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	 1	

Abstract	
The	presence	 of	RNA	 in	 the	 genome	of	 living	 cells	 is	 one	 of	 the	 emerging	

topics	 of	 the	 last	 two	 decades	 and	 has	 been	 implicated	 in	 many	 biological	

processes.	 I	 focused	my	attention	on	ribonucleotides	(rNMPs)	embedded	 into	

DNA	 during	 genome	 duplication,	 as	 a	 threat	 to	 its	 integrity.	 In	 fact,	 rNMPs	

have	been	classified	as	the	most	frequent	non-canonical	nucleotides	introduced	

during	 genome	 duplication	 by	 DNA	 polymerases.	 Such	 high	 incorporation	

frequency	has	been	related	to	a	physiological	role	in	mismatch	repair,	but	it	can	

be	easily	turned	into	a	source	of	genomic	instability	if	rNMPs	are	not	removed	

from	DNA.	This	task	is	performed	by	RNase	H	activities	that	enable	error-free	

repair	of	embedded	single	and	multiple	ribonucleotides.	

I	first	approached	the	issue	of	ribonucleotides	incorporation	into	DNA	from	

a	 physical	 point	 of	 view.	 Utilizing	 Atomic	 Force	 Microscopy	 I	 studied	 how	

ribonucleotides	 intrusions	 impact	 on	 DNA	 structure.	 The	 results	 obtained	

provided	 new	 insights	 on	 the	 structural	 changes	 imposed	 by	 ribonucleotides	

persistence	into	DNA.	The	other	part	of	my	Ph.D.	project	concerned	the	study	

of	rNMPs	incorporation	in	vivo,	using	the	budding	yeast	S.	cerevisiae	as	a	model	

organism.	 The	 second	 aim	 was	 to	 unravel	 the	 function	 of	 the	 Translesion	

Synthesis	 polymerase	 η	 (Pol	 η)	 when	 the	 genome	 contains	 residual	

ribonucleotides	 and	 when	 deoxyribonucleotides	 (dNTPs)	 pools	 are	 depleted.	

We	found	that	DNA	polymerase	η	is	responsible	for	the	cell	lethality	observed	

when	 dNTPs	 are	 scarce	 and	 RNase	 H	 activities	 are	 defective.	 Therefore,	 I	

explored	and	characterized	this	unexpected	toxic	activity.	We	propose	a	model	

where	Pol	η	supports	cell	survival	in	low	dNTPs	conditions	by	promoting	DNA	

replication	using	 ribonucleotides.	While	 this	 activity	 is	normally	beneficial	 to	

wild	type	cells,	it	is	highly	toxic	to	cells	defective	for	RNase	H	activities.	

	 	



	 2	

State	Of	The	Art	
	

Nucleic	acids	(DNA	and	RNA)	

Nucleic	 acids	 are	 polymeric	 macromolecules	 essential	 for	 every	 form	 of	 life.	

They	 play	 a	 role	 both	 in	 storage	 and	 expression	 of	 genetic	 information	 and,	

together	 with	 proteins,	 are	 the	 most	 important	 biological	 macromolecules	

(Alberts	B,	Johnson	A,	Lewis	J,	Raff	M,	2002).	They	were	discovered	in	1869,	

by	 Friederich	Miescher	 who	 found	 an	 unknown	 substance	 in	 the	 nucleus	 of	

leukocytes,	 and	 called	 it	 nuclein.	 He	 noticed	 that	 nuclein	 was	 full	 of	

phosphorous	and	later	he	confirmed	that	it	was	a	characteristic	component	of	

all	cells	nuclei	(reviewed	in	(Dahm,	2008)).	

In	living	organisms,	there	are	basically	two	main	types	of	nucleic	acids:	DNA,	

deoxyribonucleic	acid,	and	RNA,	ribonucleic	acid.	Nucleic	acids	are	constituted	

by	monomers	called	nucleotides.	Nucleotides	are	organic	molecules	composed	

of	 a	 pentose	 sugar,	 one	 ore	more	 phosphate	 group,	 and	 a	 nitrogenous	 base.	

Chemically	 they	 are	 phosphate	 esters	 of	 a	 pentose	 with	 a	 nitrogenous	 base	

covalently	 linked	to	the	C1	carbon	of	the	sugar.	The	monomeric	units	of	RNA	

are	ribonucleotides,	in	which	the	sugar	is	the	D-ribose,	whereas	DNA	is	made	

up	of	deoxyribonucleotides,	with	2’-deoxy-D-ribose	as	sugar	unit	(Figure	1).	The	

nitrogenous	 bases	 are	 mainly	 derivatives	 of	 purines	 or	 pyrimidines,	 planar	

molecules	 containing	nitrogen	atoms.	 In	 vivo,	 the	most	abundant	purines	are	

adenine	(A)	and	guanine	(G),	while	pyrimidines	are	cytosine	(C),	uracil	(U)	and	

thymine	 (T).	They	 are	 linked	 to	 the	pentose	 sugar	 through	a	 glycosidic	bond	

with	the	C1	atom,	while	on	the	opposite	side	the	phosphate	group	is	connected	

with	 the	 C5	 atom.	DNA	 and	 RNA	 have	 the	 same	 bases	 on	 their	 nucleotides,	

except	for	uracil	that	is	used	only	in	RNA	in	place	of	thymine.	Nucleotides	are	

joined	together	through	a	phosphodiester	bond,	between	the	phosphate	group	

and	 the	 two	 adjacent	 pentoses,	 resulting	 in	 linear	 polymeric	 chains.	
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Additionally,	one	polynucleotide	chain	can	interact	with	another	one	through	

the	 formation	 of	 hydrogen	 bonds	 between	 complementary	 bases:	 adenine	

always	 pairs	 with	 thymine	 or	 uracil	 through	 two	 hydrogen	 bonds,	 while	

guanine	pairs	with	cytosine	through	three	hydrogen	bonds	(Chargaff,	1950).	In	

cells,	 the	 synthesis	 of	 nucleotides	 can	 occur	 either	 de	 novo	 or	 by	 recycling	

pathways	linked	to	other	degradative	processes	(Voet	&	Voet,	2010).		

	

	

Figure	1.	Chemical	structures	of	deoxy-	and	ribonucleotides.	

RNA	 is	 a	 biopolymer	 constituted	 of	 ribonucleotides	 (rNMPs)	 that	 plays	 a	

fundamental	 role	 in	 many	 processes	 as	 transcription,	 translation,	 and	

regulation	of	gene	expression.	Compared	 to	DNA,	RNA	molecules	are	usually	

shorter	and	generally	exist	as	single	stranded	molecules;	nevertheless,	ssRNAs	

can	 be	 highly	 structured	 because	 of	 the	 formation	 of	 intra-strand	 pairing	

between	 complementary	 bases.	 The	 overall	 structure	 of	 RNAs	 can	 be	 very	

intricate,	it	comprises	many	secondary	structures	as	stem-loops,	which	together	

assume	a	three-dimensional	structure	that	reflects	the	function	of	the	molecule	

(Tinoco	 &	 Bustamante,	 1999).	 RNA	 is	 synthesized	 by	 RNA	 polymerase(s)	

during	 the	 transcription	 process,	 using	 one	 DNA	 strand	 as	 a	 template	 and	

adding	ribonucleotides	with	respect	of	the	base	pairs	complementarity	(Ochoa,	

1961).	In	this	way,	the	genetic	information	contained	in	DNA	can	be	transferred	

to	a	specific	RNA,	called	messenger	RNA	or	mRNA,	and	later	such	information	

can	 be	 translated	 into	 proteins	 (F.	 Crick,	 1970).	 The	 translation	 process	

requires	specific	RNA	molecules	as	well,	known	as	transfer	RNA	or	tRNAs	and	

ribosomal	 rRNAs	 (Sharp,	 Schaack,	 Cooley,	 Burke,	 &	 Soil,	 1985).	 More	

recently,	a	large	number	of	other	kinds	of	RNAs	have	been	discovered,	playing	
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important	roles	in	RNA	processing,	regulation	of	gene	expression	and	signaling	

(Carthew	 &	 Sontheimer,	 2009;	 Matzke	 &	 Matzke,	 2004).	 It	 is	 broadly	

assumed	 that	 RNA	 was	 the	 first	 primordial	 nucleic	 acid	 molecule,	

superintending	 the	 so-called	 RNA	 world	 (Gilbert,	 1986).	 Then	 DNA	 was	

evolutionarily	selected	over	RNA,	given	its	ability	to	long-term	store	the	genetic	

information	 and	 its	 increase	 stability	 to	 hydrolysis	 (Larralde,	 Robertson,	 &	

Miller,	1995).	

DNA	is	a	linear	polymer	of	deoxyribonucleotides	(dNMPs),	which	generally	

exist	as	a	double	stranded	molecule	with	two	helices	of	opposite	polarity.	The	

revolutionary	discovery	of	DNA	structure	in	1953	by	James	Watson	and	Francis	

Crick	was	 the	most	 noteworthy	 turning	 point	 of	 the	molecular	 biology;	 they	

indeed	 proposed	 for	 the	 first	 time	 a	 double	 helical	 model,	 with	 an	 external	

backbone	 of	 alternating	 sugars	 and	 phosphate	 groups	 with	 the	 base	 pairs	

located	 inside	 the	helix	 (F.	 H.	 C.	 Crick	 &	Watson,	 1954;	 Watson	 &	 Crick,	

1953).	 Double-stranded	 DNA	 molecules	 assume	 a	 typical	 conformation	 in	

physiological	conditions,	called	B-form.	The	B-form	 is	well	characterized	by	a	

series	of	parameters	(A.	H.	Wang	et	al.,	1979)	(Wing	et	al.,	1980)	that	together	

explain	 its	 particular	 stability	 in	 aqueous	 solutions	 and	 its	 suitability	 for	 the	

storage	of	biological	 information.	DNA	can	also	assume	other	 conformations,	

as	 the	 A-form	 or	 the	 Z-form,	 depending	 on	 its	 hydration	 level,	 sequence,	

chemical	 modifications	 or	 proteins	 bound	 (Dickerson	 et	 al.,	 1982).	 In	

particular,	the	A-form	is	a	wide	and	compact	structure,	also	adopted	by	dsRNA	

molecules.	

The	 succession	 of	 the	 four	 bases	 along	 the	 DNA	 backbone	 encodes	 the	

genetic	 information,	 which	 is	 duplicated	 exploiting	 the	 two	 strands	

complementarity.	 Indeed,	hydrogen	bonds	between	 the	bases	 inside	 the	helix	

can	be	easily	broken	and	rejoined	like	a	zipper,	and	this	represents	on	the	base	

of	the	DNA	replication	process.	Besides	DNA	replication,	numerous	biological	

processes	 need	 helix	 opening,	 which	 consequently	 induces	 the	 formation	 of	

supercoils	 (Alberts	 B,	 Johnson	 A,	 Lewis	 J,	 Raff	 M,	 2002).	 The	 topological	

state	 of	 DNA	 is	 hence	 under	 a	 tight	 control	 since	 it	 can	 interfere	 and	 affect	
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important	processes	 such	as	duplication	or	gene	expression.	A	special	 type	of	

enzymes,	 called	 DNA	 topoisomerases,	 modulate	 and	 control	 the	 topology	 of	

DNA	in	living	cells	(Champoux,	2001).	Genomic	DNA	is	densely	packaged	into	

a	very	small	volume,	it	is	first	wrapped	around	specific	proteins	called	histones,	

and	 then	 it	 is	 coiled	 again	 many	 times	 to	 achieve	 the	 well-known	 shape	 of	

chromosomes	(Kornberg,	 1974).	This	highly	condensed	structure	serves	other	

important	roles,	such	as	controlling	the	DNA	accessibility	by	protein	factors	(G.	

Li	&	Reinberg,	2011).		
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Genome	Duplication	

Duplication	of	genetic	information	is	a	key	event	during	the	life	cycle	of	a	cell,	

and	 for	 this	 reason,	 it	 is	 carried	out	with	high	accuracy	and	carefulness.	This	

chapter	describes	the	main	events	of	 the	cell	cycle,	with	a	particular	 focus	on	

DNA	replication	and	the	fidelity	of	this	important	process.	

The	Cell	cycle		

The	cell	cycle	comprises	the	series	of	events	occurring	during	the	lifetime	of	a	

eukaryotic	cell,	leading	to	cell	division.	Once	cellular	components	are	doubled	

and	 the	 genome	 is	 accurately	duplicated,	 cells	 are	 ready	 to	 equally	distribute	

the	materials	 into	 two	 identical	 daughter	 cells.	 The	 cell	 cycle	 is	 organized	 in	

consecutive	and	discrete	phases,	interphase	(G1,	S	and	G2	phases)	and	mitosis		

(M)	(Figure	2)	(Masai,	Matsumoto,	You,	Yoshizawa-Sugata,	&	Oda,	 2010).	

DNA	 replication	 occurs	 once	 and	 only	 once	 during	 the	 Synthesis	 phase	 (S),	

then	chromosomes	are	segregated	during	Mitosis	(M)	followed	by	cytokinesis.	

These	phases	are	temporarily	spaced	by	two	Gap	phases,	G1	between	M	and	S	

and	G2	between	S	and	M.	 In	 the	course	of	 these	Gaps	cells	grow,	accumulate	

nutrients,	 energy	 and	 get	 ready	 for	 chromosomes	 segregation	 (Masai	 et	 al.,	

2010).	 The	 progression	 through	 the	 cell	 cycle	 is	 driven	 by	 the	 cyclin-CDK	

kinase	complexes,	which	phosphorylate	specific	targets	regulating	the	passage	

from	 one	 phase	 to	 another	 (Nigg,	 1995).	 Moreover,	 cell	 cycle	 progression	 is	

firmly	 controlled	 at	 specific	 points	 by	 checkpoint	mechanisms,	 assessing	 that	

the	requirements	needed	for	the	entrance	into	a	specific	phase	have	been	met	

(Sible,	Tyson,	&	Novák,	2002).	In	conclusion,	the	transition	from	one	phase	to	

another	is	dependent	on	the	proper	completion	of	the	previous	one.	

The	 concept	 of	 checkpoint	 was	 introduced	 for	 the	 first	 time	 in	 1989	 by	

Hartwell	and	Weinert,	proving	that	an	incomplete	cell	cycle	phase	inhibits	the	

entrance	 in	 the	next	one	 (L.	 H	 Hartwell	 &	Weinert,	 1989).	 There	are	 three	

main	checkpoints	acting	at	the	boundary	of	G1/S	and	G2/M	phases	and	during	

M	phase	(Longhese,	Foiani,	Muzi-Falconi,	Lucchini,	&	Plevani,	1998).	They	

mainly	ensure	that	cells	have	reached	a	critical	size	and	amount	of	biosynthetic	
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material	to	fully	replicate	DNA	(G1/S	checkpoint	or	START),	that	no	damages	

are	present	on	DNA	(G2/M	and	intra-S	checkpoint)	and	the	spindle	is	correctly	

formed	 and	 chromosomes	 are	 properly	 attached	 to	 it	 (M	 checkpoint	 or	

metaphase	 checkpoint).	 In	 the	 case	 of	 issues,	 checkpoint	 mechanisms	 both	

coordinate	 the	 action	 of	 repair	 mechanisms	 and	 stop	 or	 slow	 down	 the	 cell	

cycle	 until	 those	 problems	 are	 solved	 (Barnum	 &	 O’Connell,	 2014;	 L.	 H	

Hartwell	&	Weinert,	1989;	Murray,	1992;	Sible	et	al.,	2002).		

In	particular	conditions,	such	as	nutrient	deficiency,	cells	exit	from	the	cell	

cycle	and	enter	 into	a	quiescent	phase	called	G0	phase,	which	 in	 turn	can	be	

later	 reverted	 when	 favorable	 conditions	 are	 met.	 In	 the	 case	 of	 terminally	

differentiated	 cells,	 as	 neurons,	 the	 G0	 state	 can	 be	 a	 permanent	 state	

genetically	and	epigenetically	programmed	(Masai	et	al.,	2010).		

	

	
Figure	2.	Scheme	of	the	cell	cycle.	

	

Budding	 yeast	S.	 cerevisiae	was	used	 extensively	 as	 the	model	 organism	 to	

study	 the	 cell	 cycle	 and	 its	 regulation	 (Leland	 H	 Hartwell,	 1974).	 Since	 it	

grows	 by	 budding,	 it	 is	 easy	 to	 follow	 and	 distinguish	 between	 the	 different	

stages	of	cell	cycle,	just	by	looking	at	the	morphology	of	cells	under	the	optical	

microscope.	 The	 bud	 emerges	 at	 the	 end	 of	 the	 G1	 phase	 and	 grows	

continuously	 during	 S	 phase	 until	 it	 reaches	 a	 size	 slightly	 smaller	 than	 the	

mother	cell.	For	this	reason,	bud	size	is	a	useful	marker	of	cell-cycle	position.	

Different	 genetic	 or	 chemical	 methods	 have	 been	 developed	 to	 block	 and	

synchronize	 yeast	 cells	 at	 a	 specific	 position	 of	 the	 cell	 cycle,	 reversibly	 or	
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irreversibly	(Rosebrock,	2017).	The	most	widely	chemical	methods	involve	the	

use	 of:	 alpha-factor	 mating	 pheromone,	 which	 blocks	 cells	 at	 the	 end	 of	 G1	

phase;	 hydroxyurea	 (HU),	 which	 arrest	 cells	 at	 the	 beginning	 of	 S	 phase,	 by	

dNTPs	 pool	 depletion;	 nocodazole,	 which	 interferes	 with	 microtubules	

polymerization	preventing	mitotic	spindle	assembly	in	M	phase.	

DNA	Replication	

It	 has	 not	 escaped	 our	 notice	 that	 the	 specific	 pairing	 we	 have	 postulated	

immediately	suggests	a	possible	copying	mechanism	for	genetic	material.	It	was	

1953,	 and	with	 this	 sentence,	Watson	 and	Crick	 concluded	 their	 paper	 about	

the	structure	of	the	double	helix	(Watson	&	Crick,	 1953).	The	intrinsic	nature	

of	DNA	 invokes	 a	 copying	mechanism,	 in	which	 the	 two	 strands	 are	 used	 as	

templates	 to	 synthesize	 the	complementary	ones.	A	 few	years	 later,	Meselson	

and	Stahl	elegantly	demonstrated	that	DNA	replication	 is	a	semi-conservative	

process:	parental	helices	are	opened	and	copied	following	the	complementarity	

of	base	pairs	(Meselson	&	Stahl,	1958).	The	net	result	of	this	mechanism	is	two	

identical	DNA	molecules	in	which	one	strand	is	the	parental	one	and	the	other	

is	newly	synthesized.		

DNA	duplication	in	eukaryotes	is	a	very	complicated	and	regulated	process	

that	involves	a	large	number	of	proteins	(Leman	&	Noguchi,	 2013).	It	occurs	

once	and	only	once	per	cell	cycle,	during	S	phase.	As	 for	 the	cell	cycle,	much	

about	 this	 process	was	 learned	 from	 the	 budding	 yeast	S.	 cerevisiae.	 To	 start	

DNA	replication,	precise	conditions	need	to	be	satisfied,	as	the	right	amount	of	

nutrients,	 nucleotides,	 positive	 environmental	 factors	 and	 so	 on	 (P.	 M.	 J.	

Burgers	&	Kunkel,	2017).	Eukaryotes	genomes	are	composed	of	linear	dsDNA	

organized	 in	 chromosomes	 and	 replication	 starts	 from	 specific	 positions,	

named	 replication	 origins.	 Yeast	 origins	 were	 identified	 as	 sequences	 that	

enable	 replication	 and	 maintenance	 when	 introduced	 in	 a	 plasmid,	 so	 they	

were	named	autonomously	replicating	sequences	(ARS)	(Stinchcomb,	Struhl,	

&	Davis,	 1979).	In	the	yeast	genome	there	are	around	400	ARSs,	and	they	are	

not	 fired	 at	 the	 same	 time,	 but	 rather	 following	 an	 established	 order	 that	
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correlates	with	 the	 transcriptional	 activities	 of	 the	 surrounding	 genes	 (Dhar,	

Sehgal,	 &	 Kaul,	 2012;	 Vujcic,	 Miller,	 &	 Kowalski,	 1999);	 early	 and	 highly	

efficient	origins	are	often	associated	with	active	genes,	while	inefficient	and	late	

origins	are	associated	with	silent	genes	(Raghuraman	 et	 al.,	 2001;	 Vujcic	 et	

al.,	 1999).	 ARSs	 sequences	 are	 rich	 in	 A-T	 to	 facilitate	 dsDNA	 double	 helix	

opening	 and	 contain	 a	 very	 short	 consensus	 sequence	 of	 11	 bp,	 essential	 for	

replication	initiation	(Newlon	&	 Theis,	 2002;	 Theis	&	Newlon,	 1997).	 In	G1	

phase,	the	Origin	Recognition	Complex	(ORC)	binds	this	consensus	sequence,	

and	 a	 pre-replicative	 complex	 (pre-RC)	 is	 assembled	 on	 each	 ARS,	 a	 process	

know	 as	 licensing	 (Diffley,	 1995).	 Subsequently	 Cdc6	 and	 Ctd1	 proteins	 are	

recruited	 and	 they	 cooperate	 to	 load	 the	MCM	 complex,	 which	 has	 helicase	

activity,	 forming	 a	 licensed	 pre-RC.	 The	 pre-RC	 has	 to	 be	 activated	 to	 start	

DNA	synthesis	at	the	onset	of	S	phase;	the	CDK	and	DDK	kinases	are	the	ones	

that	promote	the	activation	of	the	pre-RC,	by	triggering	a	rapidly	degradation	

of	 Cdc6	 (Drury,	 Perkins,	 &	 Diffley,	 2000)	 and	 stimulating	 MCM	 helicase	

activity	 (Sheu	 &	 Stillman,	 2006),	 respectively;	 these	 are	 crucial	 events	 in	

precluding	ARS	re-replication.	Then	the	DDK,	 together	with	the	CDK,	recruit	

Cdc45,	 a	 key	 step	 for	 the	 formation	 of	 the	 activated	 initiation	 complex	

(Tercero,	Labib,	&	Diffley,	2000).	Indeed,	Cdc45	loading	onto	DNA	is	critical	

for	the	successive	loading	of	the	protein	machinery	required	for	DNA	synthesis,	

as	DNA	polymerase	α,	DNA	polymerases	δ	and	ε,	replication	protein	A	(RPA)	

and	proliferating	cell	nuclear	antigen	(PCNA)	(Walter	&	Newport,	2000;	Zou	

&	Stillman,	2000).	As	a	result,	the	DNA	around	the	ARS	is	locally	unwound	by	

the	 MCM	 complex,	 and	 the	 whole	 replicative	 machinery	 (replisome)	 is	

assembled	on	the	two	separated	DNA	strands	(Takisawa,	Mimura,	&	Kubota,	

2000).	

The	unlocked	replication	origin	proceeds	in	a	bidirectional	way,	in	fact	two	

replisomes	are	assembled	at	each	branch	point	of	the	replication	bubble,	region	

known	 as	 replication	 fork,	 where	 many	 proteins	 act	 in	 concert	 to	 allow	 its	

progression	 (Figure	 3).	 The	 main	 players	 are	 undoubtedly	 the	 DNA	

polymerases,	enzymes	that	catalyze	ex	novo	nucleotides	polymerization	using	a	
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single	stranded	template	and	a	3’-OH	primer	 junction	(P.	 Kannouche	 et	 al.,	

2001)(Lehman,	 Bessman,	 Simms,	 &	 Kornberg,	 1958).	 The	 incoming	

nucleotide	 is	 selected	with	very	high	 fidelity	by	 replicative	DNA	polymerases,	

by	proving	its	ability	to	form	a	Watson-Crick	pairs	with	the	one	in	the	template	

(Thomas	 A	 Kunkel,	 2004).	 The	 Pol	 α-primase	 complex	 provides	 the	 3’-OH	

primer	to	replicative	polymerases	by	synthesizing	de	novo	RNA	primers	of	∼10	

nucleotides,	using	DNA	as	a	template.	The	Pol	α-primase	has	also	the	peculiar	

capability	to	switch	its	polymerization	activity	from	RNA	to	DNA	and,	after	the	

synthesis	of	∼10	rNMPs,	it	proceeds	with	∼30-40	dNMPs	(Lehman	&	Kaguni,	

1989;	 Plevani	 &	 Chang,	 1977).	 Despite	 the	 unique	 directionality	 of	 DNA	

polymerases	 (5’→3’)	 and	 the	 opposite	 polarity	 of	 the	 two	 DNA	 strands,	

replication	 proceeds	 simultaneously	 on	 both	 directions.	 This	 apparent	

incongruence	 was	 solved	 in	 1968	 by	 Okazaki,	 who	 proposed	 the	 semi-

discontinuous	model	of	replication	(Okazaki,	Okazaki,	Sakabe,	Sugimoto,	&	

Sugino,	 1968).	 One	 DNA	 strand	 (leading	 strand)	 is	 replicated	 in	 the	 fork	

direction	by	the	DNA	polymerase	ε,	while	the	other	(lagging	strand),	is	copied	

discontinuously	 by	 the	DNA	 polymerase	 δ	 (Thomas	 A.	 Kunkel	 &	 Burgers,	

2008).	Here	the	replication	proceeds	in	the	fork	direction	by	synthetizing	100-

200	 bp	 discontinuous	 fragments	 (Okazaki	 fragments),	 that	 are	 subsequently	

joined	together	by	the	DNA	ligase	(A.	 Johnson	&	O’Donnell,	 2005).	Clearly	

the	replication	of	the	lagging	strand	requires	multiple	priming	events,	while	for	

leading	strand	initiation,	ideally	only	one	priming	event	is	sufficient.	The	Pol	α-

primase	 complex	 serves	 its	 function	 by	 exhibiting	 only	moderate	 processivity	

and	low	fidelity	(T	A	Kunkel,	Hamatake,	Motto-Fox,	Fitzgerald,	&	Sugino,	

1989);	 on	 the	 contrary,	 replicative	 DNA	 polymerases	 are	 highly	 processive	

enzymes	(Fortune	et	al.,	2005;	Shcherbakova	et	al.,	2003),	and	their	task	is	

assisted	by	the	proliferating	cell	nuclear	antigen	(PCNA)	(P.	M.	Burgers,	1991;	

Chilkova	et	al.,	2007;	Lee,	Pan,	Kwong,	Burgers,	&	Hurwitz,	1991).	PCNA	is	

a	 homotrimeric	 sliding	 clamp	 that	 forms	 a	 closed	 ring	 around	 DNA,	 it	 is	

essential	for	DNA	replication	and	interacts	with	numerous	components	of	the	

replisome	 (Moldovan,	 Pfander,	 &	 Jentsch,	 2007).	 PCNA	hence	 coordinates	
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the	polymerase	switch	on	the	lagging	strand	between	Pol	α	and	Pol	δ,	but	also	

between	 replicative	 and	 specialized	 Translesion	 DNA	 polymerases	 when	 the	

replication	 fork	 is	being	blocked	by	a	DNA	 lesion	 (explained	 in	detail	below)	

(Essers	et	al.,	2005).		

	

Figure	3.	Simplified	model	of	replication	fork	(Mcculloch	&	Kunkel,	2008)	

The	RNA	primers	used	by	replicative	polymerases	need	to	be	removed	from	

the	 genome	 because	 they	 will	 cause	 instability	 if	 left	 unresolved	 (Zheng	 &	

Shen,	2011).	The	Okazaki	fragments	maturation	serves	this	purpose,	leading	to	

the	primers	removal	concurrent	with	the	lagging	strand	synthesis.	When	Pol	δ	

reaches	 the	 5’	 end	 of	 the	 downstream	 Okazaki	 fragment,	 it	 continues	 DNA	

synthesis	 displacing	 the	 RNA-DNA	 primer	 faced	 and	 generating	 a	 flap	 of	

varying	lengths.	In	the	case	of	short	flaps,	the	removal	is	achieved	either	by	an	

iterative	 cycle	 with	 direct	 cleavage	 by	 the	 flap	 endonuclease	 1	 (Rad27/FEN1)	

(Garg,	Stith,	Sabouri,	 Johansson,	&	Burgers,	2004)	or	by	multiple	incisions	

by	RNase	H2	(or	RNase	H1)	that	can	occur	up	to	the	final	ribonucleotide	of	the	

RNA	 primer,	 that	 is	 finally	 removed	 by	 FEN1	 (Qiu,	 Qian,	 Frank,	

Wintersberger,	&	Shen,	1999).	If	the	flap	becomes	longer	than	30	nucleotides,	

it	 is	 immediately	 covered	 by	 RPA	 and	 the	DNA2	 helicase/nuclease	 cleaves	 it	

(Levikova	&	Cejka,	 2015).	Once	a	DNA-DNA	nick	is	accomplished,	the	DNA	

ligase	I	terminates	the	process	linking	the	two	free	ends	with	a	phosphodiester	
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bond.	 This	 cycle	 is	 made	 processive	 by	 PCNA,	 that	 again	 coordinates	 the	

proteins	involved	and	makes	tight	the	complex	(Zheng	&	Shen,	2011).	Okazaki	

fragment	 maturation	 is	 completed	 in	 a	 short	 time	 and	 nucleosomes	 are	

assembled	at	 the	 fork	 junction,	both	 in	 leading	and	 lagging	strand,	 indicating	

that	 the	 DNA	 close	 to	 the	 branch	 is	 already	 fully	 ligated	 (Sogo,	 Lopes,	 &	

Foiani,	2002).		

Beyond	helicases,	that	can	unwind	DNA	duplex,	topoisomerases	regulate	the	

DNA	topology	by	adding	or	removing	supercoils	formed	during	the	replication	

process.	 Type	 I	 topoisomerases	 remove	 supercoils,	 i.e.	 relax	DNA,	 by	 nicking	

and	closing	one	strand	of	dsDNA;	type	II	topoisomerases	change	DNA	topology	

by	 breaking	 and	 rejoining	 dsDNA,	 introducing	 or	 removing	 supercoils.	 A	

moving	replication	fork	generates	positive	supercoils,	therefore	these	enzymes	

are	very	important	to	solve	genomic	torsional	stresses	(Champoux,	2001).		

DNA	Polymerase	Fidelity		

Genome	duplication	is	carried	out	with	high	fidelity	thanks	to	the	accuracy	of	

replicative	DNA	polymerases	and	the	backup	control	by	 the	Mismatch	Repair	

Mechanism	 (MMR);	 together	 they	 ensure	 an	 in	 vivo	 error	 rate	 of	 1	 every	 109	

nucleotide	 insertions.	 Uncorrected	 errors	 can	 result	 in	 dangerous	mutations;	

nevertheless,	 a	 low	 mutation	 rate	 contributes	 to	 the	 sequence	 variability	 on	

which	natural	selection	is	based	on.	

The	bulk	 of	 replication	 is	 committed	 to	 three	B-family	 polymerases,	 Pol	 ε,	

Pol	δ	and	Pol	α,	while	 the	A-family	Pol	γ	 is	 responsible	 for	 the	mitochondrial	

DNA	 replication	 (Bebenek	 &	 Kunkel,	 2004).	 Replication	 fidelity	 is	 mostly	

guaranteed	by	the	capacity	of	replicative	DNA	polymerase	to	select	the	correct	

incoming	 nucleotide	 and	 this	 high	 selectivity	 is	 dependent	 on	 the	 ability	 to	

form	 correct	 hydrogen	 bonds	 between	 the	 template	 and	 the	 incoming	

nucleotides	bases	 (Kool,	 2002).	The	 free	energy	difference	between	a	 correct	

and	 a	 mispaired	 pair	 of	 nucleotides	 is	 high	 enough	 to	 make	 the	 latter	 very	

unfavorable	 (Petruska	 et	 al.,	 1988).	 However,	 the	 difference	 value	 of	 free	

energy	 is	 too	 low	 to	 be	 used	 as	 the	 only	 selection	 parameter.	 The	 base	 pair	
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geometry	contributes	as	well	 to	 the	discrimination,	 indeed	only	geometrically	

equivalent	 A-T	 and	 G-C	 pairs	 fit	 perfectly	 in	 the	 active	 site	 of	 polymerases,	

where	 there	 is	 no	 available	 space	 for	 other	 molecules	 as	 water	 (Beard	 &	

Wilson,	 2003).	Thanks	to	the	steric	hindrance,	DNA	Pols	bind	correct	dNTPs	

with	 10	 to	 103	 fold	 higher	 affinity	 respect	 to	 the	 incorrect	 ones	 (S.	 S.	 Patel,	

Wong,	 &	 Johnson,	 1991;	 Wong,	 Patel,	 &	 Johnson,	 1991).	 The	 binding	 of	

incorrect	nucleotides	would	delay	enzyme’s	conformational	changes	needed	for	

catalysis	 and,	 as	 a	 consequence,	 reduce	 the	 rate	 of	 phosphodiester	 bond	

formation	(M	F	Goodman,	1997;	S.	J.	Johnson	&	Beese,	2004).		

Mismatched	 termini	 are	 hence	more	 difficult	 to	 extend,	 and	 the	 resulting	

delay	 induces	 a	 fray	 that	 moves	 it	 to	 the	 3’-exonuclease	 site	 of	 the	 enzyme	

(Myron	F.	Goodman,	Creighton,	Bloom,	Petruska,	&	Kunkel,	 1993).	As	a	

matter	of	fact	the	two	principal	DNA	polymerases	ε	and	δ	own	a	proofreading	

domain	(A.	Morrison	&	 Sugino,	 1994;	 	 a	Morrison,	 Johnson,	 Johnston,	&	

Sugino,	 1993;	 Pavlov,	Maki,	Maki,	 &	Kunkel,	 2004;	 Vanderstraeten,	 Van	

den	 Brûle,	 Hu,	 &	 Foury,	 1998)	 to	 excise	mismatched	 nucleotides,	 and	 this	

increase	fidelity	up	to	103	fold	(Table	1)	(T	A	Kunkel	&	Bebenek,	2000).	

DNA	 polymerases	 can	 also	 generate	 small	 insertions	 or	 deletions	 (indels),	

when	 one	 or	 few	 bases	 in	 the	 template	 DNA	 are	 unpaired	 and	 then	 realign	

improperly	(Garcia-Diaz	 &	 Kunkel,	 2006).	 	As	 for	base	substitutions,	 indels	

rates	 vary	 depending	 on	 the	 polymerase	 but	 are	 strongly	 challenged	 by	 the	

sequence	context,	i.e.	repetitive	sequences	(Garcia-Diaz	&	Kunkel,	 2006).	In	

Table	1	are	reported	the	error	rates	of	base	substitutions	and	indels,	calculated	

for	the	major	yeast	replicative	DNA	polymerases.	
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Table	1.	Error	rates	of	Replicative	DNA	polymerases.	

S.	cerevisiae	

Polymerase	

Single	Base	

Substitution	

(×	10-5)	

Single	Base	

Indel	

(×	10-5)	

Reference	

Exonuclease	

proficient	

δ	 ≤	1.3	 1.3	 (Fortune	et	al.,	2005)	

ε	 ≤	0.2	 ≤	0.05	 (Shcherbakova	et	al.,	2003)	

Exonuclease	

deficient	

δ	 1.3	 5.7	 (Fortune	et	al.,	2005)	

ε	 24	 5.6	 (Shcherbakova	et	al.,	2003)	

α	 9.6	 3.1	 (T	A	Kunkel	et	al.,	1989)	
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Genome	Instability	

Cells	are	constantly	threatened	by	chemical	and	physical	agents	that	challenge	

the	 integrity	 of	 the	 genome.	 In	 human	 cells,	 nearly	 104-105	 lesions	 occur	 on	

DNA	every	day,	and	all	have	to	be	repaired,	indicating	how	the	maintenance	of	

genome	integrity	is	crucial	during	the	cell	cycle	(Lindahl	&	Barnes,	2000).	The	

failure	 of	 repair	 DNA	 damages	 results	 in	 DNA	 replication	 or	 transcription	

blockage,	as	well	as	impairment	of	DNA	functions	per	se;	genome	instability	is	

the	 condition	 in	 which	 cells	 accumulate	 different	 genetic	 alterations,	 from	

point	mutations	 to	gross	 chromosomal	 rearrangements	 (Aguilera	 &	 Gómez-

González,	 2008).	 In	 higher	 eukaryotes,	 the	 loss	 of	 function	 of	 genes	

responding	 to	 DNA	 damage	 often	 results	 in	 genetic	 syndromes	 and	 cancer	

predisposition	 (J.	 H.	 J.	 Hoeijmakers,	 2001;	 Negrini,	 Gorgoulis,	 &	

Halazonetis,	2010;	Pikor,	Thu,	Vucic,	&	Lam,	2013;	Z.	Shen,	2011).		

The	 DNA	 Damage	 Response	 (DDR)	 is	 the	 complicated	 network,	 which	

includes	multiple	repair	mechanisms,	damage	tolerance	pathways	and	cell	cycle	

checkpoints	 that	 guarantee	 genome	 integrity.	 Genomic	 insults	 arise	 from	

various	sources	that	directly	hit	the	DNA;	these	can	be	exogenous,	as	UV	light,	

IR,	 and	 chemicals,	 or	 endogenous,	 as	 reactive	 oxygen	 species	 (ROS)	 and	

spontaneous	 hydrolysis	 of	 nucleotide	 residues.	 	 DNA	 replication	 process	

contributes	 actively	 to	 genome	 instability,	 with	 mismatches,	 indels	 and	

ribonucleotides	incorporation.		

In	 this	 section,	 the	main	 repair	mechanisms	 are	briefly	 described	with	 the	

exception	 of	 the	Ribonucleotide-Excision	Repair	 (RER)	 that	 is	 detailed	 in	 the	

next	 section.	 The	 main	 focus	 of	 this	 chapter	 is	 the	 DNA	 Damage	 Tolerance	

(DDT),	also	called	Post-Replication	Repair	(PRR).	

	

DNA	Repair	Mechanisms	

Cells	have	evolved	a	plethora	of	DNA	repair	mechanisms,	each	one	specialized	

in	 a	 particular	 type	 of	 damage,	 able	 to	 specifically	 recognize	 and	 efficiently	

resolve	the	lesion.	
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Base	Excision	Repair	(BER)	

Chemically	 damaged	 bases	 that	 do	 not	 strongly	 disturb	 DNA	 structures	 are	

repaired	 by	 Base	 Excision	 Repair	 (BER)	 (Almeida	 &	 Sobol,	 2007).	 These	

lesions	 include	 deaminated,	 oxidized	 and	 alkylated	 bases	 that	 are	 recognized	

and	cleaved	by	specific	DNA	glycosylases.	These	enzymes	remove	the	damaged	

base	 from	 the	 nucleotide,	 leaving	 an	 abasic	 site	 (AP)	 that	 is	 subsequently	

incised	by	AP-endonucleases,	 resulting	 in	a	single-nucleotide	gap.	Finally,	 the	

gap	 is	 filled	 by	 the	 specialized	 DNA	 polymerase	 β	 and	 sealed	 by	 the	

XRCC1/Ligase	 III	 complex.	 BER	 is	 also	 specialized	 in	 repair	 of	 single	 strand	

breaks	with	dirty	ends	(Hegde,	Hazra,	&	Mitra,	2008)	that	require	the	action	

of	end-processing	enzymes	such	as	Aprataxin	(Gueven	et	al.,	2004)	and	TDP1	

(tyrosyl-DNA-phosphodiesterase)	 to	 create	 ligatable	 DNA	 ends	 (Caldecott,	

2007).	

	

Nucleotide	Excision	Repair	(NER)	

Nucleotide	Excision	Repair	 (NER)	 acts	on	a	 large	 variety	of	DNA	 lesions	 that	

induce	 local	distortions	of	 the	DNA	double	helix	 (J.	 H.	 Hoeijmakers,	 1993).	

The	most	important	and	studied	NER	substrates	are	pyrimidine	dimers	and	6-4	

photoproducts,	 generated	 by	 UV	 light,	 and	 DNA	 intra-	 and	 inter-strand	

crosslinks	(Sertic,	Pizzi,	Lazzaro,	Plevani,	&	Muzi-Falconi,	2012).	

Eukaryotic	 cells	 possess	 two	 different	 NER	 sub-pathways:	 transcription-

coupled	 NER	 (TC-NER),	 which	 removes	 transcription-stalling	 lesions	 on	

actively	 transcribed	 genes,	 and	 global	 genome	 NER	 (GG-NER),	 which	

eliminates	 lesions	anywhere	along	 the	genome	 (Dijk,	 Typas,	Mullenders,	 &	

Pines,	 2014).	The	initial	recognition	of	the	damage	is	different	in	TC-NER	and	

GG-NER,	in	one	case	the	lesion	is	sensed	by	the	stalling	of	the	RNA	polymerase,	

while	 in	 the	 other,	 two	 specific	 complexes	 detect	 the	 distortion	 of	 the	 DNA	

helix.	 After	 lesion	 detection,	 TC-	 and	 GG-NER	 converge	 into	 a	 common	

mechanism	 in	 which	 the	 transcription	 factor	 TFIIH	 complex	 is	 recruited	

(Compe	&	Egly,	2016)	and	its	helicase	activities	unwind	DNA	of	approximately	

30	 nucleotides,	 allowing	 the	 assembly	 of	 other	 NER	 factors	 to	 process	 the	
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lesion.	The	DNA	bubble	is	stabilized	by	Rad14/XPA	and	RPA,	and	two	specific	

endonucleases	(Rad2/XPG	and	Rad1-Rad10/ERCC1-XPF)	cut	at	the	3’	and	at	the	

5’	of	 the	damage,	 thus	excising	the	DNA	fragment	 including	the	damage.	The	

gap	 is	 then	 filled	 by	 replicative	 DNA	 polymerases	 or	 the	 human	 TLS	 Pol	 κ	

(Tomoo	Ogi	et	al.,	2010)	and	sealed	by	DNA	ligases	I	or	III.	

	

Mismatch	Repair	(MMR)		

The	 MMR	 machinery	 moves	 along	 with	 the	 replication	 forks	 and	 it	 is	

responsible	 for	 the	 repair	 of	mismatched	 nucleotides,	 insertions	 or	 deletions	

introduced	 during	 genome	 duplication	 (Z.	 Li,	 Pearlman,	 &	 Hsieh,	 2016).	

Prokaryotic	 and	 eukaryotic	MMR	 are	 very	 similar	 both	 in	 protein	 structures	

and	mechanisms.	 Briefly,	 the	mismatch	 is	 recognized	 and	 bound	 by	 specific	

proteins	(MutSα-MutSβ)	that	in	turn	trigger	the	recruitment	of	MutLα,	MutLβ	

and	MutLγ	 heterodimers	 and	 ultimately	 of	 the	 Exonuclease	 1	 (Exo1).	 Exo1	 is	

specifically	 localized	 on	 the	 newly	 synthesized	 strand,	 where	 it	 degrades	 the	

DNA	containing	 the	error,	producing	a	gap	 (Kolodner	 &	Marsischky,	 1999;	

Thomas	 A.	 Kunkel	 &	 Erie,	 2005).	 Lastly,	 the	DNA	polymerases	 fill	 the	gap	

and	the	DNA	ligase	I	seals	the	nick.	

It	is	crucial	that	the	MMR	repair	distinguishes	between	the	parental	and	the	

neo-synthesis	 strand.	 In	 bacteria,	 the	 transient	 hemi-methylation	 allows	 to	

discriminate	between	the	two	strands	whereas	in	eukaryotes	the	mechanism	is	

less	 clear.	 Surely	 nicks	 present	 in	 the	 lagging	 strand	 provide	 frequent	 entry	

points	for	Exo1,	while	in	the	leading	strand,	the	continuity	could	be	interrupted	

by	nicks	generated	at	ribonucleotides	sites	by	the	RNase	H2.	As	the	MMR	acts	

concomitantly	with	replication,	PCNA	is	responsible	to	coordinate	the	process,	

driving	the	machinery	in	the	correct	direction	by	specific	and	oriented	protein-

protein	 interactions	(Ghodgaonkar	 et	 al.,	 2013;	 Lujan,	Williams,	 Clausen,	

Clark,	&	Kunkel,	2013).		
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Double	Strand	Break	(DSB)	Repair	

All	the	mechanisms	described	above	rely	on	the	presence	of	one	correct	strand,	

which	 is	 used	 as	 a	 faithful	 template	 to	 restore	 integrity.	 However,	 both	 the	

strands	could	be	damaged	at	the	same	time,	as	for	DNA	double	strand	breaks	

(DSBs)	 and	 inter-strand	 cross-links	 (ISCLs).	 These	 lesions	 are	 the	 most	

dangerous	 for	 cells	because	 they	are	more	difficult	 to	 repair,	 as	 there	 is	none	

backup	 copy	 to	 use.	 DSBs	 are	 repaired	 by	 two	 main	 pathways:	 homologous	

recombination	(HR)	(San	Filippo,	Sung,	&	Klein,	2008)	and	non-homologous	

end-joining	 (NHEJ)	 (Lieber,	 2010),	 according	 to	 the	 phase	 of	 the	 cell	 cycle.	

Homologous	recombination	is	predominant	in	S	and	G2	phases	since	it	exploits	

the	 undamaged	 sequence	 of	 the	 homologous	 sister	 chromatid	 (Longhese,	

Bonetti,	 Manfrini,	 &	 Clerici,	 2010).	 In	 brief,	 once	 a	DSBs	 occurs,	 ends	 are	

held	 together	 and	 resected	 in	 5’-3’	 direction,	 generating	 3’-overhangs	 that	 are	

cooperatively	 covered	 by	 RPA	 and	 then	 by	 Rad51	 protein	 (Mimitou	 &	

Symington,	2011).	The	nucleo-protein	filament	drives	the	strand	invasion	into	

the	 homologous	 sister	 chromatid,	 where	 strands	 are	 temporarily	 exchanged.	

Therefore	the	strand	invasion	provides	a	template	to	accurately	repair	the	DSB.	

During	G1	phase,	DSBs	are	prevalently	 repaired	by	NHEJ	 (Huertas,	 2010);	 as	

for	HR,	ends	are	tethered	together,	then	resection	occurs	and	the	two	ends	are	

rapidly	 sealed.	During	NHEJ,	 loss	or	changes	of	a	 few	nucleotides	may	occur,	

indeed	 it	 is	considered	an	error-prone	process	(Lieber,	 2010;	 San	 Filippo	 et	

al.,	2008).	

	

DNA	Damage	Response	

As	mentioned	before,	 cells	 are	 constantly	 exposed	 to	DNA	damages	and	 they	

possess	plenty	of	lesion-specific	DNA	repair	pathways	to	deal	with.	Besides	the	

specificity	 to	 different	 DNA	 lesions,	 all	 these	 pathways	 activate	 a	 common	

checkpoint	 known	 as	 DNA	 Damage	 Response	 (DDR)	 (T	 A	 Weinert	 &	

Hartwell,	 1988).	The	DNA	damage	checkpoints	arrest	the	cell	cycle	to	provide	

the	time	and	the	means	to	carry	out	DNA	repair	(Lazzaro	et	al.,	2009;	Rao	&	

Johnson,	 1970;	 T	 A	 Weinert	 &	 Hartwell,	 1988).	 Then,	 when	 repair	 is	
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completed,	 the	 checkpoint	 signal	 is	 turned	 off	 and	 cells	 can	 re-enter	 the	 cell	

cycle.	 In	 yeast,	 the	 cell	 cycle	 is	 controlled	 by	 three	 (Nyberg,	 Michelson,	

Putnam,	 &	Weinert,	 2002)	main	 checkpoints	 that	 respond	 to	DNA	damage	

accordingly	 to	 the	phase	 in	which	 is	 experienced	 (Nyberg	 et	 al.,	 2002).	 The	

G1/S	 checkpoint	 prevents	 replication	 of	 damaged	 DNA	 (Siede,	 Friedberg,	

Dianova,	&	Friedberg,	 1994);	the	intra-S	checkpoint	slows	down	S-phase	and	

stabilizes	the	stalled	replication	forks	(Paulovich	&	Hartwell,	1995);	the	G2/M	

checkpoint	prevents	 the	 segregation	of	damaged	chromosomes	arresting	cells	

prior	 to	 anaphase	 (Ted	 A.	 Weinert,	 Kiser,	 &	 Hartwell,	 1994).	 Basically,	

checkpoints	 are	 conserved	 signal	 transduction	 cascades,	 mainly	 based	 on	

phosphorylation	events,	which	convey	the	signal	from	damage	sensors	to	DDR	

effectors.	The	DNA	damage	checkpoint	cascade	is	conventionally	described	by	

grouping	 the	 factors	 involved	 in	DNA	damage	 sensors,	 adapters,	 transducers,	

and	finally	effector	(Nyberg	et	al.,	2002).		

Although	cells	have	to	deal	with	a	huge	diversity	of	DNA	damages,	all	DNA	

repair	 pathways	 activate	 the	 same	 checkpoint,	 and	 that	 is	 possible	 by	 the	

generation	of	a	common	 intermediate	during	 lesion	processing.	The	common	

intermediate	that	activates	the	DDR	is	the	ssDNA	covered	by	RPA	(Zou,	2003).	

Indeed,	 ssDNA	 is	 generated	 during	 every	 lesion	 processing,	 from	 NER	

(Giannattasio,	Lazzaro,	Longhese,	Plevani,	&	Muzi-Falconi,	2004)	to	DSBs	

(Sugawara	 &	 Haber,	 1992)	 or	 replication	 fork	 stalling	 (Branzei	 &	 Foiani,	

2005).	 The	 exposed	 ssDNA	 is	 detected	 by	 the	 sensor	 kinase	 Mec1	 and	 its	

partner	 Ddc2,	 which	 together	 trigger	 the	 checkpoint	 cascade	 (Feng,	 2016).	

Essentially,	there	are	two	apical	checkpoint	kinases,	Mec1	and	Tel1	in	yeast,	that	

correspond	to	ATR	and	ATM	in	human;	in	yeast,	Mec1	is	the	main	kinase	while	

Tel1	is	redundant	and	has	only	marginal	roles	(Usui,	Ogawa,	&	Petrini,	2001),	

while	 in	 human	 they	 are	 equally	 important,	 with	 ATR	 responding	 to	 ssDNA	

exposing	 lesions	and	ATM	directly	 responding	 to	DSBs	(Abraham,	 2001).	An	

important	 role	 in	 checkpoint	 activation	 is	 played	 by	 the	 9-1-1	 complex	

(Rad17/Mec3/Ddc1)	(Bonilla,	Melo,	&	Toczyski,	 2008),	a	PCNA-like	complex	

that	 is	 loaded	 on	 the	 ssDNA-dsDNA	 junction	 and	help	 in	 the	 recruitment	 of	

Mec1	 substrates	 (Majka,	 Binz,	 Wold,	 &	 Burgers,	 2006).	 Indeed,	 activated	
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Mec1	phosphorylates	a	series	of	factors,	in	particular	two	key	kinases	known	as	

Rad53/CHK2	 and	 Chk1/CHK1	 (Harrison	 &	 Haber,	 2006);	 while	 Rad53	 is	

absolutely	required	for	checkpoint	activation	in	every	cell	cycle	phase,	Chk1	is	

strictly	involved	in	activation	of	G2/M	phase	checkpoint	(Sanchez	et	al.,	1999).	

Adaptor	 proteins	 help	 the	 activation	 of	 the	 transducer	 kinases,	 and	 among	

them,	the	most	important	in	S.	cerevisiae	 is	Rad9	(Pellicioli	&	Foiani,	 2005).	

Once	phosphorylated,	Rad53	is	active	and	starts	to	phosphorylate	itself	and	the	

downstream	 targets	 (Sun,	 Hsiao,	 Fay,	 &	 Stern,	 1998).	 Since	 Rad53	

phosphorylation	 level	 correlates	 with	 its	 kinase	 activity	 and	 thus	 with	 the	

extent	of	damages,	Rad53	phosphorylation	is	generally	used	as	a	marker	of	the	

checkpoint	activation	in	budding	yeast	(Pellicioli	et	al.,	1999).	Therefore,	both	

Rad53	and	Chk1	kinases	transduce	the	checkpoint	signal	by	phosphorylating	a	

series	of	effectors,	accordingly	to	the	cell	cycle	phase.		

Among	the	effectors,	the	most	noticeable	are	Pds1	and	Dun1.	Pds1	is	the	yeast	

securin,	 which	 prevents	 the	 separase	 from	 cleaving	 cohesins	 to	 release	 the	

sister	chromatids	into	anaphase	(Cohen-Fix	&	Koshland,	 1997);	Dun1	mainly	

controls	 intracellular	dNTPs	levels	by	regulating	the	RNR	enzyme,	specifically	

by	increasing	the	dNTPs	pool	in	the	case	of	damage	and	checkpoint	activation	

(X	Zhao,	Chabes,	Domkin,	Thelander,	&	Rothstein,	2001;	Xiaolan	Zhao	&	

Rothstein,	 2002).	 Overall,	 checkpoint	mechanisms	 are	 clearly	 important	 for	

cell	 survival,	 indeed,	mutations	 in	checkpoint	genes	are	 responsible	 for	many	

diseases	and	malignant	cancers	(Lengauer,	Kinzler,	&	Vogelstein,	1998). 

	

Post-Replication	Repair	

Although	 cells	 are	 able	 to	 constantly	 deal	with	 thousands	 of	 lesions	 per	 day,	

some	 lesions	 could	 escape	 from	 the	 DNA	 repair	 mechanisms.	 Unrepaired	

lesions	 become	 dangerous	 during	 the	 next	 S	 phase	 when	 DNA	 polymerases	

have	 to	 replicate	 over	 them.	Replicative	DNA	polymerases	 are	 so	 accurate	 in	

copying	 DNA	 that	 they	 cannot	 accommodate	 any	 kind	 of	 lesions,	 as	 bulky	

adducts	or	distortion	in	the	helix	structure;	thus,	in	the	case	they	come	across	

damaged	nucleotides,	they	actually	stall.	Prolonged	stalling	of	replication	forks	
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leads	 to	 the	 formation	 of	 secondary	 breaks,	 incomplete	 replication,	 forks	

collapse	 and	 ultimately	 genome	 instability.	 Therefore,	 cells	 have	 evolved	 an	

additional	 resource	 to	 survive	 and	 overcome	 replication	 fork	 stalling,	 named	

DNA	Damage	Tolerance	(DDT)	or	Post-Replication	Repair	(PRR).	DDT	or	PRR	

is	 acting	 on	 a	 remarkable	 set	 of	 lesions,	 in	 which	 the	 surrounding	 DNA	 is	

single-stranded	 so	 it	 cannot	be	 simply	 excised;	 thus	 cells	 choose	 to	 leave	 the	

damage	unaltered	while	preferring	to	promote	the	completion	of	replication.	In	

a	 second	 time,	 a	 specific	 repair	mechanism,	 acting	 on	double-stranded	DNA,	

would	subsequently	repair	the	lesion.	

PRR	comprises	two	pathways	that	allow	to	progress	through	the	lesion	in	an	

error-prone	 or	 error-free	 manner,	 the	 Translesion	 Synthesis	 (TLS)	 and	

Template	Switching	(TS),	respectively	(Figure	4)(Chang	&	Cimprich,	2009;	Y.	

Gao,	Mutter-Rottmayer,	 Zlatanou,	Vaziri,	&	 Yang,	 2017;	Ghosal	&	Chen,	

2013).	

These	 two	 pathways	 are	 tightly	 regulated	 and	 coordinated	 by	 PCNA,	 the	

maestro	 of	 replication	 forks	 (Moldovan	 et	 al.,	 2007).	 Besides	 tethering	

replicative	DNA	polymerases,	 it	 acts	as	a	platform	 for	 the	most	of	 the	 factors	

involved	 in	 replication	and	repair	(Moldovan	 et	 al.,	 2007),	 and	moreover,	 it	

can	 be	modified	 by	Ubiquitin	 or	 SUMO	 groups,	 generating	 extra	 surfaces	 to	

interact	with	other	specific	proteins.	PCNA	post-translational	modifications	are	

essential	to	deal	with	fork	stalling	and	initiate	Post-Replication	Repair	(Hoege,	

Pfander,	Moldovan,	Pyrowolakis,	&	Jentsch,	2002;	Moldovan	et	al.,	2007;	

Stelter	&	Ulrich,	2003).		

During	 replication,	 DNA	 polymerases	 movement	 is	 generally	 uncoupled	

from	the	MCM	helicase	activity,	which	unwinds	DNA	in	front	of	the	forks.	 In	

the	 case	 of	 fork	 stalling,	 the	 MCM	 helicase	 continues	 unwinding	 of	 DNA,	

thereby	generating	ssDNA,	that	 is	 immediately	protected	by	RPA	and	triggers	

the	 DNA	 replication	 checkpoint	 activation	 (Byun,	 Pacek,	 Yee,	 Walter,	 &	

Cimprich,	 2005).	 RPA-coated	 DNA	 recruits	 Rad18	 and	 then	 Rad6	 (Davies,	

Huttner,	Daigaku,	Chen,	&	Ulrich,	2008;	Huttner	&	Ulrich,	2008;	Tsuji	et	

al.,	 2008),	 an	 E3	 ubiquitin	 ligase	 and	 E2	 ubiquitin-conjugating	 enzymes	

respectively,	that	together	attach	a	single	ubiquitin	chain	at	the	K164	residue	of	
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PCNA	 (Hoege	 et	 al.,	 2002;	 Stelter	 &	 Ulrich,	 2003).	 PCNA	 mono-

ubiquitination	is	the	activation	signal	for	the	error-prone	TLS	pathway,	which	

involves	the	use	of	low-fidelity	DNA	polymerases	to	bypass	the	lesion	and	allow	

the	 downstream	 restart	 of	 replication	 fork	 (Freudenthal,	 Gakhar,	

Ramaswamy,	&	Washington,	 2010;	 P.	 L.	Kannouche,	Wing,	&	 Lehmann,	

2004).	 The	 recruitment	 of	 Rad18	 at	 the	 site	 of	 damage	 is	 strictly	 dependent	

upon	RPA	coating	of	 ssDNA,	but	 it	 can	be	modulated	by	 several	 factors.	The	

TLS	polymerase	η,	is	able	to	bind	both	Rad18	and	PCNA,	thus	promoting	their	

interaction	 and	 enhancing	 PCNA	 ubiquitination	 (Durando,	 Tateishi,	 &	

Vaziri,	2013);	furthermore,	NBS1	member	of	the	MRN	complex	and		BRCA1	are	

involved	 in	 facilitating	 Rad18	 recruitment	 to	 the	 lesion	 (Tian	 et	 al.,	 2013;	

Yanagihara	 et	 al.,	 2011).	However,	 in	higher	eukaryotes,	Rad18	could	be	not	

the	only	E3	Ub-ligase	for	PCNA,	indeed	PCNA-ubiquitination	is	observed	even	

in	absence	of	Rad18,	 suggesting	 there	could	be	other	back-up	E3	enzymes	 for	

this	 important	 ubiquitination	 (Shimizu,	 Tateishi,	 Tanoue,	 Azuma,	 &	

Ohmori,	2017;	Simpson	et	al.,	2006).	

The	mono-ubiquitination	of	PCNA	 is	hence	 the	 signal	 for	 the	activation	of	

the	 TLS	 pathway,	 whereas	 its	 extension	 with	 additional	 ubiquitin	 peptides	

triggers	the	Template	Switching	pathway	(Figure	4)(Lajos	Haracska,	 Torres-

Ramos,	 Johnson,	Prakash,	&	Prakash,	 2004).	Rad5	is	the	E3	Ub-ligase	that	

extends	the	K164	mono-ubiquitination	on	its	K63,	in	coordination	with	the	E2	

ubiquitin-conjugating	complex	Ubc13-Mms2	(Hoege	et	al.,	2002).	

PCNA	is	also	SUMOylated	both	during	normal	cell	cycle	and	in	the	case	of	

replication	stress	(Gali	 et	 al.,	 2012);	 the	 function	of	such	modification	 is	still	

debated	 but	 there	 are	 evidence	 that	 PCNA-SUMO	 prevents	 DNA	 repair	

through	 homologous	 recombination	 in	 S	 phase	 (Schiestl,	 Prakash,	 &	

Prakash,	 1990).	 PCNA-SUMO	 interacts	with	Srs2,	 the	helicase	 that	displaces	

Rad51	 from	 DNA,	 thus	 inhibiting	 HR	 and	 pushing	 towards	 PRR	 pathways	

(Krejci	 et	 al.,	 2003;	 Papouli	 et	 al.,	 2005;	 Pfander,	 Moldovan,	 Sacher,	

Hoege,	&	Jentsch,	2005).	
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Figure	4.	Post-Replication	Repair	Pathways.	(Ghosal	&	Chen,	2013)	

	

Template	Switching	(TS)	

The	template	switching	is	thus	triggered	by	the	poly-ubiquitination	of	the	DNA	

clamp	PCNA.	This	mechanism	allows	cells	to	bypass	the	lesion	in	an	error-free	

manner,	 by	 using	 the	 newly	 synthesized	 strand	 of	 the	 opposite	 filament	 as	 a	

template	 (Figure	 4).	 When	 the	 replication	 fork	 stalls,	 PCNA	 can	 be	 either	

mono-	 or	 poly-ubiquitinated,	 in	 the	 case	 of	 poly-ubiquitin	 chain	 addition	 by	

Rad5	(Minca	&	Kowalski,	 2010;	Xiao,	Chow,	Broomfield,	&	Hanna,	 2000)	

and	the	Ubc13-Mms2	complex	(Broomfield,	Chow,	&	Xiao,	1998;	Hofmann	&	

Pickart,	 1999),	 the	 newly	 synthesized	 strand	 is	 re-annealed	 with	 the	 newly	
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synthesized	strand	of	the	opposite	filament,	by	using	a	subset	of	Rad52	epistasis	

group	 (Gangavarapu,	 Prakash,	 &	 Prakash,	 2007)	 and	 Rad51	 (Branzei,	

Vanoli,	 &	 Foiani,	 2008).	 Here,	 the	 Pol	 δ	 extends	 the	 DNA	 by	 using	 the	

daughter	 newly	 synthesized	 as	 a	 template	 (Torres-Ramos,	 Prakash,	 &	

Prakash,	 1997)	and	the	recombination-like	structures	 formed	are	resolved	by	

Sgs1-Top3-Rim1	complex	(Giannattasio	 et	 al.,	 2014).	Therefore,	this	pathway	

overcomes	 the	 lesion	 by	 a	 recombination	 event	 between	 partially	 replicated	

sister	strands	(Branzei	 et	 al.,	 2008;	 Giannattasio	 et	 al.,	 2014;	H.	 Zhang	&	

Lawrence,	 2005).	 The	 poly-ubiquitination	 of	 PCNA	 is	 the	 crucial	 event	 to	

trigger	TS,	even	 if	 its	 function	 is	not	completely	clear;	on	the	other	hand,	the	

SUMOylation	of	PCNA	strongly	inhibits	TS	by	keeping	Srs2	next	to	the	fork	in	a	

way	that	it	displaces	Rad51,	that	is	necessary	for	strand	invasion	in	TS	(Branzei	

et	 al.,	 2008).	 As	 for	 Rad18,	 there	 could	 be	 sort	 of	 backup	 E3-ligase	 to	 poly-

ubiquitinate	PCNA;	 in	mammals	Rad5	has	 two	orthologous,	 SHPRH	 (Unk	 et	

al.,	 2006)	 and	HTLF	 (Unk	 et	 al.,	 2008),	 and	mouse	embryonic	 cells	 lacking	

both	these	factors	still	retain	the	ability	to	poly-ubiquitinate	PCNA	(Krijger	et	

al.,	2011).	

Translesion	Synthesis	(TLS)	

Translesion	Synthesis	is	indeed	triggered	by	the	mono-ubiquitination	of	PCNA	

by	 Rad18,	 and	 it	 involves	 the	 action	 of	 specialized	DNA	 polymerases	 able	 to	

replicate	 over	 a	 distorted	 or	 damaged	 template.	 These	 TLS	 polymerases	

transiently	replace	the	replicative	ones,	synthetizing	DNA	over	and	beyond	the	

lesion	for	a	short	tract	(Sale,	Lehmann,	&	Woodgate,	2012).	This	mechanism	

could	 involve	 one	 or	 two	 TLS	 polymerases;	 in	 the	 first	 case	 the	 TLS	 Pol	

replicate	 over	 the	 lesion	 and	 then	 extend	DNA,	 in	 the	 latter	 the	 first	 step	 is	

carried	 out	 by	 one	 TLS	 Pol	 that	 is	 replaced	 with	 another	 that	 extend	 the	

damaged	junction	(Shachar	et	al.,	2009;	Woodgate,	2001).	An	open	active	site	

that	 can	 accommodate	 damaged	 and	 biased	 bases	 characterize	 TLS	

polymerases,	 but	 at	 the	 same	 time,	 it	 makes	 them	more	 prone	 to	 introduce	

errors	 (Vaisman	 &	 Woodgate,	 2017).	 In	 addition,	 they	 lack	 an	 exonuclease	

domain,	 so	 they	 are	 not	 able	 to	 proofread	 possible	 uncorrected	 nucleotides	
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(Prakash,	 Johnson,	&	Prakash,	2005).	TLS	is	hence	sometimes	accompanied	

by	 unwanted	 mutagenesis,	 consequently	 it	 should	 be	 tightly	 regulated,	

especially	 impeding	 the	 access	 of	 TLS	 Pols	 to	 normal	 proceeding	 replication	

forks	 (Sale	 et	 al.,	 2012).	 Accordingly,	 the	 usage	 of	 TLS	 Pols	 could	 reduce	

replication	accuracy	but	ensures	it	progression	and	completion.	However,	even	

if	TLS	could	be	potentially	mutagenic,	it	could	also	be	error-free	in	the	case	the	

correct	specialized	TLS	Pol	is	recruited	to	bypass	the	damage.	In	this	way,	TLS	

could	 contribute	 to	 DNA	 Damage	 Tolerance	 without	 compromising	 genome	

instability.	

In	yeast	there	are	three	TLS	polymerases,	Pol	η	and	Rev1	that	belong	to	the	

Y-family	DNA	polymerases	and	Pol	ζ,	a	B-family	polymerase;	in	humans	there	

are	 four	Y-family	TLS	polymerases,	Pol	η,	Pol	κ,	Pol	 ι	and	Rev1,	and	eight	are	

required	for	TLS	and	other	repair	mechanisms,	Pol	ζ,	Pol	β,	Pol	λ,	Pol	μ,	TdT,	

Pol	 ν,	 Pol	 θ	 and	 PrimPol	 (Prakash	 et	 al.,	 2005).	 In	 general,	 Y-family	 DNA	

polymerases	 possess	 an	 open	 and	 spacious	 active	 site	 that	 can	 accommodate	

DNA	 lesions	 (Pata,	 2010),	 that	 site	 is	 solvent	 exposed	 thereby	 allowing	 a	

competition	between	water	molecules	 and	bases	 in	 forming	hydrogen	bonds;	

however,	 in	 this	 way	 they	 lose	 fidelity	 in	 selecting	 the	 correct	 incoming	

nucleotides	 (Ling,	 Boudsocq,	 Woodgate,	 &	 Yang,	 2001;	 J	 Trincao	 et	 al.,	

2001).	The	catalytic	 site	 is	 composed	of	 three	domains,	 the	 fingers,	palm	and	

thumb	that	resemble	the	typical	open	right-hand	structure	found	in	the	most	

other	 families	 (J	 Trincao	 et	 al.,	 2001;	 Zhou,	 Pata,	 &	 Steitz,	 2001).	 The	

catalysis	 reaction	 requires	 two	 Mg2+	 ions,	 that	 additionally	 help	 in	 the	

substrate	 positioning	 within	 the	 active	 site	 and	 balance	 opposite	 charges	

(Castro	et	al.,	2007;	Jäger	&	Pata,	1999;	Wei	Yang,	Lee,	&	Nowotny,	2006).	

Respect	 to	 the	 B-family	 polymerases,	 they	 also	 present	 an	 additional	 unique	

domain	 called	 little	 finger	 or	 Polymerase	 Associated	 Domain	 (PAD)	 (Jose	

Trincao	 et	 al.,	 2001),	with	 low	 sequence	 conservation	 (Wilson,	 Jackson,	 &	

Pata,	 2013;	 W.	 Yang	 &	 Woodgate,	 2007);	 crystallographic	 studies	 showed	

clearly	 that	 the	 substrate	 DNA	 is	 positioned	 between	 the	 thumb	 and	 PAD	

(Prakash	 et	 al.,	 2005).	 In	 general,	TLS	polymerases	do	not	present	 any	 3’-5’	
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exonuclease	domain	(Reha-Krantz,	 2010),	have	low	processivity	and	catalytic	

efficiency	and	show	higher	error	rates	on	undamaged	DNA	(Wei	Yang,	2014).	

Since	 TLS	 has	 to	 be	 strictly	 controlled,	 Y-family	 Pols	 present	 different	

regulatory	regions	that	control	 their	access	to	the	 forks	(Figure	5).	The	PCNA	

Interacting	 Peptide	 (PIP)	 interacts	 with	 PCNA,	 specifically	 with	 the	 Inter-

Domain	 Connecting	 Loop	 (ICDL)	 on	 PCNA	 itself;	 the	 Ubiquitin-Binding	

Module	(UBM)	and	Ubiquitin-Binding	Zinc	Domain	(UBZ)	bind	ubiquitin	in	a	

non-covalent	 manner	 and	 induce	 conformational	 changes	 that	 prevent	

subsequent	interactions	with	other	ubiquitin	molecules	(Bienko	 et	 al.,	 2005;	

Pata,	2010).	Both	PIP	and	UBZ	or	UBM	domains	regulate	the	direct	interaction	

between	 TLS	 Pols	 and	 PCNA	 or	 mono-ubiquitinated	 PCNA	 (Bienko	 et	 al.,	

2005;	C.	Guo	et	 al.,	 2006;	Plosky	et	 al.,	 2006),	nevertheless	they	show	high	

affinity	for	the	latter	(P.	L.	Kannouche	&	Lehmann,	2004;	P.	L.	Kannouche	

et	al.,	2004)	and	this	could	prompt	the	displacement	of	replicative	polymerases	

in	 the	 instance	 of	 fork	 stalling	 and	 PRR	 activation	 (Zhuang	 et	 al.,	 2008).	

Interestingly,	 the	 ubiquitinated	 residue	 K164	 of	 PCNA	 is	 not	 on	 its	 IDCL	

(Gulbis,	Kelman,	Hurwitz,	O’Donnell,	&	Kuriyan,	1996),	but	it	is	located	on	

the	 back	 face	 of	 PCNA,	 as	 to	 establish	 distinct	 interactions	 with	 TLS	 and	

replicative	polymerases,	that	contact	the	front	PCNA	surface	(Freudenthal	 et	

al.,	 2010).	 Another	 important	 domain	 is	 the	 Rev1-Interacting	 Region	 (RIR),	

which	mediates	 the	 interaction	with	 Rev1	 that	 function	 also	 as	 a	 scaffold	 for	

other	TLS	Pols	(Prakash	et	al.,	2005).		
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Figure	5.	Domains	of	TLS	Polymerases.(Sale	et	al.,	2012)	

Currently,	there	are	two	models	for	TLS-mediated	lesion	bypass	that	are	not	

mutually	exclusive:	the	polymerase-switching	model and	the	gap-filling	model 

(Figure	6) (Lehmann,	2006;	Lehmann	et	al.,	2007;	Lehmann	&	Fuchs,	2006;	

L	S	Waters	et	al.,	2009).	In	the	polymerase-switching	model,	TLS	is	performed	

during	active	DNA	replication,	when	a	moving	replication	fork	stalls.	Here,	the	

replicative	 DNA	 polymerase	 is	 temporarily	 exchanged	 with	 the	 TLS	 Pol	 that	

specifically	bypasses	 the	 lesion.	Then,	 another	TLS	polymerase	 could	 join	 the	

process	 by	 extending	 the	mispaired	 terminus	 generated	 by	 the	 first	 TLS	 Pol.	

Lastly,	 a	 second	 switch	 restores	 the	 replicative	 DNA	 polymerase	 at	 the	 fork,	

thus	 enabling	 resumption	 of	 processive	 and	 accurate	 DNA	 synthesis.	

Conversely,	the	gap-filling	model	is	performed	in	late	S	phase,	G2/M	or	G1,	 in	

absence	 of	 actively	 replicating	 forks.	 In	 the	 case	 of	 replication	 forks	 stalling,	

DNA	synthesis	could	be	reprimed	downstream	of	the	lesion,	thereby	leaving	a	

ssDNA	 gaps	 behind	 it.	 This	 repriming	 event	 could	 occur	 both	 in	 the	 lagging	
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strand,	 by	 initiating	 a	new	Okazaki	 fragment,	 or	 in	 the	 leading	 strand.	Thus,	

TLS	are	recruited	later	to	manage	with	the	lesion,	which	is	bypassed	and	then	

DNA	is	subsequently	sealed.	

 

	
Figure	6.	Models	of	TLS	(L	S	Waters	et	al.,	2009)	
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Polymerase	η		

Yeast	RAD30	gene	codes	for	the	yeast	TLS	polymerase	η,	a	Y-family	polymerase	

specialized	 in	 the	 bypass	 of	 UV-induced	 lesions,	 as	 cyclobutane	 pyrimidine	

dimers	 (CPDs)	 (R	 E	 Johnson,	 Prakash,	 &	 Prakash,	 1999).	 RAD30	 was	

identified	in	yeast	as	an	ortholog	of	E.coli	UmuC	and	DinB,	proteins	involved	in	

bypass	 and	 error-free	 repair	 of	UV-induced	damages	 (McDonald,	 Levine,	 &	

Woodgate,	 1997;	 Roush,	 Suarez,	 Friedberg,	 Radman,	 &	 Siede,	 1998)	 and	

the	 first	 human	 and	 mouse	 orthologs	 were	 discovered	 few	 years	 later	 (R	 E	

Johnson,	Kondratick,	 Prakash,	&	Prakash,	 1999;	 Chikahide	Masutani	 et	

al.,	 1999;	 Matsuda	 et	 al.,	 2001);	 interestingly,	 Pol	 η	 is	 the	 only	 TLS	whose	

deficiency	is	associated	with	diseases.	Indeed,	defects	in	hPol	η	(POLH)	lead	to	

the	 onset	 of	 the	 xeroderma	 pigmentosum	 variant	 (XP-V)	 genetic	 syndrome	

(Chikahide	Masutani	 et	 al.,	 1999),	characterized	by	high	 incidence	of	 	 skin	

cancer	and	sunlight	sensitivity,	due	to	the	inability	to	deal	with	UV	lesions	sun-

induced	(Gratchev,	 Strein,	Utikal,	&	 Sergij,	 2003).	Other	orthologs	of	yeast	

RAD30	 in	human	and	mice	are	 the	DNA	polymerase	κ	and	 ι	(Gerlach	 et	 al.,	

1999;	McDonald	et	al.,	1999;	T	Ogi,	Kato,	Kato,	&	Ohmori,	1999;	A	Tissier,	

McDonald,	Frank,	&	Woodgate,	2000).	

Pol	η	belongs	to	the	Y-family	polymerases,	the	catalytic	core	is	located	at	the	

N-terminus	of	the	protein,	while	in	the	C-terminus	are	the	regulatory	regions,	

PIP,	UBZ,	RIR	and	a	NLS	for	higher	eukaryotes.	Pol	η	is	known	for	its	excellent	

ability	to	accommodate	and	bypass	many	different	DNA	lesions,	CPD	in	primis	

(R	 E	 Johnson,	 Prakash,	 et	 al.,	 1999),	but	also	7,8-dihydro-8-oxoguanine	 (L	

Haracska,	 Prakash,	 &	 Prakash,	 2000),	 abasic	 site	 (Lajos	 Haracska,	

Washington,	 Prakash,	 &	 Prakash,	 2001),	 1,2-intrastrand	 d(GpG)-cisplatin	

crosslink	(Biertümpfel	 et	 al.,	 2010),	(+)-trans-anti-benzo[a]pyrene-N2-dG	(Y.	

Zhang,	 Yuan,	Wu,	Rechkoblit,	 et	 al.,	 2000),	acetylaminofluorene-adducted	

guanine	(Yuan	 et	 al.,	 2000),	6-O-methylguanine	(L	Haracska	 et	 al.,	 2000),	

thymine	glycol	(Kusumoto,	Masutani,	 Iwai,	&	Hanaoka,	2002)	and	adducts	

derived	 from	 cisplatin	 and	 ozaliplatin	 (Vaisman,	 Masutani,	 Hanaoka,	 &	

Chaney,	 2000);	 whereas	 it	 is	 blocked	 by	 6-4	 photoproducts	 (C.	 Masutani,	

Kusumoto,	 Iwai,	&	Hanaoka,	 2000),	BPDE–dG	(Chiapperino	et	al.,	 2002),	
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butadiene	epoxide	(Minko,	Washington,	Prakash,	Prakash,	&	Lloyd,	2001),	

γ	 –HOPdG	 (Minko	 et	 al.,	 2003)	 and	N6-etheno-deoxyadenosine	 (Levine	 et	

al.,	 2001).	In	particular,	Pol	η	has	a	major	role	in	accurate	and	non-mutagenic	

bypass	 of	 CPDs	 and	 7,8-dihydro-8-oxoguanine;	 in	 its	 absence,	 other	 TLS	

polymerases	 are	 thought	 to	bypass	 the	 lesions	 although	with	 low	 fidelity	 and	

introducing	mutations	(Lehmann,	2005;	Y.	Wang	et	al.,	2007).	

In	vitro,	Pol	η	copies	damaged	DNA	more	efficiently	than	undamaged	DNA	

(R	E	Johnson,	Prakash,	et	al.,	 1999),	thus	the	TLS	process	can	be	considered	

error-free	in	most	of	the	cases;	in	addition,	it	dissociates	from	DNA	as	soon	as	

the	lesion	has	been	bypassed,	in	order	to	prevent	low	fidelity	replication	of	the	

undamaged	DNA	(Biertümpfel	et	al.,	2010).	The	mechanism	of	accurate	CPDs	

bypass	was	elucidated	by	crystallographic	and	biochemical	studies,	in	which	it	

was	 demonstrated	 the	 molecular	 splinting	 strategy	 adopted	 by	 Pol	 η	

(Biertümpfel	 et	 al.,	 2010).	 The	 open	 active	 site	 accommodates	 both	 the	

thymines	of	a	CPD,	stabilizing	the	adduct	and	splinting	it	with	the	surrounding	

DNA	to	assume	the	B-form.	 In	this	way	the	two	consecutive	thymines	can	be	

read	 and	 replicated	 accurately	 forming	 the	 correct	 hydrogen	 bonds	 between	

base	 pairs	 (Biertümpfel	 et	 al.,	 2010).	 When	 the	 CPD	 is	 replicated,	 it	

subsequently	exits	from	the	active	site,	one	more	nucleotide	is	added	and	steric	

clashes	 occurs	 with	 the	 polymerase,	 that	 dissociates	 from	DNA	 (Kusumoto,	

Masutani,	 Shimmyo,	 Iwai,	 &	 Hanaoka,	 2004;	 McCulloch	 et	 al.,	 2004).	

Therefore	 Pol	 η	 precisely	 bypass	 the	 lesion	 but	 it	 is	 also	 displaced	 to	 avoid	

inaccurate	 DNA	 synthesis	 on	 undamaged	 bases.	 On	 the	 other	 hand,	 this	

inaccuracy	 on	 undamaged	 DNA	 is	 used	 from	 B-cells	 during	 somatic	

hypermutation	process,	to	generate	antibodies	diversity	(Faili	 et	 al.,	 2004;	X.	

Zeng	 et	 al.,	 2001).	 In	 particular,	 during	 class	 switch	 recombination,	 Pol	 η	

introduces	 errors	 preferentially	 in	 front	 of	 A/T	 bases	 (Faili	 et	 al.,	 2004;	 X.	

Zeng	 et	 al.,	 2001)	 by	 misincorporating	 dGTP	 and	 efficiently	 extend	 the	 yet	

created	mismatch	to	complete	the	mutagenesis	(Y.	Zhao	et	al.,	2013).		

Recently	Pol	η	has	been	implicated	also	in	genome	stability	maintenance	in	

unperturbed	conditions,	rather	than	translesion	synthesis	on	damaged	DNA.	In	

fact,	 depletion	 of	 human	 Pol	 η	 slightly	 affects	 cell	 cycle	 progression	 and	
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particularly	reduces	the	stability	of	common	fragile	sites	(CFSs),	triggering	the	

activation	of	DNA	damage	checkpoint	ATM-mediated	(Rey	et	al.,	2009).	Pol	η	

is	 actually	 found	 on	 CFSs,	 where	 the	 replicative	 polymerases	 possibly	 stall,	

thereby	 preventing	 cells	 to	 enter	 mitosis	 with	 under-replicated	 DNA	

(Bergoglio	et	al.,	2013).	In	vitro	studies	demonstrated	that	Pol	η,	and	also	Pol	

κ,	are	able	to	exchange	with	Pol	δ	at	CFSs	and	then	to	efficiently	replicate	the	

non-B-DNA	CFS	structures	(Barnes,	Hile,	Lee,	&	Eckert,	2017).		

A	less	investigated	role	of	Pol	η	is	the	D-loop	extension	during	homologous	

recombination	(HR)	in	chicken	DT40	cells	(Rattray	&	Strathern,	2005).	It	has	

been	shown	that	Pol	η	co-immunoprecipitates	with	Rad51	and	extends	 the	3’-

OH	 terminus	 generated	 after	 strand	 invasion,	 a	 structure	 known	 as	 D-loop	

(Kawamoto	et	al.,	 2005;	Mcllwraith	et	al.,	 2005).	However	this	aspect	need	

further	 investigation	 since	 it	 has	 been	 described	 only	 in	 vitro	 and	 in	 one	

particular	cell	type.	

Pol	 η	 presents	 a	 PIP	 and	 an	 Ubiquitin-Binding	 motif	 on	 its	 C-terminus,	

whose	roles	are	still	debated.	Indeed,	the	interaction	with	mono-ubiquitinated	

PCNA	 is	 crucial	 but	 not	 essential	 for	 Pol	 η-mediated	 TLS.	When	 replication	

forks	 stall,	 Rad18	 is	 generally	 recruited	 to	mono-ubiquitinate	 PCNA,	 and	 this	

modification	 shifts	 its	 binding	 preference	 towards	 TLS	 Pols,	 respect	 to	

replicative	 Pols.	 In	 vitro,	 PCNA	 stimulates	 Pol	 η	 activity	 (L	 Haracska,	

Johnson,	 et	 al.,	 2001)	 but	mono-ubiquitinated	 PCNA	 is	 not	 required	 for	 its	

access	of	replication	forks,	but	it	enhances	the	interaction	with	PCNA	by	itself	

(Lajos	 Haracska,	 Kondratick,	 Unk,	 Prakash,	 &	 Prakash,	 2001).	 Actually,	

PCNA	is	mono-ubiquitinated	on	its	back	face,	so	the	interaction	of	Pol	η	does	

not	 interfere	 with	 Pol	 δ,	 that	 is	 contacting	 the	 front	 face	 of	 PCNA	

(Freudenthal	 et	 al.,	 2010);	on	the	other	hand,	Pol	η	shows	the	same	affinity	

for	PCNA	or	Ub-PCNA	in	vitro	(Hedglin,	Pandey,	&	Benkovic,	2016).	It	is	also	

true	 that	 Pol	 η	 interacts	 with	 both	 Rad18	 and	 PCNA	 on	 its	 C-ter,	 thereby	

facilitating	their	interaction	and	enhancing	PCNA	ubiquitination	(Durando	et	

al.,	 2013).	 In	 mouse,	 Pol	 η	 co-purifies	 with	 Rad18,	 Rad6	 and	 Rev1	 (Stary,	

Kannouche,	Lehmann,	&	Sarasin,	2003)	and	it	co-localizes	in	DNA	damage-

dependent	 foci	 with	 Rad18	 (Watanabe	 et	 al.,	 2004).	 In	 human	 cells,	 Pol	 η	
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forms	 foci	 with	 mono-ubiquitinated	 PCNA	 upon	 DNA	 damage	 (P.	 L.	

Kannouche	 et	 al.,	 2004),	and	the	localization	in	foci	is	dependent	on	mono-

ubiquitinated	PCNA	(Watanabe	et	al.,	 2004).	The	UBZ	domain	is	required	to	

bypass	UV	lesions	both	in	yeast	and	mammals	(Bienko	 et	 al.,	 2005;	 Parker,	

Bielen,	Dikic,	 &	Ulrich,	 2007);	while	the	PIP	domain	seems	not	essential	to	

perform	TLS,	and	Pol	η	PIP	mutants	hence	complement	UV-sensitivity	of	cell	

lacking	 Pol	 η	 (Narottam	 Acharya	 et	 al.,	 2008;	 Narottam	 Acharya,	 Yoon,	

Hurwitz,	Prakash,	&	Prakash,	2010;	Gueranger	et	al.,	2008).		

In	general,	Pol	η	forms	foci	 in	cells	treated	exposed	to	DNA	damage	as	UV	

and	MMS	 (P.	 Kannouche	 et	 al.,	 2001)	 or	 exposed	 to	 replication	 stress	with	

hydroxyurea	(de	Feraudy	et	al.,	2007),	but	there	is	also	a	small	portion	of	cells	

where	 Pol	 η	 forms	 spontaneous	 foci,	 either	 damage-independent	 or	

Rad18/PCNA-independent	 (Watanabe	 et	 al.,	 2004).	 In	 any	 case,	 the	

association	with	the	chromatin	is	highly	dynamic,	Pol	η	shows	a	residence	time	

in	nuclear	foci	that	is	less	than	one	second	(Sabbioneda	et	al.,	2008).	

The	interaction	with	Rev1,	through	the	RIR	domain	(Xie,	Yang,	Xu,	&	Jiang,	

2012),	 is	confirmed	in	vertebrates	and	flies	even	if	 its	biological	significance	is	

still	understood	(Kosarek	et	al.,	2008;	Agnès	Tissier	et	al.,	2004).	

Pol	η	 is	 regulated	at	 the	transcriptional	 level	 in	yeast,	specifically	upon	UV	

treatment	its	transcript	is	three-fold	induced	(McDonald	et	al.,	1997),	while	in	

mouse	there	is	no	induction	upon	UV	irradiation	but	during	cell	proliferation	

(Yamada,	 Masutani,	 Iwai,	 &	 Hanaoka,	 2000).	 Pol	 η	 post-translational	

modifications	have	been	detected	only	in	higher	eukaryotes,	thereby	suggesting	

a	 more	 complicated	 regulation.	 As	 a	 response	 to	 UV	 damages,	 Pol	 η	 is	

phosphorylated	 by	 ATR	 (Göhler,	 Sabbioneda,	 Green,	 &	 Lehmann,	 2011),	

while	 it	 is	 ubiquitinated	 at	 the	 C-ter	 by	 the	 E3	 ubiquitin-ligase	 PIRH2	 to	

possibly	 regulate	 its	 access	 to	 replication	 forks	 (Jung,	 Hakem,	 Hakem,	 &	

Chen,	 2011).	The	ubiquitin	moiety	attached	directly	to	Pol	η	interacts	with	its	

UBZ	 domain,	 keeping	 it	 occupied	 from	 any	 interaction	 with	 other	 ubiquitin	

molecules,	as	 the	one	of	 the	Ub-PCNA	(Jung	 et	 al.,	 2011).	However,	 it	 is	not	

still	 fully	 known	 how	 the	 ubiquitination	 regulates	 Pol	 η	 function,	 it	 clearly	

inhibits	the	interaction	with	PCNA	(Jung	 et	 al.,	 2011)	and	it	 is	dependent	on	
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the	UBZ	domain	but	is	not	responsive	to	DNA	damage	(Parker	et	al.,	2007).	In	

yeast,	Pol	η	 is	 a	 short-lived	protein	 that	 is	 stabilized	upon	DNA	damage,	 this	

regulation	 is	 accomplished	 by	 proteasomal	 degradation,	 thereby	 suggesting	

that	 some	 post-translational	 modifications	 could	 occur	 (Skoneczna,	

McIntyre,	Skoneczny,	Policinska,	&	Sledziewska-Gojska,	2007).	

Polymerase	κ	and	ι		

The	 DNA	 polymerase	 κ	 is	 present	 only	 in	 higher	 eukaryotes	 and	 it	 is	

evolutionary	related	to	Pol	η.	 	The	structure	of	Pol	κ	comprises	the	conserved	

motifs	at	the	N-ter	of	the	protein,	which	retains	the	catalytic	activity,	while	the	

PAD	domain	is	located	on	the	C-ter	of	the	protein	(Uljon	et	al.,	 2004);	as	Pol	

η,	 it	 has	 also	 a	 RIR	 domain	 that	 binds	 the	 C-ter	 of	 Rev1	 (Xie	 et	 al.,	 2012).	

Indeed,	 Pol	 κ	 differs	 from	 the	 other	 Y-family	 polymerases	 because	 of	 the	

position	of	the	PAD	domain,	that	is	not	required	for	the	catalysis	(Uljon	et	al.,	

2004).	Pol	κ	is	the	most	faithful	Y-family	polymerases,	with	error	rates	from	10-3	

to	10-4	and	play	its	role	as	a	proficient	extender	of	mismatched	primer	termini	

(Washington,	Johnson,	Prakash,	&	Prakash,	2002).	It	extends	a	mismatched	

primer	after	the	lesion	bypass	of	another	TLS	Pol,	even	if	it	shows	the	tendency	

to	 generate	 single	 nucleotides	 deletion.	 The	 ability	 to	 proficiently	 extend	

mispaired	 termini	 is	 due	 to	 the	 fact	 that	 the	 PAD	 domain	 establishes	 few	

contacts	with	DNA.	On	the	other	hand,	it	has	a	very	poor	capability	to	bypass	

DNA	 damage	 as	 CPDs,	 6-4-photoproduct	 or	 abasic	 sites	 (Lajos	 Haracska,	

Unk,	 et	 al.,	 2002;	 Lajos	 Haracska,	 Prakash,	 &	 Prakash,	 2002a).	 Pol	 κ	 is	

diffused	 in	 the	 nucleus	 and	 forms	DNA	damage-dependent	 foci,	 through	 the	

interactions	stabilized	by	 the	PIP	and	the	UBM	domains	(Caixia	 Guo,	 Tang,	

Bienko,	Dikic,	&	 Friedberg,	 2008;	Tomoo	Ogi,	Kannouche,	&	Lehmann,	

2005).	 Interestingly,	 Pol	 κ	 deficient	 mouse	 are	 UV	 sensitive	 (Tomoo	 Ogi,	

Shinkai,	Tanaka,	&	Ohmori,	2002).	

As	Pol	κ,	Pol	ι	is	homolog	of	Pol	η	and	it	is	present	only	in	higher	eukaryotes.	

The	 structure	 is	 similar	 to	 the	 other	 Y-family	 polymerases	 (Nair,	 Johnson,	

Prakash,	 Prakash,	 &	 Aggarwal,	 2004),	 the	unique	 feature	of	Pol	 ι	 is	 that	 it	

imposes	 Hoogsteen	 base	 pairing	 in	 its	 active	 site,	 rather	 than	Watson-Crick	



	 34	

pairing	(Nair	 et	 al.,	 2004). The	fidelity	of	Pol	ι	synthesis	varies	depending	on	

the	template,	in	general	it	is	more	faithful	and	efficient	on	purine	templates	(L.	

Haracska,	 Johnson,	 et	 al.,	 2001;	 Agnès	 Tissier,	 Mcdonald,	 Frank,	 &	

Woodgate,	 2000;	 Washington,	 Johnson,	 Prakash,	 &	 Prakash,	 2004;	 Y.	

Zhang,	 Yuan,	 Wu,	 &	 Wang,	 2000).	 It	 is	 not	 able	 to	 bypass	 CPDs,	 but	 it	

replicates	 over	 abasic	 sites,	 6-4	 photoproducts	 and	 N2-adducted	 guanines	

(Washington,	 Minko,	 et	 al.,	 2004)	 but	 it	 bypasses	 8-oxoguanine	 and	 2-

Acetylaminofluorene	 (AAF)	 adducted	 guanine	 	 by	 frequently	 incorporating	 a	

cytosine (Y. Zhang, Yuan, Wu, Taylor, & Wang, 2001) 

	

Rev1	

Rev1	 gene	 was	 identified	 in	 yeast	 as	 its	 deletion	 causes	 a	 REVersioneless	

phenotype	 (Larimer,	 Perry,	 &	 Hardigree,	 1989),	 that	 means	 reduction	 of	

either	spontaneous	or	induced	mutagenesis;	indeed	Rev1,	together	with	Pol	ζ,	it	

is	responsible	for	mutagenic	repair	of	UV-induced	DNA	damage	from	yeast	to	

humans	(P.	E.	Gibbs	et	al.,	2000;	Christopher	W.	Lawrence	&	Christensen,	

1978).	 It	 is	 technically	 a	 deoxycytidil	 transferase,	 which	 incorporates	 dCTP	

preferentially	 on	 G	 template	 or	 abasic	 sites	 (Lajos	 Haracska,	 Prakash,	 &	

Prakash,	2002b;	John	R.	Nelson,	Lawrence,	&	Hinkle,	1996).	To	accomplish	

this	 specific	 activity,	 Rev1	 selects	 the	 incoming	 dCTP	 by	 forming	 hydrogen	

bonds	with	an	Arginine	residue	in	the	active	site,	rather	than	with	the	template	

DNA	 (Nair,	 Johnson,	 Prakash,	 Prakash,	 &	 Aggarwal,	 2005).	Besides,	Rev1	

shows	 very	 low	processivity,	 by	 adding	 2	 nucleotides	 per	DNA-binding	 event	

(Lajos	Haracska,	Prakash,	 et	 al.,	 2002b).	Even	though	Rev1	is	necessary	for	

the	 most	 of	 base	 substitution	 mutations	 induced	 by	 UV	 light,	 its	 catalytic	

activity	seems	to	have	no	role	 in	UV	mutagenesis	(L.	Haracska,	Unk,	 et	 al.,	

2001;	Ross,	 Simpson,	&	 Sale,	 2005).	In	fact,	the	incorporation	of	dCTP	is	an	

unlikely	 event	 opposite	 UV-induced	 lesions	 (P.	 E.	 M.	 Gibbs,	 Borden,	 &	

Lawrence,	 1995;	 L.	Haracska,	Unk,	 et	 al.,	 2001)	but	the	presence	of	Rev1	is	

necessary	 to	 bypass	 6-4	 photoproduct	 and	 for	 mutagenesis	 that	 occurs	

following	 TLS	 through	 abasic	 sites	 (L.	 Haracska,	 Unk,	 et	 al.,	 2001).	 In	
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conclusion,	 although	 the	dCMP	 transferase	 activity	of	Rev1	 is	 conserved	 from	

yeast	to	humans,	it	is	not	required	for	in	vivo	bypass	of	many	lesions	(Lin	et	al.,	

1999;	John	R.	Nelson	et	al.,	1996).	

Actually,	 Rev1	 have	 more	 structural	 and	 regulatory	 functions	 rather	 than	

catalytic	 ones.	 It	 has	 the	 capability	 to	 interact	 with	 different	 partners	 via	 its	

BRCT	(BRCA1	C-terminal)	domain,	the	C-terminal	~100	amino	acids,	the	PAD,	

and	 the	 ubiquitin-binding	 motifs	 (UBMs).	 The	 role	 of	 Rev1	 in	 survival	 and	

mutagenesis	 is	 hence	 to	 coordinate	 the	 recruitment	 of	 other	 factors	 at	 the	

damaged	site	(C.	Guo,	2003;	L.	Haracska,	Unk,	et	al.,	2001).	

The	 BRCT	 domain	 is	 found	 in	 many	 proteins	 associated	 with	 cell	 cycle	

regulation	and	DNA	damage	(Callebaut	&	Mornon,	 1997),	and	mutations	 in	

Rev1’s	 BRCT	 lead	 to	 decreased	 viability	 and	 mutagenesis	 after	 DNA	 damage	

(Jansen	 et	 al.,	 2005;	 Lemontt	 et	 al.,	 1971;	 Ross	 et	 al.,	 2005).	 The	 BRCT	

domain	interacts	with	PCNA	to	localize	Rev1	at	replication	foci	(Caixia	Guo	et	

al.,	2006);	intriguingly	Rev1	does	not	have	any	PIP	domain,	suggesting	it	makes	

distinct	contact	with	PCNA	respect	to	the	other	TLS	polymerases.	Additionally,	

Rev1	 binds	 Pol	 ζ	 by	 contacting	 the	 Rev7	 accessory	 subunit	 through	 its	 C	

terminus	 and	 BRCT	 domain	 (D’Souza	 &	 Walker,	 2006).	 In	 general,	 TLS	

polymerases	 interact	 in	 turn	with	 Rev1	 through	 the	 RIR	 domain.	 Specifically,	

Pol	 ζ,	 Pol	 η,	 Pol	 ι	 and	 Pol	 κ	 could	 gain	 the	 access	 to	 replication	 forks	 by	

interacting	 with	 Rev1	 C-terminus	 (C.	 Guo,	 2003;	 Murakumo	 et	 al.,	 2001;	

Ohashi	 et	 al.,	 2004;	 Agnès	 Tissier	 et	 al.,	 2004);	 the	 fact	 that	 all	 TLS	Pols	

contact	 the	 same	 region	 on	 Rev1	 might	 ensure	 that	 only	 one	 of	 them	 could	

gains	 the	 full	 access	 to	 the	 stalled	 fork	 and	 perform	 TLS	 at	 a	 time.	 The	 C-

terminus	 is	 so	 fundamental	 to	 accomplish	 lesion	 bypass	 that	 Rev1	 truncated	

proteins,	lacking	the	C-ter	region,	do	not	complement	a	rev1∆	strain	(D’Souza,	

Waters,	 &	 Walker,	 2008;	 Kosarek	 et	 al.,	 2008;	 Ross	 et	 al.,	 2005).	

Furthermore,	the	PAD	domain	interacts	in	vitro	with	both	Pol	ζ	and	Pol	η	(N.	

Acharya	 et	 al.,	 2005;	 Narottam	Acharya,	Haracska,	 Prakash,	 &	 Prakash,	

2007).	 In	 mouse,	 Rev1	 localizes	 at	 DNA	 damage-induced	 foci	 binding	

ubiquitinated	 PCNA	 through	 a	 non-canonical	 UBM	 domain	 (C.	 Guo	 et	 al.,	

2006).	In	conclusion,	Rev1	is	a	scaffold	that	coordinates	at	the	molecular	level	
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first	the	action	of	TLS	polymerases	that	bypass	the	lesion,	and	then	the	primer	

extension	by	Pol	ζ	(Masuda,	Ohmae,	Masuda,	&	Kamiya,	2003;	Murakumo	

et	 al.,	 2001).	 The	 expression	 of	 Rev1	 is	 cell	 cycle	 regulated,	with	 the	 highest	

expression	in	G2/M	phases	(Lauren	S	Waters	&	Walker,	 2006),	suggesting	a	

role	 in	 post-replication	 gap	 filling	 rather	 that	 lesion	 bypass	 at	 stalled	 forks	

during	replication.	It	 is	also	phosphorylated	in	a	cell	cycle-dependent	manner	

and	in	response	to	DNA	damage,	but	it	is	unknown	how	this	phosphorylation	

regulates	Rev1	function	(Sabbioneda,	Bortolomai,	Giannattasio,	Plevani,	&	

Muzi-Falconi,	2007).	Besides,	Rev1	and	Pol	ζ	are	targeted	also	to	mitochondria	

and	 contributes	 to	 mtDNA	 mutagenesis	 in	 yeast	 S.	 cerevisiae	 (Rasmussen,	

Chatterjee,	 Rasmussen,	 &	 Singh,	 2003;	 H.	 Zhang,	 Chatterjee,	 &	 Singh,	

2006).	

Polymerase	ζ	

The	polymerase	 ζ	 differs	 from	 the	 other	TLS	 since	 it	 belongs	 to	 the	B-family	

polymerases,	 as	 the	 replicative	 ones.	 It	 is	 a	 heterodimer	 composed	 by	 the	

catalytic	 subunit	 (Rev3)	 (Lemontt	 et	 al.,	 1971)	 and	 the	 accessory	 subunit	

(Rev7)	(Christopher	W.	 Lawrence,	Das,	 &	 Christensen,	 1985;	 J	 R	Nelson,	

Lawrence,	 &	Hinkle,	 1996).	Even	thought	Pol	ζ	 is	a	B-family	polymerases,	 it	

lacks	 the	proofreading	 activity	 and	 its	 error	 rate	on	undamaged	DNA	 is	 ~10-4	

(Robert	 E.	 Johnson,	 Washington,	 Haracska,	 Prakash,	 &	 Prakash,	 2000;	

Christopher	 W.	 Lawrence,	 2004).	 In	 yeast,	 the	 deletion	 of	 REV3	 or	 REV7	

genes	 does	 not	 affect	 cell	 viability	 but	 results	 in	 reduced	 spontaneous	 and	

damage	 induced	 mutagenesis	 (Christopher	 W.	 Lawrence,	 2004);	 while	 in	

mice,	 the	 knock-out	 of	 REV3	 results	 in	 embryonic	 lethality,	 suggesting	 its	

crucial	 role	 in	 rapidly	 proliferating	 cells	 (Bemark,	 Khamlichi,	 Davies,	 &	

Neuberger,	 2000;	Esposito	 et	 al.,	 2000;	Wittschieben,	Reshmi,	Gollin,	&	

Wood,	2006).		

Pol	 ζ	 is	 the	 most	 proficient	 polymerase	 in	 extending	 a	 wide	 range	 of	

mispaired	termini	as	CPDs	(Robert	 E.	 Johnson	 et	 al.,	 2000),	abasic	sites	(L.	

Haracska,	 Unk,	 et	 al.,	 2001)	 and	 8-oxo	 G	 (Lajos	 Haracska,	 Prakash,	 &	

Prakash,	2003).	With	its	extender	role,	Pol	ζ	largely	contributes	to	UV-induced	
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mutagenesis	(C	W	Lawrence,	Nisson,	&	Christensen,	 1985;	C	W	Lawrence,	

O’Brien,	 &	 Bond,	 1984)	 and	 abasic	 site	mutagenesis	 (R.	 E.	 Johnson	 et	 al.,	

1998).	On	the	other	hand,	it	is	nearly	completely	blocked	and	inhibited	in	front	

of	 the	majority	 of	 DNA	 lesions	 (Robert	 E.	 Johnson	 et	 al.,	 2000)	 with	 the	

particular	 exception	of	 ribonucleotides.	 Pol	 ζ	 is	 actually	 designated	 to	 bypass	

embedded	 ribonucleotides	 during	 replication,	 thus	 enabling	 fork	 progression	

especially	in	low	dNTPs	conditions	(Lazzaro	et	al.,	2012).			

Finally,	 Pol	 ζ	 extensively	 interacts	 with	 Rev	 1,	 contributing	 to	 the	 bulk	 of	

mutagenesis	 in	 eukaryotes	 (Cheung	 et	 al.,	 2006;	 P.	 E.	 Gibbs,	 McGregor,	

Maher,	 Nisson,	 &	 Lawrence,	 1998;	 Lemontt	 et	 al.,	 1971;	 McNally,	 Neal,	

McManus,	McCormick,	&	Maher,	2008).	The	accessory	subunit	Rev3	contacts	

Rev1	C-terminal,	 enhancing	Rev7	polymerase	 activity	 (N.	 Acharya,	 Johnson,	

Prakash,	&	Prakash,	2006;	D.	Guo,	Xie,	Shen,	Zhao,	&	Wang,	2004),	while	

Rev7	as	well	 interacts	with	Rev1,	which	 triggers	 its	 recruitment	at	 lesion	 sites	

(C.	Guo,	2003;	Murakumo	et	al.,	 2001;	Ohashi	et	al.,	 2004).	Therefore,	the	

cellular	levels	of	Pol	ζ	are	strictly	controlled,	specifically	its	abundance	is	kept	

low	mainly	to	avoid	extra	mutagenesis	(Christopher	W.	Lawrence,	2004).		 	
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Ribonucleotides	in	DNA	

	

Thirty	 years	 ago	 was	 firstly	 hypothesized	 the	 theory	 of	 the	 RNA-world	 by	

Gilbert,	 who	 proposed	 the	 existence	 of	 a	 primordial	 world	 based	 on	 RNA	 to	

store,	read	and	transmit	the	genetic	information	(Gilbert,	 1986).	DNA	is	more	

stable	respect	to	RNA	because	the	2’-OH	hydroxyl	group	of	the	sugar	moiety	is	

highly	 reactive	 and	 sensitive	 to	 spontaneous	 hydrolysis	 (Y.	 Li	 &	 Breaker,	

1999);	this	advantaged	DNA-based	organisms	over	the	RNA-based	ones	(Cech,	

2012).		

Therefore	the	presence	of	RNA	in	DNA	genomes	could	potentially	affect	its	

structure	or	influence	DNA	transaction	and	alter	the	stored	information.	It	has	

been	 fully	 demonstrated	 and	 proved	 that	 ribonucleotides	 are	 frequently	

incorporated	during	genome	duplication	from	bacteria	(McDonald,	Vaisman,	

Kuban,	Goodman,	&	Woodgate,	2012;	Y.	Shen,	Koh,	Weiss,	&	Storici,	2012)	

to	mammalian	cells	(Hiller	et	al.,	2012;	Pizzi	et	al.,	2015;	M.	A.	M.	Reijns	et	

al.,	 2012),	 and	 their	 persistence	 has	 been	 associated	 with	 instability.	 In	 the	

following	 paragraphs	 are	 discussed	 in	 detail	 the	 mechanisms	 of	 RNA	

incorporation,	 the	 removal	 and	 the	 positive	 and	 negative	 outcomes	 of	 this	

phenomenon.		

	

Ribonucleotides	Incorporation	In	The	Genome	

The	 major	 source	 of	 genomic	 ribonucleotides	 is	 provided	 by	 the	 DNA	

polymerase	 α,	 which	 synthesizes	 short	 RNA	 primers	 during	 replication	

(Kuchta	 &	 Stengel,	 2010).	Thus	 the	RNA	primer	 synthesis,	 especially	 in	 the	

lagging	 strand,	 represents	 undoubtedly	 the	 principal	 source	 of	 RNA	 in	 the	

genome.	However	the	RNA	primers	are	efficiently	and	rapidly	removed	during	

Okazaki	 fragments	maturation,	 so	 their	 presence	 is	 just	 temporarily	 (Yeeles,	

Poli,	Marians,	 &	 Pasero,	 2013).	Moreover,	consecutive	RNA	tracts	as	mRNA	

(Pomerantz	 &	 O’Donnell,	 2008)	 or	 primers	 synthesized	 by	 the	 PrimPol	
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(García-Gómez	 et	 al.,	 2013)	 are	 also	used	 to	 restart	 stalled	 replication	 forks	

(Yeeles	et	al.,	2013).	

Early	 studies	 showed	 that	 DNA	 polymerases	 can	 be	 forced	 to	 introduce	

ribonucleotides	 and	 behave	 as	 a	 weak	 RNA	 polymerase	 (T.	 Chen	 &	

Romesberg,	2014;	G.	Gao,	Orlova,	Georgiadis,	Hendrickson,	&	Goff,	1997;	

P.	 H.	 Patel	 &	 Loeb,	 2000).	 Besides	 the	 selection	 of	 the	 correct	 base,	 DNA	

polymerases	 have	 evolved	 a	 sugar	 selectivity	 to	 discriminate	 between	 deoxy-

ribonucleotides	 (dNTPs)	 and	 ribonucleotides	 (NTPs)	 (Joyce,	 1997).	 The	

discrimination	 is	 mainly	 achieved	 by	 a	 steric	 clash	 of	 the	 2’-OH	 group	 with	

conserved	residues	of	the	polymerase’s	steric	gate	(Joyce,	1997;	W.	Wang,	Wu,	

Hellinga,	 &	 Beese,	 2012).	Usually,	 in	the	steric	gate,	there	 is	a	bulky	residue	

that	 serves	 as	 a	 bottleneck	 to	 prevent	 ribonucleotides	 incorporation	 (P.	 H.	

Patel,	Kawate,	Adman,	Ashbach,	&	Loeb,	2001;	P.	H.	Patel	&	Loeb,	2000).	

A-family	 polymerases	 use	 a	 Glu	 amino	 acid,	 while	 the	 others,	 B-,	 X-,	 Y-	 and	

retrotranscriptase,	use	Tyr	or	Phe	residues	(Brown	&	Suo,	2011);	Pol	β	and	pol	

λ,	members	of	the	X-family	use	a	peptide	backbone	portion	to	exclude	rNTPs	

(Brown	 et	 al.,	 2010).	 Clearly,	 the	 steric	 gate	 plays	 a	 crucial	 role	 in	

discriminating	the	correct	base	among	the	four	dNTPs	(W.	Wang	et	al.,	2012).	

Indeed,	mutations	in	the	conserved	Tyr	residue	(Y645)	of	yeast	Pol	ε	results	in	

cell	 lethality	 (Pavlov,	 Shcherbakova,	 &	 Kunkel,	 2001)	 but,	 in	 spite	of	 that,	

the	 adjacent	 residue	M644	 can	 be	mutated	 without	 affecting	 viability	 (S.	 A.	

Nick	McElhinny,	Kumar,	et	al.,	2010).	In	particular,	when	Gly	replaces	M644,	

the	sugar	discrimination	is	strongly	impaired	resulting	in	huge	ribonucleotides	

incorporation,	 on	 the	 other	 hand,	 a	 substitution	 with	 Leu	 has	 the	 opposite	

outcome,	 increasing	 sugar	 selectivity	 (S.	 A.	 Nick	 McElhinny,	 Watts,	 et	 al.,	

2010).	Also,	 translesion	DNA	polymerases	use	 the	 steric	gate	 to	control	 sugar	

selectivity,	 F35	 and	 Y39	 are	 respectively	 the	 conserved	 residues	 in	 Pol	 η	

(Donigan	et	al.,	2015)	and	Pol	ι	(Donigan,	McLenigan,	Yang,	Goodman,	&	

Woodgate,	2014)	that	have	been	shown	to	increase	rNTPs	incorporation	when	

mutated.	

Replicative	DNA	polymerases	have	a	3’-exonuclease	proofreading	activity	to	

excide	mispaired	bases	 (Pavlov	 et	 al.,	 2004),	 but	 this	 is	 not	 so	 proficient	 at	
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removing	 ribonucleotides	 (Clausen,	 Zhang,	 Burgers,	 Lee,	 &	 Kunkel,	 2013;	

T.-C.	 Lin,	 Chun	 Xia	 Wang,	 Catherine	 M.	 Joyce,	 &	 Konigsberg*,	 2001;	

Williams	 et	 al.,	 2012).	Once	 an	 rNTP	has	been	 introduced	 in	 the	place	of	 a	

dNTP,	the	subsequent	nucleotide	incorporation	would	proceed	slowly,	possibly	

facilitating	its	transfer	to	the	exonuclease	domain	(Brown	&	Suo,	2011).		

Deoxyribonucleotides	 are	 produced	 in	 cells	 by	 the	 enzymatic	 reduction	 of	

ribonucleotide	 substrates,	 specifically	 by	 replacing	 the	 2’-OH	 group	 with	 a	

hydrogen	 atom.	 The	 ribonucleotide	 reductase	 enzyme	 (RNR)	 catalyzes	 this	

reaction	(Herrick	&	Sclavi,	2007),	and	this	is	considered	to	be	the	rate	limiting	

step	 of	 dNTPs	 production	 in	 vivo.	 RNR	 is	 indeed	 stimulated	 during	 S	 phase,	

when	cells	actually	need	dNTPs	for	DNA	duplication	(Lowdon	&	Vitols,	1973).	

RNR	 activity	 is	 controlled	 by	 free	 dNTPs	 concentration	 and	 also	 by	 cellular	

ATP,	through	a	feedback	mechanism	ensuring	a	stringent	control	on	the	dNTPs	

production	(Chabes	et	al.,	 2003).	Thus,	the	dNTPs	pool	varies	during	the	cell	

cycle,	and	it	specifically	 increases	during	S	phase	 (Reichard,	 1985).	However,	

the	 rNTPs	 pool	 is	 always	 several	 folds	 higher	 than	 the	 dNTPs	 one	 (Traut,	

1994),	 and	 this	 difference	 varies	 depending	 on	 the	 considered	 organism	 and	

nucleotide	species	(S.	 A.	 Nick	McElhinny,	Watts,	 et	 al.,	 2010)	 (Table	2).	 In	

conclusion,	 during	 genome	 duplication,	 these	 high	 ribonucleotides	

concentration	strongly	challenges	DNA	polymerases	activity.		

	

Table	2.	Nucleotides	pool	in	S.	cerevisiae	(S.	A.	Nick	McElhinny,	Watts,	et	al.,	2010)	

dNTPs	
Concentration	

(µM)	
rNTPs	

Concentration	

(µM)	

dA	 16	 rA	 3000	

dC	 14	 rC	 500	

dG	 12	 rG	 700	

dT	 30	 rT	 1700	

	

McElhinny	 and	 colleagues	 measured	 the	 ability	 of	 DNA	 polymerases	 to	

discriminate	 between	 the	 two	 sugar	 moieties,	 by	 using	 an	 in	 vitro	 primer	
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extension	assay	followed	by	alkaline	treatment	(S.	A.	Nick	McElhinny,	Watts,	

et	 al.,	 2010).	In	reactions	with	physiological	rNTPs	and	dNTPs	concentration,	

yeast	Pol	α,	Pol	 δ,	 and	Pol	 ε	 stably	 incorporate	one	 ribonucleotide	every	625,	

5000	or	1250	deoxyribonucleotides,	respectively	(S.	A.	Nick	McElhinny,	Watts,	

et	 al.,	 2010).	 Considering	 these	 values	 as	 physiological,	 more	 than	 13000	

ribonucleotides	 would	 be	 introduced	 in	 a	 single	 yeast	 genome	 duplication.	

Later,	Sparks	and	colleagues	obtained	different	incorporation	rates,	by	using	a	

slightly	different	assay,	and	by	adding	accessory	proteins	as	RPA,	PCNA	and	the	

RFC	 complex	 (Sparks	 et	 al.,	 2012).	 It	 was	 found	 that	 rNTPs	 incorporation	

reduces	the	processivity	of	replication	of	~40%,	and	the	insertion	frequency	was	

calculated	 to	 be	 1	 rNTP	 every	 720	 dNTPs	 for	 Pol	 δ	 and	 1	 every	 640	 for	 Pol	 ε	

(Sparks	et	al.,	2012).	Such	a	difference	can	be	likely	ascribed	to	the	presence	of	

the	 accessory	 factors,	 which	 cooperatively	 ensure	 a	 processive	 mode	 of	

replication.	

Given	that	human	Pol	δ	(Clausen,	Zhang,	et	al.,	2013)	and	Pol	ε	(Göksenin	

et	 al.,	 2012)	 have	 ribonucleotide	 incorporation	 propensities	 similar	 to	 their	

corresponding	 yeast	 homologous,	 and	 the	 genomic	 ribonucleotides	

incorporation	has	been	assessed	both	in	human	and	mouse(Hiller	et	al.,	2012;	

Pizzi	 et	 al.,	 2015;	 M.	 A.	 M.	 Reijns	 et	 al.,	 2012),	 the	 amount	 of	 rNMPs	

introduced	in	a	complete	mammalian	genome	duplication	would	exceed	three	

million.	Altogether,	these	data	suggest	that	ribonucleotides	are	the	most	non-

canonical	 nucleotides	 introduced	 into	 the	 genome	 (S.	 A.	 Nick	 McElhinny,	

Watts,	 et	 al.,	 2010),	 especially	 in	 the	 leading	 strand	 filament	 that	 is	

synthesized	by	the	DNA	Pol	ε	(Thomas	A.	Kunkel	&	Burgers,	 2008)	(Figure	

7).	Further	evidence	of	ribonucleotide	incorporation	comes	from	studies	on	the	

mitochondrial	 genome	 replication,	 where	 the	 DNA	 polymerase	 γ	 has	 been	

shown	 to	 be	 able	 to	 incorporate	 rNTPs	 in	 vitro	 (Kasiviswanathan	 &	

Copeland,	 2011)	as	well	as	the	principal	bacterial	replicative	DNA	polymerase	

III	(Yao,	Schroeder,	Yurieva,	Simmons,	&	O’Donnell,	2013).	
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Figure	7.	Ribonucleotides	are	an	abundant	form	of	DNA	damage.	(Wallace	&	Williams,	2014)	

	

Replicative	 DNA	 polymerases	 are	 not	 the	 only	 ones	 that	 place	

ribonucleotides	 into	 the	 genome.	 DNA	 polymerase	 μ	 is	 involved	 in	 double-

strand	 breaks	 DNA	 repair	 through	 the	 non-homologous	 end	 joining	 (NHEJ)	

pathway,	 where	 it	 participates	 by	 filling	 small	 gaps	 preferentially	 with	

ribonucleotides	(S.	A.	Nick	McElhinny	&	Ramsden,	 2003;	 Zhu	&	 Shuman,	

2008).	 NHEJ	 is	 prevalent	 in	 G1	 phase	 when	 dNTPs	 concentrations	 are	

particularly	 low,	and	this	could	partially	explain	the	use	of	ribonucleotides	by	

Pol	 μ	 in	 the	 gap-filling	 synthesis	 step.	 The	 Terminal	 deoxynucleotidyl	
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Transferase	 (TdT)	 is	 an	 atypical	 polymerase	 implicated	 in	 NHEJ	 during	 the	

V(D)J	 recombination	process,	 it	adds	random	nucleotides	without	requiring	a	

DNA	 template.	 It	 has	 been	 demonstrated	 that	 even	 TdT	 could	 incorporate	

rNTPs	 during	 its	 action	 (Boulé,	 Rougeon,	 &	 Papanicolaou,	 2001).	 	 In	

addition,	also	the	Tetrahymena	telomerase	(Collins	&	Greider,	1995)	and	by	E.	

coli	Pol	V,	which	participates	 in	 translesion	 synthesis	 (Vaisman	 et	 al.,	 2012)	

insert	 ribonucleotides.	 By	 contrast,	 in	 Schizosaccharomyces	 pombe	 and	

Schizosaccharomyces	 japonicas,	two	adjacent	ribonucleotides	are	incorporated	

into	a	specific	position	in	the	mating-type	locus	by	Pol	α.	These	two	embedded	

rNMPs	constitute	an	 imprinting	phenomenon	and	designate	cells	 for	mating-

type	switching	(Vengrova	&	Dalgaard,	2006;	C.	Yu,	Bonaduce,	&	Klar,	2012).	

Recently,	 four	 different	 groups	 mapped	 the	 position	 of	 embedded	

ribonucleotides	 in	a	genome-wide	manner	(Jinks-Robertson	&	Klein,	 2015).	

They	used	different	but	related	methodologies	to	deep	sequencing	S.	cerevisiae	

(Clausen	et	al.,	2015;	Koh,	Balachander,	Hesselberth,	&	Storici,	2015;	M.	A.	

M.	Reijns	 et	 al.,	 2015)	and	S.	pombe	(Daigaku	 et	 al.,	 2015)	genomes,	where	

ribonucleotides	 sites	 were	 previously	 marked.	 They	 showed	 that	

ribonucleotides	 are	 scattered	 into	 the	 genome	 but	 not	 randomly	 distributed,	

with	 many	 loci	 showing	 no	 reads	 and	 some	 with	 more	 than	 1000	 reads.	

Accordingly,	there	are	hotspots	of	incorporation,	especially	in	correspondence	

of	sequences	present	in	multiple	copies,	like	mitochondrial	DNA,	rDNA	and	Ty	

transposons;	 noteworthy,	 in	 those	 regions	 RNA:DNA	 hybrids	 as	 well	 were	

found	 to	be	 enriched	 (El	 Hage,	 Webb,	 Kerr,	 Tollervey,	 &	 Andujar,	 2014).	

Furthermore,	ribonucleotides	are	more	abundant	into	the	leading	strand,	with	

rCTP	 and	 rGTP	 preferential	 incorporation,	 suggesting	 a	 sequence	 context	

dependency.	Altogether	 they	also	provided	 further	evidence	of	 the	division	of	

labor	at	 the	 replication	 fork,	 confirming	Pol	 ε	 and	Pol	δ	as	 the	major	 leading	

and	lagging	strand	polymerase,	respectively.	

Ultimately,	 R-loops	 are	 considered	 another	 source	 of	 ribonucleotides	 but	

different	 from	 the	 ones	 described	 so	 far.	 Primarily,	 R-loops	 are	 structures	

composed	 of	 an	 RNA:DNA	 hybrid	 and	 a	 ssDNA,	 formed	 during	 the	

transcription	 process.	 Thus,	 the	 RNA	 part	 of	 the	 hybrid	 is	 the	 mRNA	
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transcribed	 by	 the	 RNA	 polymerase	 and	 the	 DNA	 part	 is	 the	 coding	 DNA	

sequence;	 whereas	 the	 ssDNA	 is	 the	 strand	 that	 has	 been	 displaced	 to	 allow	

transcription.	In	this	particular	case,	the	RNA	is	not	embedded	into	DNA	and	

there	are	no	RNA-DNA	junctions.	R-loops	are	rare	events	but	when	they	form	

are	 very	 stable	 structures,	 which	 could	 threat	 genome	 instability	 but	 also	 be	

tolerated	to	accomplish	biological	 functions	(Aguilera	 &	García-Muse,	 2012;	

Skourti-Stathaki	&	Proudfoot,	2014).	R-loops	biology	is	an	emerging	topic	of	

the	 last	 years	 and	 as	 for	 embedded	 ribonucleotides,	 there	 are	 available	

techniques	to	genome-wide	map	their	locations,	both	in	yeast	and	human	cells	

(Chan	et	al.,	2014;	Ginno,	Lott,	Christensen,	Korf,	&	Chédin,	2012).	

	

Ribonucleotides	Removal	From	DNA	

Ribonucleotides	presence	into	the	genome	is	essentially	transient	and	there	is	

more	 than	 one	 pathway	 responsible	 for	 their	 removal.	 As	mentioned	 before,	

RNA	 primers	 are	 removed	 in	 multiple	 ways	 during	 Okazaki	 fragment	

maturation	 and	 are	 not	 considered	 for	 the	 discussion	 in	 the	 following	

paragraphs.	Ribonucleases	H	are	 the	 enzymes	deputed	 to	hydrolyze	 the	RNA	

moiety	of	RNA:DNA	hybrid	molecules	(Cerritelli	&	Crouch,	2009).	They	were	

first	 described	 in	 1969,	 by	 Peter	Hausen,	 that	 identified	 them	 in	 calf	 thymus	

extracts	(Stein	&	Hausen,	1969).	In	the	following	years,	it	was	established	that	

there	are	two	types	of	RNase	H,	named	RNase	H1	and	RNase	H2	in	eukaryotes	

or	 RNase	 HI	 and	 RNase	 HII	 in	 prokaryotes.	 Type	 1	 and	 2	 differs	 greatly	 in	

protein	 structure,	 but	 they	 are	 partially	 redundant	 in	 substrate	 specificity	

(Cerritelli	&	Crouch,	2009).	

Thus,	 in	 addition	 to	 the	 low	 proofreading	 activity	 of	 replicative	 DNA	

polymerases,	 embedded	 ribonucleotides	 are	 removed	 mainly	 by	 a	 RNase	 H-

based	 pathway	 (Ribonucleotide	 Excision	 Repair,	 RER)	 and	 alternatively	 by	 a	

Top1-dependent	mechanism.	
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RNases	H	and	Ribonucleotide	Excision	Repair	

The	 RNase	 H1	 is	 a	 monomeric	 enzyme	 whose	 catalytic	 activity	 requires	 an	

RNA:DNA	 hybrid	 containing	 at	 least	 four	 consecutive	 ribonucleotides	 as	

substrate	(Eder,	Walder,	&	Walder,	 1993).	The	hybrid	is	thus	cleaved	by	the	

RNase	H1,	which	leaves	the	last	ribonucleotides	attached	to	DNA.	Mammalian	

RNase	 H1	 is	 found	 both	 in	 the	 nucleus	 and	 in	 the	 mitochondria,	 where	 is	

targeted	by	a	specific	sequence	(Suzuki	et	 al.,	 2010);	it	has	been	shown	to	be	

essential	 for	 mitochondrial	 DNA	 replication	 during	 mouse	 embryogenesis	

(Cerritelli	et	al.,	2003).	The	nuclear	function	of	the	RNase	H1	has	not	yet	been	

defined,	 possible	 substrates	 are	 the	 RNA	 primers	 of	 the	 lagging	 strand	 or	

stretches	 of	 ribonucleotides	 introduced	 during	 replication,	 whereas	 known	

targets	are	the	R-loops	formed	during	transcription	(El	Hage	 et	 al.,	 2014;	W.	

Shen	et	al.,	2017)	and	the	TERRA-telomeric	hybrids	(Arora	et	al.,	2014).		

RNase	H2	is	the	major	source	of	nuclear	RNase	H	activity	in	mammalian	and	

yeast	 cells	 (Arudchandran	 et	 al.,	 2000).	 It	 is	 a	 heterotrimeric	 complex	

composed	 of	 the	 RNASEH2A,	 RNASEH2B	 and	 RNASEH2C	 subunits,	 Rnh201,	

Rnh202,	 and	 Rnh203,	 respectively,	 in	 yeast	 (Chon	 et	 al.,	 2009;	 Jeong,	

Backlund,	 Chen,	 Karavanov,	 &	 Crouch,	 2004).	 The	 RNASEH2A/Rnh201	

subunit	 retains	 the	 catalytic	 activity	 and	 can	 cleave	 processively	 both	 rNMPs	

stretches	 or	 single	 embedded	 ribonucleotides	 (Eder	 et	 al.,	 1993;	 Pileur,	

Toulme,	&	Cazenave,	2000;	Rychlik	et	al.,	2010).	The	complex	is	active	only	

when	all	the	subunits	are	assembled	together,	both	in	S.	cerevisiae	(Nguyen	et	

al.,	 2011)	and	in	mammalian	cells	(Chon	et	 al.,	 2009).	In	the	former,	the	two	

structural	 subunits	 form	 a	 sub-complex,	 than	 the	 catalytic	 subunit	 binds	 the	

heterodimer	 and	 the	 complex	 become	 active	 (Nguyen	 et	 al.,	 2011);	 human	

RNase	 H2	 complex	 is	 assembled	 in	 the	 cytosol,	 then	 it	 is	 imported	 into	 the	

nucleus	in	a	manner	dependent	on	RNASEH2B	subunit	(Kind	et	al.,	2014).	The	

role	of	these	accessory	subunits	has	to	be	fully	clarified,	but	they	likely	provide	

a	platform	 for	 the	assembly	of	 the	entire	complex,	 increasing	 its	 stability	and	

processivity.		

Human	RNase	H2	interacts	with	PCNA	through	the	PIP	domain,	located	in	

the	C-terminus	 of	 the	 B	 subunit.	 The	 interaction	with	 PCNA	 is	 important	 to	
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localize	the	complex	at	replication	foci	and	in	repair	sites	(Bubeck	et	al.,	2011;	

Kind	 et	 al.,	 2014),	 nevertheless	 there	 are	 evidence	 of	 PCNA-independent	

recruitment	(Kind	et	al.,	2014).	In	any	case,	the	interaction	with	PCNA	ensures	

that	RNase	H2	is	the	leading	RNase	H	activity	during	genome	duplication.	As	a	

secondary	 role	 during	 replication,	 both	 RNase	 H1	 and	 H2	 resolve	 R-loops	

structures	 (Amon	 &	 Koshland,	 2016)	 and	 act	 as	 a	 backup	 mechanism	 in	

Okazaki	 fragment	 maturation	 (Murante,	 Henricksen,	 &	 Bambara,	 1998;	

Turchi,	Huang,	Murante,	Kim,	&	Bambara,	 1994);	 indeed,	the	RNase	H1	is	

not	 able	 to	 remove	 the	 last	 ribonucleotide	 attached	 to	 DNA	 and	 RNase	 H2	

cleaves	 only	 at	 the	 5’	 of	 it,	 thus	 the	 participation	 in	 Okazaki	 fragment	

maturation	could	be	only	an	additional	function	in	the	case	of	need.	

The	 first	 indication	 of	 the	 existence	 of	 a	 ribonucleotides-removal	 pathway	

came	 in	 2002,	 when	 a	 DNA	 substrate	 with	 embedded	 ribonucleotides	 was	

incubated	 with	 S.	 cerevisiae	 protein	 extract.	 The	 ribonucleotide-containing	

DNA	(RC-DNA)	was	nicked	at	5’	of	the	ribonucleotide	with	a	subsequent	cut	at	

its	3’,	releasing	the	ribonucleotide	monophosphate	(Rydberg	&	Game,	 2002).	

Further	incubations	with	extracts	from	cells	 lacking	either	RNase	H2,	FEN1	or	

both	 leads	 to	 the	 conclusion	 that	 the	 RC-DNA	 was	 firstly	 nick	 at	

ribonucleotide’s	site	by	the	RNase	H2	and	FEN1	endonuclease	was	involved	the	

second	cut	(Rydberg	&	Game,	2002).		

Other	 subsequent	 studies	 validated	 the	 model	 and	 stated	 the	 removal	 of	

ribonucleotides	as	a	new	repair	pathway	called	Ribonucleotide-Excision	Repair	

(RER)	 (Sparks	 et	 al.,	 2012).	 During	 RER,	 the	 RNase	 H2	 recognizes	 single	

embedded	rNMPs	and	cleaves	at	the	5’	of	the	ribose,	generating	a	nick	whose	

ends	have	a	3’-OH	and	a	5’-RNA-DNA	junction	(Figure	8).	Then,	the	DNA	Pol	δ	

carries	 out	 a	 strand-displacement	 synthesis	 from	 RNase	 H2	 incision,	 in	

collaboration	 with	 PCNA	 and	 the	 RFC	 clamp	 loader;	 this	 step	 could	 be	

performed	 also	 by	 the	 DNA	 Pol	 ε	 but	 with	 less	 efficiency	 respect	 to	 Pol	 δ	

(Sparks	et	al.,	2012).	The	yet	generated	5’-flap	is	substrate	of	the	endonuclease	

FEN1	and	the	resulting	nick	is	sealed	by	the	DNA	ligase	I	(Figure	8).	FEN1	drives	

the	 processing	 of	 short	 flaps	 in	 Okazaki	 fragment	maturation,	 but	 it	 can	 be	

partially	substituted	with	the	nuclease	Exo1	(Tishkoff	et	al.,	1997);	as	expected,	
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Exo1	can	substitute	FEN1	in	RER	reaction	in	vitro,	although	at	a	slower	rate,	on	

the	 contrary,	 Dna2	 seems	 not	 involved	 in	 RER	 (Sparks	 et	 al.,	 2012).	 The	

enzymes	 involved	 in	 the	 RER	 pathway	 are	 highly	 conserved	 in	 all	 three	

kingdoms	of	life,	from	Archea	to	bacteria,	yeast,	plants	and	mammals	(Heider,	

Burkhart,	Santangelo,	&	Gardner,	2017;	Vaisman	et	al.,	2014).	

	

	

	
Figure	8.	Ribonucleotide-excision	Repair.(Williams,	Lujan,	&	Kunkel,	2016)	
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The	discovery	of	 abundant	 alkali-sensitive	 sites	 in	 genomic	DNA	extracted	

from	yeast	 cells	 lacking	RNase	H2	 (rnh201∆)	was	 a	 strong	 indication	 that	 the	

removal	pathway	was	almost	completely	RNase	H2-dependent	also	 in	 vivo	(S.	

A.	 Nick	 McElhinny,	 Kumar,	 et	 al.,	 2010).	 In	particular,	RER	mechanism	 is	

likely	 to	 take	place	during	 replication,	as	all	 its	components	possess	a	PCNA-

interacting	 domain	 (PIP).	 In	 vitro,	 PCNA	 greatly	 stimulates	 ribonucleotide	

excision	repair,	probably	keeping	together	the	complex	but,	on	the	other	side,	

in	vitro	reconstructed	RER	does	not	seem	to	require	the	PIP	motif	of	RNase	H2	

(Sparks	 et	 al.,	 2012).	 For	 what	 concerns	 the	 expression	 of	 the	 RNase	 H2	

complex,	 in	 S.	 cerevisiae	 the	 mRNA	 levels	 fluctuate	 within	 the	 cell	 cycle	

(Arudchandran	 et	 al.,	 2000),	 peaking	 during	 S	 and	 G2/M	 phases,	 while	 in	

HeLa	cells,	all	three	RNase	H2	subunits	are	constantly	present	throughout	the	

cell	cycle	(M.	A.	M.	Reijns	et	al.,	2012).		

	

Top1	processing	

The	 Topoisomerase	 1	 (Top1)	 is	 known	 to	 resolve	 DNA	 supercoils	 generated	

during	transcription	and	replication;	 in	 fact,	 it	 solves	the	torsional	stresses	by	

incising	and	resealing	one	DNA	strand	after	 the	stress	has	been	released.	The	

first	 evidence	 of	 Top1	 ribonuclease	 activity	 came	 from	 biochemical	 studies,	

where	it	was	demonstrated	that	Top1	is	able	to	cleave	at	rNMPs	positions	in	a	

DNA	duplex.	The	Top1	cleavage	 leaves	a	5’-OH	on	one	end	and	a	3’-P	on	 the	

other,	which	 in	turn	reacts	with	the	2’-OH	group	of	 the	ribose,	generating	an	

unligatable	 2’-3’	 cyclic	 phosphate	 (Sekiguchi	 &	 Shuman,	 1997)	 (Figure	 9).	

Interestingly,	 yeast	 cells	 lacking	 RNase	H2	 are	 viable	 despite	 the	 presence	 of	

rNMPs	in	the	genome	and,	moreover,	they	exhibit	a	peculiar	phenotype	of	2-5	

bp	deletions	in	short	repetitive	sequences	(S.	A.	Nick	McElhinny,	Kumar,	et	

al.,	 2010).	This	characteristic	deletion	pattern	was	associated	with	Top1	(Kim	

et	al.,	2011)	that,	in	absence	of	RNase	H2,	gain	the	access	to	embedded	rNMPs.	

However,	 the	 2’-3’	 cyclic	 phosphate	 generated	 by	 Top1	 cleavage	 cannot	 be	

directly	sealed	and	need	further	processing	prior	to	ligation;	this	can	basically	

occur	in	an	error-free	or	error-prone	manner	(Figure	9)	(J.-E.	Cho,	Kim,	Li,	&	
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Jinks-Robertson,	 2013).	 The	 current	model	 involves	 a	 second	 Top1	 cleavage	

upstream	 the	 nick	 that	would	 release	 a	 short	DNA	 oligo	 containing	 the	 2’-3’	

cyclic	phosphate	and	would	 leave	a	gap	of	 few	nucleotides	(Shar-Yin	 Naomi	

Huang,	 Ghosh,	 &	 Pommier,	 2015;	 Sparks	 &	 Burgers,	 2015).	 Such	 gap	 is	

subsequently	 filled	 by	 the	 coordinate	 action	 of	 Srs2,	 Exo1,	 and	 Pol	 δ,	 which	

together	 restore	 the	 correct	 DNA	 sequence	 without	 losing	 any	 information	

(Potenski,	Niu,	 Sung,	&	Klein,	 2014;	 Sparks	&	Burgers,	 2015).	Conversely,	

especially	 in	 short	 tandem	 repeats,	 the	DNA	strand	 in	 front	of	 the	gap	 could	

realign,	bringing	close	the	two	ends	that	are	re-ligated	by	Top1	itself	(J.-E.	Cho	

et	al.,	2013).	As	a	result,	a	short-bp	deletion	is	generated,	as	the	ones	observed	

in	RNase	H2	deficient	yeast	cells	(S.	A.	Nick	McElhinny,	Kumar,	et	al.,	2010).	

It	is	curious	that	RER-defective	cells	present	ribonucleotides	in	their	genomes,	

despite	the	presence	of	proficient	Top1	(S.	A.	Nick	McElhinny,	Kumar,	et	al.,	

2010;	Pizzi	et	al.,	2015;	M.	A.	M.	Reijns	et	al.,	2012)	and	moreover,	this	Top1	

activity	on	ribonucleotides	turns	out	to	be	detectable	only	in	absence	of	RNase	

H2.	 Altogether,	 these	 observations	 lead	 to	 the	 conclusion	 that	 Top1	 is	 active	

only	on	a	subset	of	embedded	rNMPs	and,	during	normal	DNA	replication,	RER	

pathway	 removes	 ribonucleotides	 before	 Top1	 can	 get	 to	 them.	 Indeed,	 the	

deletion	of	TOP1	 in	rnh201∆	yeast	strain	abolishes	the	accumulation	of	2-5	bp	

deletions	while	leaving	unprocessed	ribonucleotides	in	the	genome	(Williams	

et	 al.,	 2013).	 Lastly,	 the	 alternative	 activity	 of	 Top1	 has	 been	 associated	with	

other	 severe	 consequences,	 as	 the	 formation	 of	 DSBs	 in	 the	 case	 the	 second	

cleavage	occurs	 in	 the	opposite	DNA	 strand	 (Shar-Yin	 N	 Huang,	Williams,	

Arana,	Kunkel,	&	Pommier,	2016).	

The	unexpected	 activity	 of	Top1	points	 out	 a	new	 role	 of	 the	RNase	H2	 in	

resolving	 issues	 related	 to	 the	 accumulation	 of	 torsional	 stress.	 In	 fact,	

ribonucleotides	 are	 more	 frequently	 incorporated	 in	 the	 leading	 strand	 of	

replication	 (Clausen	 et	 al.,	 2015;	 Koh	 et	 al.,	 2015;	 M.	 A.	M.	 Reijns	 et	 al.,	

2015),	where	supercoiling	form	and	have	to	be	relaxed	(H.	Yu	&	Dröge,	2014).	

The	nick	generated	by	the	RNase	H2	could	help	 in	the	elimination	of	 leading	

strand	 supercoils;	 in	 its	 absence,	 Top1	 is	 required	 to	 supply	 such	 activity.	
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Accordingly,	 Top1	 activity	 on	 ribonucleotides	was	 found	 to	 be	 specific	 of	 the	

leading	strand	in	S.	cerevisiae	(Williams	et	al.,	2015).		

	

	
Figure	9.	Top1-	processing	of	ribonucleotides.(Williams	et	al.,	2016)	
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Other	processing	

There	 are	 other	 ancillary	 ways	 in	 which	 ribonucleotides	 could	 be	 processed,	

and	they	surely	need	further	investigations	(Figure	10).	For	instance,	a	delay	in	

RER	processing	could	lead	to	a	premature	attempt	to	ligate	the	nick	generated	

by	 RNase	 H2,	 resulting	 in	 an	 adenylated	 5’-RNA-DNA	 junction	 (Tumbale,	

Williams,	Schellenberg,	Kunkel,	&	Williams,	2013).	Eukaryotic	cells	possess	

ATP-dependent	 DNA	 ligases	 to	 seal	 nicks	 generated	 during	 replication	 or	

repair;	the	catalytic	mechanism	involved	the	adenylation	of	the	enzyme	active	

site,	then	the	adenylate	is	transferred	to	the	5’-phosphate	group	of	DNA	that	is	

sealed	with	 the	 release	of	AMP	 (Lehman,	 1974).	 In	 the	 specific	 case	of	nicks	

generated	 by	 RNase	 H2,	 DNA	 ligases	 could	 accidentally	 try	 to	 seal	 them,	

without	 succeeding	 in	 correct	 ligation.	 The	 attempt	 to	 ligate	 a	 RNA-DNA	

junction	triggers	the	premature	release	of	the	enzyme,	resulting	in	adenylated	

DNA	(Ahel	et	al.,	2006;	Harris	et	al.,	2009;	Tumbale	et	al.,	2011).	In	that	rare	

case,	 DNA	 ligase	 would	 exacerbate	 a	 pre-existing	 damage,	 but	 aprataxin	

(APTX)	is	capable	to	restore	adenylated	DNA	even	if	contains	a	ribonucleotide.	

When	this	sort	of	 ligation	proofreading	occurs,	RER	can	process	the	substrate	

and	any	negative	outcomes	would	be	avoided	(Tumbale	et	al.,	2013).	

In	addition	to	the	important	role	of	the	Topoisomerase	1,	also	the	eukaryotic	

Topoisomerases	 2	 are	 in	 involved	 in	 ribonucleotides	 processing.	 Top2a	 and	

Top2b	 regulate	DNA	 topology	 by	 breaking	 and	 re-ligating	 both	DNA	 strands	

after	 stress	 release	 (Nitiss,	 2009a,	 2009b).	 The	 presence	 of	 ribonucleotides	

stimulates	both	the	Top2a	and	Top2b	activity,	resulting	in	the	generation	of	a	

covalent	adduct	between	the	enzymes	and	the	RNA-DNA	tract	(R.	Gao	et	al.,	

2014;	Y.	Wang,	Knudsen,	Bjergbaek,	Westergaard,	&	Andersen,	1999).	As	a	

consequence,	 these	 adducts	 could	 hamper	 transcription	 and	 replication	

processes	 (Pommier,	 2013)	 but	 are	 promptly	 repaired	 by	 Tdp2	 (Gómez-

Herreros	et	al.,	2013;	Z.	Zeng,	Cortés-Ledesma,	El	Khamisy,	&	Caldecott,	

2011),	 that	 directly	 reverses	 the	 covalent	 linkage	 (R.	 Gao	 et	 al.,	 2014).	 The	

Top2-dependent	pathway	has	been	described	only	 in	human	cells	and	mouse,	

but	it	is	absent	in	lower	eukaryotes	as	yeast.		
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In	E.	 coli	cells,	ribonucleotides	are	efficiently	recognized	as	DNA-distorting	

lesions	 by	 Nucleotide	 Excision	 Repair	 (NER),	 which	 acts	 as	 a	 backup	

mechanism	 in	 absence	 of	 RER	 pathway	 (McDonald	 et	 al.,	 2012).	 In	 vitro	

reconstituted	 bacterial	 NER	 is	 active	 on	 substrates	 containing	 up	 to	 five	

ribonucleotides,	and	it	is	stimulated	by	the	presence	of	mismatches	(Vaisman	

et	al.,	2013).	However,	this	is	not	conserved	in	eukaryotes,	neither	in	yeast	or	in	

human	 cells	 NER	 targets	 embedded	 rNMPs	 (Lindsey-Boltz,	 Kemp,	 Hu,	 &	

Sancar,	 2015).	 There	 are	 only	 a	 few	 evidence	 that	 also	 the	Mismatch	 Repair	

(MMR)	is	partially	used	as	a	backup	pathway	in	absence	of	RER	both	in	E.	coli	

and	 S.	 cerevisiae (Y.	 Shen	 et	 al.,	 2012)	 but	 all	 these	 findings	 need	 further	
investigation	to	be	fully	assessed.	
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Figure	10.	Overview	of	ribonucleotides-processing	mechanisms.	(Wallace	&	Williams,	2014)	
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Negative	In	Vivo	Consequences	Of	Ribonucleotides	Incorporation	

Negative	consequences	of	ribonucleotides	incorporation	are	principally	due	to	

failure	 of	 removal	 or	 improper	 processing.	 The	molecular	 details	 come	 from	

several	studies	done	with	yeast	mutants,	which	showed	that	cells	accumulating	

ribonucleotides	essentially	exhibit	replication	stress	and	genome	instability.	

	

Replication	Stress	

Yeast	 cells	 lacking	 RNase	 H2	 activity	 and	 carrying	 the	 Pol	 ε	 allele	 with	

increased	 ribonucleotide	 incorporation	 frequency	 (pol2-M644G)	 have	 been	

characterized	to	better	understand	phenotypes	linked	to	rNMPs	persistence	in	

the	genome	(S.	A.	Nick	McElhinny,	Kumar,	et	al.,	2010).	They	display	typical	

replication	stress	phenotypes:	slow	growth,	accumulation	in	S	phase,	activation	

of	 the	S	phase	checkpoint,	 slightly	elevated	dNTP	pools	and	sensitivity	 to	 the	

replication	stress	agent	hydroxyurea	(HU)	(S.	A.	Nick	McElhinny,	Kumar,	et	

al.,	 2010).	On	the	other	hand,	cells	carrying	allele	pol2-M644L,	with	decreased	

rNMPs	incorporation,	do	not	show	these	phenotypes,	suggesting	that	they	are	

due	to	rNMPs	introduced	during	genome	duplication	(S.	A.	Nick	McElhinny,	

Kumar,	 et	 al.,	 2010).	 The	 additional	 deletion	 of	 TOP1	 gene	 alleviates	 these	

consequences,	 implying	 that	 they	 are	 partially	 due	 to	 the	 error-prone	

processing	mediated	by	the	Topoisomerase	1	(Williams	et	al.,	2013).	In	mouse,	

knocking	down	the	RNase	H2	results	in	embryonic	lethality	and	the	RNase	H2-/-	

embryos	grow	very	slowly	(Hiller	 et	 al.,	 2012;	M.	A.	M.	Reijns	 et	 al.,	 2012).	

Moreover,	 mouse	 cells	 depleted	 by	 the	 RNase	 H2	 activity	 contain	 a	 huge	

amount	of	ribonucleotides	in	the	genome,	proliferate	slowly,	activate	the	p53-

dependent	checkpoint,	display	high	p21	and	cyclin	G1	levels,	histone	H2AX	foci	

and	genome	instability	(Hiller	et	al.,	2012;	M.	A.	M.	Reijns	et	al.,	2012).	The	

same	 is	 observed	 for	 human	 cells	 depleted	 for	 RNase	 H2,	 they	 indeed	 show	

impaired	 cell	 proliferation,	 chronic	 activation	 of	 the	 PRR,	 sensitivity	 to	 HU,	

53BP1	foci	accumulation	and	micronuclei	formation	(Pizzi	et	al.,	2015).	

These	detrimental	outcomes	could	be	due	to	the	encounter	of	an	unresolved	

nick	 by	 a	 moving	 replication	 fork,	 thus	 leading	 to	 a	 DSB,	 as	 well	 as	
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ribonucleotides	 in	the	template	strand,	which	stall	DNA	polymerases.	 Indeed,	

the	presence	of	ribonucleotides	induce	stalling	of	the	polymerases	in	vitro;	the	

Pol	δ	and	Pol	ε	actually	bypass	single	rNMPs	with	69%	and	66%	of	efficiency,	

respectively	 (Clausen,	 Murray,	 Passer,	 Pedersen,	 &	 Kunkel,	 2013;	 Watt,	

Johansson,	 Burgers,	 &	 Kunkel,	 2011).	 Furthermore,	 stalling	 increases	 with	

the	number	of	consecutive	embedded	ribonucleotides,	mostly	for	Pol	ε,	that	is	

completely	unable	 to	bypass	 four	 adjacent	 rNMPs	 (Clausen,	 Murray,	 et	 al.,	

2013).	 Therefore,	 these	non-canonical	 nucleotides	 are	 barely	 replicated,	 likely	

because	they	do	not	 fit	correctly	 in	the	dNTPs-binding	site.	 In	fact,	structural	

studies	 revealed	 that	 stalling	 is	 associated	 with	 the	 displacement	 of	 the	

conserved	 tyrosine	 (Y645)	 present	 in	 that	 pocket	 (Clausen,	 Murray,	 et	 al.,	

2013),	 which	 is	 considered	 the	most	 important	 residue	 in	 the	 discrimination	

mechanism	(Joyce,	 1997).	 Interestingly,	the	B-family	TLS	polymerase	ζ	 is	able	

to	efficiently	bypass	even	four	consecutive	ribonucleotides	in	the	DNA	template	

(Lazzaro	 et	 al.,	 2012).	This	 capability	becomes	 relevant	 in	cells	 lacking	both	

RNase	 H1	 and	 H2	 (rnh1∆	 rnh201∆)	 when	 exposed	 to	 replication	 stress	 with	

hydroxyurea	 (HU).	 As	 the	 aforementioned	 rNMPs	 accumulating	 cells,	 rnh1∆	

rnh201∆	 cells	 exhibit	 replication	 stress	 phenotypes	 and	 are	 sensitive	 to	 HU	

(Lazzaro	 et	 al.,	 2012).	 In	hydroxyurea	 stress	 these	cells	 rely	on	 the	 two	PRR	

mechanisms,	 template	 switching	 or	 TLS,	 to	 deal	 with	 embedded	

ribonucleotides.	In	particular,	the	TLS	Pol	ζ	 is	 fundamental	during	replication	

to	 bypass	 embedded	 ribonucleotides	 encountered	 in	 the	 DNA	 template	

(Lazzaro	 et	 al.,	 2012).	Since	these	effects	are	proper	of	cells	 lacking	both	the	

RNases	H,	and	replicative	polymerases	show	only	reduce	rates	in	front	of	single	

rNMPs,	 they	 are	 likely	 to	 be	 caused	 by	 stretches	 of	 rNMPs,	 that	 can	 be	

overcome	by	Pol	ζ	or	the	template	switching	(Lazzaro	et	al.,	2012).	

R-loops	contribute	as	well	to	replication	stress	in	rnh1∆	rnh201∆	cells,	which	

lose	the	capability	 to	degrade	RNA:DNA	hybrids	 formed	during	transcription.	

Unresolved	R-loops	induce	stalling	of	replication	forks	and	activate	the	S	phase	

checkpoint	 (Bermejo,	 Lai,	 &	 Foiani,	 2012;	 El	 Hage,	 French,	 Beyer,	 &	

Tollervey,	 2010).	 Accordingly,	 the	 combination	 of	 rnh1∆	 rnh201∆	 deletions	

with	pol2-M644G	results	in	cell	lethality,	probably	because	of	both	rNMPs	and	
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R-loops	 accumulation,	 which	 together	 could	 provide	 a	 great	 number	 of	

substrates	 for	 Top1-dependent	 error-prone	 removal	 (Lazzaro	 et	 al.,	 2012;	

Williams	 et	 al.,	 2013).	 Importantly,	 R-loops	 contribute	 to	 the	 observed	

replication	 stress	 but	 they	 are	 not	 the	 principal	 cause.	 For	 instance,	 the	HU	

sensitivity	 of	 rnh1∆	 rnh201∆	 cells	 is	 not	 attributable	 to	 R-loops	 accumulation	

(Lazzaro	 et	 al.,	 2012).	 Additionally,	 a	 separation-of-function	 mutant	 of	 the	

RNase	H2	(rnh201∆-RED)	helped	to	distinguish	at	least	between	the	action	on	

single	 and	 multiple	 ribonucleotides	 (Williams,	 Gehle,	 &	 Kunkel,	 2017).	

Indeed,	 the	 rnh201∆-RED	 mutant,	 which	 repairs	 only	 stretches	 of	 rNMPs,	

behaves	 as	 the	 rnh201∆	 strain,	 displaying	 replication	 stress,	 checkpoint	

activation	 and	 the	 characteristic	 2-5	 bp	 deletions	 of	 the	 Topoisomerase	 1	

(Williams	 et	 al.,	 2017).	 Altogether,	 these	 results	 confirm	 single	 embedded	

rNMPs	 during	 replication	 as	 the	 first	 source	 of	 replication	 stress	 and	 the	

collateral	aforementioned	effects.		

	

Genome	Instability	

The	persistence	of	ribonucleotides	into	the	genome	leads	to	various	processing,	

which	 could	 be	 potentially	 mutagenic.	 As	 discussed	 above,	 RNase	 H	 lacking	

cells	have	increased	levels	of	mutagenesis,	in	particular	2-5	bp	deletions	caused	

by	Top1-alternative	processing	(J.	Z.	Chen,	Qiu,	Shen,	&	Holmquist,	2000;	J.	

E.	 Cho,	 Kim,	 &	 Jinks-Robertson,	 2015),	 especially	 in	 the	 leading	 strand	

(Williams	et	al.,	2013,	2015)	or	under	conditions	of	high	transcription	(Clark,	

Lujan,	 Kissling,	 &	 Kunkel,	 2011).	 In	 absence	 of	 the	 RNase	 H2,	 highly	

transcribed	sequences	accumulate	also	complex	mutation	templated	by	quasi-

palindromes,	 independently	 from	 Top1	 (Kim,	 Cho,	 Li,	 &	 Jinks-Robertson,	

2013).	 These	 complex	 mutations	 arise	 from	 DNA	 re-primed	 synthesis	 on	

realigned	quasi-palindrome	 sequences	 and	 are	 dependent	 on	 the	 direction	 of	

DNA	replication	and	TLS	(Kim	et	al.,	2013).	

The	 lack	 of	 RNase	 H	 activities	 is	 furthermore	 associated	 with	 large-scale	

genome	 instability.	 In	 yeast,	 whole-genome	 studies	 described	 gross	

chromosomal	 rearrangements	 (GCRs)	(Allen-Soltero,	Martinez,	 Putnam,	 &	
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Kolodner,	 2014;	Wahba,	 Amon,	 Koshland,	 &	 Vuica-Ross,	 2011),	 increased	

loss	 of	 heterozygosity	 (LOH),	 translocations	 and	 copy	 number	 variation	 in	

diploid	 cells	 (Conover	 et	 al.,	 2015;	 O’Connell,	 Jinks-Robertson,	 &	 Petes,	

2015).	 These	 findings	 are	 supported	 by	 the	 use	 of	 polymerase	 mutants	 that	

increase	 or	 decrease	 ribonucleotides	 incorporation,	 and	 respectively	 increase	

and	 decrease	 the	 described	 genome	 instability	 phenotypes	 (Conover	 et	 al.,	

2015)	and	are	mainly	observed	in	absence	of	RNase	H2	(Zimmer	&	Koshland,	

2016).	 Even	 mouse	 embryonic	 fibroblasts,	 defective	 in	 RNase	 H2,	 exhibit	

chromosomal	rearrangements	in	metaphase	chromosomes,	inter-chromosomal	

translocations,	and	contain	increased	levels	of	micronuclei	(M.	A.	M.	Reijns	et	

al.,	2012),	that	are	also	observed	in	human	cells	depleted	of	RNase	H2	(Pizzi	et	

al.,	2015).	

Defects	 in	 RNase	 H2	 affects	 also	 the	 expression	 of	 several	 yeast	 genes	

associated	with	response	to	oxidative	and	osmotic	stress,	heat	shock,	changes	

in	pH	and	exposure	to	heavy	metals	and	xenobiotics	(Arana	et	al.,	2012).	

	

RNase	H2	and	diseases	

Accurate	processing	of	ribonucleotides	is	a	relevant	aspect	for	different	human	

pathologies	 (M.	 A.	 M.	 Reijns	 &	 Jackson,	 2014).	 The	 first	 important	 link	

between	 ribonucleotides	 and	 diseases	 came	 in	 2006	 by	 Crow	 and	 its	 group,	

when	 they	 found	 mutations	 in	 all	 the	 three	 RNase	 H2	 subunits	 in	 patients	

suffering	 from	 the	Aicardi-Goutières	 syndrome	 (Crow,	 Leitch,	 et	 al.,	 2006). 
Aicardi-Goutières	 syndrome	 (AGS)	 is	 a	 rare	 autosomal	 recessive	

encephalopathy whose	clinical	 features	mimic	a	congenital	viral	 infection	(G.	

Rice	et	al.,	2007);	patients	are	characterized	by	high	levels	of	type	1	interferon	

(IFN1)	 that	 drives	 an	 auto-inflammatory	 response	 perhaps	 triggered	 by	 the	

accumulation	 of	 exogenous	 or	 endogenous	 promiscuous	 nucleic	 acids.	

Moreover,	AGS	syndrome	can	be	caused	by	different	mutations	in	other	genes,	

all	 involved	 in	 processing	 of	 cellular	 nucleic	 acids:	 TREX1,	 a	 3’-5’	 ssDNA	

exonuclease	 (Crow,	 Hayward,	 et	 al.,	 2006;	 Stetson,	 Ko,	 Heidmann,	 &	

Medzhitov,	 2008;	 Y.	 G.	 Yang,	 Lindahl,	 &	 Barnes,	 2007),	 SAMHD1,	 a	
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triphosphohydrolase	(G.	I.	Rice	et	al.,	2009),	ADAR1,	an	adenosine	deaminase	

specific	for	dsRNA	(G.	I.	Rice	et	al.,	2012)	and	the	most	recent	IFIH1,	a	dsRNA	

sensor	 (G.	 I.	 Rice	 et	 al.,	 2014).	Mutations	 in	 RNase	H2	 genes	 are	 the	most	

abundant	 in	 AGS	 patients	 and	 they	 affect	 the	 complex	 catalytic	 activity,	

stability,	abundance	and	cellular	localization	(Figiel	et	al.,	 2011;	M.	A.	M.	M.	

Reijns	et	al.,	2011).		

The	most	severe	mutation	leads	to	a	non-conservative	missense	substitution	

(G37S),	 in	 the	 A	 subunit,	 close	 to	 the	 catalytic	 site,	 that	 indeed	 affects	 the	

enzymatic	 activity	 of	 the	 complex	 (Crow,	 Leitch,	 et	 al.,	 2006),	 resulting	 in	

more	 unprocessed	 ribonucleotides	 into	 the	 genome	 (Pizzi	 et	 al.,	 2015).	

Intriguingly,	 the	 majority	 of	 mutations,	 rather	 than	 lead	 to	 loss	 of	 function,	

disturb	complex	stability	or	interactions	and	are	found	in	RNase	H2B	and	H2C	

subunits.	The	A177T	is	hence	the	most	common	substitution	found	in	patients,	

and	it	is	a	missense	mutation	that	replaces	a	conserved	residue	of	the	structural	

B	subunit	(Crow,	 Leitch,	 et	 al.,	 2006).	Additionally,	mutations	 in	RNase	H2	

are	 related	 to	 the	 autoimmune	 disorder	 systemic	 lupus	 erythematosus	 (SLE)	

(Günther	et	al.,	2015),	a	pathology	that	shares	many	features	in	common	with	

AGS,	 as	 the	 increased	 level	 of	 INF1	 in	 response	 to	 nucleic	 acids	 (Aicardi	 &	

Goutières,	2000).	

Since	 the	 discovery	 of	 aprataxin	 (APTX)	 capability	 to	 act	 on	 adenylated	

DNA-RNA,	 ribonucleotides	 have	 been	 associated	 also	 to	 the	 neurological	

disease	AOA1	(Ataxia	with	Oculomotor	Apraxia	Type	1)	(Coutinho	&	Barbot,	

1993;	Schellenberg,	Tumbale,	&	Williams,	2015).	Biochemical	studies	indeed	

proved	 that	 the	 mutations	 in	APTX	 gene	 found	 in	 AOA1	 patients	 impair	 its	

ability	to	resolve	RNA–DNA	junctions	(Schellenberg	et	al.,	2015).		

	

Ribonucleotides	Effects	on	DNA	structure	

Going	 down	 to	 a	 smaller	 scale,	 it	 is	 important	 to	 consider	 which	 kind	 of	

influence	embedded	ribonucleotides	exert	on	DNA	structure;	this	would	hence	

provide	 molecular	 insights	 on	 the	 in	 vivo	 consequences	 described	 above.	 As	

mentioned	above,	the	only	difference	between	DNA	and	RNA	is	the	presence	of	
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the	 2’	 hydroxyl	 group	 on	 the	 ribose	 sugar,	 and	 this	 causes	 very	 profound	

differences	on	the	overall	 structure	of	 these	 two	nucleic	acids.	 In	 fact,	double	

stranded	 RNA	 molecules	 have	 a	 typical	 A-conformation,	 characterized	 by	 a	

wider	 and	more	 compressed	 structure	 than	 dsDNA.	 The	 base	 pairs	 are	more	

inclined	with	respect	to	the	perpendicular	plane	of	the	axis	and	there	are	11	bp	

per	turn	respect	to	10	bp	of	DNA.	Few	studies	in	the	literature	address	the	issue	

on	Ribonucleotide-containing	DNA	(RC-DNA)	structure,	and	moreover,	 some	

data	are	conflicting	to	each	other.	Generally,	it	is	a	common	way	to	think	that	

the	 presence	 of	 one	 or	more	 ribonucleotides	 into	 a	 DNA	 duplex	 disturbs	 its	

canonical	structure.	

During	 the	 nineties	 were	 crystallized	 the	 first	 chimeras,	 very	 short	 self-

complementary	 oligos	 with	 embedded	 ribonucleotides.	 X-ray	 diffraction	

analysis	 suggested	 that	 the	 presence	 of	 ribonucleotides	 induces	 a	 complete	

change	towards	the	A-conformation,	both	when	they	are	in	the	middle	or	at	the	

ends	 of	 the	molecule	 (Ban,	 Ramakrishnan,	 &	 Sundaralingam,	 1994;	 Egli,	

Usman,	&	Rich,	1993).	The	duplex	displayed	the	typical	residues	per	turn	of	A-

form,	the	bases	are	 inclined	respect	to	the	axis	and	the	topology	of	the	major	

and	minor	groove	are	reversed	(Ban	et	al.,	 1994;	Egli	et	al.,	 1993).	The	2’-OH	

group	 points	 outside	 of	 the	 helix,	 lying	 close	 to	 the	 surface	 of	 the	 shallow	

groove,	suggesting	that	can	be	easily	probed	by	side	chains	of	proteins	(Egli	et	

al.,	 1993;	 Wahl	 &	 Sundaralingam,	 2000).	 Therefore,	 it	 looks	 like	 that	 the	

presence	of	just	one	ribonucleotide	can	induce	a	conformational	change	from	a	

B-	to	A-DNA	structure.	They	also	pointed	out	the	non-uniform	character	of	the	

crystals,	 in	which	 the	molecule	 showed	 local	deviations	 from	B-conformation	

rather	 than	 a	 pure	 A-conformation;	 this	 was	 effectively	 confirmed	 by	 CD	

spectroscopy,	which	underlines	the	mixed	presence	of	A	and	B	conformations	

(Egli	 et	 al.,	 1993).	 It	 is	 possible	 that	 the	 2’-OH	 dictates	 intra-molecular	

interactions	 that	 stabilize	 the	 A-form.	 It	 is	 important	 to	 note	 that	 in	 those	

kinds	of	studies	molecules	are	immobilized	as	a	crystal,	in	conditions	far	away	

from	the	physiological	ones.	 In	 the	same	years,	 in	 solution	NMR	experiments	

with	RC-oligos	(Ribonucleotide-Containing)	revealed	that	the	overall	structure	

was	 not	 changed	 but	 the	 conformational	 transition	 was	 limited	 around	 the	
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rNMP	insertion	(Chou,	Flynn,	Wang,	&	Reid,	1991;	Jaishree,	van	der	Marel,	

van	Boom,	&	Wang,	1993;	Nishizaki	et	al.,	1996).	It	was	figured	out	that	the	

perturbation	 was	 more	 subtle	 respect	 to	 the	 one	 measured	 with	 X-ray	

crystallography.	 The	 general	 idea	 was	 that	 the	 ribonucleotide	 influence	 is	

propagated	 only	 towards	 the	 adjacent	 nucleotides;	 the	 reason	 why	 they	

observed	just	localized	distortions	of	the	B-DNA	structure.	Indeed,	CD	spectra	

went	in	the	same	direction,	exhibiting	a	mixed	A-	and	B-type	absorption	bands	

(Chou	et	al.,	 1991).	Seems	so	that	RNA	and	DNA	conformations	could	coexist	

in	 the	 same	 molecule.	 The	 situation	 was	 the	 same	 when	 more	 than	 one	

ribonucleotide	 were	 inserted,	 molecules	 indeed	 displayed	 a	 mixed	

conformation	depending	on	the	chemical	nature	of	the	sugar	(Nishizaki	et	al.,	

1996).		

This	issue	became	biologically	relevant	a	few	years	ago	when	ribonucleotides	

were	found	to	be	the	most	non-canonical	nucleotides	present	in	cell	genomes	

(S.	A.	Nick	McElhinny,	Watts,	et	al.,	 2010).	Since	that	discovery,	new	works	

were	 done	 on	 the	 RC-DNAs	 structure.	 It	 was	 solved	 a	 Dickerson	 dodecamer	

structure	containing	a	single	nucleotides	(DeRose,	Perera,	Murray,	Kunkel,	

&	London,	2012);	the	NMR	analysis	confirmed	the	previous	conclusion	on	the	

partial	 B	 to	 A	 transition	 and	 MD	 simulations	 suggested	 that	 even	 50%	 of	

ribonucleotide	 substitutions	would	not	 fully	 convert	 the	B-DNA	 into	A-DNA.	

Certainly,	 there	were	 local	 perturbations,	 caused	 by	 the	 ribose	 but	 there	was	

not	a	global	transition	to	the	A-form	(DeRose	et	al.,	2012).	In	addition,	Atomic	

Force	 Microscopy	 measurements	 on	 short	 RC-DNAs	 showed	 that	

ribonucleotides	 perturb	 also	 the	 backbone	 elasticity	 (Chiu	 et	 al.,	 2014).	

Another	recent	Atomic	Force	Microscopy	study	(presented	in	this	Ph.D.	Thesis)	

performed	 on	 very	 long	 (hundreds-of-base	 pair)	 RC-DNA	 molecules	

highlighted	the	effects	on	the	overall	molecule	structure.	Indeed,	it	was	shown	

that	the	incorporation	of	ribonucleotides	induces	a	shortening	of	the	molecules	

length	and	makes	them	more	flexible	respect	their	DNA	counterpart	(Meroni	

et	al.,	2017).	

In	 conclusion,	 the	 structural	 influence	 of	 ribonucleotides	 is	 evident.	 A	

possible	explanation	for	the	discrepancy	between	pioneer	solid	and	in	solution	
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studies	 is	 that	 lattice-packaging	 constraints	 may	 favor	 a	 conformational	

regularity.	 Therefore,	 less	 symmetric	 forms	 found	 in	 solution	 does	 not	

crystallize	well,	and	the	crystal	selection	would	be	between	more	regular	A	and	

B	 conformations.	 Taken	 together	 these	 data	 strongly	 suggest	 that	 the	 main	

incentive	 for	 such	 conformational	 changes	 is	 the	 2’	 hydroxyl	 group	 of	 the	

ribose.	A	global	or	 local	conformational	change	may	occur	also	 in	the	cellular	

environment	with	strong	impacts	on	many	biological	processes	and/or	it	might	

be	recognized	as	a	structural	signal.	

	

Positive	In	Vivo	Consequences	Of	Ribonucleotides		

The	high	frequency	of	ribonucleotides	misincorporation	suggests	that	could	be	

physiologically	 relevant	 as	 a	 signal,	 rather	 than	be	only	 a	mere	 error	 of	DNA	

polymerases.	 Therefore	 incorporation	 and	 removal	 should	 be	 carefully	

balanced,	especially	if	ribonucleotides	may	influence	cellular	processes.		

For	 instance,	 in	 yeast,	 ribonucleotides	have	 a	 role	 as	 strand-discrimination	

signals	to	guide	the	MMR	machinery	on	DNA	(Lujan	et	al.,	2013).	In	bacteria,	

DNA	is	generally	methylated	on	GATC	sequences	and,	during	replication,	 the	

newly	 synthesized	 strand	 is	 easily	 distinguishable	 because	 of	 the	 temporary	

lack	of	methylation	(Cooper,	Lahue,	&	Modrich,	 1993).	Bacterial	MMR	takes	

advantage	 of	 the	 absence	 of	 methylation	 in	 the	 newly	 synthesized	 strand	 to	

resolve	mismatches	 and	 restore	 the	 correct	 sequence	 as	 it	 is	 in	 the	 parental	

strand	(Cooper	et	al.,	1993).	Conversely,	strand	discrimination	in	eukaryotes	is	

less	 clear	 because	 there	 is	 no	 similar	 signaling	 system.	One	 open	 question	 is	

how	 the	 MMR	 repair	 could	 distinguish	 between	 the	 two	 strands	 and	

accomplish	 a	 proper	 repair.	 One	 hypothesis	 is	 that	 the	 transient	 ends	 of	

Okazaki	 fragments	 may	 be	 the	 signals	 for	 lagging	 strand	 MMR	 (S.	 a	 Nick	

McElhinny,	 Kissling,	 &	 Kunkel,	 2010),	 while	 the	 signals	 for	 the	 more	

continuously	 replicated	 leading	 strand	 are	 uncertain.	 Ribonucleotides	 could	

hence	 serve	 this	 purpose,	 and	 genetic	 and	 biochemical	 data	 proved	 that	 the	

nicks	 generated	 by	 the	 RNase	 H2	 could	 serve	 as	 entry	 point	 for	 the	 MMR	

machinery	 (Ghodgaonkar	 et	 al.,	 2013;	 Lujan	 et	 al.,	 2013).	 This	 would	 be	
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consistent	 with	 the	 higher	 levels	 of	 ribonucleotides	 inserted	 in	 the	 leading	

strand	 by	 Pol	 ε.	 Therefore,	 ribonucleotides	 mark	 the	 nascent	 leading	 strand	

making	 it	 clearly	 distinguishable	 from	 the	 parental	 one	 and	 their	 incision	 is	

used	 by	 the	 leading	 MMR	 to	 repair	 mismatches	 (Lujan	 et	 al.,	 2013).	 The	

discovery	 of	 the	 mutant	 version	 of	 Pol	 ε	 that	 introduce	 less	 ribonucleotides	

(pol2-M644L)	 together	 with	 the	 fact	 that	 it	 is	 not	 found	 in	 vivo,	 could	 be	

interpreted	as	an	evolutionary	choice	to	keep	the	one	that	inserts	more	but	not	

too	 many	 ribonucleotides	 during	 replication.	 However,	 it	 has	 also	 been	

reported	 that	MMR	 is	 active	on	mismatches	 that	 comprise	 ribonucleotides	 in	

vitro	(Cilli,	Minoprio,	Bossa,	Bignami,	&	Mazzei,	2015).	

In	 Schizosaccharomyces	 pombe	 (Vengrova	 &	 Dalgaard,	 2006)	 and	

Schizosaccharomyces	japonicas	(C.	Yu	et	al.,	 2012)	the	switching	between	the	

two	 mating	 types	 occurs	 via	 homologous	 recombination	 induced	 by	

ribonucleotides	 (Sayrac,	 Vengrova,	 Godfrey,	 &	 Dalgaard,	 2011).	 Two	

ribonucleotides	are	inserted	by	the	DNA	polymerase	α	in	a	specific	position	of	

the	mating	 locus	 and,	 for	 unclear	 reasons,	 they	 escape	 from	 RER.	 Thus,	 the	

ribonucleotides	 imprint	persists	till	 the	next	replication	cycle	and	induces	the	

stalling	 of	 the	 DNA	 Pol	 ε,	 thereby	 triggering	 homologous	 recombination	 to	

switch	between	the	mating	type	loci	(Vengrova	&	Dalgaard,	2006).	

When	 deoxyribonucleotides	 are	 not	 available	 or	 critically	 low,	

ribonucleotides	could	be	used	to	fill	this	shortfall.	For	instance,	in	G1	phase	of	

the	cell	cycle	dNTPs	level	are	quite	low,	and	the	DNA	polymerase	μ	carries	out	

the	 gap-filling	 step	 of	 DSB	 repair	 via	 non-homologous	 end	 joining	 (NHEJ)	

pathway	by	using	ribonucleotides	(S.	A.	Nick	McElhinny	&	Ramsden,	 2003;	

Zhu	&	Shuman,	2008).		

An	emerging	function	of	RNases	H	is	the	telomere	maintenance	and	length	

regulation	 through	 the	 processing	 of	 telomeric	 repeat-containing	 RNA	

(TERRA)	(T.	Y.	Yu	et	al.,	2014).	TERRA	are	transcribed	from	telomeres,	where	

they	are	stabilized	as	R-loops	structures	and	are	implicated	in	telomere	stability	

and	 regulation	 of	 telomerase	 (Rippe	 &	 Luke,	 2015).	 In	 yeast	 and	 humans,	

TERRA	R-loops	render	telomeres	prone	to	form	DSBs	and	then	to	proceed	with	

homology-directed	 repair	 (HDR)	 to	 elongate	 critically	 short	 telomeres	 and	
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escape	senescence	(Arora	et	al.,	 2014;	Balk	et	al.,	 2013;	Chu	et	al.,	 2017).	In	

yeast,	RNase	H1	and	H2	are	recruited	specifically	to	long	telomeres	to	degrade	

TERRAs,	 thus	 preventing	 accumulation	 of	 RNA:DNA	 hybrids	 (Arora	 et	 al.,	

2014;	 Graf	 et	 al.,	 2017),	 whereas	 at	 short	 telomeres	 their	 recruitments	 is	

diminished,	to	hence	increase	TERRA	presence	at	telomere	and	trigger	HDR	to	

elongate	telomeres	and	avoid	senescence	(Graf	et	al.,	2017).		 	
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Aim	of	the	projects	
	

During	my	PhD	fellowship	I	worked	mainly	on	two	projects,	both	related	to	the	

process	of	ribonucleotides	incorporation	in	DNA	and	its	consequences,	both	in	

vivo	 and	 in	 vitro.	 I	will	 dedicate	 a	 distinct	 paragraph	 to	 describe	 the	 aims	 of	

each	project.	

	

Aim	I	-	Determine	how	ribonucleotides	influence	DNA	

structure	

	

The	 purpose	 of	 the	 Aim	 I	 is	 to	 investigate	 the	 impact	 of	 ribonucleotides	

incorporation	on	 the	DNA	structure.	The	 structural	 effects	of	 ribonucleotides	

embedded	 in	DNA	 have	 been	 described	 in	 the	 past,	 by	 using	 simulations	 or	

looking	at	very	short	DNA	oligos,	trapped	in	unphysiological	conditions.	

The	goal	of	 this	project	was	 to	 find	a	 reproducible	method	 that	allows	 the	

production	of	long	RC-DNA	molecules	with	elevated	yield;	this	was	done	with	

the	 attempt	 to	 describe	 rNMPs-induced	 structural	 effects	 in	 conditions	more	

close	to	the	environmental	ones.	Moreover,	the	choice	to	conduct	the	analysis	

by	means	of	Atomic	Force	Microscopy	(AFM)	permitted	to	obtain	robust	data,	

which	 underline	 average	 population	 behaviors	 rather	 than	 a	 single	molecule	

evidence.	The	tapping	operation	mode	of	AFM	allowed	detecting	molecules	as	

they	equilibrate	on	the	substrate,	avoiding	any	sample	deformation	due	to	the	

imaging	method.	Finally,	 the	 traces	of	 the	molecules	were	digitalized,	 and	by	

the	implementation	of	several	MATLAB	routines,	it	was	possible	to	extrapolate	

structural	 parameters	 and	 describe	 the	 changes	 due	 to	 the	 ribonucleotides	

incorporation.	
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Aim	 II	 -	 Unravelling	 a	 new	 activity	 of	 yeast	 Pol	 η	 in	

dealing	with	ribonucleotides	

	

The	second	Aim	was	to	unravel	the	function	of	the	TLS	polymerase	η	when	the	

genome	is	ribonucleotides-enriched	and	the	dNTPs	pool	is	depleted.	

Unprocessed	 genomic	 ribonucleotides	 lead	 to	 severe	 consequences	 as	

replication	stress	and	genome	instability;	furthermore,	yeast	cells	lacking	both	

RNaseH1	 and	 RNaseH2	 (rnh1∆	 rnh201∆)	 are	 sensitive	 to	 treatment	 with	 low	

doses	of	HU	or	MMS	(Lazzaro	et	al.,	2012).	In	particular,	only	when	subjected	

to	hydroxyurea	stress,	cells	use	Pol	ζ-mediated	TLS	and/or	the	TS	pathway	to	

overcome	rNMPs	that	stall	DNA	replication.	Indeed,	the	simultaneous	removal	

of	 Pol	 ζ	 (rev3∆	 rev7∆)	 and	 the	 template	 switching	 (mms2∆)	 results	 in	 rnh1∆	

rnh201∆	cells	death,	when	exposed	to	low	doses	of	hydroxyurea	(Lazzaro	et	al.,	

2012).	 Surprisingly,	by	deleting	all	 the	yeast	TLS	polymerases,	Rev1,	Pol	 ζ	and	

Pol	 η	 (rev1∆	 rev3∆	 rev7∆	 rad30∆)	 in	 the	 rnh1∆	 rnh201∆	 genetic	 background,	

almost	 completely	 restore	 cell	 viability	 in	 HU.	 Moreover,	 by	 looking	 at	 the	

single	contribution	of	each	TLS	Pol,	 the	 recovery	has	been	 fully	 recapitulated	

only	by	the	deletion	of	RAD30	gene,	encoding	for	the	Pol	η.	It	is	important	to	

note	 that	 these	 genetic	 dependencies	 are	 specifically	 associated	with	 the	HU	

stress	response	and	not	to	other	treatments,	as	MMS.	Hydroxyurea	affects	DNA	

synthesis	 by	 decreasing	 the	 dNTPs	 pool,	 so	 it	 would	 be	 relevant	 in	 cells	

defective	 for	 ribonucleotides	 removal.	 Furthermore,	 the	 strong	 effect	 of	

viability	recovery	by	deletion	of	RAD30	 is	observed	also	 in	presence	of	the	TS	

pathway	and/or	Pol	ζ.	Altogether,	these	genetic	data	suggest	that	Pol	η	is	acting	

in	 a	 somehow	 toxic	 manner,	 causing	 the	 sensitivity	 to	 HU	 of	 cells	 RER-

defective.	Therefore,	the	aim	of	this	project	was	to	explore	and	characterize	this	

unexpected	 toxic	 activity	 shown	by	Pol	 η	 in	 the	 condition	of	 low	dNTPs	 and	

when	cells	are	unable	to	repair	embedded	ribonucleotides. 
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Results	and	Conclusions	
 

I	-	The	incorporation	of	ribonucleotides	induces	

structural	and	conformational	changes	in	DNA	
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Synopsis	of	the	work	and	specific	contributions	

	

Ribonucleotides	 incorporation	 into	 the	 genome	 is	 the	 most	 frequent	 error	

committed	by	DNA	polymerases	during	genome	 replication.	Accordingly,	 the	

inability	to	remove	and	replace	ribonucleotides	causes	genome	instability	and	

replication	stress.	 In	this	work,	we	studied	at	nano-metric	scale	the	 impact	of	

ribonucleotides	persistence	on	DNA	structure.	

We	 develop	 a	 new	 strategy	 to	 produce	 long	 Ribonucleotides-Containing	

DNA	(RC-DNA)	molecules	in	large	quantity	that	have	been	imaged	by	means	of	

Atomic	Force	Microscopy	(AFM).	In	detail,	we	set	up	a	particular	PCR	reaction	

in	presence	of	the	four	dNTPs	and	one	ribonucleotide	species	(rCTP)	where	the	

DNA	 synthesis	 is	 carried	 out	 by	 a	 mutant	 Taq	 polymerases.	 This	 mutant	

polymerase	was	obtained	by	 introducing	a	single	amino	acidic	substitution	 in	

the	 nucleotide-binding	 pocket	 (I614K)	 that	 makes	 it	 wider	 and	 prone	 to	

ribonucleotides	 incorporation.	After	 the	purification	of	 the	 I614K	Taq	Pol,	we	

set	up	the	PCR	conditions	 in	which	we	can	obtain	a	discrete	amount	of	DNA	

molecules	 with	 ribonucleotides	 embedded.	 We	 hence	 verified	 the	 effective	

ribonucleotides	incorporation	by	the	I614K	Taq	Pol	and	we	also	tried	to	roughly	

estimate	 at	 which	 extent	 RC-DNA	molecules	 contain	 ribonucleotides,	 which	

seem	the	most	of	them.	Therefore,	we	produced	different	molecules	population	

of	 different	 lengths,	 from	 464	 to	 1049	 bp,	 with	 and	 without	 embedded	

ribonucleotides	 that	 have	 been	 subject	 to	 AFM	 imaging.	 We	 deposited	

molecules	on	mica	using	Mg2+	 ions	 to	mediate	 the	 interaction	with	DNA	and	

the	substrate;	 then	we	used	AFM	in	the	tapping	operation	mode	to	avoid	any	

deformation	of	the	sample	and	to	scan	the	surface	by	a	gentle	touching.	DNA	

control	 molecules	 were	 well	 equilibrated	 on	 the	 surface	 and	 retained	 the	

canonical	B-conformation,	while	RC-DNA	molecules	showed	different	changes	

dependent	 upon	 ribonucleotides	 presence.	 Specifically,	 ribonucleotides	

incorporation	 induces	 significant	 shortening	 of	 the	 length	 of	 the	 molecules,	

measured	by	 a	 semi-automatic	 tracking	operation.	Moreover,	 the	presence	of	

ribonucleotides	 affects	 the	 end-to-end	 distance	 and	 consequently	 the	

persistence	 length,	 by	 increasing	 molecules	 flexibility	 respect	 to	 their	
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counterpart	without	 ribonucleotides.	 In	 summary,	we	provided	new	 evidence	

of	structural	changes	imposed	by	ribonucleotides	persistence	into	DNA,	trying	

to	reproduce	a	physiological-like	system,	with	long	and	equilibrated	molecules	

respect	to	the	past	studies,	done	mainly	with	short	crystallized	oligos.	

This	 project	 was	 entirely	 developed	 by	 me	 with	 the	 supervision	 of	 Prof.	

Alessandro	Podestà,	for	the	physics	part,	and	Dott.	Federico	Lazzaro	and	Prof.	

Marco	Muzi	Falconi,	for	what	concerned	the	RC-DNAs	production.	I	produced	

all	 the	 figures	 presented	 in	 the	manuscript,	 with	 the	 exception	 of	 Figure	 S2,	

that	I	did	in	collaboration	with	the	CNR	of	Pavia.	I	also	wrote	the	manuscript	

with	Prof.	Alessandro	Podestà	and	I	actively	managed	the	process	of	 revision.	

For	this	contribution	I	am	the	first	author	of	the	work.	
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I	-	Characterization	of	structural	and	configurational	

properties	of	DNA	by	Atomic	Force	Microscopy	
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Synopsis	of	the	work	and	specific	contributions	

In	 this	Method	 in	Molecular	 Biology,	 we	 describe	 in	 detail	 how	 to	 study	 and	

characterize	structural	and	configurational	properties	of	DNA	by	Atomic	Force	

Microscopy.	This	protocol	was	set	and	used	to	accomplish	the	work	presented	

in	the	previous	section	The	 incorporation	of	 ribonucleotides	 induces	 structural	

and	conformational	changes	in	DNA	(Meroni	et	al.,	2017).	Here	we	specifically	

describe	 how	 to	 perform	AFM	 imaging	 on	DNA	 and	 how	 to	 extrapolate	 and	

analyze	the	data.	

This	 Method	 is	 part	 of	 a	 collection	 of	 Methods	 in	 Molecular	 Biology,	

published	in	the	book	entitled	Genome	Instability.	

This	work	was	done	under	the	supervision	of	Prof.	Alessandro	Podestà,	with	

whom	I	wrote	this	protocol	and	produced	the	presented	figures.	  
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Synopsis	of	the	work	and	specific	contributions	

In	 this	Method	 in	 Molecular	 Biology,	 we	 described	 in	 detail	 how	 to	measure	

levels	 of	 ribonucleotides	 embedded	 in	 genomic	 DNA.	 This	 protocol	 was	

optimized	for	human	and	yeast,	to	compare	ribonucleotides	levels	in	different	

mutants.	However,	it	is	not	yet	present	in	any	of	our	publication	on	yeast.		

This	 Method	 is	 part	 of	 a	 collection	 of	 Methods	 in	 Molecular	 Biology,	

published	in	the	book	entitled	Genome	Instability.	

For	 what	 concerns	 this	 work,	 I	 participated	 in	 the	 optimization	 of	 the	

protocol	 for	 yeast	 and	 I	 wrote	 the	 protocol,	 under	 the	 supervision	 of	 Dott.	

Federico	Lazzaro.	
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II	 -	 Yeast	 DNA	 Polymerase	η 	 is	 involved	 in	 genome	

replication	 under	 low	 deoxyribonucleotides	 pools	

situations	

The	second	aim	was	to	unravel	the	function	of	the	Translesion	Synthesis	(TLS)	

polymerase	 η	 when	 the	 genome	 is	 ribonucleotides-enriched	 and	 the	

deoxyribonucleotides	 pool	 is	 depleted.	 Yeast	 cells	 lacking	 the	 RNase	 H	

activities	 accumulate	 ribonucleotides	 into	 the	 genome	 and	 are	 sensitive	 to	

treatment	 with	 low	 doses	 of	 hydroxyurea	 (HU),	 a	 drug	 that	 affects	 DNA	

synthesis	 by	 decreasing	 the	 intracellular	 dNTPs	 pool	 (Lazzaro	 et	 al.,	 2012).	

Surprisingly,	we	found	that	the	TLS	DNA	polymerase	η	is	the	one	responsible	

for	such	HU-induced	cell	 lethality,	suggesting	that	 it	 is	performing	a	 function	

with	a	negative	impact	on	RNase	H	lacking	cells	exposed	to	HU.		

In	 brief,	 I	 characterized	 the	 cellular	 response	 to	 acute	 and	 chronic	 HU	

treatment,	trying	to	deepen	the	comprehension	about	the	on-going	process.	In	

absence	 of	 RNase	 H	 activities,	 cells	 failed	 to	 switch	 off	 the	 DNA	 damage	

checkpoint	 when	 exposed	 to	 HU	 and,	 consequently,	 did	 not	 succeed	 in	 cell	

division,	accumulating	 in	the	G2/M	phase.	These	phenotypes	were	dependent	

upon	 the	 presence	 of	 Pol	 η,	 confirming	 its	 involvement	 in	 the	 response	 to	

hydroxyurea.	Moreover,	by	conditionally	over-expressing	Pol	η	during	the	cell	

cycle,	 I	 found	 that	 this	 particular	 activity	 is	 restricted	 to	 HU-stressed	 DNA	

replication,	and	 it	 is	proportional	 to	 the	protein	abundance	 in	cells.	Finally,	 I	

produced	 several	 Pol	 η	 mutants,	 which	 revealed	 that	 the	 catalytic	 reaction	

performed	by	Pol	η	is	responsible	of	its	negative	impact	and,	importantly,	that	

this	 is	 strictly	 related	 to	 its	 ability	 to	 introduce	 ribonucleotides.	 We	 hence	

ended	up	with	a	model	 in	which	Pol	η	 is	 involved	 in	 shaping	 ribonucleotides	

abundance	into	the	genome	under	low	dNTPs	conditions,	resulting	in	negative	

outcomes	when	the	RNase	H	activities	are	absent.	

I	 developed	 this	 project	 during	my	Ph.D.	 fellowship	under	 the	 supervision	

and	in	collaboration	with	Dott.	Federico	Lazzaro.	All	the	data	obtained	are	part	

of	a	manuscript,	which	is	actually	in	preparation	(Part	III	of	this	Thesis).	
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Discussion	
Considering	the	various	aspects	and	factors	discussed	in	this	thesis,	I	chose	not	

to	 present	 a	 general	 discussion.	 Instead,	 a	 detailed	 discussion	 with	 future	

implications	of	the	presented	findings	is	presented	in	the	dedicated	session	of	

each	published	and	in	preparation	manuscript.	 	
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The Incorporation of Ribonucleotides Induces
Structural and Conformational Changes in DNA
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ABSTRACT Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence devel-
oped mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleo-
tides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to
understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we
present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowl-
edge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is
based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore inves-
tigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA popu-
lations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs
and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence
length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical
dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the
molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where
they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition.

INTRODUCTION

Current opinion on the evolution of genetic information sug-
gests that DNA was selected as the storage molecule
because it is more stable with respect to its ancient precur-
sor, RNA (1). The only difference between DNA and
RNA is the presence of a hydroxyl group on the ribose of
RNA monomers (rNMPs). Such group makes RNA unstable
and less suitable to safely store genetic information (2).

Recent works reported that large amounts of ribonucleo-
tides are misincorporated into chromosomes during DNA
replication, even though DNA polymerases are extremely
accurate enzymes (3–5). The frequency of incorporation in
budding yeast is estimated to be �1 every 700 nucleotides,
making ribonucleotides the most frequent noncanonical
nucleotides incorporated into the genome (6).

The elevated levels of ribonucleotides incorporated may
suggest that this is not a mere error of DNA polymerases,
but that it may have some beneficial roles. Indeed, it was
recently demonstrated that ribonucleotides help a specific
DNA repair pathway in discriminating the newly synthe-
sized strand from the template filament (7,8). However,
ribonucleotides are not permanent in DNA, because cells
possess specific mechanisms to remove them from the
genome (6,9). The persistence of rNMPs is an endogenous
source of genome instability and replication stress
(5,10–12).

RNase H enzymes are able to recognize and cleave
embedded rNMPs (13), and are responsible for the major
pathway that processes genomic rNMPs. Interestingly,
defects in RNase H2 function represent the major cause of
a rare genetic disorder, Aicardi-Goutieres syndrome (14).

How rNMPs embedded in chromosomal DNA may inter-
fere with DNA-protein interactions has not been investi-
gated yet, although it has been reported that nucleosomes
assembly on DNA is reduced when even a single ribonucle-
otide is present (15). Understanding the structural changes
imposed upon DNA molecules by the presence of
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ribonucleotides is essential to determine the biological
impact of their persistence in the genome. It is thus crucial
to explore and investigate those effects at the single-mole-
cule level.

During the 1990s, the first ribonucleotides containing
DNA (RC-DNA) molecules were crystallized. These
were very short self-complementary oligonucleotides with
embedded ribonucleotides. X-ray diffraction analyses sug-
gested that the presence of ribonucleotides induce a com-
plete change toward the A-conformation, both when they
are in the middle or at the ends of the molecules (16–18).
In solution studies, such as nuclear magnetic resonance,
the transition observed was partial (19,20). Molecular
dynamics simulations suggested that even with 50% of
ribonucleotide substitutions, B-DNA is not fully converted
to A-DNA, although the ribose caused local perturbations
(21). In addition, atomic force microscopy (AFM) measure-
ments showed that ribonucleotides also perturb the back-
bone elasticity (22–24) with respect to DNA in the
B-form, although these studies report different trends of
the persistence length in relation to the presence of ribonu-
cleotides. In conclusion, only a few single-molecule studies
on the structural properties of RC-DNAs are available in the
literature, and furthermore, in some cases apparently con-
tradictory results are reported. And in most cases, short
RC-DNA molecules are studied, although in biologically
relevant cases (such as in vivo), the molecules are much
longer.

Here we present the results of a systematic study of the
structural effects of ribonucleotide incorporation into DNA
carried out taking advantage of, to our knowledge, a novel
protocol to synthesize several-hundred-of-basepairs-long
RC-DNA molecules. RC-DNA molecules were produced
via enzymatic synthesis by a mutant Taq polymerase
(I614K), able to introduce ribonucleotides (rNTPs) in
addition to deoxynucleotides (dNTPs). We were therefore
able to produce numerous populations of RC-DNA mole-
cules, as well as their controls without ribonucleotides,
that have been studied at the single-molecule level by
means of AFM. The main advantage of AFM is the possi-
bility of studying large ensembles of molecules, by quan-
titatively analyzing each molecule individually, therefore
obtaining robust average values of relevant structural and
conformational observables (25–28). In particular, we
have characterized the scaling of the contour length with
the number of basepairs, the scaling of the end-to-end dis-
tance with the curvilinear distance, the bending angle
distribution, and the persistence length of DNA molecules,
showing that the presence of ribonucleotides affects the
DNA structure and conformation well beyond the scale
of the single ribonucleotide, up to full molecular length.
The observed changes are also likely to take place in
physiological conditions such as the cell environment,
and consequently influence DNA transactions occurring
in vivo.

MATERIALS AND METHODS

Taq polymerase production

The pTaq plasmid was site-directed mutagenized using primers TAQI614K

for 50-TGG CCC TGG ACT ATA GCC AGA AAG AGC TCA GGG TGC

TGG CCC A-30 and TAQI614Krev 50-TGG GCC AGC ACC CTG AGC

TCT TTC TGG CTATAG TCC AGG GCC A-30. BL21(DE3) Escherichia
coli cells harboring pTaq or pTaqI614K were grown in selective medium

and protein expression was induced by IPTG addition. Protein extraction

and purification was done by GeneSpin (Milan, Italy).

RC-DNAs synthesis

Polymerase chain reaction (PCR)was performedwith either wild-type (WT)

or I614K Taq polymerase in the presence of dATP, dGTP, and dTTP 0.2mM,

dCTP 0.1 mM for normal DNAs, and plus rCTP 0.8 mMonly for RC-DNAs.

Nucleotideswere purchased fromGeneSpin. The 464- and 727-basepair (bp)

fragments were amplified from pGEM3Zf plasmid using primer pairs

50-TCG GGA AAC CTG TCG TGC C-30/50-CAG CGT GAG CTA TGA

GAA AG-30 and 50-TCG GGA AAC CTG TCG TGC C-30/50-TCA GCA

GAGCGCAGATAC CA-30, respectively. The 646-bp fragment was ampli-

fied frompNB187 plasmid using primers 50-TAGTTGAAGCATTAGGTC

CC-30/50-CTT CTC AAATAT GCT TCC CA-30; the 960- and the 1079-bp

fragments were amplified from pFL39.3 with primers 50-AAA GAG TTA

CTC AAG AAT AA-30/50-CAA AAC GGC ATT TAA GAA GC-30 and
50-GGA CGA GGC AAG CTA AAC AG-30/50-CAA AAC GGC ATT TAA

GAA GC-30, respectively. The complete sequences are reported in Fig. S8.

PCR reactions were carried out in multiple independent samples and then

pooled to increase the product yield. The samples were loaded onto 1%

agarose gel and the band corresponding to the amplification product was

excised and purified using silica columns (The Wizard SV Gel and PCR

Clean-Up System; Promega, Fitchburg,WI) according to themanufacturer’s

instructions. This last step was necessary to further clean the samples from

template plasmid and primers. All the samples were finally resuspended in

ultrapure Milli-Q water (Millipore, Billerica, MA).

PCR with radiolabeled nucleotides

PCRreactionswereperformedaddinga32P-dCTPora32P-rCTP (PerkinElmer,

Waltham, MA) in addition to the nonradioactive dCTP or rCTP, respecting the

final concentrations described above for RC-DNAs. Samples were drop-dia-

lyzed on 0.025-mm membranes (Millipore) and further cleaned by ethanol

precipitation. Samples were then run in a 2% agarose gel that was dried and

exposed on a phosphor storage screen; images were acquired using a

Phosphoimager (Typhoon FLA 7000; GEHealthcare, Buckinghamshire, UK).

Alkaline gel and Southern blot

Alkaline gel electrophoresis was performed as described in (29). Briefly,

samples were incubated for 2 h at 55�C in 0.3 MNaOH and then run in alka-

line gel (1% agarose inMilli-Qwater with 1mMEDTA and 250mMNaOH)

previously equilibrated in its alkaline running buffer (1 mMEDTA, 250mM

NaOH). DNA was transferred to a charged nylon membrane (GeneScreen

Plus Hybridization Transfer Membrane; PerkinElmer) by Southern blotting

and hybridized with the radiolabeled 464-bp fragment as a probe (prepared

by a DECAprime II DNA Labeling Kit; Ambion, Austin, TX). Images were

acquired using a Phosphoimager (Typhoon FLA 7000; GE Healthcare).

AFM imaging

The procedure is described in detail in (30). Samples were deposited on

freshly cleaved mica of the highest quality (V1, ruby muscovite; Ted Pella,

Meroni et al.
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Redding, CA) in a Mg2þ-containing buffer (5 mM MgCl2, 10 mM NaCl,

10 mM HEPES-Na, pH 7.5 in Milli-Q H2O). Incubation time ranged

from 2 to 10 min at room temperature, then the samples were gently washed

dropwise with 1–2 mL of Milli-Q water, and dried under a clean nitrogen

stream. Images were captured in air, using a Multimode Nanoscope IV

AFM (Bruker, Billerica, MA) working in tapping mode, equipped with

rigid cantilevers (�300 kHz resonance frequency) and single-crystal silicon

tips with nominal radius of curvature below 10 nm. The scan rate was typi-

cally 1.5–2 Hz, the scan area 2 � 1 mm, with a sampling resolution of 1 and

2 nm/pixel in the fast and slow scan directions, respectively.

Analysis of AFM data

Raw images were first flattened by subtracting polynomials up to the third

order, using only the flat mica surface as reference for the fit. DNA and

RC-DNAmoleculeswere semiautomatically traced using FiberApp software

(31), to obtain the spatial coordinates of the backbones. Calibration of the

scanner was checked by scanning a calibration grating and the determined

correction factors (always <2–3%) were applied to the coordinates, when

needed. The traces were analyzed using customMATLAB (TheMathWorks,

Natick, MA) routines. We evaluated the following statistical quantities

describing structural/mechanical and conformational properties of semirigid

polymers, as described in our previous works (26,30): the mean contour

length hli, the mean squared end-to-end distance hR2(L)i of segments of

the molecules with a curvilinear length (curvilinear distance) L, the distribu-

tion of bending angles q(L) (as well as hcos(q(L))i and hq2(L)i), and the

persistence length P. If DNA molecules are in a well-defined form (either

B or A), the hli versus n of the bp curve is a straight line with a slope equal

to rA or rB, the rise per residues of the A and B forms, respectively, with units

nm/bp. A reduction of the contour length independent on bp simply shifts the

curve vertically by a constant offset c, but does not alter the slope of the curve.

According to thewormlike chain (WLC)model, in two dimensions themean

squared end-to-end distance hR2i2D increases as the curvilinear distance L in-
creases, and depends on the persistence length P of DNA as (25,26):

�
R2ðLÞ�

2D
¼ 4PL

�
1� 2P

L

�
1� e�

L
2P

��
: (1)

Estimation of the fraction of incorporated rCTP. To estimate the percent-

age %rCTP of rCTP incorporated into RC-DNA molecules, we use Eq. 2,

i.e., we multiply the fraction of sites along the DNA backbone available for

rCTP incorporation (the GC content %GC) by the estimated frequency of

incorporation, fincorporation (defined and calculated with Eq. 3 in the Results

and Discussion):

%rCTPincorporated ¼ %GC , fincorporation , 100: (2)

Apparent B to A transition fraction. An apparent fraction of basepairs in

the DNA molecules that have switched from B to A conformation can be

calculated by assuming that whenever an rCTP is incorporated, the hosting

basepair switches from the B to the A form. The B-to-A transition fraction

represents the fraction of basepairs that undergo such transition. Following

(32,33), the total number of available basepairs before rCTP incorporation

is N ¼ (l0 � c)/rB, where l0 is the measured contour length; c is a possible

systematic shortening of the molecules, as discussed before (the negative

intercept of the hli versus n of basepairs curve shown in Fig. 4); and

rB ¼ 0.34 nm/bp is the B-form helical rise. After rCTP incorporation, NA

basepairs switch to the A conformation whereas NB basepairs remain in

the B conformation, such that N ¼ NB þ NA. In terms of contour length,

NB rB þ NA rA ¼ (l0�c)�jDlj, where rA ¼ 0.26 nm/bp is the A-form helical

rise andDl is the measured difference in contour length upon ribonucleotide

introduction. It follows that the bases in A form are NA ¼ jDlj/(rB�rA), and

the B to A transition fraction NA/N can be calculated as NA/N ¼ [jDlj/
(l0�c)] � [rB/(rB�rA)].

Statistical analysis. Length data are reported in the figures and tables as

mean value 5 effective error. The mean values and the SDs have been

obtained by a Gaussian fit of the distributions of experimental values (see

Fig. S4 for some representative distributions of contour length values).

The effective errors have been calculated by summing in quadrature the

SDs of the mean and a systematic error of51% due to the z-piezo calibra-

tion. The error associated to the persistence length, extracted by fitting Eq. 1

to the average end-to-end distance curves of the samples, has been esti-

mated by applying the fit to a few set of data obtained by adding a Gaussian

noise to the average curves, whose width was set equal to the SD of the

mean associated to each experimental value (the resulting error bar is com-

parable to the marker size, and it is not shown in the graphs). The signifi-

cance of the observed differences in the value of relevant parameters was

evaluated applying a two-tailed t-test.

RESULTS AND DISCUSSION

Synthesis of RC-DNA molecules

DNA molecules with incorporated ribonucleotides are
generally synthesized chemically by a stepwise addition of
nucleotides, whose limit is the chain extension step; as a
result, with this methodology, only relatively short mole-
cules are produced. Such short RC-DNAs molecules
(10–30 bp) have been studied by several techniques
(16,21,22), reproducing environments quite far from the
physiological one.

We propose, to our knowledge, a new approach to synthe-
size RC-DNA molecules that exploits many consecutives
cycles of an enzymatic reaction known as PCR. PCR is per-
formed with the Thermus aquaticus DNA Polymerase
(Taq pol), a very versatile enzyme, able to sustain multiple
reaction cycles to amplify a defined DNA sequence expo-
nentially (34). Taq pol is endowed with a high capability
of discrimination between dNTPs and rNTPs; we took
advantage of a known mutant version that is able to incorpo-
rate ribonucleotides more efficiently (35). We mutated the
Taq pol with a single amino acid substitution at Isoleucine
614 to Lysine, making the enzyme more prone to binding
and introducing rNTPs (35). The incorporation rates range
from 150- to 1500-fold with respect to the WT Taq pol, de-
pending on the rNTP species (rCTP, rATP, rGTP, or rTTP)
(35). We expressed and purified both the WT and I614K
Taq pols from E. coli cells, as described in Materials and
Methods.

PCR allows the synthesis of a significant number of linear
molecules, thanks to repetitive cycles of reaction. We set
PCR conditions for the I614K Taq pol, in the presence of
all four dNTPs and of rCTP, the most common ribonucleo-
tide found in the DNA of living cells (36,37). To verify the
effective rCTP incorporation, PCRs were performed using
radiolabeled a32P-rCTP, and the amplification products
(464 bp) were then purified and visualized by autoradiog-
raphy after agarose gel electrophoresis. The radioactive
signal corresponding to a band of 464 bp indicates that the
I614K Taq pol is indeed introducing a32P-rCTP, although
with low efficiency compared to a32P-dCTP (Fig. 1).

Ribonucleotide Incorporation in DNA
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From the published kinetic parameters of I614K Taq pol
(35) it is possible to theoretically estimate such frequency
of incorporation, using

fincorporation ¼ vdCTP
vrCTP

¼
KdCTP

cat

KdCTP
m

½dCTP�
KrCTP

cat

KrCTP
m

½rCTP�
: (3)

In our PCR conditions, the mutant Taq pol introduces one
rCTP every 19 dCTP, in front of each guanosine residue
(G), respecting the Watson-Crick basepairing. In fact, its
misincorporation rates are small, regardless of the fact that
I614K mutation confers less fidelity to the polymerase
(38), as we verified by sequencing (data not shown).

To assess to what extent ribonucleotides are present in
RC-DNA molecules, we exploited alkaline gel electropho-
resis. PCR reactions were performed with I614K Taq pol
in the presence or absence of rCTP and the products (see
Fig. S1) were separated by gel electrophoresis in alkaline
conditions; here the DNA is denatured and its backbone hy-
drolyzed at ribonucleotide positions, generating smaller
fragments (4). Fig. 2 shows the degree of alkaline degrada-
tion of the 464-bp fragments, synthesized either in the
absence or presence of rCTP. The molecules produced
without rCTP migrate as a sharp band, whereas the ones
containing rCTP generate a smear of smaller fragments,
confirming the presence of ribonucleotides in most of them.

The presence of rNMPs in the template strand could inter-
fere with the Taq pol activity in the following reaction
cycles, as reported for other polymerases (39,40). To
exclude this, we tested the ability of the mutant Taq pol to
bypass ribonucleotides in the template by using a primer
extension assay. The I614K Taq polymerase efficiently
bypasses embedded rCMP in DNA (Fig. S2); a slight

pausing before the rNMP can be detected at enzyme concen-
trations much lower than those used in PCR reactions. Our
synthesis strategy allows us, therefore, to obtain full-length
amplified sequences.

AFM imaging and characterization of RC-DNAs

Once the RC-DNA production has been validated, we gener-
ated several DNA molecules with different lengths and
features. We produced and purified DNA and RC-DNAmol-
ecules with five different lengths in basepairs (464, 646,
727, 960, and 1079), and subjected them to AFM imaging.
As described in detail in the Materials and Methods, DNA
molecules were deposited onto a negatively charged mica
surface, where they adsorb thanks to the mediation of mag-
nesium divalent ions, which bridge the negative charges of
the DNA backbone and the mica surface. Fig. 3 shows three
representative AFM images of DNA and RC-DNA mole-
cules produced with either WT or I614K Taq polymerases.
Typically, the DNA molecules are well contrasted, thanks
to the Mg2þ buffer, which provides a clean way to bind
the molecules to the mica surface, preserving the atomic
smoothness and cleanliness of the freshly cleaved sub-
strates. Because the efficiency of PCR decreases when the
mutated Taq is used, and when ribonucleotides are added
to the reaction, AFM maps typically feature a decreasing
number of molecules per unit area. Some molecules from
both WT and I614K Taq pol (�20%) exhibited severe

FIGURE 1 Taq polymerase I614K introduces rCTP in PCR products.

DNA is amplified by I614K Taq pol mutant in the presence of radiolabeled

a32P-dCTP or a32P-rCTP, and then it is separated onto an agarose gel, after

purification through drop-dialysis and ethanol precipitation. The radioac-

tive signal visible in the rCTP lane confirms that PCR products contain

rNMPs.

FIGURE 2 RC-DNA molecules are sensitive to alkaline hydrolysis.

DNA is amplified in the presence or absence of rCTP and run in alkaline

conditions. The DNA backbone is hydrolyzed in correspondence to ribonu-

cleotides, resulting in a population of smaller molecules. Only molecules

produced in the presence of rCTP are hydrolyzed and their corresponding

band is converted to a smear signal. DNA is detected by Southern blotting

hybridization, using the radiolabeled 464-bp fragment as a probe. The chart

on the right displays the lane profiles in the presence or absence of rCTP.
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irregularities in their shape and dimensions, such as overlap-
ping and condensed regions, protruding asperities, etc., and
were not considered for the analysis. These molecules were
excluded on the basis of a visual analysis as well as of the
analysis of representative profiles, as shown in Fig. S3. As
detailed in Materials and Methods, molecules from several
AFM topographic profiles were semiautomatically traced
to calculate the relevant structural and conformational quan-
tities (contour length, rise per residue, bending angle distri-
bution, and end-to-end distance curve).

To validate our experimental imaging conditions, we have
first characterized the conformational properties of DNA
molecules produced by the WT Taq pol with dNTPs only.
The scaling of the average contour length of linear DNA
molecules with respect to the number of basepairs (464,
646, 727, 960, and 1079) is shown in Fig. 4.

The slope of the contour length versus number-of-base-
pairs curve represents the rise per residue r of the molecules.
We found rB ¼ 0.367 5 0.011 nm/bp, which is close to the
value for the B form of DNA (rB ¼ 0.34 nm/bp), and signif-
icantly larger than the rise per residue of the A form (rA ¼
0.26 nm/bp). Notably, the intercept c of the fitting line in
Fig. 4 is negative (c¼�21.35 7.2 nm), witness to a reduc-
tion of the contour length of the molecules, irrespective of
the number of basepairs, of �60 bp in the B form. The
reduction of the length of DNA molecules imaged in air is
commonly observed (32,33,41), and the reason is still
debated, although the prevalent hypothesis is that of a partial
transition from B to A conformation. Such transition is often
assessed based on the comparison of the measured contour
length to the one expected for the B form, by considering
only one molecular length (i.e., a given number of base-
pairs). This procedure, however, cannot capture accurately
the scaling of the contour length with the number of base-
pairs, especially in those cases when a systematic alteration
of the contour length is not attributable to a distributed, yet
partial, transition. In the case of this study, we have evidence
that the scaling of the DNA lengths, despite a systematic
shortening, is the one typical of the B form (Fig. 4); we
argue therefore that the constant shortening must be well
localized within the molecule, which is at odds with the
idea of a uniformly distributed shortening as expected by

FIGURE 3 Representative AFM topographies of 464-bp molecules.

Molecules are deposited on mica and imaged in air by AFM. (A) Shown

here are DNA molecules synthesized with WT and (B) I614K Taq pol in

the presence of dNTPs, and (C) RC-DNA molecules synthesized with the

addition of rCTP by the I614K Taq polymerase. The size of the image is

2 � 1 mm2.

FIGURE 4 DNAmolecules fromWTand I614K Taq pol retain canonical

B conformation. Measured contour length values are plotted versus the

number of basepairs of each DNA population analyzed (464, 646, 727,

960, and 1079), produced either by WT or I614K Taq polymerases. The

linear fit (R2 ¼ 0.9851) exhibits a slope (rB ¼ 0.367 5 0.011 nm/bp) close

to the one typical of B DNA conformation. The length of the molecules pro-

duced by the mutated I614K Taq pol agrees with the length of the corre-

sponding molecules produced by the WT Taq pol, within the error. The

number of analyzed 464-, 646-, 727-, 960-, and 1079-bp WT Taq pol

molecules is 146, 92, 74, 67, and 46, respectively; the number of analyzed

464- and 727-bp I614K Taq pol molecules is 176 and 47, respectively.
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a uniform (yet only partial) B to A transition. Recently,
Japaridze et al. (32) reported a similar evidence of molecu-
lar shortening, and by means of tip-enhanced Raman spec-
troscopy they were able to localize the shortened DNA
tracts at the molecules’ free ends. We have carefully
checked the calibration of our instrument, and we exclude
this as the reason for the observed shortening (data not
shown).

Reference DNA molecules synthesized by the I614K Taq
pol have also been characterized (for a few selected
lengths), and the measured lengths agree within error with
those of theWT Taq pol, indicating that there is no alteration
of DNA synthesized by the mutant Taq polymerase (Fig. 4).
Our data suggest therefore that reference DNA molecules
(WT and I614K Taq pol) are in the B-form, although there
are shortened domains within the molecules. These samples
represent the controls for the investigation of the effects of
ribonucleotide incorporation. The latter have been assessed
first by looking at changes of the contour length of the
molecules upon ribonucleotide incorporation.

Interestingly, when comparing RC-DNA samples (464,
646, 727, and 960 bp) to their reference molecules without
ribonucleotides, we observed a systematic shortening,
except in the case of the 960-bp population (see Figs. 5
and S4 for the distribution of measured length values). We

attribute the shortening of the contour length to the presence
of rCTP. In fact, apart from the rCTP incorporation, nothing
else is different from the control DNA molecules; moreover,
the molecules generated by the I614K Taq pol have been
shown to be equivalent in terms of length to the ones from
the WT Taq (Fig. 4). We also exclude that the shortening ef-
fect is due to increased truncation of PCR products when ri-
bonucleotides are present in the template DNA strand: the
primer extension assay described above demonstrated that
the I614K Taq polymerase efficiently bypasses embedded
rCMP, without prematurely ending the synthesis reaction
(see Fig. S2 and Supporting Materials and Methods). The
measured length differences between DNA and RC-DNA
molecules are all significant according to the two-tailed
t-test, with the exception of the 960-bp DNA sample that
is not significant. Indeed, this is the sample with the lowest
expected percentage of basepairs containing an rCMP
(1.8%, and reported in Table 1) that was determined by
Eq. 2, which considers the GC content and the ribonucleo-
tide incorporation frequency. As for the others, we expect
a 3.1% of basepairs containing a ribonucleotide in the
464-bp, 2.3% in the 646-bp, and 3.0% in the 727-bp mole-
cules (Table 1). These data suggest that the number of
embedded ribonucleotides could be crucial to induce detect-
able alterations of the contour length; however, there seems
to be no clear correlation of the contour length shortening
with the original GC content (reported in Table 1), espe-
cially when comparing the 646- and 727-bp samples (the
shortening is more pronounced in 646-bp RC-DNAs,
despite the smaller GC content). In addition to the absolute
amount of GC pairs, it is important to consider their spatial
distribution along the molecules (see Fig. S5 for a graphical
representation of the distribution of GCs). We notice that in
the case of the 646-bp sequence, the majority of available
positions for rCTP incorporation consist of single bases,
and that G or C clusters contain a maximum of three adja-
cent bases (as detailed in Table 1). Although the I614K
Taq polymerase could be able to insert consecutive ribonu-
cleotides, this would be a very inefficient and unfavorable
reaction (35). As a consequence, despite the higher expected
quantity of rCTP in the 727 bp, this sample probably pre-
sents a lesser degree of incorporation. In its sequence, there
are actually fewer single positions available, and more, and
longer, GC clusters, made of two to six consecutive C or
G (Table 1).

Because double-stranded RNA molecules are known to
be in the A form (42,43), and RNA-containing oligonucleo-
tides have been shown to undergo a partial B to A transition
(19,21), one can tentatively estimate an apparent fraction
of basepairs that underwent a B to A transition upon
rCTP incorporation, assuming that whenever an rCTP is
incorporated, the hosting basepair switches from the B to
the A form. The extent of such transition is calculated using
the equations given in Materials and Methods. Fractions
of the B-to A apparent transitions are 0.67, 0.41, 0.22, and

FIGURE 5 The incorporation of rCTPs induces shortening of DNA mol-

ecules. Solid bars represent the mean contour length of four different sets of

molecules, produced with dNTPs or with the addition of rCTP. Open bars

represent the difference in contour length (shortening) observed upon ribo-

nucleotide incorporation. In the case of 464-, 646-, and 727-bp populations,

the shortening of the contour length is significant according to the two-

tailed t-test (with p % 0.001, 0.001, and 0.010, respectively), and this

can be attributed to ribonucleotide incorporation. The 960-bp sample did

not show a significant decrease in length (p ¼ 0.50). Error bars represent

the combination of the standard deviation of the mean and the calibration

error, as explained in Materials and Methods. The number of analyzed

464-, 646-, 727-, and 960-bp dNTPs/dNTPsþrCTP molecules is 176/157,

92/92, 47/57, and 61/26, respectively. All plotted values are reported in

Table S1.
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0.05 for 464-, 646-, 727-, and 960-bp fragments, respec-
tively. These estimated fractions are surprisingly high,
because the ribonucleotide incorporation ratio (one rCTP
every 19 bp) would lead to a B to A transition fraction up
to one order-of-magnitude smaller. A reasonable explana-
tion could be that the incorporation of one rCTP triggers
the transition from the B to A form not only in correspon-
dence to that single basepair, but also along the surrounding
nucleotides (a B/A junction), extending across several tens
of basepairs (corresponding to a few cooperative lengths,
�10 basepairs each (44,45)). At present, however, we do
not have clear evidence that a (partial) B to A transition is
the leading mechanism behind the observed shortening of
DNA molecules upon ribonucleotide incorporation.

To further investigate the nature of the rCTP action on the
DNA structure, we have investigated the mesoscopic confor-
mation and elasticity of RC-DNAs. To this purpose, we have
characterized the distribution of bending angles along the
molecules’ backbones as a function of the curvilinear separa-
tion L, as well as the scaling of the mean squared end-to-end
distance hR2i2D (Eq. 1), as described in the Materials and
Methods. Equation 1 is valid for molecules equilibrated on
two dimensions, where P refers to the persistence length of
the molecules in the three dimensions, i.e., in the bulk solu-
tion. Noticeably, the ratio (R/L)2 depends only on the ratio
P/L, which also represents the asymptotic scaling of the
normalized curves at large distances. The measured ratio of
higher moments of the angle distribution hq4i/hq2i2 is close
to three (see Supporting Materials and Methods and
Fig. S6), which is the theoretical WLC value for full equili-
bration of the molecules in two dimensions (25). The values
of P for DNA and RC-DNA samples are obtained by fitting
Eq. 1 to the R2 versus L curves (the representative curve for
the 464-bp sample is shown in Fig. S7). Typically, the
WLC model fitted with good accuracy the experimental
data across the 0–120-nm distance range. Fig. 6, A–C, shows
the scaling of the normalized mean squared end-to-end dis-
tance (R/L)2. The mean squared end-to-end distance R2 has
been normalized by L2 to better appreciate the change in
the slope (i.e., in the persistence lengths P) upon incorpora-
tion of rCTP, and the extrapolated persistence length values
are plotted in Fig. 6 D and reported in Table S1. First, we

noticed that for the 464- and 727-bp samples (from I614K
Taq pol) the measured values of the persistence length are
higher than the value of �50 nm, typically for DNA mole-
cules with a �50% GC content (25,26). However, this is
consistent with the fact that high GC content is known to
induce stiffening, with an increase of the persistence length
(46). Remarkably, the incorporation of ribonucleotides into
the molecules with higher GC content (464 and 727 bp)
induced a significant shortening of the persistence length,
according to the two-tailed t-test (Fig. 6 D; Table S1).

The 960-bp sample is the only one not showing any
appreciable reduction of the persistence length, in addition
to the absence of the shortening of the contour length, as
shown previously. However, as for the shortening of contour
length, we could not define a clear trend of the persistence
length shortening with the GC content, probably because
the rCTP incorporation is not simply proportional to the
available sites; the latter in turn are not uniformly distrib-
uted along the molecules, but present with different degrees
of clustering and spatial distribution (Fig. S5; Table 1).

The molecules containing rCTP seem to be equilibrated
to a good extent on the mica surface, and their R2 versus
L curves can be fitted by the WLC model across a wide
range of distances; these evidences suggest that the incorpo-
ration of rCTP exerts an influence on the DNA structure that
goes well beyond the scale of the single ribonucleotide. In
this study, we observe that, upon rCTP incorporation, the
structure and conformation of DNA molecules change
significantly and on the mesoscopic scale. In particular,
the observed reduction of the persistence length P suggests
that ribonucleotides induce a softening of DNA molecules
(Fig. 6 D) in addition to causing a significant shortening
(Fig. 5). The extension of the effects of the rCTP incorpo-
ration in dsDNA is remarkable, because one would expect
an effective rCTP content of a few percent (Table 1). The
action of a single ribonucleotide, namely its effect on the
DNA structure, extends far beyond its linear dimension.
Attributing the observed changes of conformational and
elastic properties to a B to A transition—based on the
fact that RNA is in the A form—is not at all straightfor-
ward, and this conclusion would not at present be fully sup-
ported by the data. On one side, DNA in the A form in

TABLE 1 Features of RC-DNA Molecules

bp %GC (%)

Total Number

of GþC

Number of Clusters

with 6–4 G or C

Number of Clusters

with 2–3 G or C

Number of

Single G or C

Total Number of

rCTP Incorporated %rCTP (%)

464 58 269 4 50 143 14 3.1

646 43 279 0 51 159 15 2.3

727 57 413 5 77 224 22 3.0

960 34 325 3 45 215 17 1.8

GC content percentage, the GC clustering degree, and the estimated rCTP incorporation (absolute and percentage content) in the investigated DNA

sequences. Clusters consist of consecutive nucleotides of the same species; here we have reported the sum of G and C clusters in one DNA strand, which

is identical in the other complementary strand. Clusters are divided into two main groups: one made from 6 to 4 units, the other from 2 to 3. The number of

isolated G or C present in the sequence is also reported. The total number of rCTP incorporated represents the estimated amount of rCTP incorporated into the

molecule (with the percentage value) calculated using Eq. 2, as described in Materials and Methods.
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solution is reported to be stiffer than in the B form (47), at
odd with our observations; on the other side, DNA in the A
form deposited on mica at different ethanol concentrations
showed decreasing values of the persistence length at
increasing B to A transition fractions, a trend similar to
that observed by us, at least in the general terms. Concern-
ing the published single-molecule studies on the bending
rigidity (persistence length) of ribonucleotide-containing
DNA molecules, including double-stranded RNA, either
stiffer (23) or softer and slightly stiffer molecules (22)
have been reported, depending on the sequence context
and the positions of ribonucleotides. It emerged that besides
the absolute content, which determines the extent of the
incorporation, the distribution of ribonucleotide along the
molecular backbone also is important in determining struc-
tural changes (22). Chiu et al. (22) concluded that the incor-
poration of ribonucleotides locally induces a significant
(torsional) distortion of the sugar-phosphate backbone,
affecting the elastic, and structural properties of the mole-
cule as a whole. Relating such a torsional alteration to the
observed mesoscopic changes of the DNA molecules
conformation, namely the shortening of the molecules,
and the reduction of the persistent length, is not trivial. Intu-
itively, a torsional alteration, especially if distributed along

the molecular backbone, even if not uniformly, can lead to a
shortening of the molecule. It was recently proposed that
the rotational stiffening caused by the ribonucleotide-
induced torsion of the sugar-phosphate backbone can
hamper the rotational fluctuations, resulting in bending
stiffening, rather than the opposite, at least as long as the
electrostatic component of the persistence length is con-
cerned (48). Under the hypothesis that the incorporation
of ribonucleotides induces the formation of B/A junctions,
which are known to be significantly bent (49), one could
also consider the role of these bent domains in decreasing
the apparent persistence length of DNA molecules (50).
Further investigations are therefore required, by means of
both experimental techniques and structural simulations,
to unravel the fine mechanisms underlying the observed
structural and conformational changes in DNA molecules
upon ribonucleotide incorporation. In particular, the influ-
ence of the base sequence should be directly investigated
and assessed, at similar GC content.

CONCLUSIONS

In this work, we present, to our knowledge, a novel
approach to study the effects of ribonucleotides

FIGURE 6 rCTP incorporation affects end-to-

end distance and persistence length of DNA mole-

cules. (A–C) Shown here is the scaling of the

normalized mean squared end-to-end distance

(R/L)2 as a function of the curvilinear distance

L for 464-, 727-, and 960-bp samples. Differences

in the slope of the curves are appreciable for

464- and 727 bp, but not for 960 bp. In (D) are rep-

resented persistence length values of the same

samples (solid bars): 464- and 727 bp showed

extremely significant decrease in P upon rCTP

incorporation (with p % 0.001, according to the

two-tailed t-test), whereas the 960-bp samples

did not show any difference (p ¼ 0.10). Open

bars represent the persistence length shortening

between the two compared samples. See Materials

and Methods for details on error bars. The number

of analyzed 464-, 727-, and 960-bp dNTPs/

dNTPsþrCTP molecules is 176/157, 47/57, and

61/26, respectively. All plotted values are reported

in Table S1.
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incorporation into DNA. Our synthesis strategy exploited
the use of a mutant version of the Taq polymerase (I614K)
in PCR reactions allowing us to generate populations of
long (several hundreds of basepairs) RC-DNAs, which are
more biologically relevant than short oligonucleotides. In
particular, we have studied the ribonucleotides-induced
changes in the structural and conformational properties of
DNA at the single-molecule level by means of atomic force
microscopy. Our systematic and statistical study highlighted
the impact of ribonucleotides intrusions on the DNA double
helix. We found that their presence alters DNA structural
properties. All the investigated DNA molecules, with the
exception of the longest molecules with the lowest GC con-
tent (960 bp), showed a significant reduction in the contour
length upon rCTP introduction compared to their cognate
molecules without rCTP. As observed in RNA molecules,
it is the presence of the extra hydroxyl group on ribonucle-
otides that leads to a compaction of the DNA backbone.
From the biochemical parameters of the I614K Taq poly-
merase (38) we estimated an incorporation frequency of
1/19 (rCTP/dCTP), representing 2–3% of the total number
of basepairs. By contrast, the calculated apparent B to
A transition fraction ranges between 20 and 60%. Although
we do not have concluding evidence that this structural tran-
sition is the mechanism triggered by the ribonucleotide
insertion, these figures suggest that the ribonucleotide effect
on DNA structure extends remarkably on a scale that goes
well beyond the typical dimension of a single ribonucleo-
tide, affecting the full length of the molecule. Together
with the shortening, RC-DNA molecules become more
flexible, as demonstrated by the reduction of the persistence
length. This is another indication that the effect of even
a tiny fraction of incorporated ribonucleotides affects
the DNA molecules on a global scale. A deeper under-
standing of the observed phenomena would require a
precise quantification of the extent of rCTP incorporation,
as well as of their spatial distribution along the RC-DNA
molecules. Nevertheless, rCTP incorporation is nearly
controlled by the number of positions available, given by
the GC content.

In our system, control DNA molecules retain their native
B conformation, supporting the idea that changes upon
ribonucleotide introduction are likely to occur also in vivo.
Along the genome of living cells there are hotspots of
ribonucleotide incorporation, and the most frequently incor-
porated ribonucleotide is rCTP (36,37). We speculate that
the induced structural and conformational alterations can
contribute to the negative outcome of ribonucleotide persis-
tence in DNA. These alterations could be easily transferred
to DNA transactions that rely on structure recognition, such
as protein binding. For instance, it is reported that ribonu-
cleotides prevent nucleosome assembly on DNA (15), prob-
ably reshaping their positioning. Therefore, our strategy to
study the effect of ribonucleotide incorporation of long
supported DNA fragments could contribute to a better un-

derstanding of their harmful consequences upon genome
stability.

SUPPORTING MATERIAL

Supporting Materials and Methods, eight figures, and one table are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)

30811-1.
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Visualization of PCR products with and without ribonucleotides  
 

 

 

 

Figure S1. PCR products with and without rCTP synthetized by I614K Taq pol. PCR are performed in 

presence of all the four dNTPs either with or without the addition of rCTP. Products are loaded on 1% 

agarose gel after purification. Bands are then quantified and normalized prior to alkaline gel electrophoresis. 
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Ribonucleotide bypass by I614K Taq polymerase 

 

Primer Extension Assay. The DNA substrate (50 nM) was incubated with different units of I614K Taq 

polymerase (indicated in the figure) in the reaction buffer (10 mM Tris HCl pH 8.0 @ 25°C, 50 mM KCl, 

1.5 mM MgCl2, 0.08% NP40). Reactions were incubated at 55°C for 10 minutes and stopped by adding 

standard denaturing gel loading buffer (95% formamide, 10 mM ethylenediaminetetraacetic acid and 

bromophenol blue), heated at 95°C for 5 min and loaded on a 7M urea 12% polyacrylamide gel. Images 

were acquired using Molecular Dynamycs Phosphoimager (Typhoon Trio, GE Healthcare, 

Buckinghamshire, UK). 

 

 

 

 

 

Fig. S2. I614K Taq polymerase is able to bypass rCMP embedded in the DNA template. The primer 

extension reactions are performed with decreasing units of I614K Taq pol, in presence of dNTPs or dNTPs 

and CTP. The 21mer primer is labelled at 5’ with the ATTO-647N fluorescent dye and annealed to a 43mer 

template with a rCMP embedded at position +26, as indicated in the top of the panel. The concentration of 

dNTPs is 10 µM while, in the reaction with the addition of ribonucleotides, dATP, dGTP and dTTP are 10 

µM, dCTP is 5 µM and rCTP 40 µM. The I614K Taq pol is able to bypass rCMP, replicating the full-length 

template. It slightly pauses at +25 position, before rCMP, then proceed with the synthesis reaction. 
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Molecules with irregular shape 
 

 

 

Figure S3. Molecules with irregular shape are excluded from the analysis based on their height and 

upon visual inspection. (A) AFM image of two representative 464 bp molecules, one considered good for 

the analysis (retained) and the other discarded. The discarded molecule is clearly higher that the retained 

one, especially at one extremity. In (B) are plotted the height profiles of the indicated lines in panel (A): the 

red line transects the discarded molecule, while the green line transects the regular molecule, included in the 

analysis.  
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Structural and conformational data for DNA molecules  

 

bp % GC l0  (nm) ∆l (nm) 

ptwo-tailed 

t-test  P (nm) ∆P (nm) 

ptwo-tailed 

t-test  dof Nref/Nribo 

464 58 154.3 ± 1.7 -21.0 ± 2.4 ≤0.001 74.2 ± 1.0 -7.7 ± 1.4 ≤0.001 331 176/157 

646 43 226.4 ± 2.5 -19.6 ± 3.4  ≤0.001    182 92/92 

727 57 227.5 ± 2.7 -10.5 ± 3.8 ≤0.01 70.4 ± 1.0 -11.4 ± 1.4 ≤0.001 102 47/57 

960 34 344.4 ± 3.4 +4.1 ± 6.0 0.50 48.9 ± 1.0 -0.5 ± 1.4 1 85 61/26 

1079 35 365.6 ± 3.9       46 

 

Table S1. Structural data for DNA molecules. The data plotted in the figures of the main text are here 

reported. For details on data analysis see the Methods section. l0 is the average contour length of the 

reference molecules (typically from the I614K or WT Taq pol, when the former was not available). l refers 

to the average length variation upon rCTP introduction (always by I614K Taq pol) with respect to the 

reference molecules. Similarly, the persistence length data (P and P) are reported. Dof (degrees of 

freedom) is the sum of the numbers of reference and RC-DNA molecules analyzed (for the contour length 

estimation) and considered for the two-tailed t-test, minus 2. 
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Distributions of contour length in DNA and RC-DNA populations 

 

Figure S4. Distributions of contour length values of DNA and RC-DNA molecules. Histograms 

represent the distribution of measured contour length values for each sample. Gaussian fit are also shown. 

The mean values extracted by the Gaussian fit and the associated errors (calculated as described in the 

Methods) are reported in Table S1. 
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Spatial distribution of GC positions in the investigated DNA sequences 

 

 

 

 

Figure S5. Spatial distribution of GC positions in the investigated DNA molecules. Graphical 

representation of the distribution of GC positions along the molecules sequence. Cs and Gs positions for 

only one DNA strand are represented as orange and black bars respectively, the GC distribution of the 

complementary strand is the same but with C in place of G and vice versa.  G positions (black bars) are the 

ones available for rCTP incorporation in one DNA strand, while C positions (orange bars) are available for 

the complementary DNA strand.  
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Surface equilibration of DNA molecules  

 

 

 
 

Figure S6. The ratio of higher moments of the bending angle distribution of studied DNA molecules. 

Across a broad distance range, the measured value is close to the ideal value of 3 expected from the WLC 

theory for fully equilibrated molecules in two dimensions.  
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Scaling of the squared end to end distance R2(L) 

 

 

 

Figure S7. Representative R2 vs L curve, showing the typical scaling of the average squared end-to-

end distance with the curvilinear distance along the DNA molecule.  The curve for the 464 bp sample 

(from I614K Taq pol) is shown, with the best WLC fit. The curves of other molecules (727bp and 960bp) 

are similar. All curves can be fitted accurately on the 0-150 nm distance range. For the sake of better 

comparison, the normalized curves R2/L2 are shown in the main text.   
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Sequence of DNA molecules  

 

464 bp 

TCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATT

GGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAG

CTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCA

AAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCGATAGGCTCCGCCCC

CCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA

CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTG

TCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTG 

 

646 bp 

TAGTTGAAGCATTAGGTCCCAAAATTTGTTTACTAAAAACACATGTGGATATCTTGACTGATTTTTCCAT

GGAGGGCACAGTTAAGCCGCTAAAGGCATTATCCGCCAAGTACAATTTTTTACTCTTCGAAGACAGAAA

ATTTGCTGACATTGGTAATACAGTCAAATTGCAGTACTCTGCGGGTGTATACAGAATAGCAGAATGGGC

AGACATTACGAATGCACACGGTGTGGTGGGCCCAGGTATTGTTAGCGGTTTGAAGCAGGCGGCAGAAG

AAGTAACAAAGGAACCTAGAGGCCTTTTGATGTTAGCAGAATTGTCATGCAAGGGCTCCCTATCTACTG

GAGAATATACTAAGGGTACTGTTGACATTGCGAAGAGCGACAAAGATTTTGTTATCGGCTTTATTGCTCA

AAGAGACATGGGTGGAAGAGATGAAGGTTACGATTGGTTGATTATGACACCCGGTGTGGGTTTAGATGA

CAAGGGAGACGCATTGGGTCAACAGTATAGAACCGTGGATGATGTGGTCTCTACAGGATCTGACATTAT

TATTGTTGGAAGAGGACTATTTGCAAAGGGAAGGGATGCTAAGGTAGAGGGTGAACGTTACAGAAAAG

CAGGCTGGGAAGCATATTTGAGAAG 

 

727 bp 

TCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATT

GGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAG

CTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCA

AAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCGATAGGCTCCGCCCC

CCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA

CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTG

TCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTA

GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGT

AACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGG

ATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACT

AGAAGGACAGTATTTGGTATCTGCGCTCTGCTGA 
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960 bp 

AAAGAGTTACTCAAGAATAAGAATTTTCGTTTTAAAACCTAAGAGTCACTTTAAAATTTGTATACACTTA

TTTTTTTTATAACTTATTTAATAATAAAAATCATAAATCATAAGAAATTCGCTTATTTAGAAGTGGCGCG

CCTCAGCACTGAGCAGCGTAATCTGGAACGTCATATGGATAGGATCCTGCATAGTCCGGGACGTCATAC

GGATAGCCCGCATAGTCAGGAACATCGTATGGGTAAAAGATGTTAATTAACCCGGGGATCCGTCTAACC

TCAGAAATAGTGTTGTATATATCATTGTCCGTAATATCATCGTGAAAACCAGTGTCCTCGTTAATTATTG

TCTGAATTAGCCATTCTTTAGATTCAGTGTGAAATATGTAATTAAATTTCTTAAATTTCAGTGATATTTGA

CTTCTCAATCTTTCGAGAAGCTTCATCTGAGATTTACCATTATTTTCGTTAGCATATATGAGAAACTTTAA

CTTTCGATTAGATAATTCTGATCCTATTCTGGGTACTAAAGAATCTAAGGCATTTAACAATGGCTCTGTA

TCATCTACATCAATATTGGGTAAATCAATTGTAAGCATTCTACCTGCGCTCAAACATGCAAAAGCAAATT

TGACAAAACTGTCCAACTCAGATCTACCCCAAACAATAACAATGTAGTCATTTAACATTTTCTTCACTCC

ACATATCTGATCTCTTAAATTAGATCCGCGTAAGAATTGTGTATAAAATGAAAAAATATTGTTGGATTTA

ATGATTCCTCCCTTTGATGGAGAATCTAACGATAACCGAAAACTTTCACCCGAAGGTAATAGGTATTGGT

ATATTAAATGTGGTACTATTCTTTTCTTTTCAATGCATGCACTTATGAATTTCCAGTGTAGTGTAGGCCAC

CCCAACGCCAAAGTTTCTAAGTACTTTAAGCTTCTTAAATGCCGTTTTG 

 

1079 bp 

GGACGAGGCAAGCTAAACAGATCTATATTACCCTGTTATCCCTAGCGGATCTGCCGGTAGAGGTGTGGT

CAATAAGAGCGACCTCATACTATACCTGAGAAAGCAACCTGACCTACAGGAAAGAGTTACTCAAGAAT

AAGAATTTTCGTTTTAAAACCTAAGAGTCACTTTAAAATTTGTATACACTTATTTTTTTTATAACTTATTT

AATAATAAAAATCATAAATCATAAGAAATTCGCTTATTTAGAAGTGGCGCGCCTCAGCACTGAGCAGCG

TAATCTGGAACGTCATATGGATAGGATCCTGCATAGTCCGGGACGTCATACGGATAGCCCGCATAGTCA

GGAACATCGTATGGGTAAAAGATGTTAATTAACCCGGGGATCCGTCTAACCTCAGAAATAGTGTTGTAT

ATATCATTGTCCGTAATATCATCGTGAAAACCAGTGTCCTCGTTAATTATTGTCTGAATTAGCCATTCTTT

AGATTCAGTGTGAAATATGTAATTAAATTTCTTAAATTTCAGTGATATTTGACTTCTCAATCTTTCGAGA

AGCTTCATCTGAGATTTACCATTATTTTCGTTAGCATATATGAGAAACTTTAACTTTCGATTAGATAATTC

TGATCCTATTCTGGGTACTAAAGAATCTAAGGCATTTAACAATGGCTCTGTATCATCTACATCAATATTG

GGTAAATCAATTGTAAGCATTCTACCTGCGCTCAAACATGCAAAAGCAAATTTGACAAAACTGTCCAAC

TCAGATCTACCCCAAACAATAACAATGTAGTCATTTAACATTTTCTTCACTCCACATATCTGATCTCTTAA

ATTAGATCCGCGTAAGAATTGTGTATAAAATGAAAAAATATTGTTGGATTTAATGATTCCTCCCTTTGAT

GGAGAATCTAACGATAACCGAAAACTTTCACCCGAAGGTAATAGGTATTGGTATATTAAATGTGGTACT

ATTCTTTTCTTTTCAATGCATGCACTTATGAATTTCCAGTGTAGTGTAGGCCACCCCAACGCCAAAGTTTC

TAAGTACTTTAAGCTTCTTAAATGCCGTTTTG 

 

Figure S8. DNA Sequences. Sequences of 464, 646, 727, 960 and 1079 bp fragments used in this study. 
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Chapter 37

Characterization of Structural and Configurational
Properties of DNA by Atomic Force Microscopy

Alice Meroni, Federico Lazzaro, Marco Muzi-Falconi,
and Alessandro Podestà

Abstract

We describe a method to extract quantitative information onDNA structural and configurational properties
from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are
deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping
Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several
parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to
obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol
can be also used to characterize other statistical parameters from AFM topographies.

Key words Atomic force microscope/microscopy (AFM), DNA, Mica, DNA conformation

1 Introduction

Across more than three decades, atomic force microscopy (AFM)
has become a technique of choice for the quantitative investigation
of biomolecules such as DNA, proteins, and their complexes (for an
overview, see [1] and references therein). The success of AFM relies
on its ability to provide nanometer spatial resolution in XY, sub-
nanometer resolution in Z, as well as on the capability of imaging
biological samples in their physiological conditions. Since the
advent of AFM, DNA has been the privileged target of innumerable
studies, due to its paramount biological relevance (for a review, see
[2]). Being a semirigid, charged, strong polyelectrolyte, DNA con-
centrates in itself a wealth of interesting physics, and has a great
potential for nanobiotechnological applications [3, 4]; for this
reasons, DNA has been an ideal benchmark for biophysical studies
[5–17]. Such studies mostly rely on the statistical characterization
of structural and configurational properties of a population of
double stranded DNA molecules with fixed length. Several

Marco Muzi-Falconi and Grant W. Brown (eds.), Genome Instability: Methods and Protocols, Methods in Molecular Biology,
vol. 1672, DOI 10.1007/978-1-4939-7306-4_37, © Springer Science+Business Media LLC 2018
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parameters describe the equilibrium configuration of DNA mole-
cules: contour length, end-to-end distance, rise per residue, radius
of gyration, bending angle distribution along the DNA backbone,
persistence length, to cite the most important. The statistical
mechanics of semirigid polymers describes the distribution of
these parameters in equilibrium conditions [5]. Structural and
configurational changes of DNA molecule can occur as a conse-
quence of modification of the DNA environment (ionic strength,
pH, surface charge density) [6, 7, 18], as well as a consequence of
internal changes at the base pairs level (such as mispaired and
damaged bases [19, 20]); it follows that high-resolution imaging
of DNA molecules, as provided by AFM, can be a very valuable
complement of biomolecular studies.

Here, we describe a general protocol for acquiring high-
resolution images of DNA molecules, either linear fragments or
plasmids, using an atomic force microscope operated in Tapping
(or intermittent contact ) Mode in air. In Tapping (or intermittent
contact) Mode, a sharp oscillating probe periodically touches the
surface under investigation [21]. During each gentle tap, lateral
forces are minimized, and this provides high spatial resolution and
overall noninvasiveness of the measurement. DNA must be well
attached to a smooth, flat substrate, so to obtain well-contrasted,
well-resolved topographic maps. At the same time, the sample
preparation procedure must preserve as much as possible the native
DNA characteristics, so to avoid trapping the molecules in out-of-
equilibrium configurations. We present all the steps required for
extracting quantitative information on the structural and configu-
rational properties of a population of DNA molecules: the prepara-
tion of DNA samples on mica surface; the imaging in air by AFM in
Tapping Mode; the preparation of images for the analysis and the
digitization of the DNA traces; the calculation of selected statistical
parameters describing the state of the system (contour length,
radius of gyration, and end-to-end distance). The approach here
described is rather general and modular, and can be easily imple-
mented to add the calculation of other statistical descriptors of the
DNA structural properties, such as the persistence length or the
bending angle distribution. The protocol here presented can be
easily adapted to other imaging modes and conditions.

2 Materials

1. Cyanoacrylate glue (such as Loctite 406 or similar).

2. Steel magnetic disks, diameter 11–15 mm, thickness
0.2–0.5 mm.
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3. Mica disks of the highest quality grade (V1, ruby muscovite),
with thickness 0.2–0.6 mm and diameter 6–12 mm. (seeNotes
1 and 2).

4. Ethanol (laboratory grade, �95% v/v).

5. Eppendorf tubes, 1.5 mL.

6. Plastic tubes, 50 mL.

7. Pipettes with plastic tips (p20, p200, and p1000).

8. Scotch-like adhesive tape (such as the Magic Transparent
Tape).

9. Ultrapure MilliQ (typical resistivity ρ ¼18.2 MΩ cm at 25 �C)
to prepare samples and solution for AFM imaging.

10. Nitrogen from a reservoir (purity �99.999%).

11. Blotting paper to remove drops of water after rinsing.

12. Tweezers.

13. AFM tips for dynamic (or Tapping) Mode (see Note 3).

14. Deposition buffer: 2–5 mM MgCl2, 10 mM NaCl, 10 mM
HEPES-Na pH 7.5 in MilliQ H2O (see Note 4).

15. Stock DNA in MilliQ water (at least 0.05 ng/μL).

3 Methods

3.1 Sample

Preparation

3.1.1 Substrate

Preparation

A mica disk must be glued to a rigid support, whose dimensions
and geometry can vary according to the instrument specifications.
In most cases this support can be a metal disk with diameter
11–15 mm (at least 2 mm larger than the mica disk) and thickness
0.5–1 mm (see Note 5).

1. Clean the mica and the metallic surfaces with ethanol and dry
all surfaces using blotting paper.

2. Glue the mica disk to the steel disk using cyanoacrylate-based
adhesive (see Note 6).

3. Prepare at least 3–4 similar substrates, to be able to prepare
many samples in parallel for quickly testing different deposition
conditions.

3.1.2 DNA Deposition on

Mica

1. Freshly cleave the mica surface to be used for DNA deposition
(see Note 7).

2. Dilute DNA to a final concentration of 0.05 ng/μL in the
deposition buffer (so to have typically a 1–2 nMDNA solution)
(see Note 8).

3. Put a 15–20 μL drop of diluted DNA solution on the freshly
cleaved mica (see Note 9). Avoid touching the mica surface
with the pipette tip.
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4. Incubate at room temperature for 2–10min (longer incubation
times will provide higher surface densities of DNA molecules).

5. Gently rinse the sample dropwise several times, using each time
up to 1 mL of MilliQ water to remove the exceeding and
loosely bound molecules. During the rinsing procedure, keep
the sample tilted to help water slipping away.

6. Blot the remaining water placing the corner of a piece of blot
paper next to the lower mica disk edge. Make sure the paper is
not in contact with the surface.

7. Dry the sample under a gentle stream of clean nitrogen from a
reservoir. Set a mild stream flux and keep the nozzle a few
centimeter away from the surface (see Note 10).

8. The DNA sample is ready to be imaged (see Note 11 for
troubleshooting).

3.2 AFM Imaging in

Air in Tapping Mode

AFM imaging is aimed at collecting a statistically meaningful num-
ber of high-quality, well-contrasted, high-resolution images of
DNA molecules, which must then be digitized so to produce a
large collection of molecular traces to be further analyzed. The
general requirements are:

1. to collect in a single scan a reasonable number of molecules, so
to obtain a good statistical sample (several hundred molecules)
within 5–10 images;

2. to have a good sampling resolution overall in each image, in
order to calculate accurate values of conformational parameters
from the molecular traces.

Additional information can be found in Note 12.
Typical surface density of molecules on good samples is

15–40 molecules/μm2, depending on the DNA length. Imaging
of DNA samples in air can be performed in dynamic mode (usually
called Tapping Mode, intermittent-contact or oscillating mode).
Recently, new imaging modes based on a vertical tip-sample
approach have been developed, which provide accurate control of
applied force, low-invasiveness in air as well as in liquid and high
spatial resolution (described briefly inNote 13); these modes could
represent an alternative to the Tapping Mode, that we will consid-
ered hereafter.

We suggest the following scanning parameters and conditions
for imaging DNA in air in Tapping Mode with a well-calibrated
instrument (see Note 14 on AFM calibration):

1. Mount a rigid cantilever for dynamic or Tapping Mode.

2. Set a free oscillation amplitude (target amplitude) of 10 nm or
less. Smaller amplitudes provide high-quality and less-invasive
imaging conditions, but require very clean, nonadhesive
surfaces.
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3. Initially, after engaging the tip on the sample surface, adjust the
minimal amplitude (force) setpoint to track the surface while
keeping the scan size to <1 nm.

4. Initially, set a small scan size (100–500 nm) and optimize the
gains and the amplitude setpoint to achieve optimal tracking
conditions at the lowest applied force (see Note 17). Good
tracking is witnessed by a good overlap of topographic profiles
in both scan directions. Check the tracking in correspondence
of points where a sudden change in surface slope occurs (typi-
cally, at the mica–DNA border). Poor tracking results in a loss
of contact when the tip is crossing the DNAmolecule downhill.
Increase gradually the scan size up to 2 μm� 1 μm (aspect-ratio
2:1, see Note 15).

5. Set the sampling resolution to 2048 � 512 points (number of
points per line � number of lines). This choice provides a
sampling resolution of 1 nm/pixel and 2 nm/pixel in the fast
and in the slow scan directions, respectively.

6. Set the scan rate to 1–4 Hz (see Note 16).

7. We suggest acquiring up to five images in each location,
according to the simple scheme described below, then to with-
draw the tip and engage some 100–500 μm away. Three–four
different macroscopic locations will provide several hundred
molecules for the statistical analysis. The image acquisition
scheme is the following: in each location, acquire the first
image with no offsets in X and Y directions, at (0,0). Acquire
the other images at points (X0,0), (�X0,0), (Y0,0), (�Y0,0),
set X0 ¼ 3 μm, Y0 ¼ 2 μm, so to avoid overlap among the scan
areas (see Note 18).

8. In order to maintain stable imaging conditions, in particular to
minimize capillary adhesion at the tip–sample interface, the
AFM head and the sample with the scanning stage can be
hosted in a small chamber, inside which a dry N2 atmosphere
is maintained, with relative humidity below 5%.

Figure 1a shows a typical topographic map of DNA molecules
(727 bp) on mica, imaged in air in Tapping Mode, according to the
described methodology.

3.3 Data Analysis

(See Note 19)

3.3.1 Image

Preprocessing

Images must be prepared for the analysis, by removing standard
artifacts related to the image formation process and by removing
high-frequency noise, typically related to the feedback loop opera-
tion. Artifacts typically manifest themselves as baselines superim-
posed to the true topographic profiles. Identification and
subtraction of the baseline from each topographic profile is essential
for the accurate analysis of the AFM images. Details on the origin of
artifacts and on the baseline subtraction procedures are provided in
Note 20.
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1. Apply a global plane-fitting of the first order to the image, so to
get rid of the global tilt of the sample. This operation will level
the height values in the image, offering a complete overview of
the molecules and of the overall image quality.

2. Apply a line-by-line flattening to the image by subtracting
higher-order polynomials (usually up to the third order is
enough) through suitable masks excluding features that do
not belong to the reference substrate.

3. Check the quality of the flattening by looking at the height
histogram of the image: a sharp Gaussian peak centered around
the average height z0 of the substrate (typically z0¼ 0 nm) with
FWHM of a few Å should be present; DNA molecules will
typically contribute a broader short tail in the height
distribution.

4. Apply a median filter (with 3 � 3, maximum 5 � 5 kernel) to
the flattened image, to smooth high-frequency noise.

3.3.2 Tracing DNA

Molecules

Once the images have been flattened and smoothed, the set of
spatial coordinates {xi,yi}i¼1:N defining the backbone of each mole-
cule for each particular experimental condition (i.e., for each par-
ticular length of the DNA molecules) must be determined. HereN
is the total number of molecules in all the AFM images that can be
used for the analysis. The tracking can be done manually or by
means of (semi)automatic algorithms; some of them are freely
available upon request to the developers (see Note 21). Here we
describe how to manually trace the molecules using ImageJ/Fiji, an
open-source software written in Java and supported by a broad
community of scientists.

Fig. 1 727 bp DNA molecules on mica and details of the single-molecule analysis of AFM images. (a) Top-view
AFM image showing molecules equilibrated on a mica surface, after gentle dehydration of the sample (the
vertical range is 1 nm; heights increase from dark to bright colors). (b) A representative DNA molecule with
highlighted the relevant parameters used for the characterization of configurational properties, as described in
Subheading 3.3
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1. Export topographical maps in a format compatible with the
ImageJ software (i.e., .tif). Resize the image to include the
scanned area only.

2. Import the AFM image into ImageJ/Fiji and define image size
and sampling resolution.

(a) Define the image size using the command: Image !
Scale, and set width and height (in pixels).

(b) Define the scale using the command: Analyze! Set Scale,
and set the scale (in nanometer).

3. Use the “Segmented Line” command to draw by hand the
backbone of the molecule. Keep possibly a constant distance
between each point that should not be too far or too close from
each other. Consider to maintain a point-to-point distance
from 1/2 to 2/3 of the molecule width.

4. Save the molecule trace using the command: “Save As XY
Coordinates”. With this operation ImageJ/Fiji saves an
ASCII (.txt) file containing the XY coordinates of the selected
track, columnwise.

An example of the manual tracking of a DNA molecule is
shown in Fig. 1b.

3.3.3 Basic Structural

Analysis

Once the spatial coordinates of each molecule have been obtained,
several statistical parameters, describing the structural and configu-
rational properties of DNA in the studied conditions, can be deter-
mined (see among the others [5, 6, 8, 9, 11, 15, 22]). First, the
contour length of DNA depends on the conformation adopted.
Generally, DNA assumes the B-form in physiological conditions,
but it can adopt other different conformations, like A- and Z-form.
Moreover, DNA can display more open or compact configurations
depending on its persistence length, which in turn is sensitively
dependent on the ionic strength of the buffer and on the nature
of the surrounding ions. Here we focus our attention on a selection
of parameters that can be readily obtained by the XY coordinates:
the contour length Lc, the end-to-end distance R, the gyration
radius Rg [5, 8, 22, 23]. All these parameters depend on DNA
form, base-pair composition, and persistence length; therefore,
their accurate statistical determination can provide important infor-
mation on the structural properties of a DNA population under
study. Typically, the configurational parameters are evaluated from
digitized traces, and then the average values with standard devia-
tions are calculated from the distributions of these parameters.

1. Calculate Lc, R, and Rg according to the following equations
(refer to Fig. 1b; see also Note 22):
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Lc ¼
XN�1

i¼1

l i ¼
XN�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1 � xið Þ2 þ yiþ1 � yi

� �2
q

ð1Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xN � x1ð Þ2 þ yN � y1ð Þ2

q
ð2Þ

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=N
XN

i¼1

r2i

vuut ð3Þ

where:

r2i ¼ xi � xCMð Þ2 þ yi � yCM
� �2 ð4Þ

xCM; yCM
� � ¼ 1=N

XN

i¼1

xi;
XN

i¼1

yi

 !
ð5Þ

In Eq. 5 (xCM,yCM) are the coordinates of the center of mass of
the molecule.

2. Calculate the histograms of the values of the above observables,
in order to represent their statistical distributions. Always look
first at distributions, and then calculate suitable estimators of
the true values and their dispersions.

3. Calculate mean (median) values, standard deviations and stan-
dard deviations of the mean, or other suitable statistical esti-
mators, depending on the particular statistical properties of the
given observable [5].

An example of the analysis performed onDNA according to the
presented protocol is shown in Fig. 2.

4 Notes

1. The typical substrate used for DNA immobilization is mica, a
mineral belonging to the sheet silicate groups. There are many
varieties of mica and Muscovite is the most used form. It is
constituted by tetrahedral sheets of (Si,Al)2O5 ionically linked
by a central layer of Al2(OH)2 [24]. The net negative charge of
the basal oxygen between these double layers is balanced by a
layer of hexagonally coordinates cations (Kþ in Muscovite).
This negatively charged layer becomes exposed after the stan-
dard cleavage procedure and the dissociation of K+ ions. The
most prominent characteristic of mica is the nearly perfect
cleavage, due to its intrinsic atomic structure [25]. Due to its
chemical composition, the outmost layer of mica after cleavage
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is negatively charged in humid air and in particular in water.
Freshly cleaved mica could hence provide negative, ultra-flat
and clean surfaces, functional for high-quality AFM measure-
ments [26]. By using divalent positive ions (Mg2+, Ca2+, Mn2+,
Ni2+, and Zn2+) [7], or molecules carrying a positive charge, as
in the case of natural or artificial polyamines (poly-L-lysine and
poly-L-ornithine [27, 28]) it is possible to bind the negatively
charged DNA backbone to the mica surface, to the purpose of
imaging DNA by AFM.

2. A cheaper alternative to precut mica (and Teflon) disks is
represented by mica (and Teflon) sheets of the same quality
and thickness, from which disks of the desired diameter can be
obtained using a hole punch.

3. Rigid cantilevers for dynamic modes must be used. Typical
parameters characterizing these cantilevers are: resonance fre-
quency f � 300 kHz; single-crystal silicon tips with radius of
curvatureR< 10 nm; force constant k� 40 N/m; optionally, a
gold or aluminium reflective coating on the back of the
cantilever.

4. All the stock saline solutions are prepared starting from the
powder that is dissolved in MilliQ water. Filtering should

Fig. 2 Distribution of contour length (Lc) values and assessment of the form of DNA molecules upon
dehydration on mica, according to the proposed protocol. Three populations of DNA molecules have been
investigated, with lengths 464 bp, 645 bp, and 727 bp, respectively. (a) The distribution of contour length
values is calculated according to Eq. 1. About 150, 80, and 80 molecules have been traced, respectively, for
the 464 bp, 645 bp, and 727 bp populations. The measured average lengths agree with those expected for the
B-form of DNA within 5–10%. (b) A linear fit of the curve Lc vs. bp provides a value of the rise per residue
parameter of 0.349 nm/bp, confirming unambiguously that DNA molecules, despite the dehydration, are in the
B form. The discrepancy between absolute observed values and the expected ones could be due to the partial
transition towards the A-form that DNA faces when deposited on mica [22], with the A-form domains likely
located at the DNA free ends [8]
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possibly be avoided, as in general the entities that are removed
are very large compared to DNA and would not represent a
serious issue. The sample has to be as clean as possible in order
to achieve the best condition of imaging, and clean buffers are a
fundamental prerequisite. For this reason all dilutions and
samples must be prepared using ultrapure MilliQ water based
buffers. Never use simple (bi)distilled water, and never sterilize
buffers.

5. If imaging in liquid is envisaged, it can be useful to put in
between the mica disk and the metal support a Teflon spacer,
about 2 mm larger than the mica disk and up to 2 mm thick,
aimed at blocking the spread of the liquid used as imaging
buffer, so that a stable droplet is obtained for in-liquid imaging.
In this case, it is better to use different adhesive depending on
the surfaces to be bound together. Mica on Teflon: two-
component epoxy glue; Teflon on metal disk: cyanoacrylate
glue. This metal–Teflon–mica substrate can be used of course
also for imaging DNA in air.

6. A tiny amount of glue must be used, initially placed in the
middle of the disk. Apply a gentle pressure so that the glue is
distributed uniformly in between the mica disk and the sup-
port. Carefully dose the amount of glue so to avoid it spreading
outside the mica disk area; this will likely cement the mica layers
together from the side and will disturb the stripping procedure.

7. Mica disks should be always freshly cleaved immediately before
the deposition of DNA, using soft adhesive tape to peel the
topmost layers away. In this way it is possible to create a flat
atomically smooth clean surface free of contaminants. To this
purpose, firmly attach the scotch tape over the supported mica
surface and remove it so to peel the topmost layers away.
Repeat the operation using a clean portion of tape until a
uniform thin circular layer remains on it (repeat in any case
2–3 times). To achieve a homogeneous stripping no air bubbles
must be present below the adhesive tape. Apply a constant
tension to the adhesive tape while peeling the mica. Remove
the tape in one continuous movement.

8. DNA must be used freshly prepared, resuspended in MilliQ
water. For best results, it can be stored at 4 �C for possibly no
more than 1–2 weeks. Repeated thawing and freezing damages
the DNA backbone [29].

9. The layer used for the imaging has to be cleaved just before
sample deposition. It is a good practice to protect the sur-
face from the contact with air, if it is not used immediately.

10. When significant amount of water remains on the surface upon
drying, in the form of water islands, it may be the case that
something went wrong either during the deposition of DNA
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or the cleavage of the mica disk. Sticky/dirty/overcoated sur-
faces retain water, indeed. Such surfaces may result from the
deposition of contaminated/degraded solutions or from rem-
nants of the scotch tape adhesive.

11. In principle, the incubation time of the DNA solution on mica
determines the number and density of molecules on the mica
surface [5, 10, 12], and typically a few minutes are enough to
obtain optimal imaging and analysis conditions. It may happen
however that poor reproducibility and deviations from the
expected behavior during sample preparation are observed.
This problem typically occurs when the DNA concentration
in solution and the incubation time are changed in the effort of
obtaining the desired density of molecules. Usually, this anom-
alous behavior is also accompanied by the poor quality of the
deposited molecules (condensed in blobs, totally or partially, or
with small blobs at the free ends; aggregated or associated in
complex two-dimensional structures or networks; etc.). All
these can be symptoms that either the molecules in solution,
or the buffer, or both, have some problems. For instance, a bad
PCR reaction can produce weak DNA molecules with open,
and therefore, sticky ends; because of the intrinsic DNA com-
plementarity, several molecule ends will anneal between each
other assembling networks, which will be mostly washed away,
but also remain on the mica surface to some extent. A dirty
buffer containing nanoscopic contaminants (see Notes 4
and 8) can promote DNA denaturation or aggregation, with
similar effects. Large complexes will be typically washed away,
as mentioned; therefore, only the minoritarian fraction of small
objects will remain on the surface, with a density largely inde-
pendent on both initial DNA concentration and incubation
time. If similar issues are faced, it is usually wise to first prepare
fresh clean buffers, then if needed fresh DNA stocks. Although
only rarely observed in our experience, similar problems can
also be due to poor quality of the mica surface (only use mica of
the highest grade) or to issues in mica cleavage (including
those due to the poor quality of the scotch tape, which can
leave residues of glue on the mica surface).

12. AFM measurements can be carried out in air, as described in
the present manuscript, as well as in a suitable saline buffer.
Imaging DNA in liquid does not necessarily provides more
accurate information, as long as one focuses on structural
data, because the latter mostly rely on the accurate characteri-
zation of lengths along the DNA backbone, rather than on the
measurement of heights. Tip convolution affects only at minor
extent such measurements, at least for relatively long molecules
(>100 bp). Moreover, there is evidence that dehydration
required for sample preparation has little impact on the DNA
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properties, probably due to the fact that the truly DNA–mica
interface remains always partially hydrated (by a few mono-
layers of water) [5, 9, 28]. Nevertheless, the fine conforma-
tional changes induced by dehydration, as well as by the
different sample preparation methods and choices of the bridg-
ing cations are still matter of discussion [8, 22].The general
methodology presented here applies irrespective to the imag-
ing method adopted (air, liquid, Tapping Mode, Peak Force
Tapping, etc.). For some specific indications in the case of
imaging in liquid, see Note 5.

13. Imaging methods based on the vertical approach of the tip
towards the sample have recently been introduced [30], and
represent valid alternatives to dynamic (tapping) modes and
contact modes, especially in liquid. The general idea, besides
specificities related to the different implementations, is to
record a set of force curves on a grid spanning the scan area,
with a carefully controlled maximum force setpoint; during
imaging in fluid, the maximum force can be kept on the
10–100 pN level, while lateral forces are minimized thanks to
the vertical approach mode, similarly to Tapping or other
dynamic modes. In Tapping Mode, however, peak forces are
significantly higher.

14. Calibration of the piezo-scanners should be checked periodi-
cally (every 6–12 months) by imaging the surface of a calibra-
tion grating, with repeated morphological features of
appropriate dimensions (in the present case, the XY period
should be 1 μm, the depths 10–200 nm). Unless a certified
grating is used, the XYZ accuracy after the calibration proce-
dure can be reasonably assumed to be �2%.

15. The number of scanned lines impacts on the acquisition time of
a single image. Setting an aspect-ratio 2:1 allows reducing the
number of scanned lines, i.e., the acquisition time, without
affecting dramatically the image resolution in the slow scan
direction. Given a target sampling resolution in the image,
the scanned area can be kept large, for the sake of a better
statistics, by increasing the scan size and the aspect-ratio value,
and setting suitable values of the points per line and number of
lines parameters. The main limit to be considered is that the
scanning speed cannot grow arbitrarily, otherwise the feedback
loop will not be able to track accurately the surface.

16. Scanning speed (which changes when either scan rate or scan
size are changed) should not be too small, otherwise drifts
could produce significant distortions in the image. At the
same time, too high scan speeds will challenge the feedback
loop of the AFM and determine inaccurate tracking.

17. Typically the integral gain has the highest impact on image
quality. Each instrument has its own gain optimal settings.
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Increase the integral gain until oscillations appear in the height
and error signals. Then decrease the integral gain just below
the critical value. Increase the proportional gain until the qual-
ity of the image starts worsening. Setting high gains gives
advantages in terms of tracking stability and scanning velocity
that overcompensates the introduction of high-frequency noise
in the image; the latter can be effectively removed a posteriori
by applying a median filter with a 3 � 3 kernel on the image.

18. Drifts must be minimized in order to obtain accurate topo-
graphic maps. Drifts can be due to thermal equilibration of the
system components (sample, laser, cantilever, electronics as
well as the scanner) or to mechanical hysteresis of the piezo
elements. When a different scan area is selected by applying
offsets to the piezo, the latter will typically keep some memory
of the previous static deformation, resulting in a constant drift
across the new image. In order to minimize this effect and
completely refresh the scanner motion, after setting the new
offsets it is effective to reduce significantly the number of lines
and complete a few low-resolution images moving quickly up
and down, until the hysteresis is lost. Also reverting a few times
the slow scan direction (up-bottom/bottom-up) helps remov-
ing the hysteresis of the piezo scanner.

19. The data analysis procedures described in general terms in this
manuscript can be implemented by means of custom routines,
as well as by means of commercial and open-source software.
Basic image processing tools are typically included in the con-
trol software of the AFM. The authors have developed their
own libraries of data analysis routines in the MATLAB environ-
ment (many research groups use their own libraries). Some
open-source software packages are listed below (this list is
neither meant to be complete, nor is it expected to remain up
to date for a long time):

(a) ImageJ/Fiji, http://rsb.info.nih.gov/ij/

(b) Gwyddion, http://gwyddion.net/

(c) WSxM, http://www.wsxmsolutions.com/

(d) FiberApp, http://www.fsm.ethz.ch/publications-list/
software.html

(e) Image SXM, https://www.liverpool.ac.uk/%7Esdb/
ImageSXM/

20. Mica is atomically smooth and overall flat. Deviations from a
flat baseline can therefore be attributed to scanning artifacts,
with the obvious exception of those due to the presence of a
DNAmolecule. A global tilt of the sample adds a linear baseline
to each profile, and globally a plane to the topographic map as a
whole. Tubular scanners will add an approximately parabolic
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baseline to each profile (a bow), because the displacement of
the sample placed on top of the tube follows a curved trajectory
rather than a linear one (ideally an arc of circumference).
Generally, each scanner will add its own polynomial distortion
to the AFM topographic map. Drifts of different nature can
add additional shifts between adjacent profiles (approximately
constant along each profile, i.e., along the fast-scan direction,
but appreciable along the slow-scan direction); the presence of
these line-by-line deviations usually requires the application of
line-by-line polynomial subtraction (also known as flattening)
rather than simply the subtraction of a two-dimensional plane,
or paraboloid, or higher-order surface (also known as plane-
fitting). It is essential, in order to accurately determine the
image baseline, to mask (i.e., not to consider in the polynomial
fit) all the surface features that do not belong to the flat
reference substrate (the DNA molecules, surface defects, . . .).
Masks are typically built by thresholding (flooding) algorithms,
determining image segmentation; only the substrate is consid-
ered for the flattening. The absence of masking in the fitting
procedure will introduce artifacts in the topographic maps (the
ubiquitous black stripes), because in the presence of bumps
and/or depressions the fitted polynomial typically deviates
from the baseline. Masking is typically a feature of the analysis
software. The flattening process is described in Fig. 3.

21. A semiautomatic tracing algorithm is in principle preferable to
the manual tracing of DNA molecules, as the latter is more
prone to introduce bias from the operator. An automatic algo-
rithm can of course introduce systematic errors, although these
would be the same for all molecules, irrespective to the operator.
Ivan Usov’s FiberApp is a free comprehensive suite of
(MATLAB) routines with a GUI for “Tracking and Analyzing
Polymers, Filaments, Biomacromolecules, and Fibrous Objects”
(available at http://www.fsm.ethz.ch/publications-list/soft
ware.html [31]).

22. The formulas reported in the text for the calculation of basic
structural parameters provide in general accurate results as long
as the digitization of the molecules in the image is not poor,
which in the case of DNA means that the point-to-point dis-
tance should be of the order of 0.5–1 nm. Separations signifi-
cantly smaller than 0.5–1 nm are unreasonable, considered that
the nominal width of DNA is 2 nm; oversampling can intro-
duce spurious high-frequency components to the trace, that
will affect the angle distribution as well as the calculated con-
tour length. The contour length Lc is the most sensitive param-
eter, indeed. Optimized estimators for Lc have been developed,
and can be used instead of Eq. 1 [32–34].
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Fig. 3 Overview of the image pre-processing procedure. The process starts with (a) a raw AFM image, where
the sample tilt and line-by-line distortions hinder the target topographical features (the DNA molecules in this
case); after (b) a global plane-fitting of the first order, and a series of line-by-line flattening of the (c) first, and
(d) third order, the baseline is effectively removed and the molecules emerge, well-contrasted with respect to
the smooth, flat substrate. In (e) the mask built to apply the third-order flattening is shown. This logical mask
assigns a value of 1 to the points that must be considered for the fitting, i.e., those belonging to the substrate,
and 0 elsewhere. In (f) the distributions of surface heights after the first and third order flattening are
compared. A well-shaped, nearly symmetric dominant mode, representing the height values of the substrate,
is typical of a properly flattened image
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Chapter 22

Measuring the Levels of Ribonucleotides Embedded
in Genomic DNA

Alice Meroni, Giulia M. Nava, Sarah Sertic, Paolo Plevani,
Marco Muzi-Falconi, and Federico Lazzaro

Abstract

Ribonucleotides (rNTPs) are incorporated into genomic DNA at a relatively high frequency during
replication. They have beneficial effects but, if not removed from the chromosomes, increase genomic
instability. Here, we describe a fast method to easily estimate the amounts of embedded ribonucleotides
into the genome. The protocol described is performed in Saccharomyces cerevisiae and allows us to quantify
altered levels of rNMPs due to different mutations in the replicative polymerase ε. However, this protocol
can be easily applied to cells derived from any organism.

Key words DNA replication, DNA repair, DNA polymerase, Ribonucleotides incorporation, RNase
H, Genome stability, Genomic rNMPs

1 Introduction

During evolution, DNA was selected as the principal molecule to
preserve genetic information likely due to its greater stability com-
pared to RNA, whose 30 hydroxyl group increases its susceptibility
to hydrolysis.

At every cell cycle, genomic DNA is duplicated by DNA poly-
merases, enzymes that are specialized to copy a single-stranded
DNA template and polymerize deoxyribonucleotides (dNTPs)
accordingly, forming a complementary DNA strand. Given the
much greater abundance of rNTPs compared to dNTPs in the
nucleus, DNA polymerases evolved a steric gate to help preventing
rNTPs from entering the active site [1].

However, recent data revealed that large amounts of rNTPs are
incorporated in genomic DNA during replication [2]. The presence
of rNMPs in the chromosomes has physiological roles [3–5] and is
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normally transient: specific RNase H-based pathways excise them
before mitosis [6]. Failure to remove genomic rNMPs causes repli-
cation stress and genome instability in yeast and human cells
[7–12]. Mutations in the genes coding for RNase H2 in humans
are responsible for the rare Aicardi-Goutieres Syndrome (AGS)
[13]. Intriguingly, cells derived from AGS patients accumulate
rNMPs in their chromosomes and exhibit constitutively activated
DNA damage response and post-replication repair mechanisms [8,
10].

To investigate the mechanisms underlying incorporation and
removal of ribonucleotides in chromosomes and to determine their
effect on genome integrity, it is important to determine rapidly and
semiquantitatively the amounts of ribonucleotides present genomic
DNA. Here, we describe an experimental strategy based on the
approach originally described by Hiller and colleagues [12] and
then in [8]. Briefly, genomic DNA is extracted and treated in vitro
with bacterial RNase HII, which introduces nicks at every ribonu-
cleotides site. These nicks are radioactively labeled taking advantage
of the DNA Polymerase I nick translation capability (Fig. 1). In this
chapter, we describe the procedure starting from the preparation of
genomic DNA from yeast cells and compare the effect of two
mutations affecting the steric gate of pol ε, M644G and M644L,
that respectively increase and decrease rNTPs incorporation [9].

2 Materials

1. Eppendorf tubes 1.5 and 2 mL.

2. Pipettes and tips.

3. Glass Pasteur pipette.

4. MilliQ water.

5. 250 mL glass flasks.

6. Stirrer.

7. Gel electrophoresis apparatus.

8. Power supply.

9. UV transilluminator and digital camera.

10. Plastic wrap.

11. Tape.

12. Scalpel.

13. Thermomixer.

14. Geiger counter.

15. Gel dryer.
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16. 3 MM Whatman blotting papers.

17. Towel papers.

18. Weight (�400 g).

19. Phosphorimager and screen.

20. YDER Yeast DNA Extraction kit, materials and reagents listed
in the kit instructions (Thermo Scientific).

21. RNase A 10 mg/mL.

22. Phenol:Chloroform:Isoamyl Alcohol 25:24:1 v/v/v
(Saturated with 10 mM Tris–HCl, pH 8.0, 1 mM EDTA).
Stored at 4 �C.

23. 100% ethanol. Stored at �20 �C.

24. 3 M sodium acetate, pH 7.0. Stored at 4 �C.

25. 70% ethanol. Stored at �20 �C.

5’

5’

3’

3’

DNA-PolI

RNHII

dCTP

5’

3’ 5’

3’

5’

3’5’

3’

rNMP

rNMP

rNMP

Fig. 1 Representative scheme for ribonucleotides incorporation assay. RNHII recognizes and cleaves ribonu-
cleotides embedded into genomic DNA (red dot) leaving 50 P-ribonucleotide ends. The DNA-PolI enzyme,
through nick translation, marks RNHII-induced nicks with radiolabeled dCTP
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26. Agarose powder.

27. 10 mg/mL ethidium bromide (EtBr).

28. TAE 1�: 40 mM Tris–HCl, pH 8.0, 20 mM acetic acid, and
1 mM EDTA. Stored at room temperature.

29. Lambda DNA marker.

30. RNase HII 5000 U/mL.

31. 10� ThermoPol® Reaction Buffer: 200 mM Tris–HCl,
100 mM (NH4)2SO4, 100 mM KCl, 20 mM MgSO4, 1%
Triton® X-100 (New England Biolabs).

32. 10� dNTPs mix (without dCTP); 200 μM dATP, 200 μM
dGTP and 200 μM dTTP.

33. NEBuffer 2; 500 mM NaCl,100 mM Tris–HCl, 100 mM
MgCl2, 10 mM DTT (New England Biolabs).

34. DNA Polymerase I 10,000 U/mL.

35. α32P-dCTP, 3000 Ci/mmol.

36. STOP solution: 30% glycerol, 200 mM EDTA, bromophenol
blue, in MilliQ water.

37. TCA 30%.

38. Software for quantification and analysis: ImageQuant and
Microsoft Excel.

3 Methods

3.1 Genomic DNA

Preparation

1. Isolate yeast genomic DNA using the Y-DER extraction Kit
according to the manufacturer’s instructions. All the steps are
performed as described in the kit’s instructions, with the fol-
lowing modifications:

(a) Use 50 mL cultures with an OD600 between 0.3 and 0.8.

(b) RNase A 10 mg/mL is diluted 1:1000 in the Y-PER
reagent.

2. Resuspend DNA in 200 μL of MilliQ water and add an equal
volume of Phenol:Chloroform:Isoamyl Alcohol 25:24:1 v/v/v
saturated with 10 mM Tris–HCl, pH 8.0, 1 mM EDTA
(see Note 1).

3. Vortex vigorously for 15 s.

4. Centrifuge at maximum speed for 10 min at RT.

5. Carefully transfer only the aqueous phase (upper phase) to a
new 1.5 mL eppendorf tube. That phase contains DNA. Do
not transfer material from the interface or the lower phase. If
so, repeat the procedure from step 2, adding an equal volume
of Phenol:Chloroform:Isoamyl Alcohol 25:24:1 v/v/v
saturated with 10 mM Tris–HCl, pH 8.0, 1 mM EDTA.
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6. Precipitate DNA by adding three volumes of ice-cold 100%
ethanol and 1/10 of the volume of sodium acetate 3 M,
pH 7.0. Mix well and keep overnight at �20 �C.

7. Spin down the precipitate at maximum speed for 450 at 4 �C.
Draw off the supernatant.

8. Wash adding 1 mL of ice-cold 70% ethanol. Spin at maximum
speed for 30 min at 4 �C. Draw off the supernatant and dry the
pellet at 42–44 �C (see Note 2).

9. Resuspend gently the pellet with 50 μL of MilliQ water.

3.2 Nicking DNA at

Ribonucleotide Sites

1. Quantify genomic DNA by loading 2 μL on a 1% agarose gel in
TAE (with 0.67 μg/mL EtBr) next to 1 μL of Lambda DNA
marker. Run for 10 min at 8–10 V/cm. The genomic DNA
band should be compact and easily quantifiable (see Note 3).

2. Normalize DNA in each sample to 25 ng/μL by adding MilliQ
water.

3. Prepare two new 1.5mL eppendorf tubes per sample. Label the
tubes with the sample name plus “�"” and “þ” (e.g., Sample
1� and Sample 1þ) (see Note 4), and transfer 20 μL (500 ng)
of normalized genomic DNA to each tube.

4. Dilute 1:10 the RNase HII in ThermoPol Buffer 1�. Prepare
the two reaction mixtures (mix “�” and mix “þ”) in new
1.5 mL tubes in excess with respect to the number of samples.
Keep the mixtures on ice.
1� reaction mix recipe (Note that the final reaction volume is
50 μL):

Mix “�” Mix “þ”

ThermoPol Buffer 10� 5 μL 5 μL

RNase HII / 1 μL

ThermoPol Buffer 1� 1 μL /

H2O MilliQ 24 μL 24 μL

Total volume 30 μL 30 μL

5. Vortex briefly and add 30 μL of each mixture to the appropriate
labeled tube containing genomic DNA.

6. Incubate at 37 �C with 550 rpm agitation in a thermomixer for
2.30 h.

7. Add 50 μL of MilliQ water and precipitate DNA following
steps 6–8 of section 3.1, consider 100 μL of total volume.

8. Resuspend gently the pellet in 20 μL of MilliQ water.
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3.3 Radioactive

Labeling of Nicks

1. Quantify and normalize DNA by loading 2 μL on a 1% agarose
gel in TAE (with 0.67 μg/mL EtBr) next to 1 μL of Lambda
DNA marker. Run for 10 min at 9–10 V/cm (see Note for gel
preparation).

2. Transfer 300 ng of DNA to a new 1.5 mL tube and add MilliQ
water to 15 μL of total volume.

3. Prepare the common DNA Polymerase I reaction mixture,
keep it on ice.
1� DNA Polymerase I reaction mix recipe:

10� dNTPs mix (without dCTP): 2 μL

DNA Pol I 10� buffer NEBuffer 2 2 μL

DNA Pol I 10,000 U/mL 0.5 μL

α32P-dCTP 3000 Ci/mmol 0.3 μL

H2O MilliQ 0.2 μL

4. Add 5 μL of the DNA Polymerase I reaction mix to the each
sample and incubate at 16 �C for 30 min (see Note 5).

5. Add 4 μL of the STOP solution (see Notes 5 and 6).

6. Load 20 μL on a 1% agarose gel in TAE (with 0.67 μg/mL
EtBr). Here the DNA size marker is dispensable.

7. Run at 7 V/cm for 1.20 h.

8. Cut the gel immediately under the bromophenol blue line (see
Note 7).

9. Examine the gel by UV light and photograph it digitally. This
will allow normalization of the radioactive signal with respect
to the DNA loaded in the gel.

10. Soak the gel in TCA 30% for half an hour to precipitate the
DNA. The bromophenol blue turns yellow.

11. Assemble the sandwich on a glass tray: cover completely the
inner part with plastic wrap. Layer three pieces of 3MM What-
man blotting paper larger than the gel. Take out the gel from
TCA 30% and place it on the top of the blotting paper. Place in
order: three more sheets of blotting paper on the gel, a stack of
paper towels, and a weight (0.3–0.5 kg) (Fig. 2).

12. Let the gel dry overnight at room temperature.

13. Remove the paper towels and the blotting papers above the gel.
Transfer the desiccated gel on a new 3MM blotting paper.

14. Dry the gel on the blotting paper using a gel dryer for 20 min
at 80 �C. Use more than one blotting paper and cover the gel
with plastic wrap to avoid radioactive contamination of the
instrument.
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15. Expose the dried gel on a phosphorimager screen for 5–15 min
(see Note 8).

16. Scan the screen in a phophorimager. To quantify the result see
Note 9. An Example is shown in Fig. 3.

Glass Tray

Plastic wrap

3 blotting papers

3 blotting papers

Gel

Towels (10 cm)

Weight (300 g)

Fig. 2 Scheme to assemble paper sandwich to dry the agarose gel

- + - + - + - + RNHII

32P-dCTP

EtBr

RNH201

POL2

rnh201Δ

POL2

rnh201Δ

pol2-M644G

rnh201Δ

pol2-M644L

Fig. 3 Visualization of ribonucleotides incorporation assay results. The strains tested are derivatives of a W303
background (MATa ade2–1 trp1–1 leu2–3112 his3–11,15 ura3–1 can1–100 RAD5) with a deletion of gene
coding for the catalytic subunit of RNase H2 (rnh201Δ) combined with wt or mutated POL2 gene. The RNH201
POL2 wt strain is used as control. The radiolabeled signal represents the nicks labeled by PolI. The signal
dependent upon RNHII treatment is proportional to the genomic ribonucleotides levels. The EtBr panel
represents the loading control, acquired before gel dryng and necessary for radioactive quantification
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4 Notes

1. DNA has to be clean and as little nicked as possible to achieve
the best resolution. For these reasons it is strongly recom-
mended to clean DNA through phenol:chloroform extraction
and ethanol precipitation. We also found that the YDER prep-
aration yields a genomic DNA with fewer nicks compared with
other methods.

2. Draw off as much supernatant as possible with a glass Pasteur
pipette, this would ensure removing the majority of the etha-
nol, and then place the eppendorf tubes in a heater at
42–44 �C. Drying time depends on how much ethanol is left
in the samples. Check the samples after 20 min, if the ethanol is
still there, leave them in the heater and check later. Note that
excessive drying would damage the sample, for this reason
keep checking samples every 20 min until the pellet is
completely dry.

3. To normalize DNA in the samples take a digital image and use
quantifying tools such as ImageQuant or ImageLab (BioRad).

4. Here, each sample is split into two: one half is digested with
purified bacterial RNase HII, the other half is left untreated.
This allows discrimination between the ribonucleotide-
dependent nicks and the nicks generated during DNA
preparation.

5. Labeling the nicks is the key step of this protocol. For this
reason the procedure needs strict standardization. We suggest
proceeding sample by sample adding the reaction mix to each
tube every 15–30 s. After 30 min of incubation, repeat this
procedure with the STOP solution. In this way, all the samples
would be incubated for exactly 30 min at 16 �C.

6. As most DNA polymerases, DNA polymerase I needs magne-
sium ions. In this case the high concentration of EDTA in the
STOP solution will stop the reaction, while the glycerol and the
bromophenol blue make the samples ready to be loaded on a
gel.

7. Labeled genomic DNA is loaded on the agarose gel together
with the DNA Polymerase I reaction mix, including the unin-
corporated radioactive nucleotides. The nucleotides migrate
faster than genomic DNA and the long run ensures complete
separation. Free nucleotides migrate immediately below the
bromophenol blue; therefore, the gel is cut immediately after
the run to avoid their diffusion through the gel. The bromo-
phenol blue is also a pH-indicator, used to monitor the change
in the gel pH while soaking in 30% TCA. When it turns yellow
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the agarose gel pH has become acid so DNA would be pre-
cipitated into it.

8. The exposure time could vary depending on the α32P-dCTP
activity. With fresh and fully active α32P-dCTP the signal is
saturated in 15 min.

9. Signal quantification. To quantify the resulting signal proceed
with the following step. Quantify the bands corresponding to
the genomic DNA, including the ones from the EtBr capture.
Use the Volume Tool of ImageQuant software drawing a rect-
angle around the right band. Normalize each radioactive value
to the corresponding EtBr value. This would ensure the correct
interpretation of the radioactive signal. Then for each sample
subtract the “�” signal from the “þ” signal as a background
normalization.

Acknowledgments

This work was supported by grants from AIRC (n.15631) and
Telethon (GGP15227) to M.M.-F., from AIRC and Fondazione
Cariplo (TRIDEO 2014 Id. 15724) to F.L., and from Fondazione
Cariplo (grant number 2013-0798) to P.P.

References

1. Joyce CM (1997) Choosing the right sugar:
how polymerases select a nucleotide substrate.
Proc Natl Acad Sci U S A 94:1619–1622

2. McElhinny SAN, Watts BE, Kumar D et al
(2010) Abundant ribonucleotide incorpora-
tion into DNA by yeast replicative polymerases.
Proc Natl Acad Sci U S A 107:4949–4954

3. Ghodgaonkar MM, Lazzaro F, Olivera-
Pimentel M et al (2013) Ribonucleotides mis-
incorporated into DNA act as strand-
discrimination signals in eukaryotic mismatch
repair. Mol Cell 50:323–332

4. Lujan SA, Williams JS, Clausen AR et al (2013)
Ribonucleotides are signals for mismatch repair
of leading-strand replication errors. Mol Cell
50:437–443

5. Dalgaard JZ (2012) Causes and consequences
of ribonucleotide incorporation into nuclear
DNA. Trends Genet 28:592–597

6. Sparks JL, Chon H, Cerritelli SM et al (2012)
RNase H2-initiated ribonucleotide excision
repair. Mol Cell 47:980–986

7. Lazzaro F, Novarina D, Amara F et al (2012)
RNase H and postreplication repair protect
cells from ribonucleotides incorporated in
DNA. Mol Cell 45:99–110

8. Pizzi S, Sertic S, Orcesi S et al (2015) Reduc-
tion of hRNase H2 activity in Aicardi-Gou-
tières syndrome cells leads to replication stress
and genome instability. Hum Mol Genet
24:649–658

9. Nick McElhinny SA, Kumar D, Clark AB et al
(2010) Genome instability due to ribonucleo-
tide incorporation into DNA. Nat Chem Biol
6:774–781

10. G€unther C, Kind B, Reijns MAM et al (2014)
Defective removal of ribonucleotides from
DNA promotes systemic autoimmunity. J Clin
Invest 125(1):413–424

11. Reijns MAM, Rabe B, Rigby RE et al (2012)
Enzymatic removal of ribonucleotides from
DNA is essential for mammalian genome
integrity and development. Cell
149:1008–1022

12. Hiller B, Achleitner M, Glage S et al (2012)
Mammalian RNase H2 removes ribonucleo-
tides from DNA to maintain genome integrity.
J Exp Med 209:1419–1426

13. Crow YJ, Manel N (2015) Aicardi-Goutières
syndrome and the type I interferonopathies.
Nat Rev Immunol 15(7):429–440

Ribonucleotides Incorporation Assay 327

marco.muzifalconi@unimi.it

Alice Meroni




	

	

Part	III	

  



	 163	

Manuscript	in	Preparation	

 

 

Yeast	DNA	Polymerase	η	is	involved	in	genome	replication	

under	low	deoxyribonucleotides	pools	conditions	

	

	

Alice	Meroni1,	Giulia	M.	Nava1,	Eliana	Bianco2,	Marco	Muzi-Falconi1#,	Federico	

Lazzaro1#	

	
1Dipartimento	di	Bioscienze,	Università	degli	Studi	di	Milano,	via	Celoria	26,	

20133	Milano,	Italy.		

2Department	of	Molecular	Mechanisms	of	Disease,	University	of	Zurich-Irchel,	

Winterthurerstrasse	190	CH-8057	Zurich,	Switzerland.	
#Corresponding	author



	 164	

ABSTRACT	

	

RNA:DNA	hybrids	could	arise	during	several	cellular	processes	and,	among	

them,	the	DNA	replication.	Cells	possess	RNase	H	activities	to	deal	with	

these	particular	substrates	and	restore	the	correct	DNA:DNA	sequence,	

avoiding	potential	negative	outcomes	as	genome	instability.	Yeast	cells	

lacking	RNases	H	are	negatively	affected	by	hydroxyurea,	which	lowers	the	

deoxyribonucleotides	pool,	necessary	for	DNA	replication.	Here	we	show	

that	the	Translesion	Synthesis	polymerase	η	(Pol	η)	plays	a	key	role	in	

DNA	replication	under	low	deoxyribonucleotides	condition.	In	particular,	

the	catalysis	reaction	performed	by	Pol	η	results	detrimental	for	cells	

lacking	RNases	H,	leading	to	DNA	damage	checkpoint	activation	and	G2/M	

arrest.	Moreover,	a	Pol	η	mutant	allele	with	enhanced	ribonucleotides	

incorporation	further	exacerbates	the	sensitivity	to	hydroxyurea	of	cells	

lacking	RNase	H	activities.	We	thus	propose	a	model	in	which	Pol	η	is	

helping	hydroxyurea-stalled	replication	forks	by	introducing	

ribonucleotides,	and	that	becomes	ultimately	injurious	if	cells	are	not	able	

to	remove	ribonucleotides,	as	in	absence	of	RNases	H.		

	

INTRODUCTION	

	

The	accuracy	of	genome	duplication	is	mainly	guaranteed	by	the	high	fidelity	of	

replicative	DNA	polymerases,	which	insert	the	correct	deoxyribonucleotide	

respecting	the	base	pairing	with	the	template.	Besides	discriminating	between	

the	different	bases,	replicative	polymerases	have	to	choose	also	the	right	sugar	[1].	

In	doing	so,	they	are	challenged	by	the	high	ribonucleotides	(rNTPs)	

physiological	concentrations,	that	exceed	the	ones	of	deoxyribonucleotides	

(dNTPs)	up	to	hundreds	of	times	[2].	Specific	residues	acting	as	a	steric	gate	in	

the	nucleotide	binding	site	help	DNA	polymerases	to	select	dNTPs,	lacking	an	

oxygen	at	the	2’	carbon	of	the	sugar,	over	rNTPs	[1].	Nonetheless,	during	DNA	

replication,	a	huge	number	of	ribonucleotides	is	introduced	into	the	nascent	

strand	[2].	In	yeast,	at	least	1	rNTP	is	incorporated	every	1000	dNTPs,	making	



	 165	

rNTPs	the	most	frequent	non-canonical	nucleotides	introduced	into	the	genome	

[3].		

Embedded	ribonucleotides	are	usually	processed	by	RNase	H	enzymes,	which	

contribute	to	the	re-establishment	of	the	correct	DNA	sequence	[3].	Eukaryotic	

cells	possess	two	types	of	RNase	H	enzymes:	RNase	H1,	which	cleaves	RNA:DNA	

hybrids	where	at	least	four	consecutive	ribonucleotides	are	present;	RNase	H2,	

which	processes	both	multiple	and	single	embedded	ribonucleotides	[4].	In	

absence	of	RNase	H	activities,	ribonucleotides	are	not	repaired	and	cells	display	

phenotypes	linked	to	replication	stress	and	genome	instability	(reviewed	in	[5,6]).	

Noteworthy,	dysfunctions	of	the	RNase	H2	complex	are	the	major	cause	of	the	

Aicardi-Goutières	syndrome,	a	rare	disorder	that	mainly	affects	brain,	skin	and	

the	immune	system	[7].	Additionally,	ribonucleotides	can	be	subjected	to	

alternative	and	mutagenic	processing	by	Topoisomerase	1,	which	can	lead	to	the	

formation	of	short	deletions	and	ultimately	double-strand	breaks	[8–10].	In	

general,	the	inability	to	remove	ribonucleotides	leads	to	severe	consequences,	as	

their	persistence	in	DNA	distorts	the	helix	structure	[11–14]	and	therefore	affects	

DNA	transactions.		

Ribonucleotide	incorporation	is	further	increased	in	situations	where	the	cellular	

dNTPs	pools	are	reduced,	such	as	when	cells	are	treated	with	the	ribonucleotide	

reductase	inhibitor	hydroxyurea	(HU)	[15].	As	a	consequence,	cells	lacking	RNase	

H	activities	are	hypersensitive	to	HU	[15–17].	During	replication,	rNMPs	are	not	

efficiently	bypassed	by	replicative	DNA	polymerases	[18,19]	and	cells	rely	on	post-

replication	repair	mechanisms	to	overcome	these	blocks	[17].	Indeed,	following	

HU	treatment,	template	switching	or	Pol	ζ-mediated	Trans-Lesion	Synthesis	

(TLS)	become	essential	to	bypass	rNMPs	in	the	template	DNA,	and	to	complete	

genome	duplication	[17].	Intriguingly,	we	found	that	the	increased	sensitivity	to	

HU	observed	in	yeast	cells	lacking	RNase	H	activities	(rnh1∆	rnh201∆)	is	almost	

totally	dependent	upon	the	presence	of	the	TLS	polymerase	η	(RAD30).	Pol	η	

belongs	to	the	Y-family	polymerases	and	has	a	major	role	in	the	bypass	of	several	

adducts	that	halt	replication	forks	progression.	It	is	a	very	versatile	polymerase,	

known	for	its	excellent	ability	in	bypassing	thymidine	adducts	and	8-oxo-

guanines	in	an	error-free	manner	[20–22].	In	humans,	defects	in	the	gene	
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encoding	Pol	η	(POLH)	lead	to	the	onset	of	the	xeroderma	pigmentosum	variant	

(XP-V)	genetic	syndrome	[23],	characterized	by	high	incidence	of		skin	cancer	

and	sunlight	sensitivity,	due	to	the	inability	to	deal	with	UV	lesions	sun-induced	

[24].	Besides	the	TLS	function,	the	human	ortholog	of	Pol	η	has	been	implicated	

in	other	processes	as	class	switch	recombination	[25,26]	and	common	fragile	sites	

(CFSs)	stability	[27–29].	Recently,	yeast	and	human	Pol	η	have	been	reported	able	

to	efficiently	insert	rNTPs	and	also	to	extend	RNA	primers	with	ribonucleotides,	

in	vitro	[30–32].	

In	this	work,	we	identify	and	characterize	this	unexpected	role	of	Pol	η.	In	

particular,	we	show	that	Pol	η	catalytic	activity	becomes	harmful	in	the	absence	

of	RNase	H	activities	and	under	low	dNTPs	conditions.	The	steric	gate	mutant	of	

Pol	η,	with	enhanced	ribonucleotides	incorporation	[33],	further	exacerbates	this	

phenomenon.	During	an	S	phase	with	low	levels	of	dNTPs,	Pol	η	activity	leads	to	

the	activation	of	the	DNA	damage	checkpoint	and	cell	cycle	arrest.	We	also	

demonstrate	that	the	detrimental	activity	of	Pol	η	is	not	dependent	upon	the	

presence	of	ribonucleotides	in	template	DNA,	and	that	RNase	H	activities	are	

essential	to	resolve	the	toxic	products	of	Pol	η.	We	propose	that	Pol	η	actively	

participates	to	DNA	replication	in	low	dNTPs	conditions.	This	function	is	

important	to	achieve	full	genome	duplication,	thanks	to	Pol	η	ability	to	

incorporate	rNMPs	or	extend	RNA	stretches,	generating	multiple	insertions	or	

longer	stretches	of	consecutive	ribonucleotides.	While	in	wild	type	cells,	this	is	a	

perfectly	acceptable	compromise;	this	activity	is	indeed	highly	toxic	for	cells	

lacking	RNases	H,	which	are	unable	to	restore	the	correct	DNA	composition	and	

structure.		
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RESULTS	

	

DNA	polymerase	η	is	responsible	for	HU-induced	cell	lethality	in	absence	

of	RNase	H	activities.		

	

Yeast	cells	lacking	both	RNase	H	activities	(rnh1∆rnh201∆)	exhibit	sensitivity	to	

several	genotoxic	and	replication	stress-inducing	agents,	such	as	MMS,	CPT,	and	

HU	[17,34,35].	In	particular,	following	HU	stress,	Post	Replication	Repair	(PRR)	

pathways	become	crucial	for	cell	survival,	and	TLS	polymerase	ζ	likely	helps	

replicative	polymerases	to	deal	with	ribonucleotides	persisting	in	genomic	DNA	

[17].	Unexpectedly,	we	found	that	simultaneous	deletion	of	all	the	yeast	TLS	

polymerases,	Pol	ζ,	Pol	η	and	Rev1	(rev3∆	rev7∆	rad30∆	rev1∆)	suppresses	almost	

completely	the	HU	sensitivity	phenotype	of	rnh1∆	rnh201∆	cells,	suggesting	that	

one	or	all	the	TLS	polymerases	exert	a	toxic	effect	in	RNase	H	lacking	cells	

treated	with	HU.	By	studying	different	deletion	combinations,	we	analyzed	the	

individual	contribution	of	each	TLS	polymerase	(Figure	1A),	and	we	found	that	

the	suppression	of	HU	sensitivity	is	almost	completely	dependent	upon	the	loss	

of	DNA	polymerase	η	(Rad30).	Moreover,	Pol	η	affects	rnh1∆	rnh201∆	cell	viability	

specifically	following	treatment	with	HU,	but	not	with	other	genotoxic	agents	

impacting	on	S	phase,	like	MMS	(Figure	1B).	These	observations	suggest	that	Pol	

η	is	toxic	when	dNTP	pools	are	lowered	and	genomic	rNMPs	cannot	be	removed.		 	
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Figure	1.	Pol	η	is	the	only	TLS	responsible	for	HU	sensitivity	of	cell	lacking	RNase	

H	activities.	

10-fold	serial	dilutions	of	the	indicated	strains	were	plated	on	(A)	YEPD	and	YEPD	+	25	

mM	and	(B)	on	YEPD,	YEPD	+	25	mM	HU	and	YEPD	+	0.01%	MMS.	Plates	are	incubated	

at	28°C	and	pictures	were	taken	after	3	days	of	incubation.	
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Under	low	HU	concentrations,	DNA	damage	checkpoint	activation	and	

mitotic	arrest	in	RNase	H	deficient	cells	is	dependent	upon	Pol	η.		

	

We	have	previously	shown	that	RNase	H	lacking	cells	exhibit	DNA	damage	

checkpoint	activation	and	cell	cycle	arrest	in	G2/M	phase	during	treatment	with	

low	doses	of	HU	[17].	Given	the	involvement	of	Pol	η	in	HU	sensitivity,	we	tested	

its	role	in	checkpoint	activation	under	the	same	conditions.	

The	phosphorylation	state	of	the	checkpoint	effector	kinase	Rad53	was	used	as	a	

readout	for	DNA	damage	checkpoint	(DDC)	activation	[36].	Cells	were	

synchronized	in	G1	with	α-factor,	released	in	25	mM	HU,	and	collected	at	the	

indicated	time	points	(Figure	2A	and	B).	In	such	low	doses	of	HU,	wild	type	cells	

slightly	activate	the	DDC	in	S	phase;	the	checkpoint	response	is	then	turned	off	

and	cells	proceed	with	cell	division.	rnh1∆	rnh201∆	cells,	however,	do	not	

dephosphorylate	Rad53	after	S	phase	and	this,	in	turn,	prevents	them	from	

completing	the	cell	cycle	and	entering	the	next	G1	phase;	these	cells	accumulate	

in	G2/M	with	2C	DNA	content,	consistently	with	their	reduced	viability.	

Intriguingly,	deletion	of	RAD30	rescues	almost	completely	all	the	phenotypes	of	

RNase	H	mutants.	Indeed,	rnh1∆	rnh201∆	rad30∆	cells	exhibit	an	almost	wild	type	

kinetics	of	cell	cycle	progression	and	most	cells	dephosphorylate	Rad53	(Figure	

2A	and	2B).	Noteworthy,	all	these	results	are	specific	to	HU	treatment,	as	in	

untreated	conditions	the	strains	did	not	show	any	defects	and	behave	similarly	

(Figure	S1).	In	conclusion,	when	cells	lacking	RNase	H	activities	are	subjected	to	

dNTPs	pool	depletion,	Pol	η	is	responsible	for	a	DNA	damage	checkpoint	

activation	that	ultimately	leads	to	the	block	of	cell	division	and	proliferation.		
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Figure	2.	In	HU,	RNase	H	deficient	cells	exhibit	DNA	damage	checkpoint	

activation	and	G2/M	arrest	that	are	dependent	upon	Pol	η.	

(A-B)	Exponentially	growing	cells	were	synchronized	in	G1	phase	by	α-factor	addition	(4	

µg/mL)	and	released	in	25	mM	HU;	α-factor	(10	μg/mL)	was	re-added	to	the	medium	90	

after	the	release	to	block	cells	in	the	next	G1	phase.	(A)	Cell	cycle	progression	was	

followed	by	cytofluorimetry	(FACS)	and	(B)	Rad53	phosphorylation	state	was	monitored	

anti-Rad53	antibodies	in	western	blots	of	cell	extracts	obtained	at	the	indicated	time	

points.	
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Pol	η	exerts	its	toxicity	through	its	ribonucleotide	incorporation	activity.	

	

To	deepen	our	comprehension	on	the	negative	impact	of	Pol	η,	we	evaluated	the	

effect	of	overexpressing	a	catalytic-dead	allele	(rad30-D155A-E156A)	or	a	mutant	

with	enhanced	ribonucleotide	incorporation	activity	(rad30-F35A)	[33,37].	Due	to	

the	catalytic	inefficiency	of	the	latter	[33],	we	opted	for	the	overexpression	rather	

than	using	endogenous	expression,	in	order	to	have	comparable	results	between	

the	mutants.	Pol	η	alleles	were	then	cloned	under	GAL1/10	promoter	and	

overexpression	was	induced	by	addition	of	galactose;	cell	viability	in	25	mM	HU	

was	calculated	and	is	reported	in	Figure	3A.	Overexpression	of	either	wild	type	

or	mutant	forms	of	Pol	η	was	achieved	at	similar	levels	(Figure	3B)	and	did	not	

affect	wild	type	cell	viability	both	in	untreated	or	HU-treated	conditions	(Figure	

3A,	grey	bars	and	Figure	S2).	In	a	RNase	H	deleted	background	(Figure	3A,	

black	bars),	overexpression	of	wild	type	Pol	η	exacerbated	the	HU	sensitivity,	

linking	the	extent	of	its	negative	impact	to	the	protein	abundance	in	cells.	On	the	

other	hand,	cells	carrying	the	catalytic-dead	mutant	(rad30-D155A-E156A)	were	

almost	completely	viable,	implying	that	Pol	η	catalytic	activity	is	responsible	for	

the	observed	phenotypes.	This	was	confirmed	by	using	the	steric	gate	mutant	

rad30-F35A,	which	exhibits	enhanced	ribonucleotide	incorporation	activity	

[30,33].	In	absence	of	RNase	H,	overexpression	of	the	rad30-F35A	allele	caused	a	

drastic	reduction	of	cell	viability,	suggesting	that	the	extra	incorporation	of	

ribonucleotides	is	the	cause	of	cell	lethality	(Figure	3A,	black	bars).	In	

summary,	these	results	confirm	that	the	observed	Pol	η	toxic	activity	depends	on	

its	nucleotide	polymerization	activity	and	it	is	increased	when	more	

ribonucleotides	are	selected.	
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Figure	3.	Pol	η	toxicity	depends	on	its	catalytic	and	ribonucleotide-incorporation	

activity.		

(A)	Cells	were	grown	in	SC-URA	Raffinose	2%	and	arrested	with	α-factor.	Cultures	were	

then	appropriately	diluted	and	plated	on	SC–URA	supplemented	with	Galactose	2%	and	

Raffinose	2%,	either	with	or	without	25	mM	HU.	Colonies	were	counted	after	4	days	at	

28°C.	Histogram	bars	represent	the	ratio	between	colonies	counted	on	plates	with	and	

without	hydroxyurea.	Error	bars	represent	the	standard	error	of	the	mean	(SEM),	

calculated	on	three	independent	experiments.	(B)	Overexpression	levels	of	wild	type	and	

mutants	Rad30	were	checked	by	western	blotting	with	anti-HIS	antibodies	4	hours	after	

Galactose	induction.	
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Pol	η	toxicity	is	restricted	to	HU-stressed	DNA	replication	

	

Hydroxyurea	is	known	to	induce	replication	forks	stalling	and	consequently	

ssDNA	gaps	that	are	filled	in	late	S	phase,	mainly	by	TLS	polymerases	[38–40].	

On	the	other	hand,	Pol	η	was	found	in	the	proximity	of	replication	origins	during	

HU	stress	[41,42]	and,	in	human	cells,	Pol	η	actively	participates	to	CFSs	

replication,	possibly	by	substituting	Pol	δ[28,29]	and	forms	foci	upon	

hydroxyurea	exposure	[43].	Thus	we	asked	whether	the	HU-dependent	Pol	η	

toxicity	occurs	during	either	DNA	replication	under	low	dNTPs	conditions	or	

post-replication,	in	late	S	phase/G2.		

We	choose	to	pulse	cells	with	a	high	dose	of	HU	after	the	α-factor	release,	and	

then	to	remove	the	stress,	in	order	to	let	cells	complete	replication	without	HU.	

With	this	experimental	set	up,	cells	still	showed	similar	outcomes	as	with	25	mM	

HU,	even	with	less	extent	(Figure	S3).	Regardless	of	the	absence	of	HU	in	the	

medium,	Pol	η	is	still	responsible	for	the	activation	of	the	DDC	and	for	the	G2/M	

cell	cycle	arrest	in	rnh1∆	rnh201∆	cells	(Figure	S3).	

To	discriminate	between	the	two	hypotheses,	we	used	rnh1∆	rnh201∆	rad30∆	

synchronized	cell	populations	where	we	conditionally	overexpressed	RAD30	

either	before	or	after	a	short	200	mM	HU	treatment.	In	the	first	case	(early	

induction),	cells	would	be	subjected	to	nucleotide	depletion	in	the	presence	of	

Pol	η,	while	in	the	latter	(late	induction),	cells	would	experience	the	HU	stress	in	

the	absence	of	Pol	η,	which	would	be	expressed	after	HU	removal.		RAD30	

overexpression	was	achieved	by	using	the	galactose	inducible	promoter	and	was	

verified	by	western	blotting,	while	cell	cycle	progression	and	DDC	activation	

were	monitored	as	previously	described	(Figure	4A	and	4B).	Intriguingly,	with	

this	experimental	setup,	we	observed	strong	accumulation	of	G2/M	arrested	cells	

and	Rad53	phosphorylation	only	if	Pol	η	was	present	concomitantly	with	

hydroxyurea	during	DNA	replication	(Figure	4A	and	4B,	early	induction	

lanes).	Whereas,	when	Pol	η	was	overexpressed	after	HU	removal,	allowing	it	to	

fill	HU-induced	gaps	in	late	S/	G2,	most	cells	did	not	exhibit	cell	cycle	problems	

or	DDC	activation	(Figure	4A	and	4B,	late	induction	lanes).	These	data	
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indicate	that	Pol	η	exerts	its	toxic	effect	when	replication	forks	are	slowed	down	

and	challenged	by	low	dNTPs	conditions.		

Since	Pol	η	toxic	activity	becomes	relevant	in	the	absence	of	RNase	H,	it	is	

important	to	assess	how	the	two	are	related	to	each	other.	Lack	of	RNase	H	leads	

to	accumulation	of	unprocessed	ribonucleotides	in	the	genome,	which	presence	

could	be	required	to	trigger	Pol	η	activity	and	consequently	additional	rNTP	

insertions.	On	the	other	hand,	Pol	η	may	be	recruited	by	the	stalling	of	

replication	forks	induced	by	the	low	dNTP	levels	and	then	it	incorporates	rNTPs.	

In	this	scenario,	the	inability	to	process	ribonucleotides	becomes	critical	due	to	

their	Pol	η-dependent	improper	placing,	starting	from	the	first	replication	cycle,	

when	the	template	DNA	is	free	from	ribonucleotides.	To	discriminate	between	

these	two	hypotheses,	we	generated	a	heterologous	RNase	H2	inducible	system.	

The	RNase	H2	activity	was	provided	by	E.	coli	RnhB	that	is	able	to	complement	

the	absence	of	RNase	H1	and	H2	in	yeast	cells,	suppressing	the	HU	sensitivity	

(Figure	S4).	rnhB	gene	was	cloned	under	the	TetOFF	promoter,	so	its	

transcription	can	be	switched	off	by	addition	of	doxycycline	(DOXY).	rnhB	

coding	sequence	was	also	fused	to	the	AID-degron,	so	that	the	chimeric	protein	is	

degraded	following	addition	of	auxin	(IAA)	[44,45].	rnh1∆	rnh201∆	cells	carrying	

the	conditional	rnhB	construct	were	grown	in	the	presence	of	the	RnhB	(ON);	

this	allows	the	correct	removal	of	ribonucleotides	from	the	genome.	RnhB	was	

then	turned	off	(OFF)	during	α-factor	synchronization,	prior	to	the	release	in	25	

mM	HU,	and	cells	were	collected	at	the	indicated	time	points.	Cell	cycle	

progression	was	monitored	by	FACS	analysis	and	DDC	activation	was	evaluated	

by	western	blotting	(Figure	5A	and	5B).	In	the	presence	of	RnhB	activity,	rnh1∆	

rnh201∆	cells	progressed	throughout	the	cell	cycle	in	presence	of	hydroxyurea	as	

the	wild	type	strain,	reaching	the	next	G1	phase	without	any	arrest.	This	result	

confirms	that	the	RnhB	is	properly	working.	On	the	contrary,	when	RnhB	was	

turned	off	prior	to	the	HU	release,	rnh1∆	rnh201∆	cells	experienced	the	first	DNA	

replication	in	the	presence	of	hydroxyurea	and	in	the	absence	of	RNase	H	

activity.	In	these	conditions,	they	activated	Rad53	and	arrested	in	G2/M,	similarly	

to	rnh1∆	rnh201∆	cells	carrying	the	empty	plasmid.	This	observation	indicates	

that	these	phenotypes	are	directly	due	replicating	DNA	in	the	presence	of	HU	
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and	are	the	consequence	of	the	inability	to	process	newly	incorporated	genomic	

rNMPs	(Figure	5A	and	5B).	Moreover,	deletion	of	RAD30	suppressed	the	

phenotypes	showed	by	rnh1∆	rnh201∆	cells	released	in	HU	in	the	absence	of	RnhB	

(OFF),	confirming	that	loss	of	cell	viability	is	independent	of	the	presence	of	

ribonucleotide	in	the	DNA	template,	but	dependent	on	Pol	η.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4	(next	page).	Pol	η	exerts	its	toxic	activity	only	during	HU-stressed	DNA	

replication.	

Cells	were	grown	in	SC-URA	Raffinose	2%,	arrested	with	α-factor	(4	µg/mL)	and	released	

from	the	G1	block	by	transferring	them	in	SC-URA	Raffinose	2%	with	200	mM	HU	for	2	

hours.	HU	was	then	washed	out	and	cells	were	transferred	to	fresh	medium	to	allow	

completion	of	the	cell	cycle.	α-factor	(10	μg/mL)	was	re-added	90	min	after	HU	wash	out	

to	block	cells	in	the	next	G1	phase.	Media	were	supplemented	with	Galactose	2%	when	

indicated	(red).	(A)	FACS	profiles,	(B)	Rad53	and	Rad30-6xHIS	western	blots	using	

appropriate	antibodies	are	shown	at	the	indicated	time	points.	
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Figure	5.	Pol	η	generates	toxic	intermediates	during	the	first	round	of	replication	

in	HU.	

Exponentially	growing	cells	were	synchronized	in	SC-TRP	Glucose	2%	by	α-factor	

addition	(4	µg/mL)	and	released	in	YEPD	+	25	mM	HU.	α-factor	(10	μg/mL)	was	re-

added	90	min	after	the	release.	RnhB	was	expressed	(rnhB	ON,	in	green)	and	was	

depleted	as	needed	by	addition	of	10	µg/mL	Doxycycline	(DOXY)	and	0.5	mM	Auxin	

(IAA)	(rnhB	OFF,	in	gray).	(A)	FACS	profiles,	(B)	Rad53	activation,	RnhB-AID	and	Pgk1	

western	blots	are	shown	at	the	indicated	time	points.	
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DISCUSSION	

	

TLS	DNA	polymerase	η	is	well	known	for	its	roles	in	accurate	damage	bypass,	

thus	contributing	to	fully	genome	duplication	[20,21].	Here	we	describe	a	novel	

function	for	Pol	η,	during	DNA	replication	under	low	dNTPs	condition.	Our	

results	indicate	that	Pol	η	may	be	involved	in	chromosomal	replication	when	

normal	replicative	polymerases	are	challenged	by	deoxyribonucleotide	depletion.	

We	propose	that	in	these	conditions	Pol	η	allows	completion	of	genome	

duplication	by	promoting	replication	fork	progression	through	the	incorporation	

of	ribonucleotides,	whose	concentrations	are	much	higher	respect	to	dNTPs,	

especially	in	hydroxyurea	[46].	Though	this	function	would	be	important	to	

complete	DNA	replication	and	tolerate	temporary	decreases	in	dNTP	pools,	it	

would	also	become	problematic	for	cell	viability	if	RNases	H	activities	are	absent	

and	chromosomally	embedded	ribonucleotides	are	excessively	accumulated	

(Figure	6).	

In	the	present	work	we	show	that	TLS	DNA	polymerase	η	is	responsible	for	most	

of	the	cell	lethality	induced	by	hydroxyurea	treatment	in	cells	lacking	RNases	H	

(rnh1∆rnh201∆).	Indeed,	loss	of	Pol	η	(Rad30)	almost	completely	abrogates	this	

sensitivity.	Hydroxyurea	inhibits	replicative	DNA	synthesis	depleting	dNTP	pools	

and	augments	the	relative	abundance	of	rNTPs,	an	effect	that	generates	genome	

instability	in	cells	defective	for	ribonucleotides	removal.	Indeed,	exposure	of	

rnh1∆rnh201∆	cells	to	even	low	levels	of	HU	leads	to	DNA	damage	checkpoint	

activation	and	G2/M	arrest.	These	phenotypes	are	dependent	upon	the	catalytic	

activity	of	Pol	η,	and	are	exacerbated	in	cells	expressing	a	form	of	Pol	η	where	the	

steric	gate	is	mutated,	allowing	greater	rNTP	incorporation.	Such	toxic	effect	of	

Pol	η	is	generated	when	cells	lacking	RNase	H	replicate	in	the	presence	of	HU	

and	it	does	not	depend	upon	the	presence	of	residual	rNMPs	in	template	DNA	

from	the	previous	cell	cycle.	These	data	suggest	that	Pol	η	actively	participates	in	

DNA	replication	under	low	dNTPs	conditions,	but	its	activity	turns	out	to	be	

harmful	if	cells	cannot	process	RNA:DNA	hybrids.	According	to	the	literature,	

during	HU-treated	S	phase,	Pol	η	is	bound	to	several	DNA	loci	that	correspond	to	

actively	replicating	regions	[41,42]	and	moreover,	it	is	able	to	incorporate	
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ribonucleotides	in	vitro	[30,33].	We	thus	propose	that	in	low	dNTPs	situations,	

Pol	η	is	contributing	to	genome	duplication	by	introducing	ribonucleotides,	

which	are	extremely	abundant	and	available	[46].	Pol	η	results	hence	suitable	for	

this	function	thanks	to	its	ability	to	extend	DNA	or	RNA	primers	with	

ribonucleotides	[30],	unlike	replicative	DNA	polymerases,	which	exhibit	lower	

incorporation	capability	and	are	blocked	by	dNTPs	shortage	[2,3].	As	a	

consequence,	RNA:DNA	hybrids	are	formed.	While	normally	these	would	be	

corrected	by	RNase	H	activities,	they	become	lethal	structures	in	absence	of	

RNase	H	[2,47,48].	Even	if	we	did	not	directly	assess	the	presence	of	Pol	η-

dependent	ribonucleotides,	genetic	data	suggest	that	the	observed	phenotypes	

are	strictly	related	to	unresolved	RNA	stretches.	In	fact,	this	Pol	η	function	is	only	

detectable	in	the	simultaneous	absence	of	the	two	RNases	H	(H1	and	H2),	which	

are	both	involved	in	cleaving	embedded	RNA	stretches,	while	the	RNase	H2	fixes	

also	single	rNMPs	[4].	Biochemical	data	support	this	model,	and	revealed	that	Pol	

η	is	indeed	able	to	incorporate	consecutive	ribonucleotides	[30].	Recently	Pol	η	

has	been	also	shown	to	be	able	to	extend	RNA	primers	with	dNTPs	in	vitro	[30],	

therefore	we	cannot	exclude	this	as	another	possible	mechanism	by	which	Pol	η	

contributes	in	fixing	RNA:DNA	hybrids	in	the	genome.	In	both	cases,	its	

synthesis	reaction	would	result	in	the	introduction	of	multiple	ribonucleotides	in	

DNA.	Importantly,	unprocessed	ribonucleotides	present	in	template	DNA	in	

rnh1∆rnh201∆	cells	do	not	seem	to	be	involved.	In	fact,	exploiting	a	conditional	

RNase	H	activity,	we	proved	that	Pol	η	exerts	its	toxic	effect	during	HU-stressed	

DNA	replication	independently	from	embedded	rNMPs	in	the	template	strand.	

These	ribonucleotides	actually	halt	forks	progression,	but	are	efficiently	bypassed	

by	the	TLS	polymerase	ζ	or	the	template	switch	(TS)	mechanism	[17].	

Remarkably,	cells	die	because	they	cannot	divide	and	the	DDC	seems	to	be	

switched	off	after	S	phase	and	re-activated	when	cells	have	2C	DNA	content.	

Taken	together,	these	observations	may	correlate	RNA:DNA	hybrids	with	

chromosome	segregation.	Their	presence	could	compromise	chromosomes	

structure	[11–14]	and	for	this	reason	they	are	detected	in	G2/M	and	DDC	is	turned	

on.	They	could	be	placed	in	particular	regions,	as	centromeres,	important	for	

proper	cell	division.	Another	possibility	is	that	they	trigger	aberrant	repair	



	 180	

systems	impairing	chromosomes	structure,	as	the	one	dependent	on	Top1,	which	

leads	to	deletions	and	breaks	[9,10].	Supporting	these	hypotheses,	the	deletion	of	

the	Spindle	Assembly	Checkpoint	factor	Mad2	partially	rescues	the	HU	

sensitivity	of	cells	lacking	RNase	H	(Figure	S5A).	As	expected,	

rnh1∆rnh201∆mad2∆	cells	success	in	cell	division,	being	unable	to	activate	

Spindle	Assembly	Checkpoint	and	stop	aberrant	division.	On	the	contrary,	even	

achieving	the	G1	phase,	they	show	persistent	DNA	damage	checkpoint	activation	

(Figure	S5B).	

This	scenario	could	be	conserved	in	higher	eukaryotes	as	well;	this	mechanism	

could	resemble	the	one	observed	at	CFSs	replication.	CFSs	are	peculiar	sequences	

that	assume	non-B	DNA	structures	that	block	replication	forks	[49,50].	Pol	η	is	

hence	able	to	exchange	with	Pol	δ	and	carry	on	DNA	synthesis,	avoiding	the	

formation	of	breaks	or	under-replicated	DNA	entering	in	mitosis	[27–29].	As	in	

hydroxyurea,	Pol	η	seems	able	to	act	when	replication	forks	are	stalled.	Moreover,	

human	Pol	η	showed	in	vitro	ability	of	ribonucleotides	incorporation	and	seems	

to	be	required	for	S	phase	progression	in	hydroxyurea	[31,43].	In	conclusion,	this	

work	presents	new	evidence	on	how	TLS	polymerase	η	contributes	preserving	

genome	stability,	helping	cells	in	completing	genome	duplication,	albeit	with	

rNTPs,	when	forks	are	stalled	by	the	reduction	of	dNTPs.		 	
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Figure	6.	Proposed	model	of	Pol	η	function	during	hydroxyurea-mediated	fork	

stalling.		

Replication	forks	are	stalled	by	hydroxyurea	that	causes	dNTPs	pool	depletion.	Pol	η	is	

then	recruited	to	help	forks	movement	by	introducing	ribonucleotides	in	the	newly	

synthesized	strand.	As	a	consequence,	RNA:DNA	hybrids	are	formed,	which	are	later	

processed	by	RNase	H	activities.	In	absence	of	RNase	H,	RNA:DNA	hybrids	are	not	

removed	from	the	genome	and	lead	to	DNA	damage	checkpoint	activation,	cell	cycle	

arrest	and	ultimately	cell	death.	
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MATERIALS	AND	METHODS	

	

Yeast	strains,	plasmids,	media	and	growth	conditions	

All	the	strains	used	in	this	work	are	listed	in	Table	S1	and	are	derivative	of	W303	

RAD5+	background.	Strains	are	generated	by	standard	genetic	procedures	for	cell	

transformation	and	tetrad	analysis.	Deletions	were	made	by	the	one-step	PCR	

system	[51].		

For	the	indicated	experiments,	cell	cultures	were	grown	at	28°C	in	YEP	medium	

(1%	Yeast	extract,	2%	peptone)	containing	2%	glucose	(YEPD),	2%	raffinose	

(YEPR),	or	2%	galactose	and	2%	raffinose	(YEPRG).	For	strains	carrying	plasmids,	

cells	were	grown	in	Synthetic-Complete	medium	added	with	appropriate	sugar(s)	

and	nutrients	to	maintain	the	selection.	The	addition	and	dose	of	

drugs/chemicals	are	indicated	on	the	figures	and	in	their	captions.		

Hydroxyurea	is	purchased	from	US	Biological	(Salem,	Massachusetts	USA),	Auxin	

(IAA),	Doxyclycline	(DOXY),	and	MMS	are	purchased	from	Sigma	(Saint	Louis,	

Missouri	USA).	

	

The	pJH2488	(GAL1-RAD30-6xHIS)	and	pJH2489	(GAL1-rad30-D155A-E156A-

6xHIS)	plasmids	have	been	kindly	provided	by	T.A.	Kunkel	and	are	described	in	

[58].	pFL166.4	(GAL1-rad30-F35A-6xHIS)	was	obtained	by	site-directed	

mutagenesis	(QuikChange	Site-Directed	Mutagenesis	Kit)	on	pJH2488	using	

oligos	3’-ACA	TAG	ATA	TGA	ATG	CCT	TTG	CTG	CAC	AGG	TTG	AGC	AGA	TGC	

G-5’	and	3’-CGC	ATC	TGC	TCA	ACC	TGT	GCA	GCA	AAG	GCA	TTC	ATA	TCT	

ATG	T-5’,	and	then	verified	by	DNA	sequencing.	

The	pFL160.1	plasmid	carrying	the	rnhB-3xminiAID-HA	under	TetOFF	promoter	

was	prepared	as	follows.	The	rnhB	gene	was	cloned	from	MG1655	E.	coli	strain	

using	primers	3’-	TTA	ACA	TCG	ATA	GCG	GCC	GCA	TGA	TCG	AAT	TTG	TTT	

ATC	CGC	ACA	CG-5’	and	3’-	GAC	TTT	TGA	CAA	GAA	ACC	ATG	GAC	GCA	AGT	

CCC	AGT	GCG	C-5’.	The	3X-miniAID	sequence	was	amplified	from	the	plasmid	

BYP7432	[45]	using	primers	3’-GCG	CAC	TGG	GAC	TTG	CGT	CCA	TGG	TTT	CTT	

GTC	AAA	AGT	C-5’	and	3’-TGC	AGG	GCC	CTA	GCG	GCC	GCT	CAC	GCA	TAG	

TCA	GGA	ACA	TCG	TAT	GGG	TAT	TTA	TAC	ATT	CTC	AAG	TCT	A-5’.	The	two	
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amplicons	were	purified	and	then	digested	simultaneously	with	NotI	and	PshAI	

restriction	enzymes.	Ligation	reaction	was	performed	with	NotI-digested	pCM185	

[44].	The	sequence	of	the	insert	and	junction	regions	was	then	verified	by	DNA	

sequencing.	

	

Drop	Test	assays	

Log-phase	yeast	cultures	were	diluted	at	2	x	106	cells/mL.	A	series	of	10-fold	

dilutions	were	prepared	and	10	L	drops	were	spotted	on	YEP	plates	or	selective	

plates,	supplemented	with	appropriate	sugar	and	the	indicated	drugs.	Pictures	

were	taken	after	incubation	at	28°C	for	2	to	3	days.	

	

Sensitivity	Assay	

Exponentially	growing	cells	were	synchronized	in	the	G1	phase	by	adding	α-factor	

(4	μg	/mL)	(Primm,	Milano,	Italy).	After	appropriate	dilutions,	100	CFU	of	each	

strain	were	plated	on	YEPRG	±	25	mM	HU.	After	4	days	of	incubation	the	number	

of	grown	colonies	was	counted	and	normalized.	The	standard	error	of	the	mean	

(SEM)	was	calculated	on	three	independent	experiments.	

	

SDS-PAGE	and	western	blot	

TCA	protein	extracts	were	prepared	and	an	equal	amount	for	each	sample	was	

separated	by	SDS-PAGE	[52].	Western	blotting	were	performed	with	anti-Rad53	

(C.	Santocanale),	anti-HIS-tag	(70796-3	Novagen)	or	anti-miniAID-tag	(MBL,	

[45])	anti-Pgk1	(22c5d8	Abcam,	Cambridge	UK)	using	standard	techniques.	

	

FACS	analysis	

Cells	were	fixed	in	70%	ethanol	and	treated	with	RNase	A	and	proteinase	K.	DNA	

was	stained	with	Sytox	Green	and	cell	cycle	distribution	was	estimated	by	

cytofluorimetric	analysis	with	a	FACScan	machine.	Data	were	plotted	using	

FlowJo®	Software.		 	
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Table	S1	

Strain	 Genotype	 Ref.	
SY2080	 W303	MATa	ade2-1	trp1-1	leu2-3,112	his3-11,15	ura3-1	can1-100	

RAD5		
M.	Foiani	

YFL1213	 (SY2080)	MATa	rnh1::HIS3	rnh201::KANMX6		 [17]	
YFL1773	 (SY2080)	MATa	rnh1::HIS3	rnh201::KANMX6	rad30::TRP1		 This	Study	

YSS21	 (SY2080)	MATa	rad30::KANMX6		 [53]	
YMG1082	 (SY2080)	rad30::KanMX6	rev1::KanMX6	rev3::TRP1	

rev7::HIS3	
[53]	

YFL1271	 (SY2080)	rad30::KanMX6	rev1::KanMX6	rev3::TRP1	
rev7::HIS3	rnh1::HIS3	rnh201::KanMX6	

[17]	

YSS17	 (SY2080)	rev1::KanMX6	 This	Study	
YFL2485	 	(SY2080)	rev1::HPH	rnh1::HIS3	rnh201::KanMX6	 This	Study	
YMG1096	 (SY2080)	rev3::TRP1	rev7::HIS3	 This	Study	
YFL1389	 (SY2080)	rev3::TRP1	rev7::HIS3	rnh1::HIS3	rnh201::KanMX6	 This	Study	
YFL1419	 (SY2080)	+	pRS426	 This	Study	
YFL1420	 (SY2080)	+	pJH2488	[GAL1-RAD30-6XHIS-URA]	 This	Study	
YFL1421	 (SY2080)	+	pJH2489	[GAL1-rad30-D155A-E156A-6XHIS-

URA]	
This	Study	

YFL2567	 (SY2080)	+	pFL166.4	[GAL1-rad30-F355A-6XHIS-URA]	 This	Study	
YFL1422	 (SY2080)	MATa	rnh1::HIS3	rnh201::KANMX6	+	pRS426	 This	Study	
YFL1423	 (SY2080)	MATa	rnh1::HIS3	rnh201::KANMX6	+	pJH2488	

[GAL1-rad30-6XHIS-URA]	
This	Study	

YFL1424	 (SY2080)	MATa	rnh1::HIS3	rnh201::KANMX6	+	pJH2489	
[GAL1-rad30-D155A-E156A-6XHIS-URA]	

This	Study	

YFL2569	 (SY2080)	MATa	rnh1::HIS3	rnh201::KANMX6	+	pFL166.4	
[GAL1-rad30-F355A-6XHIS-URA]	

This	Study	

YFL2591	 (SY2080)	ura3::ADH1-AtTIR1-9MYC:URA3	+	pCM185	 This	Study	
YFL2596	 (SY2080)	ura3::ADH1-AtTIR1-9MYC:URA3	MATa	

rnh1::HIS3	rnh201::KANMX6	+	pCM185	
This	Study	

YFL2598	 (SY2080)	ura3::ADH1-AtTIR1-9MYC:URA3	MATa	
rnh1::HIS3	rnh201::KANMX6	+	pFL160.1	

This	Study	

YFL2604	 (SY2080)	ura3::ADH1-AtTIR1-9MYC:URA3	MATa	
rnh1::HIS3	rnh201::KANMX6	rad30::TRP1	+	pFL160.1	

This	Study	

YFL2458	 (SY2080)	ura3::ADH1-AtTIR1-9MYC:URA3	MATa	
HPH::MCM4-3XminiAID	+	pCM185	

This	Study	
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SUPPLEMENTARY	FIGURES	

	
Figure	S1.	Cell	cycle	progression	and	DDC	activation	are	not	compromised	in	

untreated	conditions	in	strains	lacking	RNase	H	and	Pol	η.	

(A-B)	Exponentially	growing	cells	were	synchronized	in	G1	phase	by	α-factor	addition	(4	

µg/mL)	and	released	in	YEPD	fresh	medium.	α-factor	(10	μg/mL)	was	re-added	to	the	

medium	90	min	after	the	release	to	block	cells	in	the	next	G1	phase.	(A)	Cell	cycle	

progression	was	followed	by	FACS	profiles	and	(B)	Rad53	phosphorylation	state	was	

monitored	by	western	blot	analysis	using	anti-Rad53	antibodies.	

	

Figure S1

A

B
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Figure	S2.	Wild	type	cell	viability	is	not	affected	by	the	overexpression	of	Rad30,	

rad30-D155A-E156A	and	rad30-F35A.	

10-fold	serial	dilutions	of	the	indicated	strains	were	plated	on	SC-URA	and	SC-URA	+	25	

mM	HU,	supplemented	with	Raffinose	2%	and	Glucose	2%.	Pictures	were	taken	after	3	

days	of	incubation	at	28°C.	

	

	 	

Figure S2
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Figure	S3.	After	acute	HU	exposure,	RNase	H	deficient	cells	activate	the	DCC	and	

arrest	in	G2/M	dependently	upon	Pol	η.	

(A-B)	Exponentially	growing	cells	were	synchronized	in	G1	phase	by	α-factor	addition	(4	

µg/mL)	and	released	from	the	G1	arrest	in	200	mM	HU	for	2	hours.	HU	was	then	washed	

out	and	cells	were	transferred	to	fresh	medium	to	allow	completion	of	the	cell	cycle.	α-

factor	(10	μg/mL)	was	then	re-added	40	min	after	the	HU	wash	out	to	block	cells	in	the	

next	G1	phase.	(A)	FACS	profiles	and	(B)	Rad53	phosphorylation	state	are	shown	at	the	

indicated	time	points.		
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Figure	S4.	Expression	of	a	conditional	form	of	RnhB	complements	the	HU	

sensitivity	of	cells	lacking	RNases	H.	

10-fold	serial	dilutions	of	the	indicated	strains	were	plated	on	SC-TRP	and	SC-TRP	+	25	

mM	HU,	and	incubated	at	28°C.	RnhB-AID	is	constitutively	expressed	from	the	CYC1	

promoter.	Pictures	were	taken	after	3	days	of	incubation.	
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Figure	S5.	In	absence	of	RNase	H	enzymes,	Spindle	Assembly	Checkpoint	partially	

contributes	to	the	HU	sensitivity	and	cell	cycle	arrest.	

(A)	 10-fold	serial	dilutions	of	the	indicated	strains	were	plated	on	YEPD	and	YEPD	+	50	

mM	or	100	mM	HU.	(B)	α-factor	synchronized	cells	were	released	in	25	mM	HU,	after	90	

min	 α-factor	 was	 re-added	 to	 block	 cells	 in	 the	 next	 G1	 phase.	 (B)	 FACS	 profiles	 and	

Rad53	phosphorylation	state	are	shown	at	the	indicated	time	points.	
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