
1 

Human Polyomaviruses: the battle of large and small Tumor antigens. 

 

 

 

Camila Freze Baez¹,  Rafael Brandão Varella²,Sonia Villani³, Serena Delbue³ 

 

¹Department of Preventive Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 

²Biomedical Institute, Universidade Federal Fluminense, Niteroi, Brazil 

³Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy 

 

 

 

Corresponding author 

Serena Delbue, 

 Department of Biomedical, Surgical and Dental Sciences,  

University of Milano, Via Pascal, 36,  

20133 Milano, Italy; telephone: 0250315070; email: serena.delbue@unimi.it 

 

 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187979862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:serena.delbue@unimi.it


2 

Abstract 

About forty years ago the Large and small Tumor Antigens (LT-Ag and sT-Ag) of the polyomavirus 

(PyVs) SV40 have been identified and characterized. To date, it is well known that all the discovered 

human PyVs (HPyVs) encode these two multifunctional and tumorigenic proteins, expressed at viral 

replication early stage. The two T-Ags are able to transform cells both in vitro and in vivo and seem 

to play a distinct role in the pathogenesis of some tumors in humans. Additionally, they are involved 

in viral DNA replication, transcription, and virion assembly. This short review focuses on the 

structural and functional features of the HPyVs LT-Ag and sT-Ag, with special attention to their 

transforming properties.  
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Introduction 

The Polyomaviridae family has been considered capable of transforming mammals’ cells in 

vitro. In fact, since the first polyomaviruses were discovered in the 1950s, their tumorigenic 

properties observed in cell culture and animal models rendered the family name: “polyoma”- 

multiple tumors1-5. In spite of the transformative abilities of simian vacuolating virus 40 (SV40) and 

murine polyomavirus (MPyV), the human polyomaviruses BK (BKPyV)6 and JC (JCPyV)7infections 

often are asymptomatic and mostly related to non-neoplastic diseases in immunocompromised 

individuals. For instance, BKPyV has been associated to nephropathy (PVAN) in renal transplant 

recipients and hemorrhagic cystitis in allogeneic hematopoietic stem cell transplantation8-10, while 

JCPyV is the causative agent of progressive multifocal leukoencephalopathy (PML) in HIV/AIDS 

and oncologic patients, along with those under immunomodulatory therapies11,12 . 

Almost 40 years have elapsed since the discovery of the first two human polyomaviruses 

(HPyVs) until the third and fourth HPyVs identification took place, in 2007. The Washington 

University polyomavirus (WUPyV) and the Karoliska Institute polyomavirus (KIPyV) were detected 

in children with acute respiratory tract illness through molecular techniques, though their 

pathogenicity is still controversial5,13-18. In 2008, Feng et al.19, using digital transcriptome 

subtraction, identified a polyomavirus clonally integrated in about 80% of Merkel cell carcinoma 

(MCC), a rare and aggressive neuroendocrine neoplasia and hence named the virus after the cancer. 

Several other research groups confirmed the Merkel cell polyomavirus (MCPyV) presence in MCC, 

although the viral prevalence in MCC varies around the world20-34. This HPyV was the first and, so 

far, the only human polyomavirus to be etiologically related to a neoplasia in humans. Since its 

discovery, the scientific curiosity upon polyomaviruses, especially regarding their relationship to 

human cancer, has been reignited. This resulted in new researches aiming for the identification of 

HPyVs in different biological samples through new sequencing technologies35-41. Consequently, 

there are 14 proposed HPyV species, but only six of them (BKPyV, JCPyV, MCPyV, HPyV-6, 
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HPyV-7 and the Trichodysplasia Spinulosa- associated human polyomavirus [TSPyV]) have been 

associated with human diseases39,42,43. 

To accommodate the fast growing number of new PyVs, an update in the family taxonomy 

was published in 2016. So far, the International Committee on Taxonomy of Viruses (ICTV) 

acknowledges 73 polyomavirus species, 13 of which are HPyVs, classified in four genera, according 

to their genomic properties and natural host44. A new nomenclature was proposed, grouping HPyV in 

three genera and using the official term “Human polyomavirus” followed by the viral discovery 

order, as follows: Alphapolyomavirus genus: MCPyV or HPyV-5, TSPyV or HPyV-8, HPyV-9, 

HPyV-12, NJPyV or HPyV-13; Betapolyomavirus genus: BKPyV or HPyV-1, JCPyV or HPyV-2, 

KIPyV or HPyV-3 and WUPyV or HPyV-4; and Gammapolyomavirusgenus: HPyV-6, HPyV-7, 

HPyV-10 or MWPyV and HPyV-11 or TSPyV44. In spite of the taxonomical effort made to 

encompass all described polyomaviruses, three unclassified viruses and a recently described HPyV 

have not been classified yet41,44. 

HPyVs have a small, non-enveloped icosahedral capsid, presenting 72 pentameric capsomers 

formed mainly by VP1 associated with minor structural proteins such as VP2 and VP345-50. Viral 

genome is formed by a double-stranded, histone-associated circular DNA functionally divided into 

three main regions: a non-coding control region (NCCR), an early coding region and a late coding 

region. PyVs have bidirectional genomes and therefore, the early and late coding regions are in 

opposite strands19,51-55. Most, if not all of the PyVs transforming capacities are derived from the 

expression of the early coding region, also known as tumor antigen locus. This region codes for 

multiple spliced transcripts that, despite the variations observed among HPyVs, generates two main 

proteins: the large Tumor antigen (LT-Ag) and small Tumor antigen (sT-Ag)56-60. These two T-Ags 

are involved in the coordination of viral replication and gene expression, as well as in the cell cycle 

progress and malignant transformation both in vivo and in vitro57-65. Hence, this review presents the 

principal interactions of HPyVs T-Ag involved in tumorigenesis. 
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Human polyomaviruses Large Tumor Antigen 

The LT-Ag is a complex, multifunctional protein with many roles in viral replication and cell 

cycle progression. Due to its ability to replicate in and transform cell cultures, most of the knowledge 

about T antigens was obtained from SV40 studies66, which can be extrapolated to other PyVs55. 

Indeed, genetic and protein analyses have shown that LT-Ag virtually belonging to all HPyVs have 

several common domains: DnaJ domain; origin-binding domain (OBD); zinc (Zn)-binding domain, 

and helicase/ATPase domain55,66-68 (Figure 1, panels a-c). For viral DNA replication, six LT-Ag 

molecules interact as an hexameric structure through the recognition of three out of four 

pentanucleotide G(A/G)GGC(P1, P2 and P4) motifs in viral replication origin core, which also 

presents a highly conserved AT-rich region. This recognition is allowed by multiple and complex 

interactions between OBD, pentanucleotides motifs, GpC dinucleotides, Zn-binding domain, AT-rich 

region and histidine residues in the helicase/ATPase69-72. Two-hexameric LT-Ag unwind the viral 

genome in both directions through ATP hydrolysis, followed by the binding of the eukaryotic 

replication protein A (RPA) at the single-stranded viral DNA. The cellular topoisomerase I then 

releases the torsional stress, while alpha-primase and DNA polymerase initialize the viral DNA 

synthesis55,72-76. This replicative role of LT-Ag is frequently seen in lytic infections, and can be 

abrogated in neoplasic tissues. 

 

HPyVs integration and LT-Ag truncation 

As mentioned previously, the first HPyV associated with human cancer, MCPyV, was 

discovered clonally integrated in about 80% of Merkel cell carcinomas. The viral integration into the 

cellular genome is a well-known event that may lead to cancer through several pathways, such as 

functional loss or gain in cell cycle regulation genes, viral activation of human gene promoters, 

expression of viral oncogenes, and acquisition of mutational profile both in human or viral genes 77. 

In fact, LT-Ag premature truncation in MCC samples is considered as a MCPyV tumor-specific 
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signature, since the LT-Ag from non-tumoral samples do not harbor LT-Ag truncated forms. Hence, 

it is suggested that after MCPyV integration into the cellular genome the infected cells undergo 

selection of LT-Ag mutations to prevent viral replication and the viral Ori bidirectional unwinding, 

which would lead to collision with cellular replication forks57. In 2013, Li and colleagues78 showed 

that the intact helicase/ATPase domain activates DNA damage response, enhances p53 

phosphorylation and cell cycle arrest, which corroborates the proposed explanation for the need of 

LT-Ag truncation for MCPyV tumorigenesis. Moreover, LT-Ag truncation mutations are 

unequivocally observed downstream the pRb binding domain, occurring near to the OBD and 

helicase/ATPase domains. Therefore, a critical role for either pRb binding domain or sT-Ag 

preservation in MCC pathogenesis has been suggested 62. 

Although a strong causal association between other HPyVs with human tumors has not been 

confirmed yet, circumstantial data suggesting their transformation properties are growing. In fact, a 

recent meta-analysis revealed that the BKPyV prevalence was significantly higher in prostate cancer 

(PCa) tissues than in the control, considering as “prostate cancer tissues” samples ranging from very 

early onset of PCa to well-defined tumors and, as controls, non-PCa samples from PCa patients or 

benign prostate hyperplasia (BPH)79. There are also evidences linking BKPyV to bladder carcinoma 

in both immunocompetent80 and renal transplant recipients, as well as in urothelial and renal 

carcinomas5,77,81-83.  

Furthermore, BKPyV DNA has been found integrated into a limited number of brain tumor84, 

urothelial carcinoma85 and, more recently,  a case of renal allograft tumor77. BKPyV genome was 

found linearized and inserted into human chromosome 12 in a high-grade urothelial carcinoma from 

the allograft after almost 10 years of uneventful renal transplant. Viral genome sequencing revealed a 

new, undescribed variant of BKPyV subtype 1A, which was named Chapel Hill tumor-associated 

polyomavirus 1 (or CH-1)77. Similarly, the same group reported another undescribed variant of 

BKPyV 1A subtype, named Chapel Hill 2 (or CH-2) integrated into human chromosome 2 in a 
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poorly differentiated renal cell carcinoma83. Kenan and colleagues83 suggest that BKPyV integration 

into host genome after linearization disrupts the expression of late viral transcripts, which would 

impair LT-Ag downregulation and could eventually lead to tumorigenesis. 

Moreover, JCPyV genome has been found integrated into various brain tumors in animal 

models such as mice and owl monkeys11,86,87. Viral integration might also happen in human 

neoplasia, especially in colorectal cancer88,89, in which JCPyV is considered a co-factor for 

chromosomal instability90,91. Interestingly, most of BKPyV and JCPyV integration studies did not 

report a truncated LT-Ag. Instead, the viral genome was disrupted at the VP1 region, although 

replicative impairment has also been observed77,82,83. Nonetheless, unregulated LT-Ag expression, 

loss of late protein expression and replicative arrest occurred following viral integration83.  

Whereas the role of BKPyV integration in human oncogenesis is still hazy, MCPyV 

integration into host genomes and its involvement at least in MCC carcinogenesis have been better 

characterized. Still, the low frequency of MCPyV integration in non-MCC tumor has raised 

attention. Pantulu and colleagues92 identified LT-Ag truncation mutations in four chronic 

lymphocytic leukemia cases, which might indirectly testify the viral integration. Additionally, the 

deletion of a 90pb fragment in the MCPyV VP1 gene in non-melanoma skin cancer may also 

indicate incomplete viral integration93. Thus, the real role of low-frequency HPyVs integration into 

human cancers is yet to be established. 

HPyV LT-Ag domains for cellular proteins interaction 

LT-Ag contains several interaction domains with cellular proteins involved in cell cycle 

regulation. Some of these motifs are well conserved and most of them facilitate viral replication 

through activation of cellular proliferation and phase S entry, resulting in upregulation of enzymes 

involved in cellular DNA replication, DNA damage response and accessory replicative 

enzymes55,65,66 . Indeed, LT-Ag expression itself induces viral replication and cellular transformation 

in animal models and in cell cultures, under specific conditions62,64,66,79,91-96. The first exon of LT-Ag 
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(approximately 1-70 amino acids, shared with sT-Ag) contains the DnaJ domain, which has a 

HPDKGG (His-Pro-Asp-Lys-Gly-Gly) motif conserved among HPyV. The DnaJ domain is able to 

bind to the Hsc70, a cellular chaperone and transcriptional repressor. HPyVs ability to replicate viral 

DNA in vivo and to promote cell transformation depends on the intact DnaJ domain, as well as 

capsid assembling in vivo55,68,97-99. In fact, the MCPyV LT-Ag interaction between its DnaJ domain 

and Hsc70 has been shown to be necessary for viral replication in vitro65,68. Moreover, DnaJ domain 

binding to Hsc70 promotes the chaperone ATPase activity, generating enough energy to dissociate 

pRb/E2F55,100-102. The HPyVs BKPyV, JCPyV and MCPyV also contain a CR1 motif, formed by the 

pentapeptide LXXLL (Leu-X-X-Leu-Leu), which apparently has an auxiliary role in pRb/E2F 

disruption and cell proliferation 100,103.  

The LT-Ag linker domain is located downstream to the DnaJ domain. Almost all  HPyVs 

(JCPyV, BKPyV, WUPyV, KIPyV, TSPyV, HPyV-6, HPyV-7, HPyV-9), but not MCPyV, present a 

conserved motif WXXWW (Trp-X-X-Trp-Trp) that can bind to the Bub1, as demonstrated for SV40 

LT-Ag66,104. Bub1 is a mitotic checkpoint serine-threonine protein kinase that, when functionally 

impaired, may result in chromosomal instability, as observed in cells expressing SV40 LT-Ag105. 

Although MCPyV is oncogenic, it does not present the Bub1-binding motif. Thus, it is not 

conclusive whether Bub1:LT-Ag interaction is relevant for HPyVs transformation in vivo. Instead, at 

the nucleotide position where other HPyVs encode Bub1-binding domain, MCPyV has a sequence 

with little similarity with other PyVs, denominated unique region (MUR)65,103. MUR contains a 

minimal fragment (171–218 nucleotides), the Vam6P-binding domain, that sequestrates this 

cytoplasmatic protein to a nuclear location, resulting in lysosome clustering impairment, without 

disruption of TGF-β or mTOR signaling pathways103. The LT-Ag interaction with Vam6P seems to 

be regulatory, as its loss enhances viral replication; consequently, it is considered a mechanism for 

persistent infection establishment65,94,95. 
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Another interesting MUR interaction was observed for other known oncoviruses, such as the 

bovine papillomaviruses (BPV). Wang and colleagues 106 investigated the interaction between LT-

Ag and bromo domain protein 4 (Brd4), a member of BET family involved in cellular growth 

control, cell cycle progression, and cancer development. The Brd4 interacts with BPV’s early protein 

2 (E2) promoting the rightful partition of viral episomes to daughter cells during mitosis106,107. 

During the MCPyV infection, a similar interaction between LT-Ag and Brd4 is observed, promoting 

the MCPyV DNA replication through the cellular protein factor C (RFC) recruitment to viral Ori106. 

In addition, recent studies have shown that the human papillomavirus (HPV) are able to interact with 

Brd4, which is implicated in viral replication and E2 transcriptional activation function, since the use 

of Brd4 inhibitor reduces HPV transcription108,109. Likewise, the use of a specific peptide, named 

Brd4 410-730, which is homologous to the same region of the Brd4 but without other domains, 

successfully inhibited MCPyV replication in vitro as it disrupts Brd4:LT-Ag interaction 106.  

JCPyV LT-Ag is also able to bind the cellular beta-catenin, a cellular protein belonging to the 

Wnt pathway, important for tissue development, polarity, differentiation and cell cycle control 

through cell-cell contact. When hypophosphorylated, beta-catenin complexes with LEF-1/TCF-4 

transcription factors, and migrates to the nucleus, where it promotes cell cycle progress through c-

myc and cyclin D1 expression. Phosphorylated beta-catenin undergoes degradation via ubiquitin-

depent proteasome through the activation of a complex formed mainly by the glycogen synthase 

kinase-3 (GSK-3), Axin scaffold proteins and adenomatous polyposis coli protein (APC), which 

phosphorilates beta-catenin91,110-112 In this context, JCPyV promotes beta-catenin stabilization 

through a LT-Ag central domain, which comprehends amino acid residues from 82 to 628. Besides, 

this interaction increases beta-catenin levels and promotes its nucleic localization, with subsequent 

enhancement of c-myc expression61,113. Although the JCPyV LT-Ag:beta-catenin interaction was 

also described in mouse medulloblastoma114 and in glioblastoma cell lines115, it has been recently 

described in human colorectal carcinoma (CRC), in which beta-catenin and Wtn pathway are 
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frequently increased (Figure 2, panel c).  JCPyV LT-Ag and beta-catenin co-localization into the 

tumor cell nucleus, as well as c-myc and cyclin D1 activation in a subset of JCPyV-positive CRC has 

been described. This suggests a role of JCPyV in CRC pathogenesis, although JCPyV detection is 

frequent in both normal colorectal and CRC tissues91,116. JCPyV LT-Ag also interacts with the 

insulin-like growth factor/insulin receptor substrate 1 (IGF/IRS1) pathway, which has been proposed 

as a mechanism for malign transformation in medulloblastoma. It has been shown that JCPyV LT-

Ag binds IRS1 through its C-terminal domain117. LT-Ag:IRS1 promotes the IRS1 nuclear 

translocation,  followed by IRS1 interaction with Rad51, which indirectly and eventually prevents 

DNA damage response90 (Figure 1, panels a-c). 

Despite its recent discovery, it is already known that MCPyV is involved in different 

molecular regulatory mechanisms. For example, MCPyV detection in non-small cell lung cancer 

(NSCLC) was found to deregulate BRAF and Bcl2: the first is involved in cell cycle progression 

through MAP kinase signaling pathway, and was upregulated in MCPyV positive samples; the 

second is an anti-apoptotic mitochondrial protein that was downregulated in MCPyV infection. 

These findings were suggestive of MCPyV-mediated deregulation in NSCLC, mainly in smoker 

patients118. Furthermore, another NSCLC study reported a significant association between MCPyV 

DNA detection and LT-Ag expression with mutation on epithelial growth factor receptor (EGFR) 

mainly in non-smoker patients, supporting the hypothesis of MCPyV’s participation in a subgroup of 

NSCLC oncogenesis119.  

A similar study investigating PIK3’s mutational profile showed a higher frequency of PIK3 

mutations in MCPyV-positive MCC than in MCPyV-negative MCC, although the Akt/mTOR 

expression was higher in MCPyV-negative tumor, supporting the employment of different 

mechanisms for MCC oncogenesis in distinct MCPyV backgrounds120. Furthermore, the expression 

of tumor-derived MCPyV T-Ag in mice stratified epithelium promotes gross epithelial phenotypes, 

consistent with neoplasic progression comparable with those observed for high-grade HPV-16 E6 
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and E7 oncoproteins. Further molecular studies demonstrated the LT-Ag interaction with BIRC5 

survivin and increased E2F target gene expression, being both the pathways mediated by LT-Ag 

LXCXE motif 121.  

Finally, BKPyV LT-Ag and other HPyV LT-Ag have been recently found in the upregulation 

of the DNA cytosine deaminase APOBEC3, an important innate immune system enzyme responsible 

for suppressing viral replication and cancer. Evidences suggest that APOBEC3 may be correlated 

with cytosine-based mutation patterns and in coincident sites of DNA rearrangement. As 

APOBEC3B was also upregulated in HPV-related cancers, it is suggested that HPyV LT-Ag 

upregulation may also contribute to carcinogenesis through host genomic mutations122. 

 

HPyV LT-Ag binding with retinoblastoma protein (pRb)  

Indubitably, one of the most important LT-Ag interaction is that with retinoblastoma protein 

(pRb) family55,66 (Figure 2, panel a). This tumor suppressor family comprises three main proteins, 

pRb, p107 and p130 encoded by the RB1, RBL1 and RBL2 genes, respectively. Although the pRb 

can regulate the cell cycle through many pathways, its interaction with the E2F transcription factors 

family is one of the most important, as its loss potentiates tumorigenesis123,124. In a 

hypophosphorylated state, pRb binds the E2F transcription factor, preventing the E2F-mediated gene 

expression and thus promoting cell cycle arrest. During normal cell cycle progress,  cyclin-dependent 

kinases (CDKs) activation leads to hyperphosphorylation of serine and threonine residues at pRb 

phosphorylation-specific sites resulting in the release of the E2F transcriptional factors; their 

transcriptional activity promotes the cell cycle progress from G1 to S phase125 The components of 

the pRb family are also known as “pocket proteins”, because of a conserved “pocket” domain that 

interacts with viral oncoproteins, notoriously the SV40 LTAg and human papillomavirus E7126.  

HPyV LT-Ag, as observed in SV40 LT-Ag prototype, has a highly conserved pRb binding domain in 

its linker region. The LXCXE (Leu-X-Cis-X-Glu) motif is responsible for the LT-Ag:pRb family 
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interaction. It has been hypothesized that the energy provided by the LT-Ag  DnaJ domain binding to 

Hsc70 is used to disassociate pRb/E2F through pRb phosporilation, as corroborated by studies 

showing the DnaJ domain requirement for the SV40 LT-Ag growth activities127-129. LT-Ag is also 

capable of disrupting the transcriptional repressor complex formed by p130 and the repressive 

E2F4/5 proteins through p130 dephosporylation in a DnaJ domain dependent pathway66,91,130. The 

overall pRb:E2F disruption leads to uncontrolled cell cycle progress and, eventually, to malignant 

transformation. In fact, the pRb pathway deregulation is frequently observed in many 

tumors127,128,131. 

The SV40 LT-Ag interactions with pRb, p107 and p130 cause well known transformative effects in 

cell culture and animal models and have been recently reviewed66. However, HPyV LT-Ag also 

mediated cell transformation through pRb family binding. For instance, JCPyV LT-Ag binds the 

hypophosphorylated pRb in hamster glioblastoma cells and this interaction suppression successfully 

disables cell transformation, though JCPyV LT-Ag might be less efficient in cell transformation than 

SV40 LT-Ag132. Moreover, JCPyV LT-Ag might alter pRb expression pattern and cellular 

distribution in mouse primitive neuroectodermal tumors (PNET) and human medulloblastoma 

(HMB) cell lines, suggesting a cell-type specific LT-Ag-mediated tumorigenesis133.  

BKPyV LT-Ag can significantly reduce pRb, p107 and p130 levels and increase 

transcriptionally active E2F, requiring intact LT-Ag DnaJ and pRb binding domains in order to 

induce cell cycle deregulation101,134. Furthermore, BKPyV LT-Ag interaction with pRb and 

consequent E2F release leads to DNA methyltransferase 1 (DNMT1) gene expression, one of E2F 

target genes135. This enzyme adds methyl residues on cytosine located 5' to guanosine and is 

involved in cellular expression control, as methylation significantly reduces gene transcription 135. 

Thus, DNMT1 expression promoted by BKPyV LT-Ag probably induces the inheritable silencing of 

tumor suppressor genes, and might contribute to carcinogenesis135.   
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Likewise, MCPyV LT-Ag contains LXCXE motif and interacts with pRb family proteins57. 

In fact, this natural interaction is the decisive evidence for LT-Ag tumorigenesis pathway through 

pRb family, as pRb-binding domain is systematically maintained in MCPyV-positive MCC while the 

LT-Ag C-terminal is truncated 57. Moreover, truncated LT-Ag is more efficient in transforming cells 

then full-length LT-Ag, mainly due to its LXCXE motif and to the disruption of the C-terminal 

region inhibitory activity on cell growth94. The MCPyV LT-Ag C-terminal inhibitory activity on cell 

growth might be mediated by the phosphorylation of a LT-Ag serine residue at the position 816, 

stimulated by the ATM pathway activation. This phosphorylation site might represent a negative 

selection mechanism to eliminate functional and growth-inhibitory C-terminal during tumorigenesis, 

which also preserves pRb domain136. In vitro studies showed that the ablation of MCPyV LT-

Ag:pRb would lead to tumor regression, suggesting that the LT-Ag:pRb interaction is critical for cell 

proliferation and sustained tumor growth137. Also, a new interaction for MCPyV LT-Ag was 

observed when Arora et al.138 found that the cellular oncoprotein survivin BIRC5a, an anti-apoptotic 

protein, was seven fold more expressed in MCPyV positive MCC than in MCPyV negative MCC. 

This study also identified the need for an intact pRb binding domain for the direct LT-Ag binding to 

BIRC5a gene promoter and hence proposed the survivin as a therapeutic target for MCC137. 

However, it was already known that the HPyV LT-Ag:survivin interaction might promote cell 

survival, as observed in oligodendrocyte and astrocyte cell lines infected in vitro and expressing LT-

Ag91. 

The LT-Ag:pRb interaction has also been studied in the newly discovered HPyVs. The 

TSPyV LT-Ag mediates cells cycle progression in trichodysplasia spinulosa cases through pRb 

interaction. Kassem et al.139 showed evidences of TSPyV LT-Ag clusters with phosphorylated pRb 

by histological immunofluorescence, and concluded that LT-Ag:pRb may induce cell proliferation as 

a potential driver of papule and spicule formation. In contrast, the MWPyV LT-Ag is less stable and 

has not been yet associated to transforming abilities in vitro, although it is able to bind to pRb, p107 
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and p130139,140. Likely, HPyV-7 LT-Ag expression in thymic epithelial tumors does not correlate 

with pRb expression141, although HPyV detection and expression in thymomas was relatively 

frequent (62%) 142.  

 

HPyV LT-Ag binding with p53  

Finally, another important LT-Ag interaction in HPyV mediated tumorigenesis is that with 

p53, a tumor suppressing protein that regulates the gene expression in response to stressful events 

such as DNA damage, leading to cell apoptosis, cell cycle arrest or senescence, and is usually 

deregulated in cancer143. PyVs LT-Ag contain a p53 binding site on the helicase/ATPase domain. 

During SV40 carcinogenesis, LT-Ag binds and blocks p53 activity, preventing apoptosis and cell 

cycle arrest, induced by DNA damage, derived from pRb:E2F disruption. Instead of inducing p53 

degradation through ubiquitinase, as seen for HPV E6 protein, SV40 LT-Ag stabilizes p53, which is 

sufficient for the abrogation of its transcriptional activities66 (Figure 2, panel b).  

 BKPyV LT-Ag also complexes with p53 and, in BKPyV positive renourinary tumors, such 

association is considered an important oncogenic mechanism. The complex formation also promotes 

p53 kidnapping to cytoplasm, which is observed in both infected and transformed cell lines. Even if 

the sequestration is not a requirement for p53 inhibition, the p53 cytoplasmic accumulation 

correlates with an increased cellular mutational profile in LT-Ag expressing cells, and has been 

considered the main hallmark of BKPyV involvement in prostate cancer development143. 

Additionally, the preservation of the LT-Ag:p53 binding domain observed in tumors with BKPyV 

integration is suggestive for the LT-Ag:p53 mediated oncogenesis.  

In the same way, as observed for the p53 cytoplasmic sequestration mediated by BKPyV LT-

Ag, JCPyV LT-Ag is able to alter p53 expression and its cellular distribution in PNET and HMB cell 

lines133. A recent study conducted on paraffin embedded specimens reported a dramatic decrease in 
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p53 expression in JCPyV-positive glioblastomas when compared to JCPyV-negative gliobastomas, 

suggesting a potential role of JCPyV LT-Ag in p53 expression modulation and tumorigenesis144. 

Nevertheless, MCPyV mediated MCC tumorigenesis does not require p53 inactivation. In fact, p53 

disruption in MCC is MCPyV LT-Ag independent, as demonstrated by Houben et al.145 This 

experimental study corroborates with other previously published papers, showing that the C-terminal 

region of MCPyV LT-Ag mediates cell cycle progress inhibition94, and that the truncated LT-Ag has 

a higher transformation potential compared to the full-length LT-Ag62. Finally, these findings are 

consistent with the MCPyV tumor-specific signature in MCC, where the truncated LT-Ag lacks the 

Helicase/ATPase and p53 binding domain57.  

 

Human polyomaviruses small T antigen 

The small T antigen (sT-Ag) is another PyV protein with cell transformation properties. 

Although sT-Ag expression is not always a condition for viral replication or transformation, it is 

required for PyVs optimal functioning68,146. The SV40 sT-Ag is functionally comparable to HPV E7, 

in such a way that E7 is capable of successfully replace sT-Ag functions in vitro147. The PyV sT-Ag 

are encoded in the early region of PyVs genomes, superposed to the LT-Ag coding sequence. 

Produced by an alternative splicing of this region, sT-Ag shares about 80 amino acids in its N-

terminus with LT-Ag55. Therefore, the sT-Ag presents the DnaJ domain with a conserved HPDKGG 

motif among all HPyV, which potentially affects viral replication, cell proliferation and 

transformation, although the functional importance of this domain for sT-Ag activity is 

unknown65,148-150. The BKPyV, JCPyV and SV40 sT-Ag share high amino acid similarities with each 

other, especially on the N terminus, although the sT-Ag middle region is more divergent among 

HPyVs 151, and its hydrophobicity and flexibility are important for sT-Ag functionality 152.  

The sT-Ag transcript also contains a unique region, removed from LT-Ag during the intronic 

processing, which may have distinct features among HPyVs. For instance, JCPyV sT-Ag contains a 
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LYCKE and a LHCWE motif and BKPyV has only one LYCKE motif. Thus, these LXCXE motifs 

are potentially able to interact with pRb family proteins, whereas MCPyV sT-Ag does not present 

any LXCXE motif, as well as the other HPyVs.55,153. Regardless, all HPyVs sT-Ags have two 

conserved domains at their unique C-terminus region: two zinc-binding domains (Cys-X-Cys-X-X-

Cys motif), which provide structural and functional stability for sT-Ag, and two domains for 

phosphatase 2A (PP2A), rich in cysteine and proline residues responsible for sT-Ag:PP2A 

interaction, that require the sT-Ag DnaJ domain and the second zinc-binding motif55,151 (Figure 3, 

panels a-c). 

 

HPyV sT-Ag binding with PP2A 

The PP2A is a serine-threonine phosphatase that regulates, among many other important 

cellular processes, the cell cycle progression and apoptosis by dephosphorylating protein targets such 

as Akt, p53, c-Myc and β-catenin, and hence is considered a tumor suppressing protein. PP2A is 

composed by catalytic (PP2Ac), scaffold (PP2AA) and regulatory subunits (PP2AB), that interact to 

form an active enzymatic complex154. The SV40 sT-Ag prototype has a cysteine-proline rich and 

conserved domain (Cys-X-X-X-Pro-X-Cys) that interacts with PP2A,  mainly through the sT-Ag 

cysteine residues55,151 In fact, the ablation of only one cysteine from CXXXPXC motif dramatically 

reduces sT-Ag:PP2A binding rate155. The sT-Ag interacts with the PP2AA (scaffold) subunit by the 

HEAT repeats3-7, displacing the PP2AB (regulatory) subunit, that also binds HEAT repeats 3-7, and 

thus inhibiting PP2AAc phosphatase activity152 (Figure 4, panel a-b). 

The sT-Ag:PP2A interaction triggers several pathways related to cellular transformation. The 

entry on cell cycle S phase may be stimulated by sT-Ag:PP2A, as PP2A no longer dephosphorylates 

the cyclin-dependent kinase (CDK) inhibitor p27, leading to its degradation. Additionally, sT-

Ag:PP2A also induces the phase S entry by promoting cyclin A/CDK2 and cyclin E/CDK2 
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expression through a cell cycle regulated E2F site156,157. Furthermore, sT-Ag:PP2A has been linked 

to human fibroblast transformation by  CDK2 activation and DNA synthesis induction158.  

The SV40 sT-Ag:PP2A interaction might induce oncogenesis in vitro through the activation 

of the MAP kinase cascade159. The mitogen-activated protein kinases (MAPK) are involved in cell 

proliferation via the ERK1 and ERK2 (extracellular signal related kinases 1 and 2) upregulation of 

cyclin D1, leading to phosphorylation of pRb and the subsequent releasing of the E2F transcription 

factor. MAPK pathway activation has been linked to increased BKPyV replication in cell cultures, 

although induced by LT-Ag160. However, Wu et al.161 demonstrated that TSPyV sT-Ag 

overexpression activates the MAPK pathway by enhancing the MEK/ERK phosphorylation. Once 

more, it is suggested that sT-Ag:PP2A interaction prevents the PP2A dephosphorylation activity and 

ultimately, the suppression of  the MAPK cascade. 

It has been demonstrated that PyV sT-Ag are capable of upregulating and stabilizing the 

myelocytomatosis transcription factor (Myc), which requires intact DnaJ and PP2AsT-Ag domains. 

Studies have demonstrated that sT-Ag:c-Myc upregulation is related with later increase of human 

telomerase and cyclin D1, suggestive for Myc targeted expression162. The c-Myc and cyclin D1 

promoter activity was also increased by JCPyV sT-Ag and beta-catenin, both separated and 

associated, the latter found to potentiate the effect116. Moreover, MCPyV sT-Ag is capable of 

increasing c-Myc activity. Normally, the Fbw7 ubiquitin ligase protein complex promotes the 

degradation of proto-oncogenes products such as cyclin E, c-MYc, c-Jun, mTOR and NF-kB by a 

phosphorylation-dependent mechanism. Recent findings support the idea that the sT-Ag can inhibit 

the LT-Ag, c-Myc and cyclin E proteasomal degradation through their stabilization, thus regulating 

several cell cycle proliferation pathways163. 

Furthermore, human cells expressing SV40 sT-Ag have shown upregulation of anti-apoptotic 

targets of NF-kB164, despite most viral proteic interactions with NF-kB pathway have been shown to 

have inhibitory effects. For instance, MCPyV sT-Ag downregulates NF-kB by targeting the NEMO 
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adaptor protein and, thus, disrupting the inflammatory pathway165. Moreover, NF-kB regulation 

pathway by MCPyV sT-Ag involves the regulatory sub-unit 1 of the protein phosphatase 4 (PP4R1), 

which is required for NEMO adaptor protein interaction166. NF-kB has also been described as a 

promoter of JCPyV replication during DNA damage response induced by JCPyV itself167. These sT-

Ag inhibitory activities on NF-kB pathway, responsible for innate immune response, might be 

related to host immune response evasion, whose impact on tumorigenesis still remains unclear. 

 

sT-Ag/PP2A independent pathways 

Despite the principal PyVs sT-Ag oncogenic pathway is associated with the PP2A 

deregulation, MCPyV sT-Ag may be able to induce cell transformation in a PP2A independent way. 

For instance, it has been shown that MCPyV sT-Ag may induce cell proliferation depending on the 

Akt-mTOR signaling without PP2A deregulation168. The mTOR (mammalian target of rapamycin) is 

a serine threonine kinase that controls cellular functions such as transcription and translation. When 

activated, mTOR phosphorylates some translational control proteins, such as the initiation factor 4E 

binding protein 1 (4E-BP1), preventing its inhibitory activity and releasing the initiation factor 4 

(eIF4E), which may then promote translation and further cell cycle progression151. The PP2A domain 

of MCPyV sT-Ag domain is not required for epithelial transformation in transgenic mice169. 

Furthermore, it has been demonstrated that MCPyV sT-Ag is able to dislocate a restrict number of 

PP2AB subunits, which lead to a sT-Ag:PP2A interaction insufficient to promote tumorigenesis in 

vitro. Instead, MCPyV sT-Ag induces oncogenesis through the so-called large T stabilization domain 

(LSD)163,170. The LSD domain is located at residues 91-95 and inhibits MCPyV LT-Ag proteasomal 

degradation, since LT-Ag is the target for the Fbw7 E3 ubiquitin-ligase. Mutations at LSD disrupt 

LT-Ag stabilization, prevent sT-Ag cell transformation and viral replication, as well as reduce sT-Ag 

induction of cellular oncoprotein, still in a PP2A independent manner65,170. 
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Another MCPyC sT-Ag interaction related to in vitro tumorigenesis is that with c-Jun, a 

transcription factor that regulates cellular differentiation, and proliferation. When 

hyperphosphorylated, c-Jun is capable of inducing tumorigenesis, especially in keratinocytes171. A 

recent study172 observed that c-Jun hyperphosphorylation increased after MCPyV sT-Ag 

overexpression in HEK293 cell line. Additionally, although c-Jun phosphorylation status in in vivo 

MCC is currently unknown, its activation by MCPyV sT-Ag may contribute to the MCC aggressive 

pattern, thus demanding further investigations172. Finally, it has also been demonstrated that TSPyV 

sT-Ag overexpression is associated with c-Jun phosphorylation and activation, indicating a role for 

TSPyV sT-Ag in the TS pathogenesis161. 

 

Conclusions 

Indubitably, among the proteins encoded by the HPyVs, the principal agent involved in cell 

transformation and tumor development is the LT-Ag, which is also the most studied. Interestingly, 

the structure and function of this protein are quite conserved among the different HPyVs, testifying 

that it is indispensable for both viral replication and interaction with the host cells. However, this 

review underlined also the strategic role of the other early protein encoded by the HPyVs, the sT-Ag. 

Additionally, it should be taken into account that some of the classic and newly discovered HPyVs 

are also able to produce agnoprotein, which may have transforming activities itself91. Most probably, 

these proteins act synergically, orchestrated by LT-Ag,  fighting a battle against the infected host, 

trying to evade from the immune system and targeting multiple cellular pathways. To this particular 

regard, the evasion of the innate immune system by HPyV has been so far studied for MCPyV. Both 

MCPyV LT-Ag and sT-Ag, and also BKPyV LT-Ag, are able to interact with the Toll-like receptor 9 

(TLR9) and to inhibit it, causing the subsequent lack of transcription of C/EBPThis last 

transcription factor plays several roles in the suppression activity of the tumor proliferation, i.e. it 

regulates IL-6, IL-8, TNF-a and E2F expressions. Consequently, the suppression of 
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C/EBPexpression by the HPyVs T-Ag induces modification in the immune system reactions 

against the viruses and also triggers the cell proliferation173-176  

 Not all of the involved mechanisms, neither the interactions among the viral proteins have 

been fully understood and the continuous discovery of new HPyVs might favor the understanding of 

cell transformation mediated by the HPyVs.  
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Figure 1. Scheme of the functional domains of the HPyVs’ large T antigen (L-Tag). The L-Tag 

consists of several functional domains: DnaJ domain, linker domain, origin binding domain (OBD), 

zinc (Zn++)-binding domain and helicase/ATPase domain. (a) The DnaJ domain contains: a 

HPDKGG motif, conserved among HPyVs, which is able to bind to the Hsc70, a cellular chaperone 

and transcriptional repressor; a CR1 motif (LXXLL), present only in BKPyV, JCPyV and MCPyV. 

(b) The linker domain contains: WXXWW motif, conserved in the majority of HPyVs but not in 

MCPyV, for binding Bub1, a mitotic checkpoint serine-threonine protein kinase; a unique region 

(MUR), only present in MCPyV, that binds the Vamp6P-protein and the Bromodomain protein4 for 

the recruitment of cellular protein factor C (RFC); a LXCXE motif, conserved in the majority of 

HPyVs, crucial for the interaction with the retinoblastoma protein (pRb) family. (c) The 

helicase/ATPase domain comprises: a p53 binding domain, conserved in the majority of HPyVs; a 

C-terminal domain, only present in JCPyV, that binds the insulin receptor substrate 1 (IRF1). 

Figure 2. HPyVs’ large T antigen (L-Tag) oncogenic mechanisms. (a) In physiological conditions, 

the retinoblastoma proteins (pRbs) are in a hypophosphorylated state, which allows them to bind and 

inhibit the E2F transcription factors, preventing the E2F-mediated gene expression and consequently 

the transition from G1 into S phase. HPyVs’ L-Tag is able to bind the pRb proteins promoting their 

hyperphosphorylation, thus pRb is unable to bind E2F, leading to its transcriptional activity; at the 

same time the hyperphosphorylation of p130 disrupts the transcriptional repressor complex (p130-

E2F4/5), leading to uncontrolled cell cycle progression and sometimes to malignant transformation. 

(b) Multiple cellular stress, normally, raise the levels of p53, which promotes the DNA repair and 

cell cycle arrest. HPyVs’ L-Tag is able to bind and block the activity of p53 protein, preventing 

apoptosis and cell cycle arrest induced by DNA damage. (c) In physiological conditions, the 

phosphorylated β-catenin undergoes degradation via ubiquitin-dependent proteasome. JCPyVs’ L-

Tag binds the β-catenin protein promoting its hypophosphorylation, thus β-catenin complexes with 
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LEF-1/TCF-4 transcription factors, promoting the cell cycle progression by c-myc and cyclin D1 

expression.  

Figure 3. Scheme of the functional domains of the HPyVs’ small T antigen (s-Tag). The s-Tag 

presents a DnaJ domain, followed by an unique domain, that is removed from LT-Ag during the 

splicing process. (a) The DnaJ domain contains a LYCKE motif (JCPyV and BKPyV) and a 

LHCWE motif (only JCPYV), able to interact with pRb family proteins. (b) The unique domains 

contains two Zn++ binding sites and, additionally and only in MCPyV, a PPAR1/NEMO binding site 

and a large T stabilization domain (LSD), that is involved in the oncogenesis process. (c) The 

binding site for the PP2A is conserved in the majority of the HPyVs and triggers several pathways 

related to cellular transformation. 

Figure 4. HPyVs’ small T antigen (s-TAg) oncogenic mechanisms. (a) In physiological conditions, 

the Akt, p53, c-Myc and β-catenin proteins are in a phosphorylated state; the subsequent 

dephosphorilation due to the PP2A serine-threonine phosphatase regulates the cell cycle progression 

and the apoptosis process. (b) The binding between s-TAg and PP2A avoids the dephosphorilation of 

Akt, p53, c-Myc and β-catenin proteins, and the subsequent deregulation of the cell cycle 

progression and apoptosis process drives the cell to a malignant transformation.  
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