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Coherent backscattering of inelastic photons from atoms and their mirror images
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R. Kaiser,4 and Ph. W. Courteille1,*

1Instituto de Fı́sica de São Carlos, Universidade de São Paulo, C.P. 369, 13560-970 São Carlos, SP, Brazil
2Departamento de Fı́sica, Universidade Federal de São Carlos, Rod. Washington Luı́s, km 235 - SP-310, 13565-905 São Carlos, SP, Brazil
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Coherent backscattering is a coherence effect in the propagation of waves through disordered media involving
two or more scattering events. Here we report on the observation of coherent backscattering from individual
atoms and their mirror images. This system displays two important advantages: First, the effect can be observed
at low optical densities, which allows us to work in very dilute clouds or far from resonance. Second, due to the
fact that the radiation of an atom interferes constructively with that of its own image, the phenomenon is much
more robust to dephasing induced by strong saturation. In particular, the contribution of inelastically scattered
photons to the interference process is demonstrated.
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I. INTRODUCTION

Light propagating in an optically thick sample is subject
to multiple scattering. Although part of the propagation can
be described by a diffusion equation neglecting interferences,
wave effects can alter the distribution of scattered light. In
particular, disorder in the sample may lead to an enhanced
scattering into the backward direction. The effect is known as
coherent backscattering (CBS) in mesoscopic physics, and has
been studied extensively with classical scatterers [1–7]. The
advent of laser-cooling techniques allowed us to manipulate
and control atomic gases, thus enabling their use as resonant
and quantum scatterers. This triggered the study of coherent
multiple scattering in a regime where the quantum internal
structure, the wave-particle duality, and quantum statistical
aspects play a role [8–12].

CBS is understood as resulting from the constructive
interference between a scattering path involving two or
more scatterers and the reciprocal (time-reversed) path (see
Ref. [13], and paths (i) and (ii) in Fig. 1). The interference
of reciprocal paths is actually robust when summed up over
a large disordered sample, which was one of the surprising
features in the first observation of CBS in the 1980s [1–3].
More specifically, some paths add up incoherently and result
in a background radiation, whereas reciprocal paths lead to
an enhanced intensity in the backward direction. However, the
quantum nature of the atoms leads to deviations in the behavior
of CBS as compared to classical scatterers. For example,
the presence of a Zeeman structure can break the symmetry
between the two reverse paths and reduces the contrast between
the enhanced peak of radiation and the background [8,14]. The
time-reversal symmetry of the reciprocal multiple scattering
paths is also broken in the strong driving regime, as a which-
path information becomes available through the inelastically
scattered photons [9,12,15]. Such saturation-induced loss of
coherence in CBS was reported with a cold strontium gas
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[11] and a cold rubidium gas [12,15]. Unfortunately, the
theoretical treatment of saturation in multiple scattering is
very challenging [13,16–23] and has not been solved in full
generality.

Interestingly in a different geometrical configuration coher-
ence effects on the backscattered light can also be observed in
optically thin samples, where multiple scattering is too weak
to produce observable signatures. Indeed the introduction
of a reflective interface—a dielectric mirror for example—
allows for the radiation of the image scatterer to interfere
constructively with that of the original scatterer, eventually
resulting in a coherent backscattering process [24]. This single
scattering regime here involves four processes for each atom
(depicted in Fig. 1), accounting for the real atom and its mirror
image, as well as the laser and its image. Let us call k0 the
incident wave vector, k the scattered wave vector, and ẑ the
normal to the mirror. For a single atom, all four processes
sum up coherently, and the resulting scattered light pattern
presents full interference contrast. When the radiation of all
atoms is disorder averaged, though, all interference fringes
disappear, except at wave vectors k such that k0 · ẑ = −k · ẑ,
because at these specific directions processes (i) and (ii) have
the same optical path for all atoms in the cloud. The resulting
interference fringes present a circular symmetry around the
mirror’s normal direction, with a number of maxima depending
on the spatial extension of the atomic cloud. This effect, which
will henceforth be referred to as mirror-assisted coherent
backscattering (m-CBS), has been observed for classical
scattering media [25].

In this work we report on the experimental observation of m-
CBS from a laser-cooled gas of strontium atoms in the presence
of a dielectric mirror. A series of circular fringes predicted
by the theory are experimentally observed and quantitatively
analyzed. The period and envelope of the interference fringes
allow us, respectively, to precisely determine the position and
longitudinal size of the atomic cloud. We show that in the
strong field regime, where the atoms are fully saturated, the
comparison between theory and experimental results allows
us to show that, in contrast to CBS, inelastic photons fully
contribute to m-CBS.
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FIG. 1. Four processes contributing to m-CBS. In the low
intensity limit, reciprocal paths (i) and (ii) contribute to the m-CBS
fringes, whereas paths (iii) and (iv) yield a smooth background
intensity.

II. EXPERIMENTAL SETUP

We prepare our atomic sample in a typical strontium
apparatus, which we briefly describe in the following. A
collimated atomic beam emerges from an array of microtubes
located at the output of an oven heated to 550 ◦C. The atomic
beam is then decelerated in a 28-cm-long Zeeman slower in
spin-flip configuration by a counterpropagating laser beam of
power ∼40 mW tuned 500 MHz to the red of the 461 nm
resonance. The Zeeman slower beam has a 1/e2 radius of
4 mm at the entrance of the experimental apparatus, being
focused onto the oven output after propagation through the
whole system (about 90 cm long). The cooled strontium beam
is captured in the science chamber by a magneto-optical
trap (MOT) generated by three pairs of counterpropagating
collimated 461 nm laser beams and a quadrupole magnetic
field; the latter is produced by a pair of coils in anti-Helmholtz
configuration (axial magnetic gradient |∇B| = 70 G/cm).
Each laser beam has a 1/e2 radius of 5 mm and is detuned
by −40 MHz from resonance. A repumping laser addressing
the 497 nm 3

P2 → 3
D2 transition is used to recycle atoms that

have decayed to the metastable state 3
P2. In this way we are able

to generate cold gases with ∼108 88Sr atoms at a temperature
below 10 mK after a 2s loading time. Resonant absorption
imaging reveals an approximate Gaussian density profile with
a 1/

√
e radius of 0.9(1) mm.

The setup for the m-CBS experiment is sketched in
Fig. 2. The scattering medium is a cold gas of 88Sr
atoms in its ground state 1S0, and the transition 1S0 →
1
P1 [at λ = 2π/k = 461 nm with a linewidth of � =

(2π )30.5 MHz] is used for the resonant scattering. The
461 probe laser beam (the m-CBS beam) has a waist of
1.5 mm and linear polarization. It first passes through a 50-50
nonpolarizing wedged beamsplitter before reaching the atoms.
A combination of two lenses with focal distances f = 15
cm and separated by a distance of 2f = 30 cm creates a
virtual image of a real mirror, placed at a distance d after
the last lens, at a distance 2f − d before the first lens. This
configuration has been used to study Talbot physics and even
allows negative distances to be realized [26,27]. The m-CBS
beam is reflected with an angle θ0 ∼ 1◦ compared to the
mirror’s normal direction. Having crossed again the atomic
cloud, the beam is partially reflected by the beamsplitter onto
a 200 mm lens. A CCD camera placed at the focal plane of the
lens allows for the detection of the angular radiation pattern.
To avoid the direction of the reflected m-CBS beam, which
would saturate its pixels, the CCD camera only captures part
of the circular pattern. An experimental measurement of such
fluorescence pattern is shown in the top right area of Fig. 2.

After turning off the MOT cooling beams, we wait 200 μs
and shine the m-CBS beam pulse of 200 μs duration onto the

FIG. 2. Experimental setup: A laser beam passes through a
beamsplitter (BS) before illuminating the atomic cloud a first time. It
is then reflected on a virtual mirror (VM), created by two lenses and
a physical mirror, at a small angle of θ0 ∼ 1◦ with the normal of the
mirror. After being reflected, it crosses the cloud again, before being
sent by the beamsplitter, to a CCD camera detecting the angular
distribution of the light in the focal plane of a lens. The top right
picture shows an interference pattern obtained in our experimental
setup, exhibiting the predicted circular symmetry. The inset is an
azimuthal angular average of the picture.

atomic cloud, capturing an image in the presence of atoms.
After 1 s we record a background image in the absence
of atoms. We run this sequence ≈ 200 times for the same
parameters to obtain a disorder-averaged final image as shown
in Fig. 2.

III. LINEAR REGIME

The interference phenomenon of m-CBS is best understood
in the linear regime, i.e., for a saturation parameter s =
2�2

0/(�2 + �2/4) � 1, where �0 is the Rabi frequency due to
the incident laser and � is the laser detuning from the atomic
resonance. In this limit the atoms behave as classical linear
scatterers and the total fluorescence is a linear combination
of four processes depicted in Fig. 1. The reciprocity of
processes (i) and (ii) requires us to add up the corresponding
field amplitudes for each atom, whereas paths (iii) and (iv)
have no reciprocal counterpart, and so the corresponding
scattering intensities contribute, after disorder averaging, to an
incoherent background. In this low saturation limit (s � 1),
the intensity radiated by a Gaussian cloud of atoms and its
mirror image reads (see Appendix B)

I (θ ) ∝ s
{
1 + 1

2e−2(θ0kσz)2(θ−θ0)2
cos[2θ0kh(θ − θ0)]

}
, (1)

where h is the distance between the virtual mirror and the
center of the atomic cloud and σz is the longitudinal cloud
radius at 1/

√
e. To obtain Eq. (1), a small angle approximation

has been applied (θ0 � 1 and |θ − θ0| � θ0). The second term
in the bracket on the right-hand side of Eq. (1) corresponds
to the single scattering interference of m-CBS, surviving
averaging over the atomic spatial Gaussian distribution within
a Gaussian angular envelope of half-width at 1/e2 given
by 	 = 1/θ0kσz. Since the fringes have an angular period

f = π/θ0kh, one typically expects to detect a number

053806-2



COHERENT BACKSCATTERING OF INELASTIC PHOTONS . . . PHYSICAL REVIEW A 94, 053806 (2016)

-30 -20 -10 0 10 20 30

0

10

20

30

π/
kθ

0Θ
f
(m

m
)

h (mm)

FIG. 3. Mirror position expected from m-CBS theory (i.e., hthr =
π/kθ0
f ) as a function of the experimental mirror position. This
measurement allowed us to detect an initial experimental misalign-
ment of x0 = 2.1(1) mm, which corresponds to the shifted minimum
of the fit hthr = |Ah + x0| (dashed line); we obtained A = 0.988(12).
The error bars associated with the experimental data are smaller than
the symbol size.

∼h/πσz of fringes on the scattered light. Together, both
terms yield an ideal contrast of m-CBS of C = 1, defined
as C = (Imax − Imin)/Ibackground. The fringes’ period depend
on the inverse of the distance of the cloud to the mirror
(
f = π/θ0kh), so the position of the mirror can in principle
be evaluated from the fringes’ pattern. To confirm this effect,
the (virtual) mirror position h was varied for about 6 cm around
the center of the cloud, and for each position an interference
pattern similar to that of Fig. 2 was extracted. Note that we are
able to place the virtual mirror at negative distances (i.e., the
light first passes through the virtual mirror and then the atoms),
and still have the m-CBS effect. Figure 3 shows the measured
dependence of the fringes’ period 
f (or, equivalently, of the
deduced mirror distance π/kθ0
f ) as a function of h. The
excellent linear behavior not only shows a good agreement
with theory, but also indicates that the initial experimental
positioning was misaligned by 2.1(1) mm.

IV. SATURATED REGIME

In the saturated regime, the atomic dipole moment has a
nonlinear response to the applied radiation field. It is then
no longer possible to add up linearly the amplitudes of four
independent processes. In order to better understand how the
contrast of m-CBS depends on the saturation parameter, we
turn to an alternative picture, valid for all saturation, including
the low and large saturation limits. In this new picture, we first
consider the total fluorescence of a single atom and its mirror
image. This fluorescence is a coherent superposition of the
light scattered by the atom and its mirror image, which have
the same amplitude and are strongly correlated. This leads,
for a single atom, to an undamped far field fringe pattern with
full contrast. Furthermore, different atoms located at different
distances from the virtual mirror are exposed to different local
amplitudes of the standing wave created by the superposition
of the incoming and reflected m-CBS beams [see Eq. (B1)
of Appendix B]. For a mirror of perfect reflectivity, and
neglecting the attenuation of the m-CBS beam after its passage
through the atomic cloud, both the incoming and reflected m-
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FIG. 4. Single-atom [colored (shaded) areas] and cloud-averaged
[red (gray) thick line] fringe patterns in the linear (a) and saturated (b)
regime. The reason for the periodic modulation of the fringes’ maxima
for different atoms is explained in the main text; the black dashed line
denotes the maximum amplitude of individual atomic fluorescence
fringes, as a function of the maxima position. The maxima of all
single-atom curves are identified by a black dot. In the saturated
regime, the saturation of the atoms reduces the amplitude modulation,
and the contrast of the averaged fringes decreases.

CBS beams have equal intensity, and the standing wave created
has perfect nodes and antinodes. The absolute amplitude of
the far field fluorescence fringes of a single atom is thus
a function of the local light intensity at its position, which
presents the nonhomogeneous distribution of the standing
wave. Atoms at the maxima of the standing wave will thus have
their far field fluorescence pattern with maximum amplitude
(see blue line in Fig. 4), compared to other atoms within the
atomic cloud (e.g., yellow or green lines in Fig. 4). Within the
previous description based on four different processes, valid
at low s, these atoms at the maxima of the standing wave are
those that have all four processes summed up constructively,
with a maximum of the scattered intensity at θ = θ0. On
the other hand, for different atomic positions in the standing
wave, while the reciprocal processes (i) and (ii) have always
constructive interference at θ = θ0, the angular position of
the maximum of the fluorescence for processes (iii) and (iv)
varies and do not always cooperate to produce a maximum
intensity at θ = θ0. Hence, adding up coherently all four
amplitudes for a single atom creates angular fringes which are
a function of the atomic position, with different amplitudes,
and maxima at different angles. An illustration of some of these
single-atom angular fluorescence patterns are shown in Fig. 4
by the colored, filled curves. The black dashed curve shows
the dependence of the amplitude of all possible single-atom
fluorescence fringes as a function of the position of the maxima
of the fringes. Considering an extended atomic sample leads to
the superposition of shifted fringes with different amplitudes.
Then, averaging over various disorder configurations leads to
a fluorescence pattern with contrasted fringes around θ = θ0

(shown by the thick red curve).
As expected, for low saturation (s � 1) this interpretation

yields the same contrast C = 1 as the interpretation based on
reciprocal paths and an incoherent background. However this
alternative interpretation of m-CBS allows us to go beyond
the linear response theory and obtain quantitative predictions
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for the saturated m-CBS regime, which is illustrated by
Figs. 4(a) and 4(b). For s = 20, the position of the maxima
of each individual atomic fringe is the same as for s � 1.
Except for atoms in an ever narrower slice around the nodes
of the standing wave produced by the incident laser, though,
the amplitude of these individual fringes all saturate now to
the same value. After averaging over all atoms, the contrast
of the total detected intensity pattern, as illustrated by the
red lines in Fig. 4(b), is reduced. Note that for the sake of
simplicity, the calculation shown in Fig. 4 is done for atoms
distributed over a small region of size of the order of a few
wavelengths, and the envelope of the fringes [as expressed by
the exponential function in Eq. (1)] is thus not visible.

In the discussion of the reduced contrast of CBS, another
important argument has been the role of the inelastically
scattered light, also known as the Mollow triplet. In the single
scattering regime considered here, one can solve the optical
Bloch equations of independent atoms, and then sum their
(independent) scattered field. For each atom, one computes the
field scattered by the oscillating dipole as being proportional
to the optical coherence. In the limit of vanishing saturation,
this allows us to compute the total scattered intensity, as all
light is elastically scattered. For larger saturation however,
the optical coherence saturates and even decreases to zero
for very large values of s. In contrast, the excited state
population saturates to a nonzero value and allows us to
compute the total scattered intensity. The difference between
the light scattering computed from the atomic coherence
or the excited state population corresponds to inelastically
scattered light (sometimes interpreted as being stimulated by
vacuum fluctuations). For atoms separated by more than one
wavelength, emission of such inelastic photons corresponds
to randomly oscillating dipoles and are thus assumed not to
preserve complete phase coherence with the incident laser,
resulting in a reduction of the CBS contrast, in addition to
the nonlinear response. In m-CBS however, the two atoms
contributing to the fringes (i.e., the atom and its mirror image)
have strongly correlated oscillations, which preserve the
relative phase, even when randomly oscillating. Thus, inelastic
scattering is expected to fully contribute to the m-CBS effect,
leading to a lower reduction of the contrast for increasing
saturation, as compared to CBS. As detailed in Appendix B
we have derived a prediction for the m-CBS contrast based on
the elastically scattered light alone [see Eq. (B11)] or based
on the light scattered using the excited state population [see
Eq. (B10)]. The resulting predictions are indicated in Fig. 5 by
“elastic scattering only” and “elastic and inelastic scattering,”
respectively. We note that, for CBS, self-interference of inelas-
tic photons has been identified to lead to a finite contrast even
in the very large saturation limit [19]. We also note that another
different, hitherto unexplained scaling for CBS with rubidium
has been reported in [12] and might be due to a modification
of the internal states of the rubidium atoms [18]. In any case,
our model including elastic and inelastic scattering predicts
m-CBS to be much more robust against saturation than CBS.

A precise measurement of the contrast and its dependence
on the saturation parameter requires a careful data treatment
in order to fully eliminate the undesired additional signal at
the camera created by the reflected m-CBS beam scattered
from all the optical elements. The procedure for extracting
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FIG. 5. Experimental m-CBS contrast (blue triangles), compared
to the normalized CBS one from a strontium cloud [11] (green
circles) and from a rubidium cloud [15] (red stars). The gray
areas for the theoretical predictions {for both the elastic scattering
only, and the elastic and inelastic scattering [see main text and
Eqs. (B11) and (B10) of Appendix B)]} account for the precision
within which our experimental parameters are known: h = 8 ±
0.5 mm and σz = 0.9 ± 0.1 mm. The data are presented as a function
of the saturation parameter s at the center of the probe beam.

the fluorescence signal out of our raw data is detailed in
Appendix A. For a given mirror position [h = 8.0(5) mm]
and cloud size [σz = 0.9(1) mm], we have repeated the
experimental sequence described before for several different
intensities of the m-CBS beam. This allowed us to obtain a
series of curves from which the absolute fringe contrast could
be extracted. Figure 5 confronts the saturation behavior of
the enhancement factor measured in our m-CBS setup and
conventional CBS measured by other groups, as a function of
the saturation parameter s at the center of the m-CBS beam.
Note that we used the same definition for the contrast of CBS as
we did for m-CBS before. The CBS data with strontium atoms
from [11] have been obtained with a probe beam on resonance,
and exhibit almost the maximum CBS contrast of 1 in the
low saturation regime. CBS was also reported with rubidium
atoms which, due to their nontrivial internal structure, exhibit
an overall lower contrast, even at low saturation parameter
[8]. We have chosen, then, to present normalized values of
the contrast for CBS rubidium data. Note that in order to
observe CBS, a high optical thickness (b > 1) is necessary to
reach a significant contrast, whereas in the m-CBS setup, the
maximum contrast is achieved at low optical densities.

V. DISCUSSION AND CONCLUSION

The comparison between CBS and m-CBS data shows a
completely different scaling for the contrast as a function
of the saturation parameter. The m-CBS contrast follows the
same scaling that we would expect from our model including
elastic and inelastic scattering, allowing us to conclude that
all photons contribute to m-CBS, whereas CBS interference
is severely reduced in the presence of inelastic scattering. The
remaining small discrepancy between theory and experiment
might be explained by at least two different effects. The
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first one is the small, but nonzero, optical thickness of our
cloud (b ∼ 0.6 at its center). At small saturation parameters,
the partial reabsorption of the fluorescence light by other
atoms from the cloud will change the relative amplitude of
the paths of Fig. 1 that have otherwise equal amplitude,
thus reducing the overall contrast. This is responsible for
the large discrepancy between experimental data and the
inelastic theoretical curve at small s. On the other hand,
at high saturation parameters the spectral broadening of the
atomic fluorescence (known as the Mollow triplet) may also
reduce the m-CBS contrast, which is not accounted for in our
model. The spectrum of inelastically scattered photons from
a resonant probe beam presents sidebands displaced by ±�0

from the atomic resonance [28]. Since the optical path for
the light scattered by the atoms is different from the optical
path for the light scattered by their mirror images by twice the
distance from the atomic cloud to the real mirror (�l ≈ 1.2 m
in our case), the inelastic broadening will cause a relative
dephasing between both when the spectral width becomes
comparable to, or bigger than, (2π )c/�l ≈ (2π )250 MHz.
For our highest experimental saturation parameter s = 20,
the separation in frequency between the Mollow sidebands is
equal to 2�0 = 2

√
s � ∼ (2π )273 MHz, so the loss of optical

coherence in the interference process is already expected to
affect the m-CBS contrast. The role of the inelastic spectral
broadening in the interference of the light emitted by the atoms
and their mirror images will be studied in a future work.

In conclusion, we have observed coherent backscattering
from a cloud of cold atoms and its mirror image. Investigating
the saturated regime allowed us to identify the important
contribution of inelastic photons to the interference process,
at odds with CBS. Because this coherence effect appears
in completely different regimes as compared to CBS, such
as low optical densities and high saturation parameters, it
can represent a very important tool for probing coherences
in the atomic scattered light where CBS is not observable
anymore. In particular, by an appropriate use of waveplates
and different polarization channels, the m-CBS setup should
allow us to select specific interference paths, which is not
possible for CBS. More generally, the atom and its mirror
image are strongly correlated, which allows this situation to
probe nonclassical light effects [29–33].
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APPENDIX A: DATA ANALYSIS: SUBTRACTION OF THE
LASER LIGHT

As described in the main text, at each experimental run we
obtain two images: The first one is registered while the m-CBS
beam impinges on the atomic cloud, and the second one is
done in the same conditions, but with no atoms captured in our
trap. The m-CBS reflected beam, after traversing all optical
elements, creates an angular light profile on directions close
to its propagation direction. The image registered in absence

of atoms shows exclusively this light pattern. The image with
atoms has this pattern superposed to the atomic fluorescence,
that we want to extract. All the difficulty in extracting it stems
from the fact that when the atoms are also present, the m-CBS
beam is partially absorbed by them, which results in a smaller
signal on the camera when compared to its effect without
absorption. We can thus write the azimuthal-averaged profile
of the light intensity in the presence of atoms as

Ia(θ ) = T Ilas(θ ) + If (θ ), (A1)

where T = e−2b stands for the average transmission of the
cloud after the double passage of the reflected m-CBS beam,
and Ilas and If for, respectively, the intensity of the laser
light in the absence of atoms, and the intensity of the atomic
fluorescence only. From If (θ ), the absolute contrast can thus
be extracted. Out of the fringes’ envelope (or, to a good ap-
proximation, for |θ − θ0| > 2	), and since we are monitoring
the intensity in a narrow angle of 10 mrad, the fluorescence
background is isotropic to an excellent approximation. We can
write then

Ia(θ,|θ − θ0| > 2	) = T Ilas(θ ) + Ifluo, (A2)

where Ifluo is the constant incoherent atomic background.
Then the laser light profile is determined by finding the linear
combination of Ia(θ ) (measured with the atoms) and Ilas(θ )
(measured without the atoms) that satisfies Eq. (A2) outside of
the fringes region. An example is provided in Fig. 6(a), where
the measured intensity profile with and without the atoms
is presented, as well as the extracted atomic fluorescence.
Figures 6(b) and 6(c) show the fitted parameters T and Ifluo,
respectively, as a function of the saturation parameter s at the
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FIG. 6. (a) Angular intensity profile in the presence (middle black
curve) and in the absence [top green (gray) curve] of the atomic
cloud. The deduced atomic fluorescence after the laser light weighted
subtraction (see text) If (θ ) [lower red (gray) curve, right vertical axis]
presents a locally isotropic background, plus an interference pattern
at the center. (b) Transmission coefficient T and (c) background
intensity Ifluo deduced from the fit [see Eq. (A2) and the main text], as
a function of the on-axis saturation parameter s. The dashed curves
are calculated with a simple model for the interaction between our
saturated Gaussian laser beam and our Gaussian atomic cloud.
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center of the atomic beam (black circles). The dashed lines
correspond to a simple model for the interaction between our
saturated Gaussian laser beam and our Gaussian shaped atomic
cloud, with the optical density at the center as the only free
parameter. The good agreement gives us confidence in the
fitting procedure for extracting the pure atomic fluorescence
out of our raw data.

APPENDIX B: SINGLE-SCATTERING THEORY

In the following we outline the theoretical approach used to
obtain the radiated intensity pattern in the linear and saturated
regimes. Since we are focusing on the single scattering regime,
it is sufficient to study the behavior of single atoms, and then
sum their radiation independently. Let us thus consider a two-
level atom at position r = (x,y,z) driven by a field of wave
vector k0 = k(0, sin θ0, − cos θ0).

Without loss of generality, we assume that the (virtual)
dielectric mirror lies in the plane z = 0 and choose the initial
polarization along the x̂ axis. The incident field plus its mirror
generate a standing wave in the z axis and a propagating one
in the y direction:

�(r) = �0 cos(kz cos θ0)e−iky sin θ0 . (B1)

Note that we have here assumed high quality mirrors that
possess unity reflection coefficients.

The single-atom equations are then used to determine the
radiation of each atom. Calling σ, σ †, and σ z the atomic
operators, in the semiclassical limit the atomic dynamics is
described by the following set of equations [34]:

dσ̂

dt
=

(
i� − �

2

)
σ̂ + i�(r)σ̂ z, (B2)

dσ̂ z

dt
= 2i[�∗(r)σ̂ − �(r)σ̂ †] − �(σ̂ z + 1), (B3)

with the commutation relations [σ̂ ,σ̂ z] = 2σ̂ ,[σ̂ †,σ̂ ] = σ̂ z,
and σ̂ zσ̂ = −σ̂ .

By imposing the time derivatives to be zero, one obtains the
steady state (ss) expectation values of the optical coherence
and excited population for an atom at position r:

〈σ̂ 〉ss(r) = �2 + �2/4

� + i�/2

�(r)

�2 + �2/4 + 2|�(r)|2 , (B4)

〈σ̂ †σ̂ 〉ss(r) = |�(r)|2
�2 + �2/4 + 2|�(r)|2 . (B5)

In the far field limit, the field radiated by a single atom in a
direction k = kn̂ and at a distance r reads [35]

Ê(k,t) = −σ̂ (t)
dk2

4πε0r
[n̂(x̂ · n̂) − x̂]e−ik·r, (B6)

where d refers to the dipole coupling element and ε0 to the
vacuum permittivity.

The measured field in the m-CBS experiment actually
contains two contributions from each atom, since the radiation
of the latter may be reflected or not by the mirror [see Fig. 1,
with processes (i) and (iv) that yield mirror reflection after
scattering]. Thus the total scattered electric field Es in a

direction k comes from the superposition

Es(k) = E(kx,ky,kz) + E(kx,ky, − kz). (B7)

In general, the different components of the field may play an
important role in the intensity profile. However, our experiment
was carried out within observation angles θ � 1, where only
the Ex component is significant. Hence we obtain for the
steady-state fields the following expression:

〈Es〉 ∼ √
α〈σ 〉ss cos(kz cos θ )e−ikyy−ikxx, (B8)

〈E†
sEs〉 ∼ α〈σ †σ 〉ss cos2(kz cos θ ), (B9)

where the prefactor α = d2k4/(4π2ε2
0r

2) is unimportant to the
determination of the contrast. Equation (B8) corresponds to the
optical coherence, and thus to the elastically scattered light.
On the contrary Eq. (B9) describes the total intensity, that is,
both elastic and inelastic photons [34].

Moving to the m-CBS by a macroscopic cloud of N atoms
with positions rj , the radiation pattern is computed as the sum
of the single-atom intensities:

Itot

I0
= 4s

N

N∑
j=1

cos2(kzj cos θ0) cos2(kzj cos θ )

1 + s cos2(kzj cos θ0)
, (B10)

where we have introduced the saturation parameter s =
2�2

0/(�2 + �2/4) and I0 = cε0Nα/8. Equation (B10) relies
on the simplifying hypothesis that all the scattered light (elastic
and inelastic) has the same phase after the scattering, at any
time. More precisely, the coherence length of the light is much
larger than the distance between the (real) mirror and the cloud,
so the inelasticity of the photons may not play a role. We note
that, in the case of a uniform intensity distribution of the laser
beam, the spatial distribution of the atoms in the plane of the
mirror (x,y) does not play any role in this setup.

Nevertheless, if one was to assume that only elastically
scattered light contributes to the fringes pattern, the following
expression for the intensity would be obtained:

Iela

I0
= 4s

N

N∑
j=1

cos2(kzj cos θ0) cos2(kzj cos θ )

[1 + s cos2(kzj cos θ0)]2
. (B11)

Let us first focus on the linear regime, which is that of elastic
scattering (Itot ≈ Iela), and that is obtained by taking s � 1. We
obtain the following expression for the microscopic system:

Iela(θ )

I0
≈ s

N

N∑
j=1

{cos[kzj (cos θ − cos θ0)]

+ cos[kzj (cos θ + cos θ0)]}2. (B12)

At this point it must be noted that a single atom will exhibit
full contrast, with fringes that are not damped. However, in
the many-body case, the superposition of atoms with different
fringes phase (see Fig. 4) results in an interference pattern
with a reduced contrast, over a finite envelope. This sum over
a macroscopic cloud (i.e., much larger than the wavelength)
is well captured by substituting the sum over the atoms
by an integral over the typical atomic distribution

∑N
j=1 →∫

drρ(r). The first term in the sum in Eq. (B12) provides a
coherent contribution in the θ = θ0 direction, whatever the
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position z of the atom, whereas the second term averages to 0.
The decay of the envelope is then provided by the finite size of
the cloud. For a Gaussian distribution such as those produced
in our trap, one obtains Eq. (1). That equation predicts an
alternation of constructive and destructive interferences with
period π/(khθ0), which leads to the observed fringes, see
Fig. 7.

Remark that the elastic contribution Eq. (B11) decreases
as 1/s for increasing saturation parameter s, whereas the total
radiation converges to

lim
s→∞

Itot(θ )

I0
= 4

N

N∑
j=1

cos2(kzj cos θ ). (B13)

Integrating over a Gaussian distribution as before, in the
small angle and large cloud limits, we obtain Itot = 2I0, i.e.,
the fluorescence converges to a finite value for very large
saturation parameters. Thus the ratio between the elastically
scattered intensity to the total one scales as 1/s, which explains
the fast decay of the contrast of the “elastic” theory.

In the saturated regime, atoms that are not close to a zero
of the standing wave saturate. As s increases, the proportion
of scatterers that contribute to the grating decreases as 1/

√
s,

θx (mrad)
-0.02 -0.01 0 0.01 0.02

θ y (m
ra

d)

-0.02

-0.01

0

0.01

0.02

(a)

θ (mrad)
10 15 20 25

I/〈
I〉

0.5

1

1.5
(b)

FIG. 7. (a) Intensity pattern in the nonlinear regime [Eq. (B10)],
with s = 20. The intensity pattern in the linear regime is virtually
identical, up to a scaling factor. (b) Azimuthal average of the intensity
pattern normalized to the background intensity, in the linear (s =
0.01, blue continuous line) and nonlinear (s = 20, red dashed line)
regimes, showing the fringes profile. The figures can be compared to
the measurement presented in Fig. 2 of the main text.

whereas the others produce an isotropic fluorescence radiation
pattern. This explains the rather slow decay of the contrast in
the “inelastic theory.” In the present work, the intensity pattern
for large values of s was computed numerically using the
microscopic formula (B10), for random Gaussian distributions
of one hundred thousands of atoms (see Fig. 5).
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