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Abstract

Secure Multi-party Computation (SMC) is a classical problem in theoretical secu-

rity. In a SMC problem, two or more parties must compute correctly a function f

on their respective inputs x and y, while preserving the privacy of their inputs and

additional security properties.

One of the approaches proposed for addressing the SMC problem relies on the design

of Garbled Circuit (GC). In Garbled Circuits (GCs), the function to be computed

is represented as a Boolean circuit composed of binary gates. The input and output

wire of each gate is masked such that the party evaluating the Garbled Boolean

Circuits (GBC) cannot gain any information about the inputs or the intermediate

results that appear during the function evaluation. The complexity of today's most

e�cient GC protocol depends linearly on the size of the Boolean circuit represen-

tation of the evaluated function. The total cost and run-time interaction between

parties increase linearly with the number of gates and can be huge for complex

GBCs. Actually, interest has grown in the e�ciency of this technique and in its

applications to computation outsourcing in untrusted environments.

A recent work shows that XOR gates in a Boolean circuit have no cost for the se-

cure computation protocol. Therefore, circuits with a reduced number of non-XOR

gates are more convenient and one of the possible ways to reduce the complexity

of the computation is to reduce the number of non-XOR gates in the Boolean circuit.

Recalling that, the main aim of this work is to reduce the number of non-XOR

gates, which directly results in a reduced number of interactions between the parties

and transfer complexity at runtime, we present di�erent approaches for reducing the

communication cost of Secure Multi-party Computation (SMC) and improving the

overall computation time and e�ciency of the execution of SMC.
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Preface

The thesis deals with a secure multi-party computation. The problem set-up is in-

teresting in the aspect of combining multiple fundamental issues including secure

distributed computing, garbling circuits, and cost-optimization. Since the garbled

circuit are useful in information security, we try to optimize garbled circuit transfor-

mation and construct it which requires minimum runtime interaction between the

input owners.
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Introduction

In a Secure Multi-party Computation (SMC) problem, two or more parties must

compute correctly a function f on their respective inputs x and y, while preserv-

ing the privacy of their inputs. Besides inputs privacy, other security properties

are requested for the execution of the SMC protocol, such as correctness, meaning

that the output received is exactly f(x,y), and independence of inputs, meaning that

neither party can choose its input as a function of the other party's. In [2], di�er-

ent paradigms for solving secure computation problems have been proposed, some

relying on Homomorphic Encryption (HE), others on Linear Secret Sharing (LSS),

usually deployed when more than two parties are involved.

In the mid 1980's, Yao proposed a �rst approach for addressing two-party SMC

[79]. Yao's construction is based on the design of a Garbled Circuit (GC), that is

a normal Boolean circuit representing the function to be computed securely, but

whose evaluation is performed gate by gate using a protocol to respect inputs pri-

vacy. Indeed the input and output wires of each gate are masked so that the party

evaluating the GC cannot gain any information about the inputs or the intermedi-

ate results that appear during the function evaluation. For each gate, an Oblivious

Transfer (OT) protocol [56] is run between the two parties so that the resulting

output value can be computed without knowing the input value of the other party.

Speci�cally, all the inputs are encrypted and during the evaluation of the output

of each gate the decryption keys are exchanged. The total OT payload increases

linearly with the number of gates, and can be huge for complex GCs. A possi-

ble approach to increase the e�ciency of the GC technique has been proposed by

Kolesnikov et al. [37] in 2008, enabling the evaluation of XOR gates essentially free

communication-wise (i.e., it requires one local XOR operation, and no garbled table

entries to generate or transfer). For this reason, construction of GCs requiring less
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non-XOR gates, achieves the goal of reducing OT payload and therefore reduces the

overall communication cost. The problem then is to design the GC that represents

the function f to be computed and requires the minimum interaction at runtime

between the collaborating parties. In turn, since there are multiple representations

of the same function, or better equivalent Boolean circuits, this means that we try

to select the one that has the minimum number of non-XOR gates, since XOR gates

have no cost for the execution of the secure computation protocol.

The goal of this thesis is to study the possibility of decreasing the computational

and communicational cost of the SMC by reducing the number of non-XOR gates.

This directly results in a decreased runtime interactions between the input owners,

thus improving the overall computation time and e�ciency of the execution of the

SMC.

Applications for two-party secure computation have three properties: (1) the appli-

cation involves inputs from two independent parties; (2) each party wants to keep its

own data secret; and (3) the participants agree to reveal the output of the compu-

tation. That is, the result itself does not imply too much information about either

party's private input.

Secure Multi-party Computation (SMC). Secure Multi-party Computation

(SMC) protocols have been introduced to give two or more parties the capability to

compute a function f of their respective inputs x and y, still keeping their inputs

private, and sharing only the �nal result z = f(x, y). In the last years, SMC was

used as enabling technology for a large number of security- and privacy-critical ap-

plications (e.g., electronic auctions [48], data mining [40], remote diagnostics [14],

medical diagnostics [5], or face recognition [23]).

Yao's Garbled Circuits (GCs) Protocol.Using Garbled Circuits (GCs) pro-

tocol [79], is the �rst approach to solve the SMC problem. Yao's GC construction

introduces a protocol for the evaluation of the input function (f ) represented as a

Boolean Circuit composed of binary gates. The basic idea is that one party \en-

crypts" the circuit (using symmetric keys), the other party obliviously obtains the

15



keys corresponding to both parties' inputs and the GC, and is able to decrypt the

corresponding output. One party constructs the circuit C, and converts it into a

garbled circuit and the garbled circuit is transferred to the other party. Speci�-

cally, the output of each gate in the GC is evaluated by exchanging some encrypted

information between the two parties, so that none of the two parties learns any

information about the inputs of the other party. So, the important note is that just

a �nal output is shared between two parties and each party do not have any infor-

mation about other party's value or any intermediate values during the protocol.

For each gate, an Oblivious Transfer (OT) protocol [56] is run between the two par-

ties so that the resulting output value can be computed without knowing the input

value of the other party. The total OT payload increases linearly with the number

of gates, and can be increased for complex GCs. E�ciency of GC protocol depends

linearly on the size of the Boolean circuit representation of the evaluated function.

Free XOR Protocol. Kolesnikov and Schneider [37] proposed an improvement

that allows XOR gates to incur zero communication with no cryptographic opera-

tions. This cryptographic protocols bring signi�cant bene�t to many SMC settings

and allow to evaluate XOR gates at a substantially lower cost (i.e., in computation

and communication required for creation, transfer and evaluation of the Garbled ta-

bles) than non-XOR gates such as AND gates. The free-XOR technique [37] allows

all XOR gates to be executed by just XOR-ing the input wire labels, without the

need of any encryption operations. Because of this, it is worth investing the e�ort

to minimize the number of non-XOR gates in the construction of Garbled Circuits

with the goal of reducing the communication cost. The main observation of this

protocol is that it is not necessary to select all garblings independently.

Quantum Gates. One of today's most fascinating �elds of research and inno-

vation involves applying quantum phenomena to new technology. The belief is that

these technologies promise to revolutionise society this century through secure com-

munication, precision measurement, and powerful computation. Whereas in classical

circuits the bit is the standard building block for storing information, in quantum

circuits the information is represented by the quantum state of qu-bits. The logical

properties of qubits also di�er signi�cantly from those of classical bits. Bits and
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their manipulation can be described using two constants (0 and 1) and the tools of

boolean algebra. Qubits, on the other hand, must be discussed in terms of vectors,

matrices, and other linear algebraic constructions. In particular, while a bit can

have two states only, 0> or 1>, a qu-bit stores any linear combination c 0> + d

1> of 0> and 1>, where c and d are complex numbers. A quantum logic gate has

the same number of inputs and outputs, and there is a bijective function between

each input and output. Therefore, quantum gates are inherently reversible, meaning

that any gate has a corresponding inverse operation. A quantum library contains a

set of gates that compose a universal set meaning that it is possible to realize any

reversible function using the gates in that library. NOT gate and two-bit Controlled-

NOT (or C-NOT) gate [27] and three-bit Controlled-Controlled-NOT (or CC-NOT

or To�oli) gate [73] are some of the most common gates from NCT quantum library.

Over the last couple of decades, quantum cryptography and quantum gates have

received growing attention. A large number of works in literature deals with quan-

tum key distribution, i.e., the process of using quantum communication to establish

a shared key between two parties (§2.2) [9].

Binary decision diagrams(BDDs).The standard representation form for logic

was the sum of product (SOP) form, i.e., a disjunction (OR) of conjuctions (AND)

made of literals. The advent of very large scale integration, the standard represen-

tation for logic moved from SOP to directed acyclic graphs (DAGs) [13]. A notable

example of DAG where all the nodes realize the same function is binary decision

diagrams (BDDs) [15]. BDDs are canonical and provide very e�cient manipulation

procedures. For this reason, BDDs found application in various areas, such as veri-

�cation, testing, optimization, automated reasoning, etc.[44].

Multiple-Valued Logic (MVL). In the �eld of circuit design, Multiple Valued

Logic (MVL) [10, 46] is a direct generalization of the standard Boolean logic, where

the classical Boolean domain B = f0,1g is replaced by P = f0,1,...,jP j-1g with

jP j>1. For high level design it is natural to think of multiple valued variables,

rather than Boolean ones, with the aim of reducing the number of interconnections

required and circuit cost to implement logic functions [75].
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Problem Statement and Contributions

In this thesis we focus on improve e�ciency of Garble Circuit(GC) protocol in Secure

Multi-party Computation (SMC) with presenting methods for optimization of this

protocol based on reducing number of non-XOR gates, which result in reducing OT

payload and therefore reduce the overall communication cost. The overall research

question we are interested in can be stated as follows: \Given a Boolean function f

represented by a garbled Boolean circuit (GBC) and evaluated on the private inputs

held by two parties, how can we optimize this GBC transformation and how can

we construct the GBC that requires minimum runtime interaction between the input

owners?"

In brief, our contributions are as follows:

� We have put forward the methods for building e�cient Boolean-Circuit for SMC

of functions based on Garbled Circuit (GC) protocols and decreasing the com-

putational cost and improving the overall e�ciency of the execution of the

SMC.

� Using Free-XOR technique that allows XOR gates to be evaluated "for free" in

GC construction, i.e., without relying on corresponding garbled gate. It can

help us to reduce the number of non-XOR gates that result in reduced number

of runtime interactions between the parties and the communication cost.

� Work on di�erent design techniques (i.e., Quantum gates) and di�erent function

representation methods (i.e., BDDs, Multiple-Valued logic). Using Quantum

gates can reduce the gate complexity and helps us to design quantum garbled

circuit (Q-GC) equivalent to the original Boolean circuit, which can result

in increasing the number of XOR gates, and decreasing the number of non-

XOR gates, thus requiring less interaction. Moreover, using Binary Decision

Diagrams (BDDs) method to identify non-XOR gates that could be replaced by

XORs without altering the output of the circuit. This method can also result

in reducing the number of operations, reducing the communication costs and

circuit cost. In addition, we follow the idea of garbled circuit protocol from

Boolean logic to the Multiple Valued Logic (MVL) setting to obtain more

compact circuit descriptions.
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In particular we have studied our methods (Quantum Garbled Circuit, BDDs, MV)

for standard functionalities such as the Millionaires' Problem, which is the problem

of determining which party has the greatest input, and for the adder, that is the

computation of the sum of the private inputs. In all cases we try to show the im-

provements achieved in terms of reduced communication time.

The rest of this dissertation is organized as follows:

Secure Multi-party Computation (SMC) (§1).

Starts with a detailed introduction of two-party secure multi-party computation

(SMC) with special focus on Garbled circuit (GC) protocol as a solution to solve

the problem of SMC and free-XOR technique for improving e�ciency of GC. Be-

sides introducing compiling tools for implementing two-party secure computation

and making it as a practical applications.

Introduction to Quantum Gates (§2).

Gives more detailed introduction to quantum logic concepts and simulation tool for

synthesis, implementing and testing of quantum circuits.

Boolean Function Representation (§3).

Reviews concepts of Boolean Function Representation as Binary Decision Diagrams

(BDDs) and gives basic information on Multiple-Valued Logic (MVL) respectively.

Secure Multi-Party Computation Exploiting Quantum Gates (§4).

Presents Garbling of Boolean function and quantum implementation of Garbled

Boolean function. We show how to improve e�ciency of SMC by using quantum

gates instead of traditional gates in Garbled Boolean circuit construction. It also

presents one of our proposed methods (Q-GBC) for improving e�ciency of Garbled

Boolean Circuits.

BDDs for Secure Multi-Party Computation (§5).

Provides our proposed optimization technique in GC protocol using BDDs.
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MV for Secure Multi-Party Computation (§6).

proposes multiple valued GC protocol and the extension of the optimization tech-

nique for the evaluation of multiple valued gates.

Conclusions (§7).

Summarizes the contributions of our thesis and states �nal conclusions with direc-

tions for future work in all of our proposed techniques, Q-GBC, using BDDs and

Multi-valued Logics for improving e�ciency of SMC.

List of Related Publications:
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COMPSAC Conference, Building Digital Autonomy for a Sustainable World, Po-
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\Exploiting Quantum Gates in Secure Computation", Maryam Ehsanpour, Stelvio

Cimato, Valentina Ciriani, Ernesto Damiani, Euromicro Conference on Digital Sys-

tem Design, (DSD), 30 August - 1 September 2017, Vienna, Austria.

\A Multiple Valued Logic Approach for the Synthesis of Garbled Circuits", Stelvio

Cimato, Valentina Ciriani, Ernesto Damiani, Maryam Ehsanpour, 25th IFIP/IEEE

International Conference on Very Large Scale Integration (VLSI-SoC), 23 October-

25 October 2017, Yas Viceroy, Yas Island, Abu Dhabi.
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Chapter 1

Secure Multi-party Computation

(SMC)

This chapter introduces Secure Multi-party Computation and Two-Party Secure

Computation. The most e�cient solution to solve the problem of SMC (Garbled

Circuits Protocol) in the two-and multi-party setting is explained in §1.2, and op-

timization of GCs protocol has been introduced in §1.3. Finally, compiling tools

for implementation of Two-Party SMC protocols are introduced in §1.4, and related

work are described in §1.5.

1.1 Notations and De�nitions

Due to the tremendous growth of the huge amount of computers and distributed

working environments, protocols are required for protecting the privacy of users and

reliability of results. This problem is known as secure multi-party computation,

which is a special case of a long-studied problem in cryptography.

in Secure Multi-party Computation (SMC) the parties P1, P2, . . . , Pk with inputs

of x1, x2,. . . , xk want to compute some common function f (x1, x2,. . . , xk ) such that

a party Pi can know only its own input xi and the value of the function f. The aim

of SMC protocol is to enable parties to compute a function f in a secure manner

where keeping their inputs private, and sharing only the �nal result.

SMC problem provides a general solution to execute any computation in combi-
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national circuits [78, 79]. It can have high communication cost as the complexity of

the computation grows.

The design of e�cient SMC protocols is considered for a variety of security-critical

applications with sophisticated privacy and security requirements such as electronic

voting, electronic auctions [48], electronic cash schemes, data mining [40], remote

diagnostics [14], classi�cation of medical data [5], or face recognition [23, 50, 60]. In

addition the technology of secure multi-party computation has gain much interest

recently in research community, governments and industry as a potential tool for

their need.

1.1.1 Protocol Parties

Secure computation protocols have been introduced to provide two or more interact-

ing parties with the capability of computing a function f of their respective inputs x

and y, while keeping their inputs private. The protocol involves two players or par-

ticipants, Alice and Bob, who want to evaluate and compute the function f together

on that private data while keeping their inputs secret.

1.1.2 Security in Multi-party Computation

Security of input data is of prime importance for multi-party computation. protocol

execution can be come under "attack" by an adversaries. The aim of this attack

may be to learn private information or cause incorrect result of the computation.

In order to prove that a protocol is secure and can endure any adversarial attack, a

number of di�erent de�nitions have been considered that ensure important security

properties. The must central of these properties for multi-party computation are

de�ned below:

� Privacy: Nothing should be learned more than what is necessary. Parties should

learn their output and nothing else. What can be derived from the output

itself, is the only information that should be learned about other parties' input.

For example, the privacy requirement for an election protocol ensures that

no parties should learn anything about the individual votes of other parties.

Likewise, the privacy requirement for an auction protocol ensures that only
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the winning suggestion is revealed and clearly possible to �nd that all other

suggestions were lower than the winner's o�er.

� Correctness: Parties are ensured that they can receive the correct output and

trusted party can not be corrupted. For example, the correctness requirement

for an auction protocol ensures that the party with the highest suggestion in

guaranteed to win.

� Guaranteed Output Delivery: Adversary should not be able to prevent honest

parties from receiving their output.

� Fairness: Adversaries or (corrupted parties) should receive their outputs if and

only if the honest parties also can receive their outputs.

Security for Multi-party Computation (MPC) can be de�ned an "ideal-real-world"

consisting of both "ideal world" model and "real world" model. In the "ideal world"

model, players give their inputs to a incorruptible trusted party that computes the

function on its own and sends back the result to each party. Notice that in this

ideal computation, all of the above security properties hold. In contrast, in the "real

world" model there is no trusted party, and the parties can only exchange messages

between all the parties. So, security in MPC protocol means that adversaries can

perform in the "real world" protocol and also do in the "ideal" setting.

1.1.3 Secure Two-party Computation

Secure Two-party Computation allows two parties to compute correctly a function f

on their respective inputs x and y, while preserving the privacy of their inputs and

additional security properties and sharing only the �nal results. The most important

of these properties are privacy meaning that the parties learn the output f(x,y) but

nothing else, correctness, meaning that the output received is indeed f(x,y) and not

something else, and independence of inputs, meaning that neither party can choose

its input as a function of the other party's.

1.1.4 Comparison (Millionaires Problem)

The \Millionaires Problem" was introduced by Yao in [78] as motivation for secure

computation: two millionaires want to securely compare their respective private
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Figure 1.1: Data ow in VPP with �ve layer structure consisting of party layer,

virtual party layer, trusted anonymizer layer, untrusted anonymizer layer and com-

putation layer from starting to end respectively [52].

input values without revealing more information than the outcome of the comparison

to the other party (e.g., about their amount of money, in which two parties are

millionaires and two millionaires want to know who is richer without letting each

other know about the amount of money they have). Yao's Garbled Circuit (GC)

protocol (cf. §1.2) is the most e�cient solution to solve the Millionaires problem.

1.1.5 Secure Multi-party Computation Using Virtual Party

Virtual Party Protocol (VPP) can be used to ensure the privacy preserving the data

input by not revealing the right data. In this protocol some fake data and some vir-

tual party are created. There are n parties P1,P2,P3...,Pn. Each party Pi has data

Xi1,Xi2,Xi3...,Xim. Each party Pi has some trusted anonymizers Ai1,Ai2,Ai3...,AiX
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and Z number of un-trusted anonymizers A1,A2,A3...,AZ. Each party Pi will create

some fake data Fi1,Fi2,Fi3...,Fiq, where q is the total number of fake data entries.

Each Party Pi will also create K virtual parties Pi1,Pi2,Pi3...,PiK. Then the value

of each data Di1,Di2,Di3...,Di(m+q) is encrypted and distributed randomly among the

virtual parties. Corresponding modi�er tokens for every Pi is also created that are

mixed with fake data. These modi�er tokens are distributed randomly among the

virtual parties that will be used in the �nal computation to obtain the correct re-

sult. These parties will send their data to trusted anonymizers. Trusted anonymizers

distribute their data randomly among the un-trusted anonymizers and the data of

un-trusted anonymizers is sent to third party. Third party will use the data and the

modi�er tokens to compute the result.

The whole scenario of encryption, modi�er tokens, encrypted data and the method

of computation can be seen in Figure 1.1.

1.1.6 Secure Multi-party Computation Using Secure Sum

Protocol

In Secure Sum Computation Protocol proposed by Clifon et al. [65] all the parties

want to know the sum of their individual data inputs. In this protocol parties put

in a unidirectional ring and one of these parties is selected as a protocol initiator

party. Probability of data leakage is reduced to zero by changing the positions of the

parties in the ring. Randomization method is used in this protocol for computing

the sum as described below:

The computation will be started by choosing a random number and add its own

data input. The sum is then transmitted to the next party. The next party adds

the received sum to own data and then sends this new sum to the next party. This

procedure is repeated until the protocol initiator receives the sum of all the data and

the random number. The random number is known only to the protocol initiator

party, Thus it subtracts the random number from the sum and allows all the parties

to know the result.
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Figure 1.2: Secure Sum Protocol [65].

All scenario of this protocol are depicted in Figure 1.2 where parties where parties

P0, P1, P2 and P3 with their data 10,8,7 and 15 perform secure sum computation.

Initiator party P0 selects a random number R=5 and sends to P1 the sum of this

random number and its private data (10). Also the new sum 23 can be resulted by

adding the data of P1 (8) and previous sum (15). This process is repeated until the

sum 45 is received by P0. P0 can subtract random number from 45 and send the

�nal sum as 40 to all the parties.

1.1.7 Secure Multi-party Computation Using Secret Shar-

ing Schemes

Where participation of president and his highest ranking is required to unlock the

trigger for the nuclear missile, we call this secret sharing in cryptography.

Secret sharing is used as one of the secure protocols for solving the multi-party
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computation problem. This protocol involves a set of n parties fP1,... Png, a dealer

who has a secret, and a collection of subsets of parties called the access structure.

A secret is divided into n shares, and they are privately given to n parties. An

access structure is a monotone collection A � 2fP1;:::Png of subset of fP1,... Png.

A collection A is monotone if B2A and B� C imply that C2A. Sets in A are

called authorized subsets and sets not in A are called unauthorized subsets. Access

structure is a method of sharing a secret S among a set of K participants (parties)

P in such a way that the following two properties are satis�ed:

� If an authorized subset of parties pool their shares, then they can determine the

value of S.

� If an authorized subset of parties pool their shares, then they can determine

nothing about the value of S.

1.2 Yao's Garbled Circuit Protocol

In the mid 1980's, Yao proposed a �rst approach for addressing two-party Secure

Computation [78, 79]. Yao's garbled circuit is a way to "encrypt a computation" that

reveals only the output of the computation, but reveals nothing about the inputs or

any intermediate values. In this section we introduce some standard notation and

concepts corresponding to Garbled Circuit protocol (§1.2.1) and then Yao's garbled

circuit protocol is explained in several steps (§1.2.2).

1.2.1 Basic Concepts and De�nitions

In this section we introduce common de�nitions, function to circuit, Boolean Circuit,

Bit-String, Garbled Values and Oblivious Transfer Protocol used in this thesis.

Function to Circuit

According to Goldreich et al. in [31] it is possible to map any poly-time func-

tion f with �xed size input to a Boolean circuit C consisting of digital gates

(AND,OR,NOT,..) that returns the same result.
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Boolean Circuits

Boolean circuits are classical and standard representations for functions which are

particularly useful for SMC. A Boolean circuit consists of n-input gates Gn and wires

that performs a mapping from n input bits to one output bit, i.e.,

Gn : (in1; :::; inn) 2 f0; 1g
n ! f0; 1g:

Boolean circuit is an acyclic (i.e., loop-free or feed-forward) graph used as a math-

ematical model of digital logic circuits, de�ned in terms of the logic gates.

Every gate that is used in Boolean circuit construction creates a cost. Thus, if we

reduce the number of gates, we can reduce the cost involved in it. Generic gates are

AND, OR, NOT, XNOR, XOR.

Bit-Strings

Bit string is a sequence of bits, which de�nes and represents sets of binary data that

are numbered from zero to the number of bits in the string less one. The length of

a bit string is also de�ned as the number of bits that it contains. f0, 1gl de�ned the

space of binary strings of length l. A bit string can also contain zero or more bits.

Garbled Values

Computations in a GC are not performed on obvious values 0 or 1, but on random

bit strings, called garbled values. In construction of the GC, two random bit strings

(garbled values) k0x, k
1
x are assigned to each wire xi of C. Two random bit strings,

which are assigned to the corresponding value 0 and 1, do not disclose to them as

they are chosen randomly.

1-out-of-2 Oblivious Transfer Protocol (OT)

A foundation building block for almost all e�cient protocols of secure computation

is 1-out-of-2 Oblivious Transfer (OT) protocol [56, 25] that consists of two phases:

the Transferring phase and the opening phase. Oblivious Transfer protocol works

between two parties, a Sender (Alice) and a receiver (Bob). This protocol is called

1-out-of-2 since the receiver learns one of the 2 inputs of the sender and forget any

information.
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Figure 1.3: The Oblivious Transfer Protocol.

In the transferring phase, the goal of the sender (Alice) is to send a message (in

general, a bit-string) to another party (Bob) in such a way that he can decide to

obtain one of the 2 inputs of the sender at his choice but not both. In the opening

phase, the goal of the receiver (Bob) is to open the message, but the sender never

�nds which message Bob received.

As you can see in Figure 1.3, a sender (Alice) has two messages (x0,x1). She sends a

one-bit message to another party (Bob) in such a way that he can decide to obtain

one of the two messages according to his choosing bit (r). The result is that the

receiver learn xr without learning anything about sender's bit while the sender learn

nothing about r. Alice never �nds out which message Bob received and remain

totally ignorant about which of the two messages he received.

1.2.2 Description of Yao's Garbled Circuit Protocol

Yao's GC construction, often called Garbled Boolean Circuit (GBC) introduces a

protocol for the evaluation of the input function (f ) represented as a Boolean Circuit

and is based on the encryption of the input and intermediate values, so that only

the �nal result is shared among the parties.

Yao's Garbled Circuit construction is composed of two phases: Garbling and Evalu-

ation, which are distinctly executed by the two parties. During the Garbling phase,

Alice converts a circuit into a garbled circuit, while Bob performs the Evaluation

phase taking in input the garbled circuit, executing some interactions with Alice,

and �nally computing the output value.
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If we want to be a little more precise, a "garbling scheme" consists of the following

steps:

� Alice generates a circuit representation C of function f.

� Alice transforms the circuit to a garbled Circuit representation by garbling every

gate.

� Alice sends Garbled Circuit and her key to Bob.

� Alice and Bob perform 1-out-of-2 OTs to receive Bob's key.

� Bob evaluates the Garbled Circuit and outputs the results.

1.2.2.1 Generate Garbled Boolean Circuit

To generate the garbled Boolean circuit Alice selects and associates k-bit-string

random keys to each input and output wire and for each possible value. She generates

the random keys k0x, k
1
x for input wire x and k

0
y, k

1
y for input wire y and k

0
z, k

1
z for

output wire z. She puts these random keys for each wire and make \Garbled Boolean

Circuit". In this encrypt circuit, inputs and outputs of each gates are masked such

that the parties cannot gain any information about input or intermediate result.

This process is repeated for each gate composing the Boolean circuit. Encryption

is important because it helps the outputs to look random and additionally prevents

Bob from obtaining further information.

1.2.2.2 Generate Garbled Truth Table

Alice also encrypts the truth table of the gate using those random keys and sends the

garbled truth table to Bob. She should cooperate with Bob to know about actual

output. An initial table for an XOR gate and resulting garbled truth table is shown

below in Figure 1.4 and Table 1.1.

1.2.2.3 Sending Alice's Garbled Values

Once that Alice has generated the garbled circuit she needs to de�ne her own input

values to send to Bob, then Alice selects the appropriate input keys for the garbled
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Figure 1.4: XOR gate with its corresponding wire keys.

Table 1.1: Initial garbled circuit table for XOR gate
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circuit GC. Alice sends to Bob all the keys corresponding to the values she owns for

each gate. Following the previous example, if Alice's �rst input bit is 0, she needs

to send the garbled representation k0x. This process is repeated for all Alice's input

bits, generating Alice's garbled input values and sending them together with the

garbled circuit GC to Bob.

1.2.2.4 Using OT for Bob's Input Values

Now Bob needs the keys corresponding to his input value. Alice knows the keys

for each possible input value but she does not know Bob's choice of input values,

therefore they engage in a 1-out-of-2 Oblivious Transfer (OT) protocol for each in-

put value from Bob to decrypt the corresponding entries in the garbled truth table.

Thus, Bob and Alice execute an OT once per each input wire. After performing

OT as many times as needed, Bob ends with all the information that he needs to

evaluate the circuit.

As mentioned before, the Oblivious Transfer protocol in Yao's construction, is ex-

ploited to transfer information between the two parties when evaluating the GBC.

Speci�cally, all the inputs are encrypted and during the evaluation the output of

each gate the decryption keys are exchanged, so that none of the two parties learns

any information about the inputs of the other party. For each gate, an Oblivious

Transfer (OT) protocol is run between the two parties so that the resulting output

value can be computed without knowing the input value of the other party.

To see how \1-out-of-2" OT is used to compute the GC, let consider W1, .., Wu1

be the circuit input wires corresponding to input held by Alice, and let Wu1+1 , ..,

Wu1+u2 be the circuit input wires corresponding to input held by Bob. Then:

(a) Alice sends to Bob the garbled values W1
x1 , .., Wu1

xu1 .

(b)For every

i 2 1; ::; u2

Alice and Bob execute the 1-out-of-2 OT protocol, where Alice's input is (k0
u1+i ,

k1
u1+i ), and Bob's input is yi. Bob now has the garbled tables and the garblings of

all circuit's input wires. Bob evaluates the garbled circuit, and outputs f(x, y).
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1.2.2.5 Evaluating the Garbled Circuit

Finally, Bob will determine the corresponding output key that he can share to Alice

to �nd out what the actual outputs were. The important note is that Bob can

share just a �nal output with Alice and she does not have any information about

Bob's value or any intermediate values during the protocol, and Bob doesn't know

the input values of Alice and the intermediate values of the computation, which are

randomly chosen values.

1.3 E�cient GC-based Secure Multi-Party Com-

putation (SMC)

The total Oblivious Transfer (OT) payload and GC protocol runtime increases lin-

early with the number of gates, and can be huge for complex GBCs. Accordingly,

the e�cient GC-based Secure Multi-Party Computation (SMC) protocol is of crucial

importance. We will introduce Free XORs method for improving Garbled Circuit

e�ciency in §1.3.1.

1.3.1 Free-XOR Protocol

An optimization of the basic GC construction has been proposed by Kolesnikov et

al.[37]. In the modi�ed protocol the evaluation of XOR gates comes \for free", in

the sense that they do not require any communication for the generation and the

evaluation of the associated garbled table.

The basic idea for the circuit generator is to keep a global random bit string R such

that for every wire only the labelW0 (representing 0) needs to be randomly sampled

while the label W1 (representing 1) is simply set to W0 � R for every binary XOR

gate (with input wires subscripted with i, j and the output wire with k), the label

representing 0 on the output wire is derived from xor-ing corresponding input labels,

i.e.,

Wk
0 =Wi

0 �Wj
0.

The implementation of the XOR gate, we will follow step-by-step Kolesnikov's im-

provement [KS08] which works as follows.
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1.3.1.1.Garbling

In the �rst step, Alice computes the garbled Boolean circuit (GBC) as follows:

1.a Randomly choose global key o�set,

R 2 Rf0; 1g
N

1.b For each input wire Wi of C:

(a) Randomly choose a garbled value

w0
i = <k0i; p

0
i> 2 f0; 1gN+1 (keyk 2 f0; 1gN; p 2 f0; 1g)

(b) Set the other garbled output value

w1
i = <k1i; p

1
i> = k01 �R; p0i � 1

1.c For each gate Gi of C in topological order

(a) label G(i) with its index: label (Gi) = i

(b) If Gi is an XOR-gate Wc = XOR(Wa, Wb) with garbled input values

w0
a = <k0a; p

0
a>

w0
b = <k0b; p

0
b>

w1
a = <k1a; p

1
a>

w1
b = <k1b; p

1
b>

Set garbled output value

w0
c = k0a � k0b; pa � pb

Set garbled output value w1
c = k0a � k0b � R; pa � pb � 1

(c) If Gi is a 2-input gate Wc = gi(Wa, Wb) with garbled input values

w0
a = <k0a; p

0
a>

w0
b = <k0b; p

0
b>

w1
a = <k1a; p

1
a>

w1
b = <k1b; p

1
b>

34



Randomly choose garbled output value

w0
c = <k0c; p

0
c> 2 Rf0; 1g

N+1

Set garbled output value

w1
c = <k1c; p

1
c> = k0c �R; p0c � 1

Create Gi's garbled table. For each of 22 possible combinations of Gi's input values

va; vb 2 f0; 1g; set

eva,vb= H (kvaa k k
vb
b k i)� Wgi(va,vb)

Sort entries e in the table by the input pointers, i.e. place entry eva,vb in position

<hp va
a , pvab >

1.d.For each circuit-output wire Wi(the output of gate Gj ) with garblings

w0
i = <k0i , p

0
i >, w

1
i = <k1i , p

1
i >:

(a) Create garbled output table for both possible wire values

v 2 f0; 1g:

(b) Set ev= H (ki
v k "out" k j)� v

(c) Sort entries e in the table by the input pointers, i.e.

place entry ev in position pvi. There is no conict, since

p1i = p0i � 1:

In this �rst phase, Alice executes Kolesnikov's algorithm and uses the output of H,

modeled as a Random Oracle [6], to encrypt the garbled output values in the garbled

(Step 1.d(b)). Any combination of H's inputs (keys and gate indices) is used for the

encryption of at most one table entry.

Alice sends the encrypted circuit to the other party, the garbled circuit evaluator

(henceforth called Bob). When Bob receives the garbled circuit he only knows one

garbled value per wire, and can decrypt exactly one entry of Gi's garbled table. All

other entries are encrypted with at least one key that Bob does not have. Therefore,

one of the two of garbled values of every wire looks random to him.
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1.3.1.2. Evaluating

We now discuss Kolesnikov's GC evaluation algorithm, run by Bob. Bob receives

all garbled tables, but cannot execute the randomized circuit unless it has the input

values to feed to it. Alice sends her inputs to Bob through the Oblivious Transfer

protocol (OT)

1.4 Compiling Tools for Implementation of Two-

Party Secure Computation Protocols

While the theoretical foundations of two-party Secure Computation have been con-

sidered in [78], interest in practical SMC systems is growing and di�erent privacy-

preserving frameworks are being developed [63], [64]. So, recent implementation's

tool show that SFE is ready to be used in practical applications. To make SMC

usable by automatically generating protocols from high-level descriptions, several

frameworks for SMC consisting of languages and corresponding tools have been

developed in the last years. We review some of these tools, Fairplay (§1.4.1) and

CBFS-MPC (§1.4.2) that are used in our thesis and SCAPI (§1.4.3), TASTY (§1.4.4)

and ABY (§1.4.5).

1.4.1 FAIRPLAY

A number of well-established frameworks have been presented to translate the the-

oretical results of SMC protocol into practical applications. Fairplay1 [43] was one

of the �rst library published for synthesizing GC starting from the de�nition of

the input function. It provides a method to compile given function in a high-level

language into a low-level language as a circuit. Indeed, the framework includes a

high-level Secure Function De�nition Language (SFDL) for specifying the computed

function. The de�nition is then compiled into a low-level description in form of a

Boolean Circuit. The language used for describing the Boolean Circuit is called

Secure Hardware De�nition Language (SHDL). The corresponding Garbled Circuit

(GC) is created from the Boolean Circuit and a garbled version of the input data is

generated from the original input.

1http://www.cs.huji.ac.il/project/Fairplay/
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1.4.1.1 Fairplay Syntax using Example

Let us consider as a simple example the SFDL description of a 2-bit Adder:

program Add f

typeint = Int 2;

typeAliceInput = int;

typeBobInput = int;

typeAliceOutput = int;

typeBobOutput = int;

type Output = struct AliceOutputalice, BobOutput bob;

type Input = struct AliceInputalice, BobInput bob;

function Output output(Input input) f

output.alice = (input.bob + input.alice);

output.bob = (input.bob + input.alice);g

g

The compiler, having in input the SFDL program produces the following circuit

in SHDL format:

0 input //output$input.bob$0

1 input //output$input.bob$1

2 input //output$input.alice$0

3 input //output$input.alice$1

4 gate arity 2 table [0 0 0 1] inputs [2 0]

5 output gate arity 2 table [0 1 1 0] inputs [2 0] //output$output.alice$0

6 gate arity 2 table [0 1 1 0] inputs [3 1]

7 output gate arity 2 table [0 1 1 0] inputs [4 6] /output$output.alice$1

8 output gate arity 1 table [0 1] inputs [5] //output$output.bob$0

9 output gate arity 1 table [0 1] inputs [7] //output$output.bob$1

Each line speci�es a wire in the generated circuit and shows input bit or a Boolean

gate with its truth-table, e.g. table [0 1 1 0] shows XOR gate, table [0 0 0 1] shows

AND gate, table [0 1] shows NOT gate.
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1.4.2 CBFS-MPC

Circuits of Basic Functions Suitable for Multi-Party Computation (CBFS-MPC)2is

a tool developed by the Bristol cryptography group. This tool is a set of basic

combinatorial circuits, which may be useful for testing binary-circuit based SMC and

two-party computation. They use Cadence Encounter RTL3 compiler in conjunction

with the Faraday FSA0A C 0.18 mm ASIC Standard Cell Library4 for synthesis.

The resulting circuit reports the number of AND, XOR and INV gates for each

circuit design in a given format, where each line contains in order the number of

input wires, number of output wires, list of input wires and list of output wires, and

the gate type ( XOR, AND, or INV). For example, 2 1 3 4 5 XOR means that w5

= XOR (w3,w4).

1.4.3 SCAPI

Secure Computation API (SCAPI)5 [21] is an open-source Java library (also has a

c++ version) for implementing secure two-party and multiparty computation proto-

cols. The main advantages of this framework are exibility, extendibility, e�ciency

and ease of use. Its exibility means that protocols implemented using SCAPI can

be easily changed and replaced because of using primitives and sub-protocols in an

abstract way. Extendibility means that the design of SCAPI ensure that any new

implementations of primitives and sub-protocols that are even more e�cient can be

utilized in all existing protocols even if they were previously implemented. SCAPI

can achieve also e�cient property by supporting of highly e�cient low-level libraries

using JNI. Finally, because of focusing on keeping SCAPI easy to build and use, it

has property of "ease of use".

Libscapi is developed by Bar Ilan University Cryptography Research Group that

try to promote investigate in Academy and Industry practitioners by providing e.g.,

high performance implementation on standard Linux and using modern techniques

like Pipelining and TCP optimization and providing a common platform for bench-

2https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
3https://www.cadence.com/content/cadence/
4http://freelibrary.faraday-tech.com
5https://github.com/cryptobiu/libscapi
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marking di�erent algorithms and implementation.

1.4.4 TASTY

Tool for Automating Secure Two-partY computations (TASTY) [32] is used for de-

scribing, generating and compiling e�cient secure two-party computation protocols

that can generate protocols based on Homomorphic Encryption (HE) [71] and Gar-

bled Circuit (GC) as well as combinations of both. HE can perform e�cient addition

and multiplication functions, whereas GC is better for non-linear functionality such

as comparison function. By combining both HE and GC, it can provide optimiza-

tions for practical secure two-party computation with low latency and allows to

automatically generate e�cient secure protocols for many privacy-preserving appli-

cations, e.g., face recognition and remote diagnostics.

1.4.5 ABY

ABY6 is a framework for e�cient mixed-protocol secure two-party computation

based on Arithmetic sharing, Boolean sharing, and Yao's garbled circuits. It can

also provide highly e�cient computation based on pre-computed oblivious transfer

extensions7 and combine protocols.

1.5 Related Work.

Several approaches have been considered in the last few years [55, 33, 41, 69, 38],

for improving communication running time in two-party secure computation using

garbled circuit (GC) protocol.

The proposed approach in 2009 by Benny Pinkas and Thomas Schneider [55], presents

a number of optimisations which reduce the e�ective size of the circuit and size of

the garbled table (GT) by 50 percent, which can result in improving the commu-

nication cost for transmitting the circuit between the parties. They modeled the

underlying key derivations (KDFs) as correlation robust using the Free-XOR tech-

nique [37] (§1.3.1), which in this situation they are able to reduce the data needed

6https://github.com/encryptogroup/ABY
7https://github.com/encryptogroup/OTExtension
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to be sent for the other gates by 25 percent. Indeed, using the free-XOR gates

result in 3=4(1-p)N amount of data needed to be sent per circuit gate, where N

denotes the amount of data needed to be sent for circuit in the Yao construction

and P illustrates the proportion of XOR gates within a circuit. This approach pro-

vided the �rst secure two-party evaluation of the Advanced Encryption Standard

(AES) circuit using Fairplay compiler [43] (§1.4.1), considered as a highly complex

(around 30,000 AND and XOR gates) function (also with some potential applica-

tions), taking around 20 minutes to compute and requiring 160 circuits to obtain a

2�40 cheating probability.

Another method with the aim of improving e�ciency and scalability of garbled

circuit was proposed in 2011 [33] that provides a exible framework for faster secure

two-party computation. In this approach, it is not necessary to generate and store

the entire garbled circuit in memory and allows users to build and evaluate the cir-

cuit modularly. Therefore, very complex circuits can be evaluated, generated and

debugged. Also, they could get improve in e�ciency and scalability by pipelining

the process of circuit generation and evaluation. Thus, this simple pipelining ap-

proach result in minimizing circuit size and scalability of the garbled circuit, has led

to the development of several complex protocols that make evaluation faster than

previous work. E.g., the total number of non-free XOR gates for the entire AES-128

computation was 9280 and the overall time was 0.2 seconds that was 16 times faster

than the best previous results.

In 2012, Kreuter et al.[38] focused on parallel implementations design based on

garbled circuits to be run on CPUs with many cores. Their proposed circuit con-

sisting of about 6 billion gates; and they could implement running this on 512 cores

of powerful cluster computer. They used better optimized circuit compiler than

Fairplay and previous method [55]; with several new optimizations such as pipelin-

ing, which was suitable for more complicated circuits to reduce the computation

time. The time to compute AES was reduced to 1.4 second per block, because of

beginning transmission of the GC across the network, while the rest of the circuit is

still being generated.
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Another research group in 2013 investigated on using consumer-grade Graphics pro-

cessing unit (GPUs) to achieve similar levels of parallelism [28]. They used OT

extension techniques [34, 3] to design their GPU-speci�c protocol and achieve com-

parable e�ciency to the cluster computing implementation, which results in reducing

the number of gates in implementation of the AES to 50,000.

The TinyGarble method is another method, introduced by Ebrahim M.Songhori

and Ahmad-Reza Sadeghi et al.[69] in 2015. TinyGarble8 illustrates a high degree

of compactness and scalability while using a sequential circuit description for garbled

circuit (GC) protocol. It can compress the memory footprint of garbling operation

while resulting in fewer cache misses and less CPU cycles. TinyGarble introduced

new techniques based on a sequential circuit for synthesizing and optimizing of gar-

bled circuit (GC) protocol, which result in minimizing the number of non-XOR gates

and improving computation and communication time. The most signi�cant advan-

tage of TinyGarble is describing the function in a compact format as a sequential

logic instead of combinational format (i.e., user can compress the 1024-bit addition

function into only a 1-bit adder).Also, the total number of gates using this method

for the entire AES-128 computation was 2588 and number of non-XOR gates was

576, which is the best result until now. We can say that TinyGarble introduces the

concept of sequential circuits that consist of circuits and loops, where at execution

time the loops are unrolled resulting in a combinational circuit that is evaluated

with Yao's garbled circuit protocol.

8https://github.com/esonghori/TinyGarble
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Chapter 2

Introduction to Quantum Gates

\When we get to the very, very small world (say circuits of seven atoms) we have a

lot of new things that would happen that represent completely new opportunities for

design. Atoms on a small scale behave like nothing on a large scale, for they satisfy

the laws of quantum mechanics. So, as we go down and �ddle around with the atoms

down there, we are working with di�erent laws, and we can expect to do di�erent

things. We can manufacture in di�erent ways. We can use, not just circuits, but

some system involving the quantized energy levels, or the interactions of quantized

spins." { Richard P. Feynman

This chapter consists of four sections. In the �rst section, we will discuss about

some of the key aspects of quantum mechanics needed for quantum computation

(§2.1). This section introduces the basic de�nitions and notations of quantum me-

chanics and their characteristics like quantum states and quantum bit (see §2.1.1

and §2.1.2). We will also give some feeling about mathematical formalisms needed to

work with quantum computation. Quantum key distribution will be describe in §2.2

and section §2.3 gives the background on reversible and quantum circuits required

for this dissertation. Following these sections, we have explained the simulation tool

for the design of the quantum circuit in §2.4.

2.1 Quantum Mechanics

This section discusses how quantum mechanics can be used to perform computa-

tions and how these computations make a quantum computer di�erent from a con-
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ventional computer. For more information about quantum mechanics, see [13, 23].

In the early 1980's [26], Richard Feynman observed that computation, in general,

could be done more e�ciently if we use quantum mechanical e�ects. Considering

on basic principles of quantum mechanics help us to explain where the power of

quantum computer comes from.

In quantum systems, because of the exponential increase in computational space

and the number of processors, and hence an exponential increase in the amount of

physical space needed, we can have an exponential decrease in the time required

for computation, programming, and complexity. Therefore, in quantum systems,

we can have an exponential increase in parallelism with the size of the system [16].

According to this characteristic, quantum computing is separated from conventional

computing.

2.1.1 Quantum State

In quantum computing, Information is encoded in the form of quantum states that

are described in terms of vectors or in the more compact bra/ket notation ji invented

by Dirac [17].

2.1.2 Quantum Bit (Qubit)

In classical computing, bit is the basic element used to store information, which can

be in one of the two states of 0 or 1. In quantum computing, this basic element is

called a quantum bit (qubit). Qubit is denoted by Dirac notation, which is a unit

vector in a two-dimensional complex vector space that indicated by fj0i,j1ig. j0i

and j1i could correspond to the spin-up and spin-down states of an electron. In

contrast to a classical bit, a qubit is able to be in two quantum states containing 0,

1 at the same time (often called superposition). The quantum state of a qubit as a

superposition of the two quantum basis states j0i and j1i is shown in Equation 2.1.

j i = � j0i + � j1i (2.1)

� and � are complex numbers such that j�j2 + j�j2 = 1. Superposition state is

measured according to the basic f j0i,j1ig. The value j0i is measured with a prob-

ability of j�j2 and the result j1i is obtained with a probability of j�j2. As shown

43



Figure 2.1: The qubit state as a Bloch sphere presentation [62].

in Equation 2.2, each unit vector illustrates the state of qubit in a two-dimensional

complex vector space [49, 62].

j i =

0
@ �

�

1
A , j0i =

0
@ 1

0

1
A , j1i =

0
@ 0

1

1
A (2.2)

The state of a quantum bit (qubit) can also be a point on the surface of a sphere

called Bloch sphere [49] as shown in Figure 2.1 and can also be written as shown in

Equation 2.3.

j i = cos �
2
j0i + ei'sin �

2
j1i (2.3)

2.1.3 Quantum Key Distribution

In 1984, Bennet and Brassard [9, 8] considered the �rst quantum key distribution

process, in which private keys on insecure channels can be transferred by sequences

of single qubits.

Supposing that Alice and Bob want to agree on a secret key and communicate

with each other privately. So, they are connected by the open classical channel and

a uni-directional quantum channel that can be accessible by Eve, who wants to listen

to their conversation. The process is illustrated Figure 2.2.
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Figure 2.2: Quantum key distribution process [58].

Alice, through the quantum channel, sends photons to Bob, who can measure the

quantum state. Eve also tries to measure the state of these photons and resend them

to Bob. To establish a secret key, Alice sends a sequence of bits to Bob and encodes

each bit in the quantum state of a photon that can be measured by Bob. Alice and

Bob can identify those bits, which they have agreed for sending, receiving and using

these bits as the key. The listener (Eve) can measure the state of this transmitted

photon and resend new photons to Bob. Thus, Eve can use the wrong basis and

resend the bit with this wrong basis. So, any listener on the quantum channel can

use it for introducing a high error rate that Alice and Bob could detect by commu-

nicating their keys through the channel. Other proposed techniques for considering

the quantum e�ects for key distribution have been introduced in [8, 22, 42].

2.2 Quantum Logic

One import fact is that quantum transformations are unitary and quantum gates

inherently reversible. So, In this section at �rst, we have discussed about the re-

versibility property in designing quantum logics and quantum circuits. Finally, some
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common quantum(reversible) gates that are used in this thesis are introduced.

2.2.1 Reversible Computing

In 1973 Bennet [7] showed that energy dissipation problem of VLSI circuits can be

circumvented by using reversible logic.

Quantum logic gates are inherently reversible and quantum circuits are built based

on reversible logic circuits. A reversible logic circuit is realized by a cascade of re-

versible gates. A gate that implements one to one mapping between n inputs and

n outputs are called a nÖn reversible logic gate that can be represented as shown

in Equation (2.4), where Iv and Ov are the input and output vector.

Iv = (x 1,x 2, x 3,....x n) , Ov = (y1,y2, y3,....yn) (2.4)

The reversible logic gate must have the same number of inputs and outputs, and

for each input pattern there must be a unique output pattern [7]. Reversible logic

circuits avoid energy loss by \un computing" the computed information using recy-

cling the energy in the system [7].

Synthesis of the quantum or reversible logic circuits in compared to the synthe-

sis of the traditional irreversible logic circuits has two restrictions that should be

mentioned [29, 54]:

� In the reversible logic, the fan-out of each signal is equal to one.

� Feedback from gate outputs to inputs is not permitted.

A completely or incompletely-speci�ed irreversible function can be embedded into

a reversible function by adding extra inputs/outputs. The extra input bits (qubits)

are called constant inputs and the extra output bits (qubits) are called garbage

outputs. As an example, consider conventional irreversible XOR gate and its truth

table shown in Figure 2.3, and reversible XOR gate and its truth table (P as a

garbage output) shown in Figure 2.4.
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(a) Conventional XOR gate. (b) XOR gate.

Figure 2.3: Conventional XOR gates (gate and truth table).

(a) Reversible XOR gate. (b) R-XOR gate.

Figure 2.4: Reversible XOR gates (gate and truth table).

Figure 2.5: Quantum NOT gate.

2.2.2 Quantum Gates

Classical circuits are composed of logic "gates" connected by wires, information is

transmitted through these wires as electric power. Consequently, quantum circuits

consist of a set of "quantum gates" to inputs and kept qubits as an information.

Quantum gates are also reversible because quantum transformations should be uni-

tary. We here introduce some quantum(reversible) gates that are used in this work.

� NOT Gate: A 1 * 1 quantum NOT gate is similar to the conventional NOT

gate. It has one input and one output and inverts the input values. As shown

in Figure 2.5, circuit representation of this gate in the middle is symbolised

by the � sign.

� CNOT Gate: A 2 * 2 quantum gate, which is closely related to the NOT gate,

is the two-bit Controlled-NOT (or C-NOT ) gate or Feynman gate [27]. The

C-NOT gate performs a NOT on the second input if and only if the �rst input
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Figure 2.6: Quantum XOR gate.

is 1. Note that the CNOT gate, also called XOR gate, performs an exclusive

OR operation between the two input bits, as depicted in Figure 2.6.

� To�oli Gate: A 3 * 3 To�oli quantum gate [73] is shown in Figure 2.7. It is

also denoted as controlled-controlled-not (or CC-NOT) gate, since the third

output is the inverse of the third input if and only if the �rst two inputs are

equal to 1. A To�oli gate is universal, i.e., for any reversible Boolean function

f there exists a circuit containing only To�oli gates that represents f.

To�oli gates are important blocks in quantum circuits. In fact, a large number

of reversible logic synthesis methods use N�N To�oli gates as TOFn (x 1,x 2,

x 3,....x n) where x n is the target line and the �rst N-l lines are controls [45].

The main reason for popularity of To�oli gates over the other gates is their

completeness and relativeness in using them. TOF1(x 1) is the special case

where there are no control inputs, so x 1 is always an inverter, i.e., It is a

NOT gate. TOF2(x 1,x 2) has been termed a Feynman or controlled NOT gate

(CNOT). TOF3(x 1,x 2,x 3) is often referred to simply as a To�oli gate.

A quantum gate library contains a functionally complete set of reversible gates.

A set containing NOT and CNOT gates are not functionally complete, i.e.,

there exist functions that cannot be computed by these gates. Adding To�oli

gates to the previous set we get the NCT library, which is one of the most

common quantum libraries. Since To�oli gate is universal, we can represent

any reversible Boolean function through the NCT library.

� Peres Gate: A 3 * 3 Peres quantum gate Peres gate (PG) [53], also known as

New To�oli Gate (NTG) combining To�oli gate and Feynman gate. Since the

Peres gate (PG) quantum cost 1is less than To�oli gate (TG) the Peres gate is

1Quantum Cost (QC):The number of (1*1) or (2*2) reversible gates used in the circuit.
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Figure 2.7: Quantum To�oli gate.

Figure 2.8: Quantum Peres gate.

Figure 2.9: Quantum TR gate.

used every- where instead of the To�oli gate [45]. This gate is shown in Figure

2.8.

� TR Gate: The TR gate [72] is the inverse of the Peres gate and its operation on

the qubits and its quantum implementation are illustrated in Figure 2.9.

2.3 RevKit: Tool for the Design of Quantum Cir-

cuits

The open source toolkit RevKit2 [66] is a tool for synthesis, optimization, simula-

tion, veri�cation and testing of quantum (and reversible) circuits [76]. Besides it

provides elaborated methods for synthesis, optimization, and veri�cation of basic

functionality like parsers and export functions. One important property of this tool

2http://revkit.org/
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is its extensibility, meaning that it can be re-implemented in order to modify or

improve the given algorithms. So, RevKit is a extendable framework with signi�-

cant number of approaches and algorithms, but can easily provide the addition of

new methods and algorithms. In this thesis, we used RevKit for minimizing the

Boolean functions in the quantum framework, and for counting the number of XOR

and non-XOR gates in the obtained quantum circuits.

Example: For instance, considering the quantum implementation of the simple

function f=(a+b)�c, in RevKit that implement this function as following descrip-

tions :

revkit> expr [fabgc]

revkit> convert �expr to spec

revkit> exs

revkit> ps {c

then we can have these results for number of gates and number of qubits:

Lines: 4 (1 line is belongs to constant input and 3 lines for inputs)

Gates: 4

Logic qubits: 4

We can write simple expressions in RevKit using expr3 command. The expres-

sions only support binary operators. It should be considered that for binary AND

we use ( ), for XOR we use [ ], for OR we use f g, for NOT we use!.Therefore, we have

[fabgc] for de�ning f= (a+b)�c function. Afterwards, we can call several synthesis

algorithms4, e.g., exs, tbs, rms, and dbs. Transforming expression to quantum spec-

i�cation (expr > spec) is an alias5. So, we need to set convert {expr to spec to

use alias. Using ps gives us statistical information about the function. Then we can

convert the expression into a reversible circuit using (it will automatically embed).

Also, we can see the following circuit in output (see Figure 2.10).

In this simple example we have that the quantum implementation of the given

3https://msoeken.github.io/cirkit doc.html#datastructuresexpressions
4https://msoeken.github.io/cirkit doc.html
5https://msoeken.github.io/cirkit doc.html#getting-started-aliases
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Figure 2.10: Quantum Implementation of function f=(a+b)�c using RevKit

Commands Description

expr Expressions for de�ning Boolean functions

Spec Quantum speci�cation

ps Print statistical information about the function

convert Convert each data structure to another ones

Table 2.1: RevKit Commands

function has 3 CNOT (XOR) gates and 1 To�oli gate. Table 2.1 presents some

typical RevKit commands with their descriptions.
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Chapter 3

Boolean Function Representation

Boolean Function representation in electronic design automation (EDA) tools is the

main way to design e�cient hardware. Logic representation, on the one hand, try

to have the fewest number of primitive elements (literals, nodes, etc.) in order to

implement with a small memory footprint. On the other hand, logic presentation

must be simple enough to run and execute. We use standard representations for

Boolean functions which are particularly useful for SMC protocols. In this chapter,

we focus on Boolean function representation as directed acyclic graphs (DAGs) and

binary decision diagrams (BDDs) and we will also explain Multiple-Valued logic

(MV).

Boolean Function Synthesis. Any Boolean function can be represented using

an expression containing AND, OR and NOT operations. Boolean functions can

also take in multiple Boolean variables. "0' represents "false" and "1' represents

"True". Also, it can be represented using an expression cntaining only NAND op-

erations.

Boolean Function Representation. Boolean functions can be represented and

manipulated in many ways. We are going to see logic function representation using

truth table (TT) method and Boolean expression forms of DNF and CNF below.
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3.1 Truth Tables

The �rst de�nition of truth table (TT) was introduced by Ludwig Wittgenstein and

published in his Tractatus Logico-Philosophicus (TLP) book. A truth table (TT) is

a mathematical table prepared from the speci�c Boolean function, which sets the

functional values as Boolean expressions. Consider an n-variable function:

f(x1,....,xn), (xi=0,1, i=1,...,n)

Truth table (TT) consists of one column for each input variables (minterms) and

one column showing possible results of operation for those values. Each of the 2n

possible combinations of the n variables called minterms, and a function can be

represented by all the minterms that appear their evaluation as 1.

3.2 DNF and CNF forms

Every Boolean function can be written as a Boolean expression forms of Disjunctive

Normal Form (DNF) and Conjunctive Normal Form (CNF).

Let a term be the disjunction ("or") of a collection of variables. A Boolean ex-

pression is in disjunctive normal form (DNF) if the variables within each term are

ANDed together, and the terms are ORed together. We can say that these Boolean

expressions are in sum-of-product (SOP) form, meaning that they are the sum (OR)

of a set of products (AND). (SOP) form [44] is one of the �rst representation form

for logic functions that was taken by PLA technology [59].

Another two-level Boolean Function synthesis have been proposed as Conjunctive

Normal Form (CNF). A Boolean expression is in CNF if the variables within each

term are ORed together, and the terms are ANDed together. A CNF expression is

satis�able if there exists an assignment of variables for which the expression is true.

For example, (a or b) and (not c or d) is true if a and d are true. CNF form is

de�ned also as product-of-sum (POS) or EX-SOP [68]. POS form is exactly opposite

to the SOP form, meaning that all of the variables are ORed and all of these sum

terms are ANDed. In these two-level logic representation, reducing the number of

"products" in SOP or "sum" in POS result in logic optimization. An exact opti-
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mization tool for these two-level Boolean logic present by ESPRESSO tool. These

Boolean logic syntheses are suitable for simple and small sized functions, thus for the

more complicated function, we can move to DAG logic representation or (multilevel

logic) and BDDs [39].

3.3 Binary Decision Diagrams (BDDs)

A binary decision diagram (BDD) is a rooted directed acyclic graph (DAG) [13] as

a multilevel logic synthesis. The directed acyclic graph does not contain cycle, and

every directed edge of the graph (wires) connects nodes, which correspond to logic

functions (gates). In a DAG, a node is a starting node if it has no ingoing edges, and

a node is a terminal node if it has no outgoing edges. Since optimization process

runs on the entire DAG, it cannot be easy without having bounds on their nodes'

functionality. Moreover, memory footprint for each node should be large because

of increase in the representation size. Thus, a more practical and simple construct

of DAGs is considered as binary decision diagrams (BDDs) [39] where all diagrams'

nodes realize the same function.

Graphical representation for function as binary decision diagrams (BDDs) was in-

troduced at �rst by Lee [39] in 1959 and it was re�ned and studied more in other

articles [15, 1, 18]. It can also be used to present circuits. A binary decision diagram

(BDD) is a directed acyclic graph (DAG) [13] with the following properties:

� All the nodes can be terminal or non-terminal.

� All the terminal nodes are labeled with 0 or 1 and have no outgoing edges.

� All the non-terminal nodes are labeled with a Boolean variable.

� All the non-terminal nodes have two outgoing edges labeled with a 0 and a 1

(one drawn with a dashed line and one drawn with a solid line.)

We can simplify these steps to the following BDD where the function is f=(A�B)C�AB,

and (A,B,C ) are all the variables in the function. (see Figure 3.1)
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Figure 3.1: Binary decision diagram (BDD) of the function f=(A�B)C�AB.

The size of BDD is de�ned as the number of variables or (non-terminal nodes),

which act as 2:1 multiplexers. It can be used to improve e�ciency in various areas

of EDA such as veri�cation, testing, optimization, automated reasoning, etc. [44].

Because of increasing price according to BDD size, it can be supported by some op-

timization algorithms [77]. A BDD that has an ordering variables (x 1,x 2, x 3,....x n)

is ordered BDD (OBDD), and BDD with removed shares and redundant nodes is

reduced BDD (RBDD). A BDD with both reduced and ordered version is called a

reduced ordered BDD (ROBDD).

3.3.1 OBDD

An ordered BDD (OBDD) is a BDD that has an ordering variable (x 1,x 2, x 3,....x n).

The BDD has the ordering (x 1,x 2, x 3,....x n) if:

� All the labels of BDD are in (x 1,x 2, x 3,....x n).

� For any x i followed by x j in a path of BDD graph, we have i < j in the variable

ordering.

� The OBDD (with variables (x 1,x 2, x 3,....x n) has n+1 levels: l1, ..., ln, ln+1 such

that:

- ln+1 is the level containing the terminal nodes (0 and 1).

- l i (1<i<n) is the level containing variable x i.

It is to be noted that two OBDDs, which describes the same function but have

di�erent orderings, can be signi�cantly di�erent.

3.3.2 ROBDD

Reduced ordered BDD has the following properties:
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� Removal of redundant nodes (Nodes that have outgoing edges pointing to the

same node can be removed).

� ROBDDs have at most two terminal nodes, labeled with 0 and 1.

The ROBDD (reduced ordered BDD) of function f with ordering O is unique. In

other words, if B and B' be two ROBDDs with the same ordering (x 1,x 2, x 3,....x n),

If B and B' represent the same function, then B and B' have the same structure.

3.3.3 CUDD: Tool to Build BDD Function Representation

CUDD1 (Colorado University Decision Diagram) package [67], written by Fabio

Somenzi's research group, is one of the most complete packages with a C/C++ li-

brary for creating binary decision diagrams (BDDs), zero-suppressed BDDs (ZDD)

[47] and algebraic decision diagrams (ADD) [4]. It has a superabundance of BDD

functionality with the aim of providing an e�cient and best-maintained BDD pack-

age in terms of memory and computation that is freely available.

For implementing a BDDs package, we need to de�ne :

� Nodes;

� An item that contains the overal BDD information;

� Basic algorithms;

Node is the basic item of a BDD. In CUDD, a node is represented by the struct

DdNode , which contains all the information necessary to correctly manipulate

BDDs like variables, number of variables, number of nodes, unique tables and etc.

It can also contain Index which can refer to index of variable in which the node

belongs to Ref for the number of references. When we create BDDs, we have to

reference it to compute BDDs.

The DdManager is the central data structure of CUDD that must be created

before calling any CUDD function and it needs to be passed to every CUDD func-

tion.

1http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/links/bdd.html
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As an example, BDD implementation of Half-Adder in CUDD [67] is shown in below:

DdNode* x1 = Cudd-bddIthVar (manager, 0);

DdNode* x2 = Cudd-bddIthVar (manager, 1);

DdNode* and1;

and1 = Cudd-bddAnd (manager, x1, Cudd-Not(x2));

Cudd-Ref (and1);

DdNode* and2;

and2 = Cudd-bddAnd (manager, Cudd-Not(x1), x2);

Cudd-Ref (and2);

DdNode* sum;

sum = Cudd-bddOr (manager, and1, and2);

Cudd-Ref (sum);

Cudd-RecursiveDeref (manager, and1);

Cudd-RecursiveDeref (manager, and2);

3.4 Multiple-Valued Logic (MV)

In the �eld of circuit design, Multiple Valued Logic (MVL) [10, 11, 20, 46, 57, 70, 75]

is a direct generalization of the standard Boolean logic, where the classical Boolean

domain B = f0,1g is replaced by P = f0,1,...,jP j-1g with jP j>1.

Multiple valued networks are in general more compact in area than the correspond-

ing Boolean circuits [12, 36].

Let Pi be the �nite subset of natural numbers Pi = f0,1,...,jPi j-1g with jPi j>1. A

multiple valued logic is a generalization of the classical Boolean logic, as described

below:

De�nition 1: A multi-valued variable xi is a variables that takes on values from Pi.

De�nition 2: A multi-valued function f is a function such that:

F :fP1, P2,... Png ! Pf.
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In particular, when P1 = P2 = .... = Pn = Pf = P we have that:

F : Pn ! P.

Note that, in this case, there are P Pn

possible di�erent MVL functions.

A MVL circuit is a circuit composed by MVL gates. MVL gates are a direct gener-

alization of standard Boolean gates. Of course, the number of two-input gates grows

exponentially with the dimension of P. Therefore, while the number of two-input

Boolean gates is 16, the number of two-input MVL gates g : P2! P is P P 2

(e.g.,

19,683 for P = 3).

The objective of multiple-valued logic optimization is to reduce the size of the alge-

braic expression (e.g., a SOP form) representing a MVL function. As in the Boolean

domain, this algebraic expression optimization directly implies the minimization of

the corresponding MVL circuit. Minimization techniques have been studied since

the late nineteen-sixties, and a large variety of two-level (e.g., Espresso-MV [59])

and multi-level (e.g., MVSIS [30]) optimization tools have been proposed.

The main advantages of multiple-valued logic are reduction of wiring complexity

and reduction of the number of interconnections required to implement logic func-

tions [75]. The power dissipation also depends on interconnection complexity; thus,

low power dissipation can be reached using MVL [24]. Designing of di�erent combi-

national circuits is another gaining of using multiple-valued logic [19]. However, in

circuit design, the good potential advantages of MVL are mitigated by the di�culty

of MVL circuit realization. Fortunately, in our context we do not exploit a hardware

MVL circuit, but only its algebraic description. Therefore, we can completely by-

pass the technology issues that are the typical practical problem in the CAD context.

Moreover, for high level design it is natural to think of multiple valued variables,

rather than Boolean ones. During the design process, the problem described with

multiple valued variables are then transformed in a Boolean problem. This phase,

called encoding, is particularly critical and potentially onerous. The encoding is a

hard problem, especially for large circuits since it is di�cult to correlate an encoding

decision with the �nal logic optimization of the circuit [12]. Therefore, generally,
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Name Operation De�nition

Min x AND y if x<y equal to x, otherwise equal to y

Max x OR y if x>y equal to x, otherwise equal to y

Mod-sum x XOR y (x+y) mod p

Mod-di�erence x 	 y (x-y) mod p

Truncated sum x + y min(p� 1, sum(x, y))

Table 3.1: Two-place MVL operators.

encoding is done at the beginning without any speci�c criterion, and then Boolean

logic synthesis is applied to an arbitrary encoded circuit [12]. This is an evident

disadvantage for the optimization of the �nal circuit, due to the Boolean nature of

the standard circuits. Clearly, the realization of a MVL circuit would directly solve

the problem.

Binary MVL functions are known as two-place functions [46]. MVL two-place oper-

ators, "min", "max", "mod-sum", "runcated sum" and "mod-di�erence", are shown

and de�ned in Table 3.1. In particular, the standard Boolean AND gate is the min-

imum gate (i.e., x.y = min(x,y)), OR gate can be generalized to the maximum (i.e.,

x + y = max(x,y)) or to the truncated sum gate (i.e., x+ty=min(jP j-1, sum(x, y))),

the XOR gate can be generalized to the mod-sum (i.e., x� y = (x+y) mod jP j) or

to the mod di�erence (i.e., x 	 y = (x-y) mod jP j).

Two-place (Binary MVL) functions of "min" operator, "max" operator, "mod-sum"

operator, "Mod-di�erence" operator and "Truncated sum" operator for P=2,3,4 (P

is Boolean Domain) are illustrated In Figure 3.2. They can be extended also for

P=5,6,.. values. We have 16 elements for P=4 and 32 for P=5. Thus, we have 2P

elements for p-values in Binary MVL functions.
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Figure 3.2: Truth tables for two-input Boolean and MVL operators.
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Chapter 4

Secure Multi-Party Computation

Exploiting Quantum Gates

Recall that our approach aims to reduce the number of non-XOR gates, which di-

rectly result in reducing the number of interactions between the parties and OT at

runtime, reducing then the computation and communication costs. In this chapter,

we consider the design of circuits using quantum gates [73, 53, 27] instead of tradi-

tional ones. The goal is to design a quantum garbled circuit (Q-GC) equivalent to

the original Boolean circuit and computing the same function, so that it is possible

to increase the number of XOR gates, and reduce at the same time the communica-

tion and computation overhead required by the evaluation of non-XOR gates, thus

requiring less number of interactions.

For this reason, in this chapter we consider standard garbling of circuits in sec-

tion §4.1 and quantum implementation of the garbled circuit (GC) in section §4.2.

Then, we compare our results in the number of non-XOR gates in section §4.3.We

show the design Q-GCs for the Millionaires' Problem , which is the problem of

determining which party has the greatest input, and for the 32-bit adder , that

is the computation of the sum of the private inputs. In both cases, we compare

the resulting circuits with the original Boolean circuits used in GC and show the

improvements achieved in terms of reduced communication time.
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4.1 Standard Garbling of Circuits

In this section, we consider two simple examples, one for the design of the GC

computing the comparison function used in the solution of the Millionaires' Problem

(see §4.1.1), and the other for the GC implementing a 32-bit adder (see §4.1.2). In

the �rst case, we refer to the solution provided by Fairplay, while in the second case

we start from the circuit returned by the CBFS-MPC framework.

4.1.1 Garbling the Comparison (Millionaires) Circuits

We report here the SFDL programs used to de�ne 4-bit input for the Millionaires'

problem and the corresponding results obtained in SHDL outputs (see §4.1.1.1). For

the sake of brevity, we report also the results obtained in the 8-bit case (see §4.1.1.2).

4.1.1.1: Garbling the Comparison 4-bit (Millionaires) Circuits

We present the comparison of two 4-bit integers between AliceInput and BobInput.

The SFDL programming of 4-bit Millionaires is shown in below.

program Millionaires f

typeint = Int 4; // 4-bit integer

typeAliceInput = int;

typeBobInput = int;

typeAliceOutput = Boolean;

typeBobOutput = Boolean;

type Output = struct fAliceOutputalice, BobOutput bobg;

type Input = struct fAliceInputalice, BobInput bobg;

function Output output(Input input) f

output.alice = (input.alice>input.bob);

output.bob = (input.bob>input.alice);g

g

And get the following SHDL results as outputs:
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0 input //output$input.bob$0

1 input //output$input.bob$1

2 input //output$input.bob$2

3 input //output$input.bob$3

4 input //output$input.alice$0

5 input //output$input.alice$1

6 input //output$input.alice$2

7 input //output$input.alice$3

8 gate arity 2 table [1 0 0 0] inputs [4 5]

9 gate arity 2 table [0 1 1 0] inputs [4 5]

10 gate arity 2 table [0 1 0 0] inputs [8 6]

11 gate arity 2 table [1 0 0 1] inputs [8 6]

12 gate arity 2 table [1 0 0 1] inputs [10 7]

13 gate arity 2 table [0 0 0 1] inputs [4 0]

14 gate arity 3 table [0 0 0 1 0 1 1 1] inputs [13 9 1]

15 gate arity 3 table [0 0 0 1 0 1 1 1] inputs [14 11 2]

16 gate arity 2 table [0 1 1 0] inputs [12 3]

17 gate arity 2 table [0 1 1 0] inputs [15 16]

18 output gate arity 1 table [0 1] inputs [17] //output$output.alice$0

19 gate arity 2 table [1 0 0 0] inputs [0 1]

20 gate arity 2 table [0 1 1 0] inputs [0 1]

21 gate arity 2 table [0 1 0 0] inputs [19 2]

22 gate arity 2 table [1 0 0 1] inputs [19 2]

23 gate arity 2 table [1 0 0 1] inputs [21 3]

24 gate arity 2 table [0 0 0 1] inputs [0 4]

25 gate arity 3 table [0 0 0 1 0 1 1 1] inputs [24 20 5]

26 gate arity 3 table [0 0 0 1 0 1 1 1] inputs [25 22 6]

27 gate arity 2 table [0 1 1 0] inputs [23 7]

28 gate arity 2 table [0 1 1 0] inputs [26 27]

29 output gate arity 1 table [0 1] inputs [28]

From these results we can conclude that the number of non-XOR gates is equal to

10 (shown in bold in the previous list).
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Figure 4.1: Classical adder.

4.1.1.2: Garbling the Comparison 8-bit (Millionaires) Circuits

In case of 8-bit input, the SFDL program is similar (except in the number of bits)

but as output circuit we get a SHDL list containing 26 non-XOR gates.

4.1.2 Garbling the adder circuits

Let us consider the case of the classic full adder, whose Boolean function is:

S = A� [B � CIN ]

where S is the sum, A and B are the summands and CIN is the incoming carry.

The adder is used as a basic block in many other problems. Here we assume that

Alice randomizes the adder's inputs and encrypts the truth-table (as explained in

the introduction) and the two parties wish to execute the addition over their private

values A (held by Alice) and B (held by Bob) to obtain the public result A+B

without disclosing their inputs to each other. Figure 4.1 shows the classical adder

circuit. Applying the CBFS-MPC library (§1.4.2), the GC for a 32-bit adder 1

contains 127 AND gates, 61 XOR gates, and 187 INV gates and the GC for a

64-bit adder 2 contains 265 AND gates, 115 XOR gates, and 379 INV gates.

4.2 Quantum Implementation of Garbled Circuit

(GC)

In this section, we show the quantum version of GC with the aim of reducing non-

XOR gates, which directly results in reduced OT and computation and communi-

1https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/adder 32bit.txt
2https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/adder 64bit.txt
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cation costs. In the section at �rst we de�ne metrics to measure the e�ciency of

our models and our idea for generating quantum-garbled circuit, then in §4.2.1 we

consider on the quantum garbled Boolean circuit (Q-GBC) for Millionaires' Problem

in §4.2.2 and Q-GBC for 32-bit adder in §4.2.3.

4.2.1 The Quantum Metrics

We use the following metrics to measure the e�ciency of our models and our idea

for generating quantum-garbled circuit. The metric implies a partition on the set of

gates:

� Quantum XOR gates (e.g., NOT and CNOT)

� Quantum non-XOR gates (e.g., CCNOT)

In particular, while quantum XOR gates are gates that contain only XORs, quan-

tum non-XOR gates are the gates that contain at least one non-XOR.

As mentioned before, a quantum CNOT gate consists of just 1 quantum XOR gate,

and the quantum To�oli or (CCNOT) gate contains just 1 non-XOR (AND). We

also consider NOT gate as a XOR gate, since NOT A is equivalent to A XOR 1.

In the proposed metric, the cost of a quantum non-XOR gates is the number of

non-XORs that it contains. In particular, the CCNOT gate has a cost of 1. Any

quantum XOR gate has no cost in the metric.

4.2.2 Q-GBC for the Millionaires' Problem

In the Millionaires' problem, previously described (§ 1.1.4), two millionaires want to

securely compare their private input values (money) without revealing more infor-

mation than output result to the other party. This function is indeed a comparison

function [A>B].

The comparison circuit is a synthetic circuit that compares two n-bit numbers and

determines larger than
'
equal to

'
or less than the other. Note that comparator [A>B]

can ba based on subtraction algorithm [51, 61]. Subtractor performs subtraction of

minuend A, subtrahend B, and borrow bit that generates di�erence bit and carry
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out in output. The carry and di�erence obtained is compared with to get data is

greater or smaller. Thus, the comparison circuit for two N-bit value is a chain of

N-bit subtractors.

4.2.2.1: 4-bit quantum comparator circuit

We use the quantum comparator circuit proposed in [61]. As shown in Figure 4.2,

the comparator is designed exploiting quantum TR gate [72], where a pair of TR

gates is needed for constructing a full subtractor.

A subtractor computes the di�erence bits and carry-out bits. Q0-Q3 indicate dif-

ferent bits and R0-R3 indicate the carry-out bits. If Cout (carry) is \1", then A <

B. If Cout does not occur and the di�erence is zero, then A = B. If Cout does not

occur, but the di�erence is not zero then A > B.

Quantum implementation of TR gate in RevKit is shown in below:

revkit> expr (a!b)

revkit> convert �expr to spec

revkit> exs

runtime: 0.04 secs

revkit > ps -c

Lines: 3

Gates: 2

Logic qubits: 4

revkit > print -c

Then we get these results for each TR gate as shown in Figure 4.3.

According to RevKit result, we can say that every TR gate has 1 CNOT (XOR) gate

and 1 To�oli (non-XOR) gate. Thus, we can conclude that for the implementation

of a 4-bit comparison circuit, we need 8 non-XOR gates.
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Figure 4.2: Quantum comparator [61].

Figure 4.3: Quantum implementation of TR gate using RevKit.
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Figure 4.4: Quantum Peres Full Adder gate (for 1-bit adder).

4.2.2.2: 8-bit quantum comparator circuit

To implement 8-bit quantum comparator circuit, we can use the same circuit de-

scribed in section §4.2.2.1 (Figure 4.2) and extend it to a 8-bit comparator circuit.

Therefore, the 8-bit Millionaires' problem solved with quantum gates has 16 TR

gates and 16 non-XOR gates.

4.2.3 Q-GBC for the 32-bit adder

We use Peres Full Adder gate (PFAG) as a quantum full adder [35] shown in Figure

4.4 The PFAG can be implemented by two quantum Peres gate (PG) [53] as shown

in Figure 4.5. Also, the quantum Implementation of PG in RevKit is shown in below

and Figure 4.6:

revkit> expr [(ab)c]

revkit> convert �expr to spec

revkit> exs

run-time: 0.04 secs

revkit> ps -c

Lines: 4

Gates: 2

T-depth: 3

T-count: 7

Logic qubits: 4

revkit> print -c

Then, according to RevKit result, we can say that every PG has 1 CNOT (XOR)

gate and 1 To�oli (non-XOR) gate. Moreover, a 32-bit adder is a chain of 32 PFAG,
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Figure 4.5: Implementation of PFAG using Peres gates (for 1-bit adder).

Figure 4.6: Quantum Implementation of PR gate using RevKit (for 1-bit adder).

Figure 4.7: Quantum adder 32-bit.

as shown in Figure 4.7. Thus, we can conclude a 32-bit adder can be implemented

as a GC with quantum gates requiring just 64 non-XOR gates.

4.2.4 Q-GBC for the 64-bit adder

To implement quantum garbled circuit implementation of 64-bit adder circuit, we

can use the same circuit described in section §4.2.3 and extend it to a 64-bit adder

circuit as shown in Figure 4.8.

As it is possible to observe in Figure 4.5, every PFAG consists of two Peres gates

(PG) and every PG has 1 CNOT (XOR) gate and 1 To�oli (non-XOR) gate. Thus;

PFAG has 2 non-XOR gates and chain of 64 PFAG concludes 128 non-XOR gates
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Figure 4.8: Quantum adder 64-bit.

Version Milionaire 4-bit Milionaire 8-bit Adder 32-bit Adder 64-bit

GC 10 26 127 265

Quantum GC 8 16 64 128

Table 4.1: Comparison of our circuit in case of number of non-XOR gates.

in 64-bit adder.

4.3 Discussion and Comparison of Results

We have put forward the idea of decreasing the computational cost of SMC by reduc-

ing the number of non-XOR gates using quantum gates. Our approach is innovative

since it is one of the �rst attempts of using quantum gates for the design of GCs.

We validate the approach showing its applicability in two classical SMC examples,

the Millionaires' problem, 32bit adder and 64bit adder.

As it is possible to observe in Table 4.1, where we have compared the proposed

quantum GC design with classical GC in terms of the proposed metric (i.e., the

number of non-XOR gates), we have a reduced number of non-XOR gates in all

the examined cases. The results are encouraging, since we report a reduction of

the number of non-XOR gates of about 20% in 4-bit Millionaires' problem, about

36% in 8-bit Millionaires' problem, about 49% in 32-bit adder and about 51.6%

in 64-bit adder. This result can be intuitively explained by the fact that XORs are

very common in quantum circuits.
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Chapter 5

BDDs for Secure Multi-Party

Computation

The aim of this chapter is to de�ne BDD-based function representation method to

�nd classical representations can be equal to XOR function and can be transformed

to XORs gates without altering the �nal output. The idea is to identify gates

that are very similar to XOR gates to reduce the number of non-XOR gates in the

circuit, which can result in a reduced number of interactions between the parties,

and therefore in a more e�cient secure computation.

5.1 Using BDDs for Multi-Party Computation

When we have a complex circuit, we want to try to transform some of the contained

gates to XOR gates. Now the �rst question is that:

"Can we transform some non-XOR gates

of the circuit in XOR gates?"

To answer of this question, we try to �nd the similarity of other gates and XOR

gates. This means that we are looking for gates that di�er with a XOR gate only

for one output. If the corresponding input never occurs to this gates, it means that

the gate can operates as XOR gate. For example, the similarity of some functions

with XOR is shown below:
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A B A XOR B A OR B

0 0 0 0

0 1 1 1

1 0 1 1

1 1 "0" "1"

Table 5.1: Showing similarity of functions f=A+B and f=A�B using their truth

tables.

A B A�B A.B (A�B)+(A.B) (A�B)�(A.B)

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 0 1 1

1 1 0 1 1 1

Table 5.2: Showing similarity of function f=(A�B)+(A.B) with f=(A�B)�(A.B).

Example: Similarity of f=A+B and f=A�B

As shown in Table 5.1, gate "OR" can be transformed to "XOR" gate if the inputs

A="1" and B="1" never occur. In this case the "OR" gate can be transformed in

a "XOR" gate.

Example: Similarity of f=(A�B)+(A.B) with f=(A�B)�(A.B)

For example, consider the simple function f=(A�B)+(A.B). Note that, the inputs to

the "OR" gate (+) never have the con�guration "1""1" (i.e., "(A�B)" and "(A.B)"

can not be "1" at the same time. (As shown in Table 5.2 and Figure 5.1)). For this

reason, the function f=(A�B)+(A.B) can be transformed to the f=(A�B)�(A.B).

Let us now consider any circuit and try to �nd other classical representation that

equal to XOR. It is important to note that we do not want to change the circuit, we

just want to �nd gates that are not XORs but work like XORs, and therefore they

can be used as XOR gates.
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Figure 5.1: Di�erent results with input (1,1) to both sides of OR gate.

A B A XOR B A Nand B A AND B' A' AND B A OR B

0 0 0 \1" 0 0 0

0 1 1 1 \0" 1 1

1 0 1 1 1 \0" 1

1 1 0 0 0 0 \1"

Table 5.3: Truth table of similar functions to XOR gate.

Finding other classical gates of the circuit similar to XOR gate is possible when

the input con�guration on which they di�er from a XOR never occurs. Thus, we

can say that these gates can work as XOR gate and can be transformed to XOR

function. Some of the classical functions that di�er from the XOR function in just

one case are shown in Table 5.3.

The second question is that:

"How can we check if a input con�guration never occurs in

a gate of a given circuit?"

For this reason, we used BDDs method to �nd possible classical representation that

can be transformed to XOR, which is discussed in next section.

The main idea is based on the BDD representation of the subfunctions correspond-

ing to the inputs of the gate we want to transform in a XOR. For example consider

in f=f1+f2. If the inputs f1="1" and f2="1" do not occur, the "OR" gate can be

transformed to the "XOR" gate. To perform this check, we need to compute the

intersection between f1 and f2. If the intersection is empty, this means that the input

"1" "1" never occurs.
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In general, if we have one of the gate, (gate in Table 5.3 similar to the XOR gate),

we can check A Nand B performs the intersection of A' AND B' (the input is

"A=0""B=0"). A AND B' performs the intersections between A' AND B (the

input is "A=0""B=1") and so on. In order to perform these intersections we can

use BDDs representing the subfunctions.

5.1.1 Using BDDs to Find Similar Classical Representation

to XOR

Finding the rule to understand whether the di�erent input items in each gate hap-

pened or not is very simple if we use array of BDD. Considering BDD of each

item helps us to �nd a solution. We can say that this di�erent item would never

happen if its BDD were equal to "0" (Zero). We clarify this method using the

BDDs for 32-bit adder as discussed below.

5.1.1.1: BDDs for 32-bit Adder:

We have presented all the subfunctions of 32-bit adder1 according to CBFS-MPC

tool (see §4.1.2 ) using several BDDs as shown in Figure 5.2.

As we have seen before, the number of inputs' wires are 32 and the number of

gates is 439. The �rst 64 elements in our BDDs array consist of our inputs, which

for each element we have BDD (see Figure 5.2). From 64 to 438 we have BDDs of

gates and the last 33 BDD (from 406 to 438) we have BDDs of outputs.

Now, the main question is:

"How can we �nd the gate that can be replaced with a XOR gate? and how can we

�nd whether their particular case can happen or not?"

The answer to this question can be found on the BDDs. The gate can work as XOR

gate and can be replaced with XOR gate if its BDD was equal to "0", which means

this particular case did not happen at all. In this particular case, we have just AND,

NOT and XOR gates. We try to transform these AND, NOT gates to XOR gate.

1https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/adder 32bit.txt
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Figure 5.2: Array of BDDs for 32-bit adder.

For example, let us consider this case:

2 1 94 95 92 AND nAnd gate with 2 inputs, 1 outputs , inputs:(94 , 95) , output:92

1 1 92 89 INV nNOT gate with 1 input, 1 output , input:92 , output:89

That means: 89 = ! (94 AND 95)

Let us try to see if (94 AND 95) happened or not. We should see its BDD, if it is

equal to "0", we can conclude that this case can be worked as XOR gate and can

be replaced with XOR gate.

Implementation of our method:

We used CUDD for making array of BDDs and examined our method for 32-bit

adder and 64-bit adder2 functions, Data Encryption Standard (DES)3 and MD54

which can be performed also for other functions. Some important notes of this cod-

ing (in case of 32-bit adder), which can be similar for other functions are explained

2https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/adder 64bit.txt
3https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/DES-expanded.txt
4https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/md5.txt
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below:

� At �rst, we have to de�ne number of inputs (variables) equal to "64" (x0-x63),

number of outputs equal to "33" and number of gates equal to "439". We

constructed BDDs for these variables and gates as shown in Figure 5.2. We

should also de�ne name of inputs as a string to perform XOR, AND or INV

and number of input(s) in gates that can be "1" for INV and "2" for AND

or XOR (as you seen before, in 32-bit adder function, we have just 3 types of

gates; AND, INV and XOR).

� We can allocate the place for gates in this array in which each element is BDDs

node; meaning that we have BDDs for each node that should be allocated.

� When we create BDDs for each node, we have to reference it to compute BDDs

and con�rm that BDDs is done.

Note: When we reading the circuit, we just count the number of times that

it is appear. What we have to do is that everytime a gate is used by another

gate, we increment the reference of this gate. So, we can �nd how many times

this gate is used.

� We try to replace AND gate with XOR gate, because the cost of INV is "0" and

it is not necessary to change it to XOR gate.

� The important note is that, when we found that AND gate can be transformed

to XOR gate, it is necessary to check whether it is used somewhere else or

not. We can not perform this transform if it is used for more than one time

in the network. So, we have to be sure that nobody else used this gate. For

this reason, we should use another array to count how many times this gate

is used. This is a vector that called "references". If reference is equal to "0"

means that this gate can be removed; otherwise, it means that this gate is

used some where else. Then, references array help us to check whether we

have gained or not.

� We should also keep the order of lines (e.g., 32-bit adder5 or 64-bit adder6). So,

in process of making AND gate transform to XOR gate, we would like just a

5https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/adder 32bit.txt
6https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/adder 64bit.txt
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Methods
32-bit Adder

#NCycle #ANDs #XORs #INVs #Gain

CBFS-MPC - 127 61 187 -

CUDD (BDDs) 300 125 63 187 2

Table 5.4: Comparison of our gaining for 32-bit Adder in BDDs method.

Methods
64-bit Adder

#NCycle #ANDs #XORs #INVs #Gain

CBFS-MPC - 265 115 379 -

CUDD (BDDs) 500 253 127 379 12

Table 5.5: Comparison of our gaining for 64-bit Adder in BDDs method.

make copy exactly the same and doing changes; nothing else.

� BDDs of these functions was too big, because of this we used BDD Init to say

"stop" and get a gain. (e.g., "stop" sfter position 300 for 32-bit adder and 500

for 64-bit adder )

5.1.2 BDDs Method for Adders

We have applied and compared the proposed BDDs method with previous imple-

mentation of garbled Boolean circuit using CBFS-MPC (§4.1.2) for 32-bit adder

(Table 5.4) and 64-bit adder (Table 5.4) and get following results in the number of

non-XOR gates.

5.1.3 BDDs Method for Data Encryption Standard (DES)

Data Encryption Standard (DES) [74] is a symmetric-key method of data encryption

that was published by the National Institute of Standards and Technology (NIST) in

the early 1970. It was the �rst encryption algorithm adapted by the U.S.government

for public exposure and also by industries such as �nancial services, where strong

encryption are highly needed. The simplicity of DES was considered for using it
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in wide variety of embedded systems, smart cards, SIM cards and network devices

requiring encryption like modems and routers.

Data Encryption Standard (DES) works by using the same key to encrypt and

decrypt a message, so both the sender and the receiver should know and use the

same private key. cryptographic key and algorithm are applied to a block of data

which the block size in DES algorithm is 64 bits. DES takes a �xed-length block

of the message (plaintext) and transforms it through a series of permutation and

substitution into another bit-string (ciphertext) with same length. Encryption of a

block of the message also takes place in 16 rounds.

DES uses a 64-bit key to customize the transformation; however, only 56 of these

are actually used by the algorithm, but eight of those bits are used for parity checks.

Decryption can performed by those who know the particular key used to encrypt.

Using BDDs method for DES algorithm both with key expanded and no key expan-

sion in di�erent time-cycles results very good improving in the number of non-XOR

gates as shown in Table 5.6 and Table 5.7.

5.1.4 BDDs Method for MD5 Cryptographic Function

The MD5 algorithm is a one-way cryptographic function that accepts a message of

any length as input and returns a �xed-length 128-bit digest value as output. The

message digest output is sometimes also called the "hash" or "�ngerprint" of the

input.

MD5 was designed by well-known cryptographer Ronald Rivest in 1991 used in

many situations where a potentially long message needs to be processed. The most

common application of MD5 is the creation and veri�cation of digital signatures.

As it is possible to observe in Table 5.8, using BDDs method for MD5 function

can get very good results in the number of non-XOR gates in di�erent time-cycles.
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Methods
DES (Key Expanded)

#NCycle #ANDs #XORs #INVs #Gain

CBFS-MPC - 18175 1351 10875 -

CUDD (BDDs) 500 18170 1356 10875 5

CUDD (BDDs) 600 18148 1378 10875 27

CUDD (BDDs) 650 18125 1401 10875 50

CUDD (BDDs) 800 18048 1478 10875 127

CUDD (BDDs) 900 18021 1505 10875 154

CUDD (BDDs) 1000 17980 1546 10875 195

CUDD (BDDs) 1500 17861 1665 10875 314

CUDD (BDDs) 1700 17790 1736 10875 385

CUDD (BDDs) 1800 17751 1775 10875 424

CUDD (BDDs) 1900 17734 1792 10875 441

Table 5.6: Comparison of our gaining for DES (Key Expanded) in BDDs method.

Methods
DES (No Key Expansion)

#NCycle #ANDs #XORs #INVs #Gain

CBFS-MPC - 18124 1340 10849 -

CUDD (BDDs) 500 18122 1342 10849 2

CUDD (BDDs) 600 18108 1356 10849 16

CUDD (BDDs) 650 18086 1378 10849 50

CUDD (BDDs) 1000 17910 1554 10849 214

CUDD (BDDs) 900 18021 1505 10875 154

CUDD (BDDs) 1500 17799 1665 10849 325

CUDD (BDDs) 1600 17752 1712 10849 372

CUDD (BDDs) 1700 177170 1747 10849 407

CUDD (BDDs) 1800 17689 1775 10849 435

CUDD (BDDs) 1900 17680 1784 10849 444

Table 5.7: Comparison of our gaining for DES (No Key Expanded) in BDDs method.
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Methods
MD5

#NCycle #ANDs #XORs #INVs #Gain

CBFS-MPC - 29084 14150 34627 -

CUDD (BDDs) 700 29083 14151 34627 1

CUDD (BDDs) 800 29079 14155 34627 5

CUDD (BDDs) 850 29078 14156 34627 6

CUDD (BDDs) 900 29077 14157 34627 7

CUDD (BDDs) 1000 29075 14159 34627 9

CUDD (BDDs) 1100 29072 14162 34627 12

CUDD (BDDs) 1200 29068 14166 34627 16

CUDD (BDDs) 1300 29067 14167 34627 17

Table 5.8: Comparison of our gaining for MD5 in BDDs method.

5.1.5 Discussion and Comparison of Experimental Results

We have compared the proposed BDDs method with previous implementation of

garbled Boolean circuit using CBFS-MPC (§4.1.2). We can conclude that we have a

reduced number of non-XOR gates (AND gates) in 32-bit adder of about 1.6%, in

64-bit adder of about 4.6%, in MD5 of about 0.05% and in DES of about 2.5%.
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Chapter 6

Multiple -Valued Logic for Secure

Multi-Party Computation

As mentioned before, Secure Multi-party Computation (SMC) protocols enable two

or more parties to compute collaboratively generic functions while keeping secret

their inputs, sharing only the �nal result. To achieve this goal, a technique relying

on the design of Garbled Circuits (GC) has been �rstly proposed by Yao. Garbled

circuits are Boolean circuits that can be evaluated using a distributed protocol for

computing the result for each gate, till computing the output values. According

to this method, standard function f is encoded in a Boolean function fB that can

be represented by a Boolean circuit. Starting from their input values, the parties

interact to compute the �nal result by exchanging some encrypted information in

order to evaluate the output of each Boolean gate in the circuit. For this reason,

the cost of the secure two-party computation protocol is generally proportional to

the number of logic gates in the Boolean circuit. To avoid (or limit) the encoding

of the function to be securely computed, and in order to obtain a more compact

circuit description, in this section we study the generalization of the classical Yao's

protocol in the MVL context. We show also how in this context it is possible to

extend some of the techniques to improve the evaluation of multiple valued gates,

having no communication costs.
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6.1 Multiple Valued Yao's Protocol

We will explore alternative GC representations, focusing on Multiple Valued Logic

ones and analyze the deployment of Multiple Valued Logic techniques for the design

of GC. Yao's Garbled Circuit construction is composed of two phases: Garbling and

Evaluation, which are distinctly executed by the two parties. During the Garbling

phase, Alice converts a circuit into a garbled circuit, while Bob performs the Eval-

uation phase taking in input the garbled circuit, executing some interactions with

Alice, and �nally computing the output value.

Here we consider two parties, Alice and Bob that want to evaluate the Multiple-

Valued Logic (MVL) (§3.4) instead of the Boolean logic gate, which result in reduced

wiring complexity and number of interactions required to implement logic functions

of Garbled Circuits.

In order to generalize Yao's construction, let us consider a circuit composed of a

single multiple valued gate with two input wires, w1 and w2, and one output wire

w1. Let x1 denote the input multiple-valued value known only to Alice, and x2 the

input multiple-valued value known only to Bob.

Consider the set P = f0; 1; : : : ; p�1g with p = jP j > 1 and the multiple-valued gate

G : P 2 ! P . To proceed with the computation, for each wire wi Alice generates

p randomly selected di�erent cryptographic keys, one for the input value 0 denoted

by k0i , one for the input value 1, k
1
i , : : :, one for the input value p� 1, kp�1i .

The keys are used as input to a selected encryption algorithm, denoted as Ek1;k2;:::;kp�1(m).

Using those keys, Alice can compute the garbled truth table for the function com-

puted by the gate, where each entry is obtained using a combination of the input keys

corresponding to the possible input values, and contains the encryption of the cor-

responding output value of the gate. Note that a truth table for a gate G : P 2 ! P

has jP j2 entries. For example, while a truth table in the Boolean domain has 4

Boolean entries, in the case of jP j = 3 the truth table has 9 multiple valued values.

XOR Multiple-Valued Logic (MVL) (i.e., p=3) according to ("mod-sum" operator)

for two parties with two input wires x1 and x2, is shown in in Table 6.1.
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x y z (MV XOR)

0 0 0

0 1 1

0 2 2

1 0 1

1 1 2

1 2 0

2 0 2

2 1 0

2 2 1

Table 6.1: Truth table of MV XOR (mod-sum) operation for p=3 in Garble Circuit.

To generate the garbled Boolean circuit Alice selects and associates random keys

to each input and output wire and for each possible value. In our MV XOR gate,

she generates the random keys k0x, k
1
x, k

2
x for input wire x and k0y, k

1
y, k

2
y for

input wire y and k0z, k
1
z, k

2
z for output wire z as shown in Figure 6.1. Alice en-

crypts the truth table of the gate using those random keys and sends the garbled

truth table to Bob. The resulting garbled truth table is shown in Table 6.2. Once

Alice has computed the garbled values for all the entries of the table, she can send

a permutation of the truth table, together with the keys corresponding to her inputs.

Notice that the knowledge of the keys, doesn't allow Bob to learn anything on

the input values. At this point, Bob needs, from Alice, the keys corresponding to

her own input values without disclosing them to Alice. For this purpose, the party

can engage in an Oblivious Transfer protocol (OT), allowing Bob to learn the keys

corresponding to his inputs.

In general, the GC construction relies on 1 � out � of � 2�OT protocol between

a sender and a reciever. The sender Alice has two secret values v0 and v1, and the

receiver has a secret bit i. At the end of the protocol Bob learns vi, but nothing

about vi�1, while Alice doesn't learn anything about the selection bit i. OT protocol

is a widely studied cryptographic primitive, with di�erent variants and implementa-
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Figure 6.1: MV XOR gate (mod-sum) with its corresponding wire keys.

x y

0 0 Ek0x(Ek
0
y(k

0
z))

0 1 Ek0x(Ek
1
y(k

1
z))

0 2 Ek0x(Ek
2
y(k

2
z))

1 0 Ek1x(Ek
0
y(k

1
z))

1 1 Ek1x(Ek
1
y(k

2
z))

1 2 Ek1x(Ek
2
y(k

0
z))

2 0 Ek2x(Ek
0
y(k

2
z))

2 1 Ek2x(Ek
1
y(k

0
z))

2 2 Ek2x(Ek
2
y(k

1
z))

Table 6.2: Initial garbled circuit table for MV XOR gate.
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tion, whose robustness has been considered under di�erent security models. In the

Yao extension, we consider a 1 � out � of � n-OT protocol that can be de�ned as

a natural generalization of a 1 � out � of � 2 OT, where the sender has n values,

and the receiver has an index i, corresponding to the value he owns and for which

she wishes to receive the i-th key, without the sender learning i. At the end, the

OT protocol allows Bob to retrieve the right key corresponding to her input value

for the gate, while Alice doesn't learn anything about the selected input. Since now

Bob knows the two keys, he can decrypt the right entry in the table, and retrieve

the key of the output value.

In general, for a circuit composed of multiple gates, Alice should compute garbled

values for all the input wires and use them for computing the truth table for each

multiple-valued gate. Then she should send all the truth tables, and all her input

values to Bob, which can invoke the OT protocol for each needed input value to the

circuit. Once retrieved all the values, Bob can compute the output keys for all the

gates of the circuit.

At the end of the protocol, Bob has generated the key k of the �nal output and

sends it to Alice. The party Alice can now send to Bob the value, correspond-

ing to k, of the output of the entire function. This value is the �nal result of the

computation.

6.2 Improved Evaluation for Multiple Valued Gates

In [37], Kolesnikov and Schneider presented an optimisation, which allows the eval-

uation of XOR gates for free, avoiding any interaction between the two parties for

such gates, i.e. there is no need to compute and send the garbled tables for the XOR

gates. The optimisation requires that there is a global random value R known only

to one party, such that for all garbled wires wi it holds that k
1
i = k0i � R, i.e. the

garbled value corresponding to 1 for a wire, is determined by XOR-ing the garbled

0 value with the random quantity R. In this way, computing the output value for

a XOR gate amounts to compute the value resulting by the XOR of the two input

values. Security of this solution has been proved in di�erent context in [37, 55] under
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di�erent assumptions.

Here we show how also in the case of multiple valued gates, these improved evalu-

ation techniques can be easily extended. Speci�cally, we show how the SUM gate

G, in the case of three-valued logic can be can be evaluated without communication

between the parties (the reasoning holds for gates in the case of P values).

Let G have two input wires Wa and Wb and output wire Wc. Garble the wire

values as follows. Randomly choose w0
a, w

0
b ; R1; R2 2R f0; 1; 2g

N , with the following

properties for R1 and R2:

R1 �R2 = 0

,

R1 �R1 = R2

,

R2 �R2 = R1

. Set w0
c = w0

a � w0
b , and 8i 2 (a; b; c) : w1

i = w0
i �R1 and w

2
i = w0

i �R2

It is easy to see that the garbled gate output is simply obtained by summing the

garbled gate inputs:

w0
c = w0

a � w0
b = (w0

a �R1)� (R2 � w0
b ) = w1

a � w2
b =

(w0
a �R2)� (R1 � w0

b ) = w2
a � w1

b

w1
c = w0

c �R1 = w0
a � (w0

b �R1) = w0
a � w1

b = (w0
a �R1)�

�w0
b = w1

a � w0
b = (w0

a �R1 �R1)� (R2 � w0
b ) = w2

a � w2
b

w2
c = w0

c �R2 = w0
a � (w0

b �R2) = w0
a � w2

b = (w0
a �R2)�

�w0
b = w2

a � w0
b = (w0

a �R2 �R2)� (R1 � w0
b ) = w1

a � w1
b

We postpone here the security proofs for this approach.
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Chapter 7

Conclusions

Two-party Secure Multi-party Computation (SMC) protocols have performed col-

laborative computation of generic function f of their respective inputs x1 and x2,

between two or more parties who do not want to disclose the input values they own

and share only the computed result. In the general formulation, two parties want

to compute a function on their respective inputs, while maintaining the privacy of

the inputs. Secure multi-party computation protocols can have high communication

cost as the complexity of the computation grows. Recently, the question to improve

e�ciency in secure multi-party computation and its potential has gained much in-

terest. Signi�cant improvements in e�ciency have been achieved and a number of

SMC-based solutions to a number of problems such as private auctions, tax-fraud

detection, email �ltering and others have been delivered. In this thesis, we discussed

about the idea of decreasing the communication complexity and computational cost

of secure multi-party computation (SMC).

One of the proposed approaches to solve the SMC problem relies on the design

of Garbled Circuit (GC), proposed by Yao (§1.2). The Garbled Circuit (GC) proto-

col has been introduced as a method for addressing two-party secure computations

for the evaluation of the input function (f) represented as a Boolean Circuit, which

is based on the encryption of the input and intermediate values so that only the �nal

result is shared among the parties. The use of garbling for secure multi-party shared

computation has seemed to be widely studied in the �eld of secure computing and

its application. Since the execution of this protocol requires interaction between

the collaborating parties, the total cost and run-time interaction between parties
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increases linearly with the number of gates, and can be huge for complex GC. So,

reducing the circuit size and the number of gates is important to reduce the overall

communication cost and the number of operations for the evaluation of GC.

Free-XOR technique (§1.3.1), proposed by Kolesnikov and Schneider [37], is one

of the possible ways to improve the performance of garbled circuit (GC). According

to this idea, secure evaluation of XOR gates does not need the transfer of garbled

tables and does not require garbling of XOR gates. So, replacing costly non-XOR

gates with some free-XOR gates allows us to have more e�cient secure computation.

In this dissertation, we have explored the idea of decreasing communication com-

plexity and communication cost of SMC and reduced its computation time and the

number of operations based on reducing the number of non-XOR gates to improve

e�ciency of the Garbled Circuit construction, which means reducing the circuit cost

and the gates for interaction required in the Boolean Circuit. We focus on reduc-

ing the number of interactions between parties at runtime, which results in reduced

communication cost and communication time of Secure Multi-party Computation

(SMC) by reducing the number of non-XOR gates since XOR gates have no cost for

the execution of the secure computation protocol. This thesis is proposing to use

following three approaches (exploiting Quantum gates, BDDs and MVL) to reduce

gate complexity and cost in realization of garbled circuit and improve computational

time and communication cost of SMC and validate these approaches showing its ap-

plicability in classical SMC examples, the Millionaires' problem, adders, DES and

MD5.

In chapter 4, we have discussed the possibility to construct Garbled Circuit using

quantum gates (QG), observing that in some cases, the quantum GC requires a lower

number of non-XOR gates with respect to the corresponding classical GC implemen-

tations. Having fewer non-XOR gates results in a reduced number of interactions

between the parties at runtime, reducing the communication cost and improving the

overall e�ciency of the execution of the SMC protocol. Our approach is innovative

since it is one of the �rst attempts of using quantum gates for the design of GCs.

Our experimental results show that reduction of the number of non-XOR gates was
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about 20% of 4-bit Millionaires' problem, about 36% of 8-bit Millionaires' problem,

about 51.6% of 64-bit adder, and about 49% in the 32-bit adder. This result can

be intuitively explained by the fact that XORs are very common in quantum circuits.

In chapter 5, we used a Binary Decision Diagram structure (BDD) for our im-

proving proposed methods. Using BDDs helps us to �nd similarity of other function

representations to XOR operation, aiming at transforming some non-XOR gates of

the circuit in XOR gates to reduce the number of non-XOR gates in GC construc-

tion, which can result in reducing the communication costs and circuit cost. Our

experimental results show that reduction of the number of non-XOR gates was about

1.6% of 32-bit adder, 4.6% of 64-bit adder, 0.05% of MD5 function and 2.5% of DES.

In chapter 6, we generalize Yao's secure two-party computation protocol to multiple-

valued logic and we consider a general multiple-valued function f that is represented

by a multiple-valued circuit composed by multiple-valued gates and discussing their

impact on the overall computation and communication costs. We pursue the idea of

using Multiple Valued Logic for the synthesis of garbled circuits, showing an exten-

sion of the classic Yao protocol for the evaluation of multiple valued gates. In this

chapter, we show how these improved evaluation techniques can be readily extended

to the case of MVL gates.

7.1 Future Work

In the future, we intend to investigate several directions as follows:

� Possible future research on novel logic representations with support of XOR gates,

i.e., the XOR-AND-Inverter Graphs (XAIGs). Using XOR based synthesis and

implementing on XAIG based rewriting algorithm in optimization tool (e.g.,

ABC) to improve e�ciency of GC.

� Investigate some combinational network and converting Boolean circuit to cell-

based combinational circuit with suitable elementary cells whose properties

can be converted in a quantum version. Thus, we can drive these properties

from elementary cell for the whole garbled circuit (GC).
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� Developing security proofs for our proposed protocols, as well as a full set of ex-

perimental prototypes to compare the size and the performance of the multiple

valued (MV) circuits with respect the original circuits.

� We plan to work on di�erent methods and techniques for the minimization of non-

XOR gates, by using tools and design techniques usually deployed in synthesis

for achieving di�erent goals.

� Working on di�erent methods for the optimization of the synthesis of garbled

circuit relying on quantum gates (QG) and MVL gates, trying to apply the

methodology to more complex case studies.

� Designing quantum GC directly from the de�nition of the input function, and not

from the de�nition of a GC.
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