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Excitation spectra in crystal plasticity
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Plastically deforming crystals exhibit scale-free fluctuations that are similar to those observed in
driven disordered elastic systems close to depinning, but the nature of the yielding critical point is
still debated. Here, we study the marginal stability of ensembles of dislocations and compute their
excitation spectrum in two and three dimensions. Our results show the presence of a singularity
in the distribution of excitation stresses, i.e., the stress needed to make a localized region unstable,
that is remarkably similar to the one measured in amorphous plasticity and spin glasses. These
results allow us to understand recent observations of extended criticality in bursty crystal plasticity
and explain how they originate from the presence of a pseudogap in the excitation spectrum.

Recent advances in crystal plasticity have revealed the
importance of collective dislocation dynamics in crystals
[1–3]. The key phenomena include power-law distributed
strain bursts [4–7] and intermittent acoustic emission sig-
nals [8–10], originating from avalanches of dislocation
activity. The theoretical description of such crackling
noise response in plasticity has been debated, and ideas
from depinning transitions [11, 12], jamming [13–15], and
glassy dynamics [16] of the dislocation assembly have
been brought up.

To resolve the question of the fundamental nature of
bursty dislocation dynamics, it is central to understand
how such activity bursts or excitations are triggered by
applied stresses. For amorphous plasticity, this has re-
cently been addressed by considering the point-wise dis-
tribution P (x) of the local distances x in stress to a
threshold above which a deformation burst is excited
[17–19]. In the x → 0 limit, the form of P (x) encodes
information about the nature of the dynamics exhibited
by the system, and is connected with the properties of
the ensuing crackling noise [20]. One expects a power-
law form P (x) ∝ xθ, where the exponent θ characterizes
the system. This approach stems from the classical de-
pinning problem of elastic (a convex interaction kernel)
interfaces in random media where P (x) is flat for small
x, so θ = 0. In models of amorphous plasticity as well as
certain spin glass models singular behavior of P (x) for
x → 0, or θ > 0 is found in the quasistatic limit [17–21]:
a “pseudogap” in the excitation spectrum [20].

It has been argued that the singular P (x) is a con-
sequence of the non-positive definite nature of the long-
range interaction kernel mediating the collective defor-
mation dynamics [17, 18]. This feature has been linked
to the emergence of “extended criticality” in the crackling
dynamics, when critical fluctuations take place over an
extended range of control parameter values rather than
only in the proximity of a “critical point” [20]. In the

case of plastic deformation of a system with N disloca-
tions the argument states that if P (x) ∝ xθ, the stress
increment separating avalanches scales as N−1/(1+θ), and
hence the number of events Na within a stress interval
∆σ ∼ 1 scales as Na ∼ N1/(1+θ) ≪ N . However, these
few events must be responsible for an extensive strain
increment, such that the mean avalanche size scales as
N/Na ∼ Nθ/(1+θ), i.e., it diverges in the thermody-
namic limit. This behavior has been observed in vari-
ous glassy systems ranging from mean field spin glasses
[22, 23] to models of amorphous plasticity [21]. Dislo-
cation systems exhibit slow, glass-like dynamics, argued
to originate from the frustrated dislocation interactions
[16]. Together with recent results of extended critical-
ity [13, 14, 24] this suggests the possibility of interesting,
non-trivial excitation spectra.

In this letter, we report an extensive study of the ex-
citation spectra in crystal plasticity by considering 2D
and 3D discrete dislocation dynamics (DDD) systems.
We perform simulations with and without the presence
of quenched pinning centers (e.g. solute atoms). The
key findings are that the distributions P (x) are singu-
lar in pure systems and develop a small x cut-off with
quenched disorder. In all cases considered the exponent
θ is found to depend on dimension, the stress rate of the
local perturbation, the presence or absence of quenched
pinning, and whether the other dislocations not directly
subject to the perturbation are allowed to move or not.

The 2D and 3D DDD models we consider are similar
to the standard ones discussed in the literature. The
2D case is studied in more depth as the 3D one is in-
trinsically hard numerically. The starting point in both
cases is a relaxed, zero-stress state, which we expect to
be in the extended criticality regime of the pure dislo-
cation systems [13, 14, 24]. The 2D DDD model rep-
resents a cross section (xy plane) of a single crystal,
with a single slip geometry, and straight parallel edge
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FIG. 1. Idea of the 2D and 3D DDD simulations used to probe
the stability of dislocation assemblies against local stress per-
turbations. a) shows an example from a 2D DDD simulation,
where a single dislocation (surrounded by a small circle) is
subject to a linearly increasing local external stress σ (indi-
cated by the arrow), with the color code corresponding to the
instantaneous velocity of the dislocations, showing that the
dislocation activity tends to spread beyond the dislocation
directly subject to the perturbation. b) displays an example
of the strain rate vs stress graph, along with an illustration
of the procedure to define an excitation by thresholding the
strain rate signal. c) shows an example of the 3D dislocation
system, with the red sphere corresponding to the location
where the local external stress σ is being applied to excite
dislocation activity.

dislocations along the z axis. The Nd edge dislocations
glide along directions parallel to their Burgers vectors
b = ± bux, where b is the magnitude and ux is the
unit vector along the x axis. Equal numbers of dislo-
cations with positive and negative Burgers vectors are
assumed, and dislocation climb is not considered. The
dislocations interact with each other through their long-

range stress fields σxy = Dbx(x2 − y2)/(x2 + y2)2, where
D = µ/2π(1 − ν), µ is the shear modulus, and ν the
Poisson ratio. Dislocation annihilation taking place in
real crystals is modelled by removing dislocation pairs
with opposite Burgers vectors from the system if their
mutual distance is smaller than b. In addition, to test
the effect of quenched disorder on the excitation spec-
trum, we perform a set of simulations including also Ns

randomly positioned immobile pinning centers (“solute
atoms”) interacting with the dislocations via short range
interactions, employing a regularized interaction energy
U = Asn sin θ/r[1 − exp(−(k2/a2)r2)], with k = 1.65, a
the atomic distance, sn the sign of the Burgers vector
of the dislocation, and A = (1 + ν)µb∆V/3π(1 − ν) an
interaction strength parameter, with ∆V the misfit area
[25]. These pinning centers generate a short-range cor-
related random pinning field (with a correlation length
ξ ≈ (Ns/L

2)−1/2 and strength proportional to A) inter-
fering with the dislocation motion [11]. Dislocation dy-
namics is taken to be overdamped, such that the disloca-
tion velocity is proportional to the Peach-Koehler force
due to the total stress (with contributions from disloca-
tion interactions, the random pinning field, as well as
from the external stress σext when present) acting on it.

The 3D DDD simulations are performed using the Par-
aDis code [26], considering the FCC crystal structure
with material parameters of Al (shear modulus G = 26
GPa, Poisson ratio 0.35, Young modulus 70.2 GPa, Burg-
ers vector b = 2.863 × 10−10 m, and dislocation mo-
bility 104 Pa−1 s1; for simplicity, both edge and screw
segments are taken to have the same mobility). The
line dislocations are modeled using a nodal discretiza-
tion scheme where dislocation lines are represented by
nodal points connected to their neighbors by straight seg-
ments. Changes in dislocation geometry are modeled by
adding and removing these nodal points. The total stress
acting on a node consists of the external part, resulting
from the deformation of the whole crystal, and of the
internal, anisotropic stress fields generated by the other
dislocations within the crystal. This leads to a Peach-
Koehler force moving the discretization nodes according
to a material-specific mobility function which relates the
total forces experienced by dislocations to their velocities,
encoding also the constraints on dislocation motion due
to crystal structure. Forces between segments of nearby
nodes and self-interaction of dislocations are calculated
with explicit line integrals, while the far-field forces are
computed from the coarse-grained dislocation structure
using a multipole expansion. In addition, near the dis-
location core, local interactions, such as junction forma-
tion, annihilation, etc., are introduced phenomenologi-
cally with input from smaller scale simulation methods
(e.g., MD) and experimental results. A trapezoidal inte-
grator is then used to solve the equation of motion for
the discretization nodes. We consider periodic boundary
conditions for both 2D and 3D simulations. In each case,
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FIG. 2. Excitation spectra P (σex) from 2D DDD simulations
for three different stress rates σt (indicated in the legend)
for pure dislocation systems. a) shows P (σex) for systems
where all the dislocations are allowed to move, while in b) the
corresponding data for systems where only the dislocation
subject to the local stress perturbation is mobile is displayed.
All distributions are singular (θ > 0) for small σex, with the
lines corresponding to fits of the form of P (σex) ∝ σθ

ex.

a random dislocation configuration (with Nd = 400 in
2D and 40 dislocation lines in 3D) is first let to relax in
the absence of applied stresses; after the relaxation, 200
dislocations remain in 2D after the annihilations during
relaxation, and the initially straight dislocation lines in
3D develop some corvature and form junctions. We then
proceed to study the stability of these relaxed dislocation
configurations.
To create excitations in dislocation systems by local

stress perturbations, we ramp up a local external stress
σ from zero at a constant rate σt, and monitor the re-
sponse of the system by considering the resulting time-
dependent global strain rate ǫt. In the 2D simulations,
we go through each individual dislocation one by one,
and apply a positive scalar σ = σxy only to that [see
Fig. 1a)]. In the 3D case, we choose to apply a local
tensile stress within a spherical region, with an example
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FIG. 3. Excitation spectra P (σex) from 2D DDD simula-
tions for three different σt for dislocation systems contain-
ing quenched disorder of “intermediate” strength, inducing
depinning-like dislocation dynamics. In a), all the disloca-
tions are mobile, while in b), only the dislocation subject to
σ is allowed to move. The distributions are singular for small
σex, down to a small-σex cutoff at σ0 due to quenched disorder.
Lines are fits of the form of P (σex) ∝ σθ

ex exp[−(σ0/σex)
α].

shown in Fig. 1c) as the red sphere; we consider spheres
with radii comparable to the average dislocation spacing
1/

√
ρ, where ρ is the dislocation density, and go through

all such non-ovelapping spheres in each system. This par-
ticular protocol is mandated by the procedure by which
line dislocations are treated in a DDD code such as Par-
aDis. For both 2D and 3D, an excitation is defined when
ǫt first exceeds the threshold at a stress σ = σex, see
Fig. 1b). The results are averaged over both different re-
laxed dislocation configurations (500 and 100 in 2D and
3D, respectively) as well as over different excitation loca-
tions in each configuration, i.e., 200 dislocations and 400
spheres per system, resulting in approx. 105 and 4× 104

local stress-strain rate curves in 2D and 3D, respectively.
In 3D, not all of these lead to an excitation due to the
tensile applied stress not always producing the relevant
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resolved shear stress(es) within the excitation volume.

In the 2D case, the P (σex)s are summarized in Figs.
2 and 3. The P (σex)s for three different stress rates
σt for the “pure” dislocation system are shown in Fig.
2a). For small σex, a clear power-law form P (σex) ∝ σθ

ex

is observed, indicating singular behavior of P (σex) for
σex → 0, with the exponent θ depending on the stress
rate; θ evolves from θ ≈ 2.6 to θ ≈ 1.6 as the stress
rate is lowered from σt = 2.5 × 10−4 to 1 × 10−5. No-
tice that rate-dependent θ-exponents have been observed
also in elasto-plastic models for amorphous materials [19].
It is worth pointing out that in the case considered in
Fig. 2a), all the dislocations are able to respond to the
local stress perturbation via the long-range dislocation-
dislocation interactions, and thus it sometimes happens
that the dislocation activity induced by the local stress is
not localized in the immediate vicinity of the dislocation
subject to the perturbation; this is illustrated by Movie 1
(Supplemental Material [27]). For comparison, Fig. 2b)
shows the corresponding P (σex)s in a system where all
the other dislocations, except for the one directly sub-
ject to the stress perturbation, are kept fixed, in anal-
ogy to the procedure employed when considering various
lattice models of amorphous plasticity [18]. While the
P (σex)s in Fig. 2b) look qualitatively somewhat differ-
ent from those shown in Fig. 2a), showing in particular
a weaker overall dependence on the stress rate σt, the σt-
dependent exponent θ nevertheless assumes similar val-
ues in both cases: even the single-dislocation excitations
display singular characteristics. In all these cases the
spectra show that creating excitations becomes harder
with higher stress rates: a larger σex is typically required
for a larger σt.

In presence of quenched disorder, the behavior de-
scribed above for the pure dislocation systems should
change. We show in Fig. 3a) the P (σex)s for a system
with a quenched pinning field generated by randomly dis-
tributed pinning centers of “intermediate” strength, with
A = 0.1 and Ns/L

2 = 0.8b−2 chosen to transform the
glass-like jamming scenario of pure dislocation systems
into a depinning-like problem, but the disorder is not so
strong that it would eliminate the scale-free nature of
the avalanches (see Ref. [11] for details); we consider
the same three stress rates as above to apply the local
perturbation. One may make two main observations: (i)
the exponent θ assumes lower stress rate dependent val-
ues as compared to the pure dislocation system, and (ii)
the power laws exhibited by the P (σex)s appear to have
low-σex cutoffs - hence we fit the data with the func-
tion P (σex) ∝ σθ

ex exp[−(σ0/σex)
α], where σ0 is the cutoff

stress scale. These cutoffs are related to the finite stress
needed to push the dislocation out of the local poten-
tial energy minimum due to the quenched pinning field:
thus, we excpect σ0 to increase with increasing disorder
strength. For a given disorder strength, σ0 is found to
increase with increasing σt. Notice that no such feature

10
7

10
8

10
9

σ
ex

 [Pa]

10
-12

10
-11

10
-10

10
-9

P
(σ

ex
)

θ = 1.42
θ = 1.76
θ = 2.21
σ

t
 = 1.0 × 10

15
 Pa/s

σ
t
 = 2.5 × 10

15
 Pa/s

σ
t
 = 5.0 × 10

15
 Pa/s

10
7

10
8

σ
ex

 [Pa]

10
-4

10
-2

P
cu

m
(σ

ex
)

θ + 1 = 2.19
θ + 1 = 2.52
θ + 1 = 3.31

FIG. 4. Excitation spectra P (σex) from 3D DDD simula-
tions for three different σt. All dislocations are allowed to
move, and there is no quenched disorder. The σt dependent
θ-exponents are similar to those found in the corresponding
2D DDD model, and may be approximately recovered also
by considering the cumulative distribution function Pcum(σex)
(inset).

is observable in the pure dislocation system, where dislo-
cation activity may in some instances be triggered with
a very small σex. Fig. 3b) shows the results from the 2D
system with pinning and all the other dislocations fixed;
again, a small-σex cutoff can be observed, and the distri-
butions show less sensitivity to σt than in the case where
all dislocations are able to respond to the perturbation.

Finally, we consider the excitations in the 3D DDD
simulations, considering for simplicity and due to the
high computational cost of the 3D simulations only the
case where all dislocations are mobile, and no quenched
disorder is present; see Movie 2 in the Supplemental Ma-
terial [27] for an example of the excitation process. Fig.
4 shows that the results are qualitatively similar to those
found above for the 2D system: the distributions P (σex)
are singular at σex → 0, and the exponent θ exhibits a
similar dependence on σt as that shown in Fig. 3 for
the corresponding 2D system, with θ varying between
∼ 2.2 and ∼ 1.4 for the data shown in Fig. 4. The inset
shows the corresponding cumulative distribution function
Pcum(σex) for small σex, exhibiting scaling with an expo-
nent θ+1, with the θ-values in reasonable agreement with
those estimated from the P (σex)s. Considering different
threshold values for the strain rate to define the excita-
tions leads to slightly threshold-dependent exponents in
the 3D case (not shown), but the qualitative picture re-
mains the same for a range of threshold values. Thus,
a “pseudogap” appears to be present in the excitation
spectrum also in 3D dislocation systems.
To summarize, we have performed both 2D and 3D

DDD simulations to establish that the excitation spectra



5

in crystal plasticity exhibit singular behavior at σex → 0,
something that is at odds with the known behavior of
elastic manifolds in random media exhibiting a depinning
transition. As this behavior persists when moving from
2D systems to 3D ones, the root cause is shared by both
systems. The likely cause is the anisotropic, non-positive
definite interactions between dislocations, in analogy to
the quadrupolar Eshelby-type stress fields argued to be
responsible for the similar behavior found recently for
amorphous plasticity [17, 18]. This then persists upon
coarse-graining, and manifests itself in the presence of
critical-like fluctuations or plastic avalanches even at neg-
ligible external stresses [13, 14, 24]. The presence of a
frozen impurity field on the other hand leads to a finite
minimum for the excitation stress σex, in agreement with
the idea of a presence of a true critical point or yield
stress [11] instead of the extended criticality scenario of
pure dislocation systems. Finally, we point out that 2D
colloidal crystals [28] might provide an interesting exper-
imental system to test our results.
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