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Abstract (150 word limit) 

Although BRAF inhibitor monotherapy yields response rates >50% in BRAFV600-mutant 

melanoma, only ~5% with BRAFV600E colorectal cancer (CRC) respond. Preclinical 

studies suggest that lack of efficacy in BRAFV600E CRC is due to adaptive feedback 

reactivation of MAPK signaling, often mediated by EGFR. This clinical trial evaluated 

BRAF and EGFR inhibition with dabrafenib (D) + panitumumab (P) ± MEK inhibition with 

trametinib (T) to achieve greater MAPK suppression and improved efficacy in 142 

patients with BRAFV600E CRC. Confirmed response rates for D+P, D+T+P, and T+P were 

10%, 21%, and 0%, respectively. Pharmacodynamic analysis of paired pre- and on-

treatment biopsies found that efficacy of D+T+P correlated with increased MAPK 

suppression. Serial cell-free DNA analysis revealed additional correlates of response 

and emergence of KRAS and NRAS mutations on disease progression. Thus, targeting 

adaptive feedback pathways in BRAFV600E CRC can improve efficacy, but MAPK 

reactivation remains an important primary and acquired resistance mechanism. 

 

 

SIGNIFICANCE (~50 word limit) 

This trial demonstrates that combined BRAF + EGFR + MEK inhibition is tolerable, with 

promising activity in patients with BRAFV600E CRC. Our findings highlight the MAPK 

pathway as a critical target in BRAFV600E CRC and the need to optimize strategies 

inhibiting this pathway to overcome both primary and acquired resistance. 
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INTRODUCTION 

Activating gene mutations in the mitogen-activated protein kinase (MAPK) pathway are 

frequently observed in cancer and promote tumor cell migration, proliferation, and 

survival (1, 2). The serine/threonine protein kinase BRAF belongs to the RAF family of 

kinases (1, 2) (including ARAF and CRAF [RAF1]), which are normally activated by RAS 

family members (KRAS, NRAS, and HRAS), typically in response to signals from 

receptor tyrosine kinases (RTKs) (2, 3). BRAFV600 mutations lead to constitutive, RAS-

independent activation of BRAF kinase activity and MAPK pathway signaling through 

downstream activation of MEK (MEK1 and MEK2) and ERK (ERK1 and ERK2) kinases 

(2, 3).   

 

Oncogenic BRAFV600E mutations are present in ≈10% of colorectal cancers (CRCs) (2, 4) 

and ≈50% of melanomas (5). In CRC, BRAFV600E mutations confer a poor prognosis, 

resulting in nearly a 2-fold increase in mortality relative to wild-type BRAF in the 

metastatic setting (1, 6, 7). BRAFV600E mutation in CRC is associated with a right-sided 

primary site, advanced age, female sex, high tumor grade, and precursor sessile 

serrated adenomas (8). BRAFV600E CRC is also associated with the CpG island 

methylator phenotype (i.e., hypermethylated phenotype), which may result in the 

epigenetic inactivation of MLH1, inducing a mismatch repair (MMR) deficiency and 

consequently a microsatellite instability (MSI) phenotype (9). Among patients harboring 

BRAFV600E metastatic CRC, ≈20% exhibit deficient MMR deficiency (8). RAF inhibitors, 

such as vemurafenib and dabrafenib, selectively inhibit RAF monomers and have 

produced dramatic response rates >50% in metastatic melanoma, leading to their US 

Food and Drug Administration (FDA) approval for this indication (10, 11). However, 

single-agent BRAF inhibitors have demonstrated a surprising and striking lack of efficacy 

in patients with CRC harboring the same BRAFV600E mutation (12-16). Indeed, an initial 

study of vemurafenib in patients with the BRAFV600E mutation had a response rate of only 

5% (16). 

  

Preclinical studies have suggested that a primary reason for the differential sensitivities 

of BRAFV600E melanoma and CRC is that CRCs harbor robust adaptive feedback 

signaling networks that lead to reactivation of MAPK signaling following BRAF inhibitor 

treatment (12, 15). In this proposed model, inhibition of BRAFV600E leads to an initial 

reduction in MAPK signaling, causing a loss of expression of ERK-dependent negative 
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feedback mediators that act to constrain MAPK pathway activation (Fig. 1A) (12). Loss 

of negative feedback leads to an induction of RAS activity and activation of other RAF 

kinases (such as CRAF), which bypass the effects of the BRAF inhibitor by generating 

BRAF inhibitor-resistant RAF dimers and restore MAPK pathway signaling (12). 

Increased RAS activity following BRAF inhibition is thought to be driven primarily by RTK 

signaling, which is present to a greater degree in CRC than in melanoma, and preclinical 

studies have suggested that 1 RTK in particular—the epidermal growth factor receptor 

(EGFR)—may play a dominant role in mediating MAPK reactivation in many BRAFV600E 

CRCs (12, 15). Indeed, the combination of BRAF and EGFR inhibition was found to 

produce improved MAPK suppression and lead to tumor regression in BRAFV600E CRC 

xenografts (12, 15). 

 

Thus, these data suggest that therapies capable of blocking feedback reactivation may 

produce more robust inhibition of MAPK signaling, resulting in improved efficacy in 

BRAFV600E CRC. As an initial test of this hypothesis in BRAFV600E CRC, we previously 

performed a clinical trial of combined BRAF and MEK inhibition with dabrafenib and 

trametinib that demonstrated improved pathway suppression in preclinical models of 

BRAFV600E CRC (17). Indeed, this strategy has been successful in BRAFV600E/K 

melanoma and BRAFV600E non-small cell lung cancer, improving outcomes in patients 

who received the combination of dabrafenib and trametinib vs dabrafenib alone, leading 

to FDA approval for this combination in these indications (18-21). Combined BRAF and 

MEK inhibition led to a modestly improved response rate of 12% in 43 patients with 

BRAFV600E-metastatic CRC, but analysis of paired pretreatment and on-treatment biopsy 

specimens suggested that MAPK pathway suppression remained suboptimal (17). 

Therefore, we hypothesized that targeting EGFR as a key mediator of feedback 

signaling in combination with a BRAF inhibitor, with or without a MEK inhibitor, may 

optimize MAPK pathway suppression and lead to improved efficacy in BRAFV600E CRC 

(17). 

 

Here, we report the results of a clinical trial of combined BRAF and EGFR inhibition, 

combined MEK and EGFR inhibition, and combined BRAF, EGFR, and MEK inhibition in 

patients with metastatic BRAFV600E CRC. Paired pretreatment and on-treatment biopsy 

specimens were collected and analyzed to assess the pharmacodynamic effects of each 

therapy. Serial plasma specimens were obtained, and cell-free DNA (cfDNA) was 
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analyzed to provide correlates of response and to identify mechanisms of acquired 

resistance. 

 

RESULTS 

Patient Characteristics  

Between December 2012 and the time of data cutoff for this interim analysis (May 6, 

2016), 142 patients with metastatic BRAFV600E CRC were enrolled in 1 of 3 treatment 

arms, as outlined in Fig. 1B: 1) combined BRAF and EGFR inhibition with dabrafenib 

and panitumumab (D+P, n = 20); 2) the “triplet” combination of BRAF, MEK, and EGFR 

inhibition with dabrafenib, trametinib, and panitumumab (D+T+P, n = 91); and 3) 

combined MEK and EGFR inhibition with trametinib and panitumumab (T+P, n = 31). 

Patient characteristics are shown in Table 1. In general, patient characteristics were 

well-balanced across groups. 

 

Dose Determination and Safety 

The initial dose assessment began with the evaluation of D+P at their full labeled doses 

(dabrafenib 150 mg orally twice daily [BID] and panitumumab 6 mg/kg intravenously [IV] 

every 2 weeks [Q2W]). No dose-limiting toxicities (DLTs) were observed, and a total of 

20 patients were treated at this dose level. D+P was well tolerated, and the majority of 

events were grade 1 or 2; 45% of patients had a grade 3/4 event. The most common 

adverse events (AEs) of all grades were dermatitis acneiform (60%), nausea (50%), 

fatigue (50%), and diarrhea (45%); none were grade 3/4 (Table 2). Only one grade 3/4 

AE (hypophosphatemia: n = 2 [10%]) occurred in >1 patient in the D+P group. 

 

Dose escalation to the full label doses of each of the triplet agents, D+T+P, was 

completed (dabrafenib 150 mg orally BID, trametinib 2 mg orally daily, and panitumumab 

6 mg/kg IV Q2W). A total of 48 patients were enrolled at the highest dose, and the 

spectrum of AEs was similar to that with D+P. Diarrhea (65% all grades, 7% grade 3/4), 

nausea (56% all grades, 2% grade 3/4), and dermatitis acneiform (59% all grades, 10% 

grade 3/4) were the most frequent AEs among all patients treated with D+T+P. However, 

a greater incidence and severity of AEs was observed with D+T+P than with D+P, and 

70% of patients had a grade 3 or 4 AE (Table 2). A corresponding increase in AEs that 

led to dose reductions, interruptions, or discontinuations was observed in the D+T+P 

arm vs the D+P arm (Supplementary Table S1). In the D+T+P arm, 18% of patients had 
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an AE that resulted in study therapy discontinuation, 54% had an AE that resulted in 

dose reduction, and 71% of patients had an AE that led to dose interruption or delay. In 

an effort to reduce the dermatologic toxicity observed, 32 patients were enrolled to a 

D+T+P arm with a reduced panitumumab dose of 4.8 mg/kg IV every 2 weeks. Although 

no clear difference in AEs was noted (Supplementary Table S2), the rate of serious AEs 

(SAEs) in general and AEs leading to discontinuation were lower in the panitumumab 

4.8-mg/kg arm than in the 6-mg/kg arm (SAEs: 15/32 [47%] vs 16/24 [67%]; AEs leading 

to discontinuation: 4/32 [13%] vs 7/24 [29%]) despite longer follow-up in the 4.8-mg/kg 

arm. However, note that the number of patients in the 4.8-mg/kg panitumumab arm who 

experienced dose interruptions (26/32, 81%) was higher than that in the 6-mg/kg arm 

(16/24, 67%); no differences in the rate of dose reduction were observed. 

 

The remaining “doublet” of T+P was evaluated, starting at the full label dose of each 

agent (trametinib 2 mg orally daily and panitumumab 6 mg/kg IV every 2 weeks). 

However, in the absence of dabrafenib, these agents were not tolerated in combination 

due to excessive dermatologic toxicity (18% grade 3/4 dermatitis acneiform). The most 

common AEs among all patients (n = 51; includes patients with wild type BRAF) who 

received T+P were diarrhea (73% all grades, 2% grade 3/4), dermatitis acneiform (53% 

all grades, 18% grade 3/4), and pyrexia (39% all grades, 0% grade 3/4). Additional de-

escalated doses of trametinib and panitumumab were evaluated (Fig. 1B; trametinib 1.5 

mg once daily + panitumumab 6 mg/kg Q2W; trametinib 2 mg once daily + panitumumab 

4.8 mg/kg Q2W), but dermatologic toxicity remained a challenge.   

 

Two fatal SAEs occurred in patients enrolled in the D+T+P arm. One event was due to 

hemorrhage, and the other was death due to an unknown cause; however, neither event 

was considered to be related to the study drugs (Supplementary Table S1). 

 

Efficacy 

Efficacy measures for the 3 treatment arms are also based on a data cutoff date of May 

6, 2016 (Fig. 2, A-C). Two patients (10%) in the D+P arm had a confirmed complete 

response (CR) or partial response (PR), and 16 patients (80%) had stable disease; 

disease control was 90% overall. In the T+P arm, no patients achieved CR/PR and 17 

patients (55%) had stable disease. The D+T+P arm resulted in a confirmed CR/PR in 19 

patients (21%), stable disease in 59 patients (65%), and an overall disease control rate 

Research. 
on February 21, 2018. © 2018 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 5, 2018; DOI: 10.1158/2159-8290.CD-17-1226 

http://cancerdiscovery.aacrjournals.org/


 10 

of 86%. Duration of response (DOR) in the D+T+P arm was estimable but not mature, 

with a median of 7.6 months (95% CI, 2.9-not evaluable months) (Table 3).  

 

The median progression-free survival (PFS) was 3.5 months (95% CI, 2.8-5.8 months) in 

the D+P arm, 2.6 months (95% CI, 1.4-2.8 months) in the T+P arm, and 4.2 months 

(95% CI, 4.0-5.6 months) in the D+T+P arm (Fig. 2D). Median overall survival (OS) was 

13.2 months (95% CI, 6.7-22.0 months) in the D+P arm, 8.2 months (95% CI, 6.5-9.4 

months) in the T+P arm, and 9.1 months (95% CI, 7.6-20.0 months) in the D+T+P arm 

(estimable but not mature; Supplementary Fig. S1).   

 

Target Engagement—Pharmacodynamic Analysis of Paired Tumor Biopsy 

Specimens 

Per the protocol, paired fresh tumor biopsy specimens obtained before treatment (within 

3 weeks of treatment start) and on day 15 of treatment were required for all patients 

enrolled. Pharmacodynamic markers were analyzed in 10, 21, and 26 paired biopsy 

specimens collected from patients in the D+P, T+P, and D+T+P arms, respectively. The 

effect of each therapy on MAPK signaling output (assessed as the change in 

phosphorylated ERK [pERK] levels by immunohistochemistry from the day 15 on-

treatment biopsy specimen), relative to the pretreatment biopsy, was evaluated. Values 

were compared with paired biopsy specimens from patients with BRAFV600E CRC treated 

in our previous trial of BRAF + MEK inhibition with dabrafenib and trametinib (17) and 

with patients with BRAFV600-mutant melanoma treated with BRAF inhibition (dabrafenib) 

alone (22) (Fig. 3). A significant reduction in pERK levels was seen between the 

baseline and on-treatment biopsy specimens with the T+P doublet and D+T+P triplet (P 

= 0.002 for both), but not with the D+P doublet (P = 0.5) (Fig. 3A). The D+T+P triplet, 

which demonstrated the greatest efficacy, also resulted in the greatest amount of pERK 

inhibition (60%) compared with T+P (41%), D+T (37%) (17), and D+P (23%) (Fig. 3B); 

however, a statistically significant correlation between pERK inhibition and response was 

not observed. The D+T+P triplet also produced the greatest suppression of 

phosphorylated ribosomal protein S6 (pS6), which is regulated by ERK activity in BRAF-

mutant cancers, and represents a potential mechanistic/pharmacodynamic marker of 

responsiveness (23) (Supplementary Fig. S2). However, none of the therapies produced 

as robust a degree of pERK inhibition as did the previously published data for dabrafenib 

monotherapy in melanoma samples (84%) (22) (Fig. 3B). Taken together, these findings 
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provide a likely explanation for why even the D+T+P triplet in CRC still falls short of the 

>50% response rate observed with the single-agent BRAF inhibitor in BRAFV600E-mutant 

melanoma and supports the hypothesis that inadequate MAPK suppression due to 

robust and complex adaptive feedback in BRAFV600E CRC limits clinical benefit. 

 

Clinical Factors, MSI Status, and Response to D+T+P  

The relationship between response rate and several clinical factors (including prior anti-

EGFR therapy and panitumumab dose) was evaluated in patients treated with D+T+P 

(Supplementary Fig. S3).  

 

MSI is frequently associated with BRAFV600E mutation in CRC (24), with MSI/MMR status 

previously reported to affect prognosis in patients with BRAFV600E CRC (8, 25). 

MSI/MMR status was available for 78 patients (86%) treated with D+T+P and who had 

evaluable best clinical response and PFS data (Supplementary Fig. S4A). In the 11 of 78 

patients (14%) whose tumors were MSI-high/MMR deficient (dMMR), the response rate 

was 46% (5 of 11; 95% CI, 17%-77%) compared with 27% (18 of 67; 95% CI, 17%-39%) 

in patients whose tumors were microsatellite stable (MSS)/MMR proficient (pMMR), 

which was not statistically significant (Supplementary Fig. S4B). However, a trend 

toward a statistically significant increase in PFS (HR, 2.624; 95% CI, 0.997-6.907; log-

rank test, P = 0.0449) was noted in patients with MSI receiving D+T+P, although it is not 

possible to determine whether this effect is predictive or prognostic (Supplementary Fig. 

4C). None (0/67) of the MSS/pMMR patients with CRC remained on study for >1 year, 

whereas 3 of 11 (27%) of the MSI-high/dMMR patients with CRC remained on study for 

>1 year. Of these 3 patients, 1 achieved a PR lasting >24 months, and another patient 

demonstrated a CR lasting >26 months. Of note, the 1 patient treated with D+P who 

achieved CR was MSS/pMMR.  

 

Analysis of Cell-Free DNA and Response to D+T+P 

We used a highly sensitive method for the detection of tumor-derived mutations in 

cfDNA termed BEAMing (Beads, Emulsion, And Magnetics) to monitor changes in the 

levels of BRAFV600E in blood during treatment (26). BRAFV600E levels were analyzed in 

plasma from 85 patients treated with D+T+P: 71 of 85 patients had BRAF mutations 

detected by BEAMing at baseline (83.5%). A marked decrease in BRAFV600E levels in 

cfDNA from baseline was noted by 4 weeks in patients achieving a PR or CR with 
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D+T+P, with all but 1 patient exhibiting reductions of ≥95%. The decrease in BRAFV600E 

levels was significantly greater in patients with responses than in patients with stable or 

progressive disease (P = 0.004) and was correlated significantly with the best 

percentage tumor change (P = 0.001, R = 0.414) (Fig. 4A, B). These results suggest that 

serial monitoring of BRAFV600E levels in cfDNA at baseline and on treatment may be a 

clinically useful marker of tumor response. 

 

We compared the predictive value of BRAFV600E levels in cfDNA with serum levels of 

carcinoembryonic antigen (CEA), which is commonly used as a blood-based tumor 

marker in patients with CRC as part of standard clinical practice. The BRAFV600E 

mutation was detectable in 71 of 85 (84%) evaluable patients; however, elevated CEA 

levels were detected in only 68 of 126 (54%) evaluable patients across arms and in 43 of 

81 (53%) evaluable patients in the D+T+P arm. In contrast with BRAFV600E levels in 

cfDNA, the change in CEA levels by 6 weeks of treatment was not statistically significant 

between patients who achieved CR/PR and those with stable or progressive disease 

(Fig. 4A). In serial blood collections obtained throughout therapy, a consistent rebound in 

BRAFV600E levels was observed in cfDNA at the time of disease progression, whereas a 

consistent pattern was not observed with CEA levels (Fig. 4C). Taken together, these 

data suggest that monitoring BRAFV600E levels in cfDNA during therapy correlates well 

with response, and disease trajectory in patients with BRAFV600E-mutant CRC was more 

informative than CEA—the standard clinical tumor marker for CRC. 

 

cfDNA analysis can also be an effective tool for identifying and detecting mechanisms of 

acquired resistance to therapy (27-31). Prior studies have revealed that acquired 

resistance to BRAF-directed therapy in patients with BRAFV600E CRC is frequently driven 

by genomic alterations (e.g., RAS mutations), which lead to reactivation of MAPK 

signaling (28, 32, 33). We used a BEAMing panel to detect the presence of 11 common 

hot spot mutations in KRAS and NRAS (see Methods for further details) in cfDNA before 

treatment, during treatment, and at disease progression. We observed that, of the 29 

evaluable patients who achieved a response (CR or PR) or stable disease with D+T+P 

and had cfDNA data available at the time of progression, 14 patients (48%) developed 

≥1 detectable KRAS or NRAS mutation in cfDNA at the time of disease progression, 

which was not detectable at baseline. As shown in Fig. 4D, the initial decrease in 

BRAFV600E mutation levels after initiation of therapy in these patients was followed by an 
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eventual rebound in BRAFV600E levels on disease progression, accompanied by the 

emergence of ≥1 KRAS or NRAS mutation. In 6 of 29 patients (33%), >1 subclonal RAS 

mutation was observed on disease progression, suggesting the potential for tumor 

heterogeneity in the context of acquired resistance to therapy. 

 

DISCUSSION 

We present the results of a clinical trial of combined BRAF and EGFR inhibition, with or 

without MEK inhibition in BRAFV600E CRC. The trial was designed to target the key 

adaptive feedback pathways driving primary resistance to BRAF inhibition alone. Both 

combined BRAF and EGFR inhibition (with D+P) and combined BRAF, EGFR, and MEK 

inhibition (with D+T+P) were tolerated at the full label doses of all agents. However, the 

frequency and severity of AEs was greater in the D+T+P arm than in the D+P arm, most 

notably in terms of dermatologic toxicity. Remarkably, while all three agents were 

tolerated together at full dose, combined EGFR and MEK inhibition only (T+P) was not 

tolerated at full dose, due to dermatologic toxicity. Although this may be considered 

counterintuitive, it highlights the unique biology of the MAPK pathway and its key 

implications for therapy. Although BRAF inhibitors effectively suppress MAPK signaling 

by mutant BRAFV600E monomers in tumor cells, they do not inhibit the MAPK pathway in 

normal cells, where RAF signals as a RAS-depdendent dimer and paradoxically 

activates MAPK signaling (34-36). This activation underlies the frequent development of 

MAPK-driven tumors (eg, proliferative skin lesions and secondary cutaneous 

malignancies) in patients receiving BRAF inhibitor monotherapy (37). Thus, BRAF 

inhibitors exhibit greater selectivity than other MAPK pathway inhibitors, allowing a 

greater degree of specific tumor MAPK suppression with less systemic toxicity; 

conversely, agents that inhibit MAPK signaling in all cells (such as MEK inhibitors) have 

greater systemic toxicity, limiting the achievable dose in patients and resulting in 

suboptimal MAPK inhibition in tumor cells. Moreover, the potential opposing effects of 

BRAF and MEK or EGFR inhibitors in normal cells likely counteract the effects on the 

MAPK pathway, providing a mechanistic explanation for the decreased toxicity seen with 

the triplet regimen in this trial. Taken together, these data illustrate how the therapeutic 

window advantages offered by BRAF inhibitors make them key components of 

therapeutic combinations for BRAFV600E cancers. 
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Modest clinical activity was seen in the D+P arm, compared with reported response 

rates with BRAF inhibitor monotherapy; the confirmed response rate was 10%, while 

15% were unconfirmed. These data are consistent with the efficacy reported for similar 

BRAF/EGFR inhibitor combinations (13, 38-40). Notably, a recent update of a study 

evaluating cetuximab + irinotecan with or without the BRAF inhibitor vemurafenib 

demonstrated that in patients treated with the triple combination, response rate was 16% 

(n = 44 evaluable patients), with a median PFS of 4.3 months among all patients in this 

arm (n = 49) (40). Despite preclinical studies supporting EGFR as the primary driver of 

MAPK reactivation in BRAFV600E CRC (12, 15), these data suggest that EGFR may be a 

critical mediator of resistance; however, many patients may harbor other redundant 

mechanisms of adaptive MAPK reactivation. Consistent with this hypothesis, we 

observed that D+P led to MAPK suppression in on-treatment tumor biopsy specimens in 

only a subset of patients, suggesting that EGFR-independent mechanisms of MAPK 

reactivation play an important role in this disease. In support of this, some BRAFV600E 

CRCs do not express elevated levels of EGFR, and BRAFV600E CRC cell lines have been 

identified in which MAPK reactivation and resistance are driven by RTKs other than 

EGFR, such as MET (12, 41). Collectively, these data support the need to inhibit both 

EGFR-dependent and -independent feedback signals in BRAFV600E CRC.  

 

Combined BRAF, MEK, and EGFR inhibition with D+T+P demonstrated increased 

efficacy, with a confirmed and unconfirmed response rate of 21% and 32%, respectively 

— these figures being one of the highest response rates observed with any regimen to 

date in BRAFV600E-mutant CRC (16, 17). Consistent with the potential importance of 

inhibiting EGFR-dependent and -independent feedback signals, D+T+P produced the 

greatest degree of MAPK pathway suppression in on-treatment biopsy specimens. 

However, D+T+P still produced suboptimal MAPK suppression when compared with 

dabrafenib alone in BRAFV600-mutant melanoma, providing a possible explanation for 

why the efficacy of this triplet in CRC still falls short of BRAF inhibitors alone in 

melanoma. This observation may also support the existence of adaptive feedback 

signals capable of overcoming the D+T+P triplet to drive MAPK reactivation and primary 

resistance to therapy. Therefore, developing therapeutic strategies that can overcome 

these signals and optimize MAPK pathway inhibition will be key. 
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In addition to driving primary resistance, our data also suggest that MAPK reactivation is 

a key mechanism of secondary or acquired resistance to therapy in BRAFV600E CRC. 

Previously, we and others reported that acquired resistance to BRAF inhibitor 

combinations in BRAFV600E CRC can be driven by an array of alterations in MAPK 

pathway components and lead to pathway reactivation, including RTK amplification, 

RAS mutation or amplification, BRAFV600E amplification, and MEK mutations. This finding 

also highlights the critical importance of MAPK signaling in these cancers (28, 32, 33). 

Here, in a larger cohort of patients, we observed that almost half of patients (48%) 

demonstrated emergence of KRAS or NRAS mutations in cfDNA at the time of disease 

progression. MAPK pathway alterations may be present in an even larger percentage of 

patients, because the cfDNA panel used detects only a limited number of mutations in 

KRAS and NRAS; therefore, other MAPK pathway alterations known to drive resistance, 

such as other KRAS or NRAS mutations, RAS or BRAF amplifications, and MEK 

mutations, would not be detected. Furthermore, many (33%) of these patients exhibited 

emergence of multiple subclonal RAS mutations at progression, suggesting the potential 

for tumor heterogeneity in the context of acquired resistance to therapy. Indeed, a 

previous study by Kopetz and colleagues suggested that many BRAFV600E CRCs may 

harbor pre-existing tumor subclones with 1 or more RAS mutation prior to therapy, 

leading to the potential for rapid emergence of heterogeneous resistant subclones (16). 

 

Collectively, these observations raise an important conceptual issue: even though the 

D+T+P combination contains a MEK inhibitor, many of the resistance signals driving 

resistance occur upstream of MEK, including RTK-driven feedback in primary resistance 

and MAPK pathway alterations upstream of MEK in acquired resistance. Theoretically, 

these signals should still be intercepted by the MEK inhibitor and should not lead to 

MAPK reactivation. In targeted therapy paradigms, resistance alterations almost always 

occur at the level of or downstream of the drug target, not upstream. This finding 

highlights a key vulnerability of MEK inhibitors, i.e., increased upstream pathway flux can 

lead to MEK hyperactivation and a reduced ability of MEK inhibitors to maintain pathway 

suppression, which has been demonstrated in preclinical studies (28, 42). This also 

suggests that alternative strategies or agents capable of maintaining profound blockade 

of MAPK signaling may be key to enhancing activity in BRAFV600E CRC. Previously, we 

reported that ERK inhibitors, which act immediately downstream of MEK, can more 

effectively maintain MAPK suppression and can overcome many of the upstream 
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resistance mechanisms to which MEK inhibitors are vulnerable (28, 32). Thus, 

investigating ERK inhibitors or other agents that might achieve more robust and 

complete MAPK blockade may be key future strategies for BRAFV600E CRC. 

 

Overall, our study provides an example of how identifying and targeting key adaptive 

feedback signals can overcome resistance and improve response in BRAFV600E CRC, 

although further optimization is needed. We observed MAPK reactivation as a consistent 

mechanism of both primary and acquired resistance, underscoring the MAPK pathway 

as a critical target in this disease. However, despite improvements in the response rate, 

the DOR is poor and median PFS is only 4.2 months. Our data suggest that rapid 

emergence of resistant subclones harboring MAPK-activating alterations may be a major 

driver of treatment failure and that future strategies aimed at suppressing or overcoming 

these resistance mechanisms may help to sustain clinical benefit. Such strategies might 

include next-generation targeted combinations or combinations with other classes of 

agents, such as cytotoxic chemotherapy, as was recently reported (40).  

 

Prior studies, including The Cancer Genome Atlas, have demonstrated frequent 

associations between BRAFV600E mutation and MSI in CRC (24), with MSI status 

reported to affect prognosis in patients with BRAFV600E CRC (25). In the current study, 

many of the small group of patients who achieved prolonged benefit for >1 year while on 

therapy (including 3 patients who had a DOR ≥20 months) were noted to have MSI-high 

tumors. Similarly, the tumor from the 1 patient from our prior trial of dabrafenib and 

trametinib in BRAFV600E CRC who maintained a CR for >4 years was also MSI (17). 

Given recent data supporting the increased immunogenicity of MSI CRC and increased 

responsiveness to immune checkpoint inhibition (43-45), this observation suggests a 

potential role for the immune system in promoting durable response. Indeed, as data 

from melanoma and KRAS-mutant CRC suggest a potential synergy between MAPK 

inhibition and immune checkpoint inhibition (46, 47), combining optimal MAPK inhibition 

with immunotherapy may be a promising future strategy. Collectively, we hope that 

identifying and targeting key resistance mechanisms in BRAFV600E CRC will continue to 

lead to important improvements in clinical outcome for patients with this poor-prognosis 

molecular subtype of CRC. 

 

METHODS 
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Study Design 

This trial was an open-label, phase I study to investigate the safety, pharmacokinetics, 

pharmacodynamics, and clinical activity of trametinib and dabrafenib when administered 

in combination with the anti-EGFR antibody panitumumab in patients with BRAFV600E-

mutation positive metastatic CRC (NCT01750918). Patients were enrolled to receive 

D+P, T+P, or D+T+P (Fig. 2) in initial dose-escalation studies to identify the optimal 

dosing strategy, followed by expansion cohorts to investigate the safety and clinical 

activity of each of the combination treatments. The appropriate ethics committee or 

institutional review board at each study center approved the study protocol. The study 

was conducted in accordance with Guidelines for Good Clinical Practice and the ethical 

principles described in the Declaration of Helsinki following all applicable local 

regulations. 

 

Study Population 

Eligible patients were required to have histologically or cytologically confirmed 

advanced or metastatic BRAFV600E-mutation positive CRC with measurable disease as 

per Response Evaluation Criteria In Solid Tumors (RECIST) v1.1. BRAFV600E mutation 

status was determined by local testing. Patients were required to be aged ≥18 years, 

have an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, 

have adequate baseline organ function (as determined by laboratory parameters), and 

be of non-child-bearing potential or agree to use contraception as outlined in the 

protocol. Key exclusion criteria included history of prior malignancy (other than CRC), 

BRAF mutation other than V600E, any serious or unstable pre-existing medical 

condition, active hepatitis B or C infection, and prior exposure to a BRAF or MEK 

inhibitor. All patients provided written informed consent before enrollment. 

 

Study Treatment 

The study began with dose-escalation cohorts for all 3 drug combinations (D+P, D+T+P, 

and T+P) using a standard 3 + 3 enrollment scheme. Expansion cohorts were then 

enrolled to investigate the safety and clinical activity of the combinations. Patients in the 

D+P doublet arm were started in a dose-escalation cohort at the full monotherapy doses 

of dabrafenib (150 mg BID) and panitumumab (6 mg/kg Q2W) (Fig. 1B). No dose de-

escalations were required. Once the D+P dose was confirmed at the full dose of both 

agents, another cohort of patients was assigned to the D+T+P triplet arm. In the initial 
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cohort, dabrafenib was started at full dose of 150 mg orally BID, a trametinib starting 

dose of 1.5 mg once daily, and panitumumab starting dose of 4.8 mg/kg IV Q2W. Dose 

escalation continued until the maximum tolerated dose (MTD) was determined, and the 

full dose of all 3 agents was tested in the final cohort: dabrafenib 150 mg BID, trametinib 

2 mg orally daily, and panitumumab 6 mg IV Q2W. The DLT observation period was 28 

days, and no DLTs were identified in the D+T+P cohort; the MTD was declared as the 

labeled dose of all 3 agents. Patients in the T+P arm, which included patients with 

BRAFV600E metastatic CRC and BRAF wild-type metastatic CRC with anti-EGR therapy 

acquired resistance, received a starting dose of trametinib 2 mg once daily and 

panitumumab 6 mg/kg IV Q2W. No DLTs were identified in this cohort, but patients 

experienced delayed dermatologic toxicity with long-term dosing. Thus, sub-MTD doses 

were explored: trametinib 1.5 mg once daily and panitumumab 6 mg/kg IV Q2W; 

trametinib 2 mg once daily and panitumumab 4.8 mg/kg IV Q2W. Approximately 20 

patients were then enrolled into expansion cohorts for each arm (including dose-

escalation patients from selected dose groups). To further optimize the dose for the 

D+T+P arm, the protocol was later amended to explore the additional patients at 2 doses 

of panitumumab: 4.8 mg/kg IV vs 6 mg IV Q2W. At the time of radiological disease 

progression, patients in the D+P and T+P arms had the option of crossing over to the 

D+T+P arm.  

 

Study Assessments 

The primary endpoint was the safety of each of the drug combinations. Secondary 

endpoints included investigator-assessed overall response rate, DOR, PFS, overall 

survival, and the pharmacokinetics and pharmacodynamics of the drug combinations. 

 

All patients treated with the T+P combination (n = 51) were evaluated for safety, and the 

full safety data set for these patients was derived from this population. However, only 31 

patients treated with T+P were BRAF mutant, and efficacy is reported only for this 

subset.  

 

Patients received study therapy until disease progression, unacceptable toxicity, death, 

or discontinuation for any other reason. Patients were assessed weekly for the first 28 

days of dosing and then every 4 weeks throughout the continuation period. Follow-up 

visits were conducted at 14 days, 4 weeks, and 8 weeks after study drug discontinuation 
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and then subsequently every 8 weeks for survival follow-up. Safety was monitored 

throughout the study for all patients across cohorts via physical examinations, laboratory 

evaluations, vital sign and weight measurements, performance status evaluations, ocular 

and dermatologic examinations, concomitant medication monitoring, electrocardiograms, 

echocardiograms, and AE monitoring (characterized and graded per Common 

Terminology Criteria for Adverse Events, v4.0). AEs were recorded using standard 

Medical Dictionary for Regulatory Activities coding. Dose interruptions, reductions, and 

discontinuations for all of the study drugs were monitored. 

 

Tumors were assessed using investigator-read computed tomography or MRI at 

baseline, every 6 weeks until week 24, and then every 8 weeks until progression or 

death. Response determination was based on RECIST v1.1. In addition to imaging, the 

CEA tumor marker was collected. For the subset of patients who showed a confirmed 

CR or PR, DOR was defined as the time in weeks from the first documented evidence of 

CR or PR (the first response prior to confirmation) until the time of documented disease 

progression or death due to any cause, whichever was first. PFS was defined as the 

time in weeks between the first dose and the date of disease progression or death due 

to any cause. Finally, overall survival was defined as the time in weeks from the first 

dose of study drug until death due to any cause. 

 

Serial blood samples for assessment of pharmacokinetic parameters were collected 

predose and postdose on days 1 and 15 and predose on day 21 in the first 28 days of 

dosing. In the continuation period, blood samples were collected every 4 weeks up to 

and including week 20 on study.  

 

Statistical Methods 

The all-treated population was used for analysis of clinical activity, which included all 

patients who received ≥1 dose of study medication. Patients evaluable for efficacy were 

defined as those who had ≥1 adequate postbaseline radiological disease assessment. 

The pharmacokinetics population included all treated patients for whom a blood sample 

for pharmacokinetics analysis was available. The biomarker population was defined as 

the participants in the all-treated population for whom a tumor biopsy/tissue sample was 

obtained and analyzed. Analysis of patients who received an intrapatient dose escalation 
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or who transferred from doublet to triplet therapy were included in the crossover 

population. 

 

Dose-escalation phases of the study followed a 3 + 3 dose-escalation procedure. 

Evaluation of safety data from ≥3 patients who had completed 28 days of dosing on 

study was required prior to defining a new dose and starting the next cohort. To facilitate 

dose-escalation/de-escalation decisions, an adaptive Bayesian logistic regression model 

(BLRM) was used to predict the probability of DLTs at the dose levels yet to be tested. 

Specifically, an 8-parameter BLRM for combination treatment was fitted on the DLT data 

(i.e., absence or presence of DLT) accumulated throughout the dose-escalation phase to 

model the dose-toxicity relationship of D+T+P when given in combination (48). 

 

Prior distributions for trametinib were calculated based on the toxicity data observed in 

the first-time-in-human study MEK111054, in which trametinib was administered alone. 

Similarly, prior distributions for dabrafenib were determined based on data observed in 

the first-time-in-human study BRF112680, in which dabrafenib was administered alone. 

Prior distributions of the parameter trametinib-dabrafenib interaction was based on data 

observed in study BRF113220, in which trametinib and dabrafenib was administered in 

combination. A noninformative prior was assumed for the other combination of the 2 or 3 

compounds with panitumumab. The model was used only as a guide for what further 

doses to study in the presence of DLTs along with the 3 + 3 results. 

 

The expansion phases of the study used a Bayesian predictive adaptive design that 

allowed the trial to be monitored more frequently at multiple stages (48). The criterion 

was based on a historically unimportant response rate of 15% vs a response rate of 

interest of 30%. 

 

Biomarker Analyses  

Pharmacodynamic Analyses 

Fresh predose (baseline) and paired on-treatment (day 15) tumor biopsy specimens 

were collected and analyzed to assess the pharmacodynamic effects of each therapy. 

The MAPK pathway activation status was determined via immunohistochemistry 

assessment of pERK levels (Cell Signaling; MOS075, clone 20G11). In addition, pS6 

(Cell Signaling; MOS341, clone D68F8) was also analyzed in a subset of the available 
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fresh biopsy specimens at a sponsor-designated laboratory. For pERK and pS6, the H-

score was derived as follows: [1 × (% cells 1+) + 2 × (% cells 2+) + 3 × (% cells 3+)]. 

Nonparametric P values for the median differences between pretreatment and day 15 

(±2) H-scores were derived for comparisons within and across arms. 

 

Microsatellite Instability Analyses 

Genomic DNA was isolated from tumor and nontumor regions of tissue, and paired 

normal and tumor DNA were analyzed for MSI with 5 markers: BAT-25, BAT-26, NR-21, 

NR-24, and MONO-27. DNA was amplified by PCR. Fragment size distribution analysis 

was performed using high-resolution capillary electrophoresis with fluorescence 

detection. Fragment size distributions from tumor and nontumor tissue for each of the 5 

markers were compared, and the stability or instability in size distribution patterns was 

determined. Significant changes in a marker indicate instability and imply a phenotypic 

decrease in tumor MMR activity. MSI status was reported as stable or high. In positive 

cases, 2 of 5 loci need to show instability. Instability was defined as variation of ≥3 bp 

PCR product size at the specific locus between nontumor and tumor samples. In a 

subset of samples, no sufficient normal DNA was available; MLH1, MSH2, MSH6, and 

PMS2 were analyzed immunohistochemically. If all markers stained positive, the tumor 

was considered to be MSS. If 1 of the markers was negative, the tumor was considered 

to be MSI. 

 

We combined the confident calls that passed the quality-control criteria for MSI/MSS 

from both of the platforms. The box-plot comparisons across MSI/MSS were statistically 

assessed using the nonparametric Kruskal-Wallis P values. Time-to-event models 

stratifying based on MSI status were built, and Kaplan-Meier survival plots were 

assessed between MSI/MSS status using HR and 95% CIs and log-rank P values. 

 

Cell-Free DNA Analyses 

Plasma samples were collected at baseline, at week 4, and at progression. Baseline 

cfDNA and serial cfDNA collections were analyzed for the presence of mutations to 

provide correlates of response and to identify mechanisms of acquired resistance. 

Mutations were assessed in plasma cfDNA using BEAMing technology (Sysmex 

Inostics) and a predefined targeted hot spot mutation panel: BRAFV600E, KRAS (G12S, 

G12R, G12C, G12D, G12A, G12V, G13D), NRAS (Q61K, Q61R, Q61L, Q61H), and 
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PIK3CA (E542K, E545K, H1047R, H1047L). The BEAMing assay uses emulsion PCR 

on magnetic beads and flow cytometry to quantify the fraction of mutation-positive DNA 

to wild-type DNA. The mutant fraction (MF)—defined by the ratio of the mutant beads to 

the sum of wild-type, mixed, and mutant beads—was used to compare mutation hot spot 

levels in cfDNA.  

 

The BRAFV600E MF ratio between week 4 and baseline was defined as follows: 

log10 (MF at week 4 + 1E-05) – log10 (MF at baseline + 1E-05). The BRAFV600E MF ratio 

between “at progression” and baseline was defined as follows:   

log10 (MF at progression + 1E-05) – log10 (MF at baseline + 1E-05). Nonparametric 

Kruskal-Wallis P values were derived to compare the BRAFV600E
 MF ratios between 

week 4 and baseline across response groups. Pearson correlation was used to measure 

the linear correlation between the change in BRAFV600E levels in cfDNA and the best 

percentage tumor change. 

 

CEA Analyses 

Serum intensity (SI) levels of CEA (or, CEACAM5), which is commonly used as a blood-

based tumor marker in patients with CRC as part of standard clinical practice, were used 

to profile the patients from this trial. We limited our CEA-related analyses to only 

patients’ samples with baseline SI levels above the upper normal range as derived per 

the clinical protocol. The changes in SI level between week 6 and baseline were 

calculated as the log ratio: log10 (SI at week 6) – log10 (SI at baseline). Nonparametric 

Kruskal-Wallis P values were derived to compare SI ratios between week 6 and baseline 

across response groups.  

 

Study Oversight 

This study was designed, conducted, and analyzed by the funder (Novartis) in 

conjunction with the authors. All authors had full access to the study data and share final 

responsibility for the content of the manuscript and the decision to submit for publication. 
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Tables 
 

Table 1. Patient demographics across treatment arms 

 
D + P (n = 20) T + P (n = 31) D + T + P (n = 91) 

Age, median (range), years 
58.0 (42-84) 57.0 (39-74) 60.0 (28-83) 

Female, n (%) 11 (55) 18 (58) 58 (64) 

ECOG performance status at baseline, n (%) 
     0 
     1 

13 (65) 
7 (35) 

17 (55) 
14 (45) 

47 (52) 
44 (49) 

Prior lines of therapy, n (%) 
     0 
     1 
     2 
     3 
     4 
     5 

4 (20) 
8 (40) 
7 (35) 
1 (5) 

0 
0 

1 (3) 
14 (45) 
11 (35) 
4 (13) 
1 (3) 

0 

21 (23) 
27 (30) 
33 (36) 
9 (10) 
1 (1) 

0 

Prior anti-EGFR therapy, n (%) 
     Yes 
     No 

1 (5) 
19 (95) 

10 (32) 
21 (68) 

13 (14) 
78 (86) 

Primary tumor location, n (%) 
     Colon 
        Left side 
        Right side 
     Rectum 

18 (90) 
4 (22) 

14 (78) 
2 (10) 

26 (84) 
10 (38) 
16 (62) 
5 (16) 

76 (84) 
19 (25) 
57 (75) 
15 (16) 
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Table 2. Adverse events occurring in > 30% of patients in any treatment arma 

AE, n (%) 
D + P (n = 20)  

   Total        Grade 3/4  
T + P (n = 51)

b
 

Total        Grade 3/4  
D + T + P (n = 91) 

  Total        Grade 3/4  

Any event 20 (100) 9 (45) 50 (98) 34 (67) 91 (100) 64 (70) 

Diarrhea 9 (45) 0 37 (73) 1 (2) 59 (65) 6 (7) 

Dermatitis acneiform 12 (60) 0 27 (53) 9 (18) 54 (59) 9 (10) 

Nausea 10 (50) 0 18 (35) 1 (2) 51 (56) 2 (2) 

Dry skin 7 (35) 1 (5) 17 (33) 3 (6) 49 (54) 2 (2) 

Fatigue 10 (50) 0 13 (25) 0 45 (49) 6 (7) 

Pyrexia 7 (35) 0 20 (39) 0 44 (48) 4 (4) 

Vomiting 6 (30) 0 15 (29) 1 (2) 39 (43) 2 (2) 

Decreased appetite 5 (25) 0 12 (24) 0 36 (40) 2 (2) 

Rash 3 (15) 0 16 (31) 3 (6) 28 (31) 10 (11) 

Hypomagnesemia 8 (40)  1 (5) 12 (24) 2 (4) 26 (29) 1 (1) 

Constipation 7 (35) 1 (5) 7 (14) 0 17 (19) 1 (1) 
a 

Safety data were based  on the most recent interim analyses (data cutoff May 6, 2016). 
The median follow-up time (defined as time in months from study start to last contact or 
death) for patients treated with D + P was 10.6 months (2.1-22 months), for patients 
treated with D + T + P was 6.2 months (1.5-47.2 months), and for patients with a 

BRAF
V600E

 mutation treated with T + P was 6.4 months (0.4-18.6 months). 
b  

Safety data for the T + P arm are for all patients, including those with BRAF wild type (n 

= 20) and BRAF
V600E

 (n = 31). 
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Table 3. Summary of efficacy by treatment cohort (investigator review) 

Assessment D + T + P  

(n = 91) 

T + P 

 (n = 31) 

D + P  

(n = 20) 

D + T 

(n = 43)
a
 

Best confirmed 

response, n (%) 
     

CR 1 (1) 0 1 (5) 1 (2) 

PR 18 (20) 0 1 (5) 2 (5) 

SD 59 (65) 17 (55) 16 (80) 24 (56) 

PD 8 (9) 12 (39) 2 (10) 10 (23) 

NE 5 (5) 2 (6) 0 6 (14) 

ORR (CR + PR), n 

(%) [95% CI] 

19 (21) 

[13.1-30.7] 

0 

[0-11.2] 

2 (10) 

[1.2-31.7] 

3 (7) 

DOR (95% CI), 

months 
7.6 (2.9-NR) 0 6.9 (5.9-8.0) -- 

DCR (CR + PR + 

SD), % 
86 55 90 68 

Median PFS, 

months 
4.2 2.6 3.5 3.5 

 Unconfirmed 
CR + PR, n (%) 29 (32) 1 (3) 3 (15) 5 (12) 

DCR, disease control rate; NE, not evaluable; NR, not reached; ORR, overall response 
rate; PD, progressive disease; SD, stable disease. 
a
 Key efficacy measures are shown across treatment arms. Efficacy data for patients 

treated with D + T (Corcoran RB, Atreya CE, Falchook GS, Kwak EL, Ryan DP, Bendell JC, et 
al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-
mutant colorectal cancer. J Clin Oncol 2015;33(34):4023-31; ref 17) are shown for 
comparison. 
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Figure and Legends: 

 

Figure 1. Targeting adaptive feedback signaling in BRAFV600E CRC. A, Model of 

adaptive feedback signaling in BRAFV600E CRC. Left, In the absence of drug, MAPK 

activity is driven by mutant BRAF, and ERK-dependent negative feedback signals 

constrain RTK-mediated activation of RAS. Center, BRAF inhibitor alone leads to 

transient inhibition of MAPK signaling and loss of ERK-dependent negative feedback 

signals, allowing RTK-mediated reactivation of the MAPK pathway through RAF dimers 

(including BRAF and CRAF). Right, Combined inhibition of BRAF, EGFR, and MEK is 

hypothesized to prevent adaptive feedback reactivation and maintain MAPK pathway 

suppression. B, Trial schematic showing treatment arms and dosing cohorts for 

treatment of patients with BRAFV600E CRC. Note that patients treated at doses of 

dabrafenib 150 mg BID, trametinib 2 mg QD, and  panitumumab at 6 mg/kg or 

dabrafenib 150 mg BID, trametinib 2 mg QD, and panitumumab at 4.8 mg/kg were 

enrolled into the dose escalation and dose expansion phases of the trial.  

 

Figure 2. Efficacy of D+P, T+P, and D+T+P in patients with BRAFV600E CRC. A-C, 

Waterfall plots showing best response by RECIST in the D+P (A), T+P (B), and D+T+P 

(C) cohorts. Dotted lines represent the 30% threshold for PR. Bar color represents the 

best confirmed response by RECIST. D, PFS for the D+P, T+P, and D+T+P cohorts. 

Median PFS with 95% CIs are shown for each treatment arm. 

 

Figure 3. Pharmacodynamic analysis of paired tumor biopsy specimens. A, H-scores for 

pERK in paired baseline and day 15 on-treatment tumor biopsy specimens from patients 

treated with D+P, T+P, and D+T+P. P values represent paired t test. B, The percentage 

change in pERK H-score in the on-treatment tumor biopsy specimen relative to the 

baseline biopsy specimen in individual patients according to treatment. The percentage 

change in pERK H-score in paired on treatment biopsy specimens for patients with 

BRAFV600E CRC treated with D+T and BRAFV600-mutant melanoma treated with 

dabrafenib alone are shown for comparison. Horizontal bars represent the median. 

 

Figure 4. Serial cfDNA analysis to define correlates of response and resistance. A, 

Percentage change in BRAFV600E mutation levels in cfDNA (week 4 vs baseline) or CEA 

levels (week 6 vs baseline) for patients achieving CR/PR, stable disease, or progressive 
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disease (PD). CEA analysis was limited to patients with baseline levels above the upper 

limit of normal. P values represent CR/PR vs stable disease/PD by 2-tailed t test. B, 

Scatterplot of correlation between change in BRAFV600E mutation levels in cfDNA (week 4 

vs baseline) or CEA levels (week 6 vs baseline) vs best percentage tumor change. Color 

of dots indicates the level of response achieved. C, Spider plots showing BRAFV600E 

mutation levels in cfDNA or CEA levels during therapy for patients achieving CR/PR, 

stable disease, or PD. D, Three representative patients treated with D+T+P with serial 

cfDNA monitoring of BRAFV600E mutation levels and hot spot KRAS and NRAS mutations 

at baseline, at week 4 of therapy, and at time of PD, showing emergence of 1 or more 

KRAS or NRAS mutations.  
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