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Predicting the emotions evoked by generalized sound events is a relatively recent research domain

which still needs attention. In this work a framework aiming to reveal potential similarities existing

during the perception of emotions evoked by sound events and songs is presented. To this end the

following are proposed: (a) the usage of temporal modulation features, (b) a transfer learning

module based on an echo state network, and (c) a k-medoids clustering algorithm predicting

valence and arousal measurements associated with generalized sound events. The effectiveness of

the proposed solution is demonstrated after a thoroughly designed experimental phase employing

both sound and music data. The results demonstrate the importance of transfer learning in the spe-

cific field and encourage further research on approaches which manage the problem in a synergistic

way. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4977749]

[NX] Pages: 1694–1701

I. INTRODUCTION

Sound plays a fundamental role in our everyday lives

carrying a great gamut of meanings and purposes, such as

informative (i.e., door bell ringing), pleasant (e.g., a musical

piece), alarming (e.g., a scream), relaxing (e.g., a sea wave

splashing on the shore), etc. In this article, we focus on the

emotional meaning conveyed by sound events. Unlike

speech signals, where the speaker is able to transmit certain

emotional states by altering a range of his/her vocal parame-

ters,1 such as fundamental frequency and loudness,2,3 we

focus on the emotion conveyed to the listener. Such sounds

may be a result of human activities (e.g., walking), natural

phenomena (e.g., rock falling), animals (e.g., cow mooing),

etc., carrying various types of information, such as move-

ment, size of the source, etc.4 These may comprise the nec-

essary stimuli for a receiver to perform various activities, for

example, one may decide to take the necessary precautions

in case a gunshot is heard. Such contexts demonstrate the

close relationship existing between sound events and the

emotions they evoke, i.e., sounds may cause emotional man-

ifestations on the listener side, such as fear.5

To better understand the present problematic, one may

consider the example of musical compositions where there

are two types of emotions involved, i.e., the one which the

composer intents to transmit and the one perceived by the

audience. This study concentrates on the latter where sounds

comprise a form of communication, e.g., evoking certain

emotional responses (e.g., movie, radio, human computer

interaction applications, etc.). In fact, the identification of the

emotion on the listener’s side may provide important indica-

tions towards predicting the respective human reaction.

Affective computing has received a lot of attention in

the last decades with a special focus on the analysis of

emotional speech, where a great gamut of generative and

discriminative classifiers have been employed,6–8 and

music9–11 where most of the literature is concentrated on

regression methods. Even though generalized sound events

play a major role in the emotion conveyed to the listener,

they have received considerably less attention than the

previously mentioned fields of research. One of the first

attempts12 considers emotions evoked by specific sounds such

as a dental engine. A more generic approach13 employed

1941 low level signal descriptors feeding a random subspace

meta-learner for recognition. The authors used a dataset from

FindSounds.com14 annotated by four labelers. A well organ-

ised methodology15 defined the structure of a sound event

from the prism of the associated emotion and aimed at its

automatic prediction. The authors employed a wide range of

well known acoustic features along with support vector

machine and artificial neural network classifiers after mapping

to four categories of emotions. However, the results indicated

there is no evident relationship between the waveform of a

sound event and the evoked emotion(s). In the closest paper

to this work,16 the authors investigate the relationships

between musical, sound, and speech emotional spaces. In par-

ticular, the authors use the characteristics of one space to pre-

dict the those of another one and vice versa, i.e., the emotion

of a music piece is predicted using the speech emotional

space, etc. The authors proposed a cross-domain arousal, and

valence regression model showing high correlations between

their predictions and the observer annotations. Their method-

ology is based on the INTERSPEECH 2013 Computational

Paralinguistics feature set17 feeding a support vector regres-

sion scheme.

This work is focused on the prediction of the emotional

dimension of sound events, which is the area less studied in

the related literature. We investigate whether the emotional

space of music signals and generalized sounds is common
since they both aim at capturing the emotions evoked to thea)Electronic mail: stavros.ntalampiras@polimi.it
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listener(s). Figure 1 demonstrates the joint emotional space

composed of continuous valence and arousal values for rep-

resenting the affective state of a human subject.

To assess this hypothesis we designed an experimental

test bench evaluating a variety of feature sets capturing per-

ceptual properties of the signals and several regression

schemes adopted from the related literature, while we pro-

pose a version of the k-medoids clustering algorithm using

the Minkowski distance metric. Moreover, a novel transfer

learning module is incorporated for mapping the features

extracted from music signals to the feature space formed by

generalized sound events.

We conducted thorough experimentations on a publicly

available dataset, i.e., the International Affective Digital

Sounds (IADS) emotionally annotated sound events database

including a diverse range of sound events (usual events, like

dog barking, to uncommon ones, like gunshots or vomiting)

associated with different emotional states.18 The specific

dataset is quite useful as it has been annotated following the

affective annotation protocols of music emotion recognition.

The music dataset is the 1000 Songs Database, which is also

publicly available.19 An extensive experimental procedure

was carried out, where the superiority of the proposed

method over the existing ones is demonstrated.

This work is organised as follows. Section II details the

design of the proposed framework including feature extrac-

tion, transfer learning, and the k-medoids algorithm. Section

III presents the experimental protocol starting from the

specifics regarding the datasets and the parametrization of

the considered solutions to the analysis of the obtained

results. Finally, conclusions are drawn in Sec. IV.

II. THE PROPOSED APPROACH

We try to evaluate whether the emotional space of gen-

eralized sound events and musical pieces is shared, and if it

is able to offer improved prediction of valence and arousal

values. To this end the proposed framework, depicted in

Fig. 2, includes the following three modules.

(a) Following the findings of our past work,20 we exploit

the temporal modulation characteristics as they have

provided a performance superior to the widely used

Mel frequency cepstral coefficients when applied to a

task of similar perceptual needs, i.e., predicting the

unpleasantness level of a sound event.

(b) Construction of the common feature space by means of

transfer learning based on echo state networks (ESNs).

(c) k-medoids clustering algorithm.

The next three subsections provide the details regarding

each module.

A. Temporal modulation features

The temporal modulation feature set is based on a

modulation-frequency analysis via the Fourier transform and

filtering theory.21–23 Modulation filtering aims at retaining

slow varying envelopes of spectral bands coming from non-

stationary signals without affecting the signal’s phase and

fine-structure. This feature set assigns high frequency values

to the spectrum parts affecting the cochlea of the listener

while emphasizing the temporal modulation.

Unlike the power spectrogram, the modulation one origi-

nates from human cochlea modelling. There, the existing

inner-ear vibration is converted to electrically encoded signals.

In general, sounds excite the basilar membrane while the asso-

ciated response depends on the excitation frequency. Different

components must be sufficiently distinct in frequency to stim-

ulate unique areas of the membrane, which supports the

hypothesis claiming that the output of the cochlea can be

divided into frequency bands. The short-time excitation

energy present in a specific channel is essentially the output of

the associated band. It is important to note here that a har-

monic sound event occupying many different auditory chan-

nels generates a similar modulation pattern across all bands.

At this point lies the basic advantage of the modulation

FIG. 1. The main idea behind the present work. The joint emotional space is

formed by general sounds and music signals for improving the prediction of

emotions evoked by sound events.

FIG. 2. (Color online) The block diagram of the proposed framework.
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spectrogram since this redundancy does not exist in conven-

tional spectral representations of harmonic sounds.24

As the particular set was recently developed, a represen-

tative figure of the specific set’s distribution depicting the

relationship between the acoustic and modulation frequency

is demonstrated in the top row of Fig. 3. It should be men-

tioned that the implementation of the temporal modulation

features is based on the one provided in Ref. 25.

B. Transfer learning based on ESN

Feature space transformation is necessary for permitting

the common handling of both feature sets by a regression

methodology wishing to predict valence and arousal values

of the sound events of interest. Such transformation is essen-

tial for addressing the diversities existing in the feature dis-

tributions. We overcome the particular obstacle by learning

an ESN-based transformation.26,27 It should be mentioned

that this process could be performed in a vice versa manner,

i.e., exploiting sound event features for characterizing music

genres, which is part of our future study.

A multiple-input multiple-output (MIMO) transforma-

tion is learnt using the training data of the music and sound

signals. ESN modelling, and in particular a reservoir network

(RN), was employed at this stage as it is able to capture the

non-linear relationships existing in the data. RNs represent a

novel kind of echo-state network providing good results in

several demanding applications, such as speech recogni-

tion,27 saving energy in wireless communication,28 etc.

An RN, the topology of which is depicted in Fig. 4,

includes neurons with non-linear activation functions which

are connected to the inputs (input connections) and to each

other (recurrent connections). These two types of connec-

tions have randomly generated weights, which are kept fixed

during both the training and operational phase. Finally, a

linear function is associated with each output node.

RNs comprise a deep learning architecture as their

main purpose is to capture the characteristics of high-level

abstractions existing in the acquired data by designing

FIG. 3. (Color online) Three feature

sets extracted out of sounds coming

from the International Affective

Digital Sounds dataset (Ref. 18). (a)

Top row: temporal modulation, (b)

middle row: perceptual wavelet pack-

ets, and (c) bottom row: Mel-scaled

spectrograms.

FIG. 4. The ESN used for feature space transformation.
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multiple processing layers of complicated formations, i.e.,

non-linear functions. The associated depth is characterized

by the amount of neurons included in the reservoir, which is

usually called reservoir size (see Sec. III C for the parametri-

zation analysis). Deep learning is suitable for feature space

transformation facilitating the extraction of useful informa-

tion for the subsequent regression modeling phase. An RN-

based transformation is able to reveal and capture the highly

non-linear relationships existing between the music feature

space and the sound event one, which is a characteristic of

significant importance facilitating the usage of a joint feature

space as shown in Fig. 1.

Reservoir computing argues that since back-propagation

is computationally complex but typically does not influence

the internal layers severely, it may be totally excluded from

the training process. On the contrary, the readout layer is a

generalized linear classification/regression problem associ-

ated with low complexity. In addition, any potential network

instability is avoided by enforcing a simple constraint on the

random parameters of the internal layers.

In the following we explain (a) how the transfer learn-

ing RN (in the following denoted as tRN) learns the trans-

formation from the music feature space M to the sound

event one S and (b) the exact way the transformation is

employed.

1. RN learning

The tRN is used to learn the relationships existing in the

features spaces of sound and music signals. We assume that

an unknown system model is followed, which may be

described as a transfer function fRN.

fRN comprises an RN with N inputs and N outputs. Its

parameters are the weights of the output connections and are

trained to achieve a specific result, i.e., a sound event feature

vector. The output weights are learned by means of linear

regression and are called read-outs since they “read” the res-

ervoir state.29 As a general formulation of the RNs, depicted

in Fig. 4, we assume that the network has K inputs, L neu-

rons (usually called reservoir size), K outputs, while the

matrices Win K � Lð Þ; Wres L� Lð Þ, and Wout L� Kð Þ include

the connection weights. The RN system equations are the

following:

x kð Þ ¼ fres Winu kð Þ þWresx kð Þð Þ; (1)

y kð Þ ¼ fout Woutð Þx kð Þ; (2)

where u(k), x(k), and y(k) denote the values of the inputs, res-

ervoir outputs and the read-out nodes at time k, respectively.

fres and fout are the activation functions of the reservoir and

the output nodes, respectively. In this work, we consider

fres xð Þ ¼ tanh xð Þ and fout(x)¼ x.

Linear regression is used to determine the weights Wout,

Wout ¼ arg min
W

1

Ntr
kXW � Dk2 þ �kWk2

� �
; (3)

Wout ¼ XTX þ �Ið Þ�1
XTDð Þ; (4)

where XW and D are the computed vectors, I a unity matrix,

Ntr the number of the training samples, while � is a regulari-

zation term.

The recurrent weights are randomly generated by a

zero-mean Gaussian distribution with variance v, which

essentially controls the spectral radius SR of the reservoir.

The largest absolute eigenvalue of Wres is proportional to v
and is particularly important for the dynamical behavior of

the reservoir.30 Win is randomly drawn from a uniform distri-

bution [–InputScalingFactor, þInputScalingFactor], which

emphasises/deemphasises the inputs in the activation of the

reservoir neurons. It is interesting to note that the signifi-

cance of the specific parameter is decreased as the reservoir

size increases.

Here, fRN adopts the form explained in Eqs. (1), (2) by

substituting y(k) with Fs and u(k) with Fm, where Fs denotes

an original sound event feature vector and Fm a feature vec-

tor associated with a music signal.

2. Application of fRN

After learning fRN, it may be thought as a MIMO model

of the form

F10

s tð Þ
F20

s tð Þ

..

.

FN0
s tð Þ

0
BBBBBB@

1
CCCCCCA
¼ fRN

F1
m tð Þ

F2
m tð Þ

..

.

FN
m tð Þ

0
BBBBB@

1
CCCCCA
;

where the music features F1
m;…;FN

m at time t are transformed

using fRN to observations belonging to the sound event fea-

tures F10

s ;…;FN0
s , where N denotes the dimensionality of the

feature vector shared by both domains. It should be noted

that N depends on the feature set, i.e., temporal modulation,

perceptual wavelet packets, and mel-scaled spectrum.

C. Regression based on k-medoids clustering
algorithm

The goal of the proposed clustering algorithm is to

identify feature vectors characterized by closely spaced

emotional annotations. To achieve this goal we rely on the

k-mediods clustering algorithm,31 which belongs to the fam-

ily of k-means clustering algorithms. The main characteristic

of the k-mediods clustering algorithm is the ability to con-

sider the more general concept of pairwise dissimilarity as

distance metric, rather than the Euclidean distance (as done

in the traditional k-means algorithm). This guarantees a

more robust clustering phase since the effects of outliers are

significantly reduced.31

In the general case where we have a set of elements to

be clustered, the k-mediods algorithm operates as follows:31

given the number of clusters � to be considered (which is a

user-defined parameter of the algorithm), the algorithm ran-

domly selects � elements from the set as medoids; a medoid

is the element of a cluster whose average similarity with the

rest of cluster elements is maximal. Then, the algorithm

associates each element of the set to the closest medoid and
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computes the overall sum of pairwise dissimilarities. This

procedure, i.e., the random mediods selections and element

association to each medoid, is repeated imax iterations and

the cluster set characterized by lowest sum of pairwise dis-

similarities is chosen.

In our specific case, the elements of the k-medoids algo-

rithm are the feature matrices. As pairwise-dissimilarity

measure of the k-medoids algorithm, we propose the distance

metric di,j measuring the Minkowski metric between coeffi-

cient Mi and Mj defined as follows:

di;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

jMi �Mjjpp

vuut ; (5)

where n denotes the dimensionality of the feature vector,

while p typically takes values in the interval 1� p� 2.

Obviously the lower the values of di,j, the closer the respec-

tive datastreams in the Minkowski distance space.

Minkowski distance was selected since it may be beneficial

for tasks including responses of subjects related to a specific

scale,32 such as the one used in this work. We emphasize

that di,j is symmetric, i.e., and di,j¼ dj,i. This process identi-

fies the k closest matrices with respect to the unknown one

Mu. Suppose that their emotional content is annotated with

arousal and valence measurements are a1,…,ak; v1,…,vk; au,

and vu, respectively. The unknown characteristics of Mu are

the averaged values computed as follows:

au ¼
1

k

Xn

k¼1

ak and vu ¼
1

k

Xn

k¼1

vk:

In the proposed sound emotion prediction system, the

implementation of the k-medoids algorithm is based on parti-

tioning around medoids.33 Section III explains the experi-

mental set-up and analyses the obtained results.

III. THE EXPERIMENTAL SET-UP AND RESULTS

This section explains the following.

(a) The experimental protocol that was followed towards

revealing similarities between the emotions evoked by

generalized sound events and music pieces.

(b) The datasets including sound and music audio signals.

(c) The parametrization of the modules included in the

presented framework (see Fig. 2).

(d) The analysis of the obtained results.

A. Audio databases

For the purposes of this work, two databases have been

employed.

(1) The IADS-2 (Ref. 17): This dataset includes 167

emotionally evocative sound stimuli that include contents

across a wide range of semantic categories. Their annota-

tions include two main dimensions (see also Fig. 1), i.e.,

valence (ranging from pleasant to unpleasant) and arousal

(ranging from calm to excited). Each stimuli was rated in

three separate rating studies and the final values were

averaged. The selected sounds cover a broad sample of con-

tents across the entire affective space, while they communi-

cate emotions relatively quickly.

The subjects were female and male college students

attending Introductory Psychology classes at the University

of Florida. Male to female ratio was 1:1. It is important to

note that each sound was rated by at least 100 participants

with no hearing impairments. A preparatory phase was fol-

lowed by the participants where they had to listen to three

practice sounds, i.e., birds, female sigh, baby cry in order to

acclimate to the types of contents that were going to be pre-

sented as well as establish the emotional rating scales.

(2) The 1000 Songs Database:19 This dataset includes

1000 songs has been selected from the Free Music Archive.34

Randomly (uniformly distributed) chosen excerpts with dura-

tion 45 s were subsequently isolated from each song. The

songs were annotated by 100 subjects, 57 of which were

males and 43 females. Their age average was 31.7 6 10.1. A

carefully designed data collection process was followed

ensuring high level quality control. In fact, the participants

were subjected to preliminary listening tasks, where they

were asked to (a) identify music audio clips containing

dynamic emotion shifts, (b) indicate the associated music

genre, and (c) compile a short report explaining their willing-

ness to address the task sufficiently as well as their compe-

tence in characterizing music content.

The annotation values are normalized in the range1,9

facilitating transfer learning from one dataset to the other.

More specifically, rates are formed such that 9 represents a

high rating on each dimension (i.e., high pleasure, high

arousal), and 1 represents a low rating on each dimension

(i.e., low pleasure, low arousal). The normalization process

aimed at the complete alignment of the annotations so that

any given (pleasure or arousal) value carries exactly the same

meaning amongst the datasets. It should be mentioned that no

further normalization techniques were employed at this stage.

The stimulus existing in both datasets evoke reactions

across the entire range of each emotional dimension, i.e., plea-

sure ratings for these sounds range from very unpleasant to

very pleasant, and are distributed fairly evenly across the space.

The observations are similar for the arousal levels as well.

B. Contrasted approaches

We compared the approach proposed here on two levels,

i.e., both feature extraction and regression. More specifically

we used a Mel-scaled spectrogram and the perceptual wavelet

packets (PWPs) set35 due to their ability to capture perceptual

properties of audio signals. The PWP set analyses the audio

signals across different spectral areas, while they are approxi-

mated by wavelet packets. They account for the fact that

human perception is not affected in the same way by all parts

of the spectrum36 by employing a suitably-designed filter-

bank. The PWP feature set reflects upon the degree of vari-

ability exhibited by a specific wavelet coefficient within a

critical band, thus they may capture useful information for

characterizing emotional content. Moreover, as suggested by

the related literature we compared the k-medoids clustering
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algorithm with support vector regression16 and Gaussian mix-

ture models clustering.20

The contrasting experiments were designed such that all

the approaches were compared on two feature spaces, i.e.,

the one constructed using the sound events alone and the

joint one. Care was taken such that all approaches operated

on identical train and test sets in order to achieve a fair

comparison.

C. Parametrization of the transfer learning framework

The audio files coming from both databases were sam-

pled at 16 kHz with 16-bit quantization and preprocessed for

eliminating any possible DC-offset. The feature extraction

parametrization was kept constant with respect to every set

facilitating comparison and fusion tasks. After early experi-

mentations and in order to avoid possible misalignment(s),

the low-level feature extraction window is 30 ms with 20 ms

overlap. Furthermore to smooth any existing discontinuities

the sampled data are hamming windowed while the FFT

size, where applicable, is 512.

The parameters of the tRN were selected by means of

exhaustive search based on the minimum reconstruction

error criterion. The parameters were taken from the follow-

ing sets: SR 2 {0.8, 0.9, 0.95, 0.99}, L 2 {0, 500, 1000,

5000, 10000}, and InputScalingFactor 2 {0.1, 0.5, 0.7, 0.95,

0.99}. The combination of parameters providing the lowest

reconstruction error on a validation set including both fea-

ture spaces. Its implementation was based on the Echo State

Network Toolbox.37 Finally, with respect to the k-medoids

algorithm k was set after exhaustively searching the inter-

val1,31 and identifying the value providing the best perfor-

mance in terms of mean squared error as regards to both

valence and arousal predictions.

D. Results and analysis

In the first experiment we compared the proposed solu-

tion with a plethora of approaches exploiting both different

features sets and classifier for predicting the emotional prop-

erties of generalized sound events. The results are tabulated

in Table I.

As we can see in Table I the best prediction results with

respect to both arousal and valence measurements are pro-

vided by the temporal modulation feature set when com-

bined with the k-medoids algorithm. Overall it is worth

noticing that k-medoids based on the Minkowski metric is

superior to the rest of regression approaches regardless the

set of descriptors. This possibly indicates the potential ability

of the temporal modulation to express characteristics associ-

ated with the emotional content of the generalized sound

events. Moreover, it shows that the coefficients closely

located in the feature space (in the Minkowski sense) agree

on their emotional characterization. Furthermore, the poor

predictions of the SVR may be due to the limited amount of

data included in the IADS-2 database. This burdens the flat-

ness of the regression function which is of fundamental

importance in SVR training.39 Moving on, we observe that

GMM clustering based on the Kullback-Leibler (KL) diver-

gence captures better the relationships existing in the feature

space. Generative modelling in the stochastic plane is able to

provide the second best results in arousal and valence predic-

tion. Last it should be mentioned that the performance of the

proposed approach is the best one reported on the IADS-2

dataset.

In the next experimental phase we activated the ESN-

based transfer learning component and included the music

data to perform prediction of the emotional content of

the sound events. The parameters of the tRN providing the

lowest reconstruction error were SR¼ 0.95, L¼ 5000, and

InputScalingFactor¼ 0.99. The results are tabulated in Table

II. As we can see most errors have decreased proving that (a)

there exist similarities in the way song and generalized audio

signals evoke emotions and (b) transfer learning for auto-

matic description of emotional content is beneficial. More

specifically, proposed method achieves MSE figures equal to

0.9 and 1.24 for arousal and valence prediction, respectively.

Furthermore, the SVR approach provides lower MSEs, i.e.,

better performance due to the increased data availability.

This is true for the GMM clustering based solution as well.

While comparing Tables I and II, the relevance of a trans-

fer learning mechanism enabling feature space transformation

becomes clear. The majority of MSEs have decreased confirm-

ing that such deep learning technique is able to transform the

data successfully allowing the regressors to operate on a larger

space where they are able to provide better performance.

Figure 5 depicts the influence of k on the MSE values

for both arousal and valance prediction, while considering

the sound event feature space alone and the joint one. It is

evident that the predictions made on the joint feature space

are superior to the ones made while considering the sound

event space alone. As we can see the predictions are better

with more neighbours in case the joint feature space is

employed demonstrating that there exist strong relationships

existing between the emotional content of the datasets and

TABLE I. The matrix tabulating the regression results with respect to the

proposed approach and the contrasted ones while using the sound event fea-

ture space. MSE average values over 50 iterations are shown in the following

format: arousal/valence, while the minimum errors, i.e., best performance,

are in boldface.

Regressor

k-medoids

SVR

(Ref. 16)

GMM clustering

(Ref. 20)Feature set

Mel-spectrum (Ref. 38) 1.89/3.86 2.85/4.82 3.16/3.21

PWP (Ref. 35) 1.6/3.7 3.05/4.01 3.10/3.36

Temporal modulation 1.27/2.94 2.85/4.85 3.13/3.10

TABLE II. The matrix tabulating the regression results with respect to the

proposed approach and the contrasted ones while using both feature spaces.

MSE average values over 50 iterations are shown in the following format:

arousal/valence, while the minimum errors, i.e., best performance, are in

boldface.

Regressor

k-medoids

SVR

(Ref. 16)

GMM clustering

(Ref. 20)Feature set

Mel-spectrum (Ref. 38) 1.27/3.11 2.3/4.1 3.19/3.02

PWP (Ref. 35) 1.43/2.93 3/4.13 3.24/3.20

Temporal modulation 0.91/1.24 1.75/4.45 3.09/2.80

J. Acoust. Soc. Am. 141 (3), March 2017 Stavros Ntalampiras 1699



that one can provide improved predictions using transfer

learning from the musical feature space. In particular, ten

neighbours provide the best performance on the space of

sound events while the number increases to 25 for the joint

space. In both cases, we can see that after a certain amount

of neighbours, the error increases showing that the emotional

content is no more relevant. An illustrative example is

shown in Fig. 6 where the k-medoids algorithm identified the

25 closest neighbours to the Attack2 sound event in the joint

feature space. As we can see they are composed of 19 songs

and 6 sound events. The names are the ones reported in the

IADS-2 and 1000 Songs databases, while the distances are

analogous to the ones computed for the needs of the k-

medoids algorithm.

IV. CONCLUSIONS

This paper is an attempt towards the automatic assess-

ment of the emotions evoked by generalized sound events by

revealing perceptual similarities between music and sounds

via transfer learning. In particular, the presented approach

proposes the usage of temporal modulation features, an

ESN-based transfer learning module, and a regression solu-

tion based on the k-medoids algorithm. The proposed

approach was compared with approaches exploiting Mel fil-

terbank based and wavelet features as well as with KL

divergence-based clustering and SVR. The superiority of the

proposed approach was proven after a thorough evaluation

employing sound and music datasets. In fact, the error rates

presented here surpass the so far best published results on

the IADS-2 dataset.

More importantly, we evaluated the possibility of

exploiting transfer learning for constructing a shared emo-

tional space onto which improved prediction of valence and

arousal measurements was achieved. This is of critical

importance and may boost further research on the specific

field. The results encourage common bidirectional manage-

ment of the emotion prediction domain.

Our future work includes both development of transfer

learning based solutions to deal with applications of the

FIG. 6. The 25 nearest neighbours of

the Attack2 sound event as computed

by the k-medoids algorithm on the

joint feature space constructed after

transfer learning (a different font has

been used to distinguish between

sound events and songs).

FIG. 5. The alteration of the MSE for both arousal and valance prediction as a function of k with and without including transfer learning, i.e., the song feature space.
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generalized sound recognition technology. For example, we

intent to design a synergistic framework for transferring

knowledge from the music information retrieval domain to

address bioacoustic signal processing applications. Finally,

in the next stage of this research, a much larger dataset of

sound events will be employed.
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