–σ 8 plane that result from the Fisher matrix analysis
performed for all the four bispectrum shapes considered in the
present paper. All other cosmological parameters are have been kept
fixed to the fiducial WMAP-7 values summarized in Section 1. We

report the results of considering the galaxy power spectrum alone,
the cluster power spectrum, the cluster–galaxy cross-spectrum and
different combinations of the three. For further clarity, in Table 2
we report the 1σ errors that are forecasted both on the level of non-
Gaussianity f NL and on the amplitude of the matter power spectrum
σ 8. The fiducial model that we adopted has f NL = 0 and σ 8 = 0.809,
as specified in Section 1.

As can be seen, the tracers of the LSS that individually give the
best constraints on both parameters considered are galaxies, due to
their very large number density which beats down the shot noise
in the Fisher matrix. Galaxies alone give constraints on σ 8 that are
more than an order of magnitude better than those of clusters alone,
while the performance on the level of primordial non-Gaussianity
f NL, as expected, depends on the specific choice of the primordial
bispectrum shape. Galaxies perform a factor of ∼8 better than clus-
ters in the equilateral case, but only a factor of ∼3 better in the
orthogonal configuration.

The constraints on the f NL–σ 8 plane that we gather from clusters
alone are somewhat different than those reported in Sartoris et al.
(2010), which performed a similar Fisher matrix analysis on the
cluster sample expected to be detected by the planned Wide Field
X-Ray Telescope (WFXT; see also Cunha, Huterer & Doré 2010
for a related work). Particularly, while the forecasted error on f NL is
comparable, the error on σ 8 is much smaller in our case than in their.
We ascribe this difference to two factors. First, clusters are selected
in different ways in the two cases. Secondly, Sartoris et al. (2010)
introduced nuisance parameters for estimating the uncertainty in
the mass calibration, and at the same time adopted priors on several
cosmological parameters inspired by Planck forecasts. We infer the

Figure 6. The joint 68 per cent confidence level contours in the f NL–σ 8 plane given by different combinations of the galaxy and cluster power spectra and the
cluster–galaxy cross-spectrum, as labelled. Results are shown for all the four shapes of the primordial bispectrum that have been considered in this work. All
other cosmological parameters have been kept fixed to their WMAP-7 fiducial values.
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Table 2. The 1σ forecasted errors for f NL and σ 8.

Local Equilateral Enfolded Orthogonal
�f NL �σ 8 �f NL �σ 8 �f NL �σ 8 �f NL �σ 8

Pgg 1.15 2.96 × 10−4 1.55 2.95 × 10−4 4.89 2.96 × 10−4 5.15 2.97 × 10−4

Pcc 8.02 8.11 × 10−3 13.2 8.00 × 10−3 21.9 7.84 × 10−3 16.9 7.68 × 10−3

Pcg 1.38 9.09 × 10−3 2.18 9.08 × 10−3 3.77 9.04 × 10−3 2.92 9.01 × 10−3

Pcc + Pcg 1.36 5.84 × 10−3 2.15 5.83 × 10−3 3.71 5.80 × 10−3 2.88 5.79 × 10−3

Pgg + Pcc + Pcg 0.87 2.95 × 10−4 1.25 2.95 × 10−4 2.95 2.95 × 10−4 2.51 2.95 × 10−3

second factor to be the dominant one, as rerunning the analysis
of Sartoris et al. (2010) without nuisance parameters and priors
brings to errors on σ 8 comparable with ours own (Sartoris, private
communication). We believe it to be safe to assume that Euclid
weak lensing cluster catalogues will have sufficient control over
systematics to ignore the contribution of imperfect knowledge of
the mass–observable relation. This point of view is shared by Bergé
et al. (2010).

The behaviour of the confidence contours given by the cluster–
galaxy cross-spectrum alone is interesting. First, while the con-
straining power on f NL is greatly enhanced as compared to the
constraining power of clusters alone, the same is not true for σ 8.
Actually the 1σ errors on σ 8 expected from the cluster–galaxy
cross-correlation are systematically ∼15 per cent larger than those
expected from clusters alone. As a consequence, while galaxies still
play a dominant role about constraining σ 8, the cross-correlation
gives comparable constraints on f NL. As a matter of fact, for the
enfolded and the orthogonal shapes, the cross-spectrum performs
even better with respect to f NL, so that combination of all the three
probes brings to a significant improvement over galaxies alone.
Specifically, while the combined probes decrease the 1σ error on
f NL only by ∼30 per cent for the local bispectrum shape, this decre-
ment reaches a factor of ∼2 in the orthogonal case. The fact that
the improvement in constraining power due to the inclusion of the
cross-spectrum is more pronounced for the enfolded and orthog-
onal shapes can be deduced from the observation that we made
at the end of the last subsection, justified by the complicated in-
terplay of galaxy and cluster biases modified by primordial non-
Gaussianity.

A perhaps unexpected result is that the constraints on the f NL

parameter in the equilateral case are almost comparable with those
for the local case, and much more stringent than for the enfolded
and orthogonal shapes. Since the effect of non-Gaussianity on the
large-scale bias is very slight in the equilateral case one would
have naively expected the opposite behaviour. However, it should
be recalled that the correction to the mass function (which also
enters the calculations of the power spectra and the Fisher matrices)
for the equilateral shape is comparable to that for the local shape.
Moreover, in the former case the non-Gaussian correction to the
bias is concentrated at intermediate scales, and the resulting effect
on the power spectra is thus less degenerate with σ 8 with respect
to the other cases. Finally, the integral over wavenumbers in the
definition of the Fisher matrix weights more smaller scales. Hence
a modification of the power spectrum at a given level has a stronger
impact if applied to small scales rather than large ones. In Fedeli
et al. (2009) it is shown how the effect of equilateral primordial
non-Gaussianity on the mass function and halo bias is reduced
when removing the running of f NL. In the next section we show
that this has the effect of loosening the constraints on the level of
primordial non-Gaussianity.

Table 3. The f NL–σ 8 correlation coefficients.

Local Equilateral Enfolded Orthogonal

Pgg 0.05 0.02 0.05 −0.09
Pcc 0.37 0.33 0.27 −0.18
Pcg 0.13 0.13 0.08 −0.04
Pcc + Pcg 0.13 0.12 0.08 −0.05
Pgg + Pcc + Pcg 0.04 0.02 0.03 −0.04

As a final step of our analysis, we computed the correlation coef-
ficients between f NL and σ 8 for different non-Gaussian shapes and
for different combinations of LSS probes adopted. The correlation
coefficient of the ith and the jth cosmological parameters in our set
is defined as

rij ≡ (F−1)ij√
(F−1)ii(F−1)jj

, (30)

where F is the Fisher matrix relative to the probe we are consid-
ering. For instance, the Fisher matrix for the combination of the
cluster power spectrum with the cluster–galaxy cross-spectrum is
F = Fcc + Fcg. According to its definition, the correlation coeffi-
cient would have value rij = +1 for perfectly correlated parameters,
rij = −1 for perfectly anticorrelated ones and rij = 0 for uncorre-
lated parameters. The results are summarized in Table 3. The first
thing to note is that, while the coefficients are positive for the local,
equilateral and enfolded shapes, they are negative for the orthogonal
shape. This reflects the point that, in the latter case, the confidence
contours plotted in Fig. 6 are tilted in the opposite direction with
respect to the former. This is a consequence of the fact that in the
orthogonal case, a positive value of f NL corresponds to a negative
skewness of the density field and a negative correction to the linear
bias, while for the other shapes considered in this work the opposite
is true. A closer look to the absolute value of the correlation coef-
ficients reveals that the constraints given by galaxy clusters alone
are the most degenerate between f NL and σ 8, while the constraints
given by galaxies alone are almost undegenerate, in the sense that
they pin down σ 8 much better than f NL.

The positive correlation between σ 8 and f NL in terms of power
spectrum of cosmic tracers can be understood by considering the
effect that both parameters have on the halo bias. An increase in
σ 8 has the effect of making structures less rare, and hence less
biased with respect to the background matter density field. On the
other hand an increase in f NL in the positive direction increases
the bias, except for the peculiar orthogonal case, that indeed shows
an opposite degeneracy. The resulting degeneracy is, however, not
very large because an increase in σ 8 also increases the matter power
spectrum, thus partially counteracting the decrement in the halo
bias.
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6 D ISCUSSION

In this section we debate some of the assumptions that have been
adopted in the present paper, and discuss overlapping with other
works. We begin by noting that Wang et al. (2010) forecasted the
constraints on the redshift evolution of the dark energy equation of
state parameter expected by the galaxy power spectrum measured
by Euclid. The error on σ 8 that they found is of the order of ∼7 ×
10−2, thus being much larger than our result. The reasons for this
mismatch are the following: (i) Wang et al. (2010) let all the cos-
mological parameters free to vary, while we fixed them all to their
WMAP best fits, except for f NL and σ 8; (ii) we used the full power
spectrum information, while Wang et al. (2010) limited themselves
only to the shape and position of the baryon acoustic oscillation.

Recently, Smith, Desjacques & Marian (2011) have shown, by
using numerical simulations of structure formation in the presence
of local non-Gaussianity, that dark matter haloes tend to be on
average more centrally concentrated than their counterparts in the
reference Gaussian cosmology for positive f NL, while the opposite
is true for negative f NL. This finding is in agreement with previous
work (Avila-Reese et al. 2003), and with the naive expectation that
a higher efficiency in forming high-mass objects implies. Under our
assumption that the galaxy number density traces the dark matter
density, this would underpin a different distribution of galaxies
within dark matter haloes as well. However, such an assumption is

Figure 7. The joint 68 per cent confidence level contours in the f NL–
σ 8 plane given by different combinations of the galaxy and cluster power
spectra and cluster–galaxy cross-spectrum. We show only the results for the
equilateral shape of the primordial bispectrum, assuming no running of the
parameter f NL.

probably rough, and it is not clear if the galaxy distribution would be
modified similarly to the matter distribution. Nevertheless, effects
due to the inner structures of clusters show up only on very non-
linear scales that are important for cosmic shear studies, but have
been neglected in the present investigation (see Section 5). Thus,
we stick to our choice of a standard NFW profile for the distribution
of galaxies within haloes for all cosmologies considered here.

The running of the f NL parameter introduced for the equilateral
shape in equation (4) also deserves further discussion. Namely,
different authors tend to use different shapes for this running, or, in
some circumstances, no running at all (Verde & Matarrese 2009).
Therefore, we redid our Fisher matrix analysis by setting the running
γ (k1, k2, k3) = 1. The results are shown in Fig. 7. As can be seen,
while the constraints on σ 8 are almost unchanged those on f NL are
visibly loosened. For instance, the 1σ forecasted error obtained by
galaxy clusters alone goes from ∼13 to ∼30 when the running is
removed, while that obtained by galaxies alone grows from ∼1.5
to ∼4.6. This kind of effect was expected, since the running we
introduced had the effect of increasing the level of non-Gaussianity
on sub-CMB (cluster) scales. By setting γ (k1, k2, k3) = 1 such an
increase is removed, and the errors increase. This result stresses the
importance of considering the same f NL running when results from
different works are compared (see also Shandera, Dalal & Huterer
2010).

In order to make our analysis more complete, we evaluated con-
straints on non-Gaussianity considering survey configurations dif-
ferent from the fiducial one described in the preceding sections. As
a first step, we changed the S/N threshold for the detection of dark
matter haloes in cosmic shear maps, going from S/N ≥ 5 to ≥ 7. We
again fitted the corresponding curve in fig. 1 of Bergé et al. (2010)
in order to infer the minimum cluster mass to be adopted. In this
case, Mc(z) at z = 0 is a factor of ∼2 larger than for the S/N ≥ 5
case. Only two bispectrum shapes have been considered here: the
local one, since it is the one expected to give the best constraints,
and the orthogonal one, since it is the less studied one. In Fig. 8
we show the joint 68 per cent confidence levels on σ 8 and f NL

given by this new detection criterion for galaxy clusters, and in Ta-
ble 4 we report the numerical values of the respective errors. While
the constraints given by galaxies alone are obviously unchanged,
those given by clusters and the cluster–galaxy cross-correlation
are significantly loosened. As a consequence, very little informa-
tion is added if combining the galaxy power spectrum with power
spectra involving clusters, and this remains true for the orthogonal
model as well. This result implies that, while selecting cosmic shear

Figure 8. The joint 68 per cent confidence level contours in the f NL–σ 8 plane given by different combinations of the galaxy and cluster power spectra and the
cluster–galaxy cross-spectrum, as labelled. Results are shown for the local (left-hand panel) and orthogonal (right-hand panel) bispectrum shapes, assuming a
weak lensing cluster detection threshold of S/N ≥ 7.
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Table 4. The 1σ forecasted errors for f NL and σ 8 assuming alternative survey configurations.

Local (S/N ≥ 7) Orthogonal (S/N ≥ 7) Local (multislit) Orthogonal (multislit)
�f NL �σ 8 �f NL �σ 8 �f NL �σ 8 �f NL �σ 8

Pgg 1.15 2.96 × 10−4 5.15 2.97 × 10−4 0.56 1.90 × 10−4 2.69 1.84 × 10−4

Pcc 37.0 2.00 × 10−2 80.5 1.66 × 10−2 6.51 3.25 × 10−3 13.8 2.82 × 10−3

Pcg 4.46 1.43 × 10−2 9.63 1.33 × 10−2 1.55 1.93 × 10−3 3.54 1.87 × 10−3

Pcc + Pcg 4.35 1.08 × 10−2 9.52 1.02 × 10−2 1.51 1.60 × 10−3 3.43 1.54 × 10−3

Pgg + Pcc + Pcg 1.11 2.96 × 10−4 4.52 2.96 × 10−4 0.52 1.82 × 10−4 2.10 1.69 × 10−3

peaks with higher S/N we are effectively selecting more massive
structures, on whose statistics the effect of non-Gaussianity is larger,
the respective constraining power is too much suppressed by the ex-
ponential decrement in the abundance of such objects.

As a second alternative survey configuration we considered a mul-
tislit spectroscopic instrument on the model of the digital micromir-
ror devices (DMDs) conceived for the SPACE mission (Cimatti
et al. 2009). This is particularly relevant in view of future space
missions alternative to Euclid, such as WFIRST and JEDI (Crotts
et al. 2005). In this case selection of galaxies would occur accord-
ing to their H-band flux. As a consequence luminous red galaxies
(LRGs) would be detected as well, thus we had to use the halo oc-
cupation distribution relative to a mixture of red and blue galaxies,
rather than to blue galaxies only as we did for our fiducial survey.
We found that a new constant minimum halo mass of Mg(z) =
3 × 1011 M� h−1 reproduces fairly well the effective bias of galax-
ies with H-band magnitude brighter than HAB = 22 according to
the simulations of Orsi et al. (2010). All the other parameters of
the survey are left unchanged, while the redshift range of the anal-
ysis is extended to 0.1 ≤ z ≤ 2.1 (for both clusters and galaxies,
although the former are unaffected by spectroscopy) in order to
comply with the different observational specifications. In Table 4
we report the 1σ errors forecasted for this alternative configuration.
As can be seen, in this case the constraints on both f NL and σ 8 are
significantly improved with respect to our fiducial Euclid-like case.
The error on the level of non-Gaussianity can for instance reach
�f NL ∼ 0.5 for the local bispectrum shape. Since the cluster selec-
tion is unchanged, we interpret this improvement as due to a combi-
nation of the different galaxy selection and of the extended redshift
range that is allowed by the multislit configuration. We expand a lit-
tle bit more on this further below. This improvement is additionally
emphasized in Fig. 9, where we show the one-parameter 68 per cent
confidence levels on the σ 8–f NL plane given by the combination of

the power spectra of clusters and galaxies and the cluster–galaxy
cross-spectrum for both the multislit configuration we are consid-
ering and the fiducial slitless Euclid case. It is interesting to note
that, due to the different galaxy population selected in the multislit
case, the inclination of the confidence ellipses changes with respect
to the fiducial slitless configuration.

Finally, we estimated how the constraints on the level of non-
Gaussianity changed upon modification of the redshift and scale
ranges considered in the Fisher matrix analysis, for both the slitless
Euclid-like configuration and the multislit case. In Fig. 10 we show
the results of changing the minimum scale included in the analysis,
kmax, the minimum and the maximum redshift of both galaxies and
clusters. Fiducial vales are kmax = 0.3 Mpc−1, 0.5 ≤ z ≤ 2.1 for
Euclid and 0.1 ≤ z ≤ 2.1 for the multislit case. As one could naively
expect, the error on f NL decreases by increasing both the minimum
scale and the maximum redshift (although in the latter case the trend
is quite mild), while it increases by increasing the minimum redshift
(because the maximum redshift is held fixed). As mentioned above,
the differences between the slitless and the multislit case are due to a
combination of the different selection of galaxies with the different
redshift range adopted. An exception to this is given by the two
middle panels of Fig. 10, where the redshift ranges adopted are
the same for both configurations, and thus the differences can be
ascribed only to the different selection functions.

7 SU M M A RY A N D C O N C L U S I O N S

We adopted the physically motivated halo model in order to com-
pute the effect of different kinds of primordial non-Gaussianity
on the power spectrum of galaxies and galaxy clusters, as well as
on the cluster–galaxy cross-spectrum. Specifically, we considered
galaxies selected spectroscopically according to their Hα flux, and
galaxy clusters selected as the largest S/N peaks in cosmic shear

Figure 9. The one-parameter 68 per cent confidence level contours in the f NL–σ 8 plane given by the combination of the galaxy power spectrum, the cluster
power spectrum and the cluster–galaxy cross-spectrum. Results are shown for the local (left-hand panel) and orthogonal (right-hand panel) bispectrum shapes.
We illustrate the comparison between the outcome for our fiducial Euclid-like survey and for the multislit case discussed in the text, as labelled.
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Non-Gaussianity from future surveys 1557

Figure 10. The 1σ forecasted error on the level of non-Gaussianity given by the combination of the cluster and galaxy power spectra and the cluster–galaxy
cross-spectrum for both the Euclid and the multislit survey configurations, as labelled. Results are shown for the local (left-hand panels) and orthogonal
(right-hand panels) bispectrum shapes (please note the differences in the vertical scales). The top two panels show the trend of the error as a function of kmax

(for fixed 0.5 ≤ z ≤ 2.1 in the slitless case and 0.1 ≤ z ≤ 2.1 in the multislit case), the middle two as a function of the minimum redshift (for fixed kmax =
0.3 Mpc−1 and z ≤ 2.1) and the bottom two as a function of the maximum redshift (for fixed kmax = 0.3 Mpc−1 and z ≥ 0.5 for the slitless case and z ≥ 0.1 for
the multislit case).

maps, having in mind future wide field optical/near-infrared surveys
such as Euclid and WFIRST . We additionally performed a Fisher
matrix analysis in order to forecast the errors on the joint determi-
nation of the level of non-Gaussianity f NL and the amplitude of the
matter power spectrum σ 8. The main findings of this work can be
summarized as follows.

(i) The non-Gaussian corrections to the power spectrum of trac-
ers of the LSS resemble the modifications to the large-scale bias of
dark matter haloes, as one might naively expect. The largest effect is

seen for the local bispectrum shape, while the smallest appears for
the enfolded shape. The power spectrum of massive galaxy clusters
is more heavily modified than the spectrum of galaxies, because
the former are originally more biased than the latter. The mod-
ification to the cluster–galaxy cross-spectrum lies somewhere in
between.

(ii) Galaxies have a much higher constraining power on both
f NL and σ 8 as compared to galaxy clusters, due to the much
lower abundance of the latter that is not adequately compensated
by the larger effect on the relative power spectrum. Assuming a
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Euclid-like survey, while spectroscopically selected galaxies can
constrain f NL to the level of a few and σ 8 to the level of ∼3 × 10−4,
errors on parameters derived by clusters alone are at the level of
�f NL ∼ 10 and �σ 8 ∼ 8 × 10−3 (with some dependence on the
primordial bispectrum shape).

(iii) When considering the cluster–galaxy cross-spectrum alone,
the forecasted constraints on σ 8 are comparable to the cluster-only
constraints, while the constraints on σ 8 are improved by more
than one order of magnitude, reaching a predicted error compa-
rable with that coming from galaxies alone, �f NL ∼ a few. This
result highlights the high complementarity of the cluster power
spectrum and the cluster–galaxy cross-spectrum as cosmological
probes.

(iv) While the constraints on σ 8 coming from the galaxy power
spectrum alone are almost unchanged when combined with the
cluster–galaxy cross-correlation, the constraints on f NL are im-
proved. This is true only to a slight level for the local and equilateral
bispectrum shapes, however, the error on f NL can be reduced by a
factor of ∼2 for the enfolded and orthogonal cases. The addition
of the cluster power spectrum carries only slight change to this
conclusion.

(v) As expected the parameters f NL and σ 8 are degenerate with
respect to the power spectra of LSS tracers. This degeneracy is more
marked for the cluster power spectrum, with correlation coefficients
reaching up to 0.3–0.4. The degeneracy on the other hand is almost
insignificant for the galaxy power spectrum, in the sense that the
constraining power weights much more on σ 8 than on f NL. The
degeneracy with respect to the cluster–galaxy cross-spectrum lies
in between the former two, with the exception of the orthogonal
bispectrum shape.

(vi) We considered several survey configurations alternative to
the fiducial Euclid-like one, finding that a multislit spectroscopic
instrument would allow more stringent constraints both on f NL and
σ 8. This improvement is due to a combination of the fact that with
this other arrangement the selected galaxy population is different,
and that the data analysis can be pushed down to a lower minimum
redshift. This result is interesting with respect to future wide field
survey concepts alternative to Euclid, such as WFIRST .

The improvement in the constraints on both f NL and σ 8 when
combining the cluster and/or galaxy power spectra with the cluster–
galaxy cross-spectrum is reminiscent of the fact that the latter is
sensitive to different scales in a different way with respect to the
former. The fact that this improvement is more important for the en-
folded and orthogonal bispectrum shapes is extremely interesting,
since these models are still relatively poorly studied compared to
the equilateral and, almost ubiquitous, local shapes. Additionally,
the amazing constraining power of the galaxy power spectrum, even
when considered alone, stresses the importance of the spectroscopy
part for future Euclid-like missions when it comes to restrict cos-
mology on the basis of the spatial distribution of objects.

The present work reinforces the conclusion that the spatial dis-
tribution of tracers of the LSS, especially galaxies, is an incredibly
powerful probe for primordial non-Gaussianity, thanks to the very
strong impact that the latter has on the large-scale bias of dark mat-
ter haloes (Carbone et al. 2008, 2010). The combination of cluster
and/or galaxy power spectra with the cross-spectrum of clusters
and galaxies significantly improves the forecasted constraints, es-
pecially for the least studied non-Gaussian shapes. Merging all
the information from future wide field surveys such as Euclid and
WFIRST promise to bring constraints on f NL to the unity level, and
constraints on σ 8 to the level of ∼10−4, in both cases superior to

future CMB experiments (Sefusatti et al. 2009; Verde & Matarrese
2009).
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