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Abstract 

 

The c-Myc oncoprotein (or Myc) is a transcription factor of the basic-Helix-Loop-Helix 

Leucine-zipper (bHLH-LZ) family, whose transcriptional activity depends on dimerization 

with the bHLH-LZ partner Max and DNA binding, mediated by the basic regions of both 

proteins. Myc/Max dimers bind preferentially to the hexanucleotide motif CACGTG 

(known as E-box) and variants thereof. The ability of Myc to bind DNA in vivo, however, 

is not stringently regulated by the presence of the E-box, since many genomic sites 

targeted by Myc do not contain this motif. Hence, we still need to fully comprehend how 

Myc recognizes its genomic targets and to what extent sequence-specific DNA binding 

contributes to this process. Based on the crystal structure of the DNA-bound Myc/Max 

dimer, we generated a Myc mutant in which two basic region residues engaged in 

sequence-specific contacts (H359 and E363) were mutated to Alanine (Myc
HEA

), and 

compared this with a mutant in which three Arginine residues involved in DNA backbone 

interactions were mutated to Alanine (Myc
RA

). While both mutants showed impaired E-

box recognition in vitro, their over-expression in murine fibroblasts revealed very different 

genome-interaction profiles, Myc
RA

 showing no detectable DNA binding, and Myc
HEA

 

retaining about half of the binding sites seen with Myc
wt

.  

The analysis of the binding intensity of Myc
wt

 and Myc
HEA

 at their binding sites revealed 

that, as expected, Myc
wt

 bound more strongly the sites containing the E-box, while Myc
HEA

 

bound the sites with an E-box as well as the sites without it, confirming that the mutant lost 

the sequence-specific recognition ability. The interactions retained by the Myc
HEA 

were 

dramatically reduced with the protein expressed from the endogenous c-myc locus, though 

genome engineering. Thus, unlike Myc
RA

, the Myc
HEA

 mutant retained non-specific 

interactions with genomic DNA (detectable at elevated protein levels) but failed to engage 

more stably through sequence-specific DNA contacts. In spite of this residual DNA-
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binding activity, Myc
HEA

 was profoundly impaired in its biological function, 

undistinguishable from Myc
RA

: in particular, neither mutant could substitute for wild-type 

Myc in supporting cell proliferation in murine fibroblasts, whether at normal or supra-

physiological levels. While the assessment of transcriptional activities is still ongoing, we 

conclude that E-box recognition is essential for Myc’s biological function.  
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1. Introduction 

1. Introduction 

 Myc protein 1.1

 Myc discovery  1.1.1

Myc proteins, encoded by the myc proto-oncogenes family, are a group of transcription 

factors involved in multiple cellular processes, very well conserved across species and 

often deregulated in tumors. Overexpression of Myc has been estimated to occur in up to 

70% of human tumors
1
.  

Myc deregulation occurs mainly through three events: (1) gene translocation close to 

transcriptionally active loci
2,3

, (2) gene amplification
4,5

 or (3) mutations in one of the 

signaling pathways that lead to increased transcription of the myc gene
6
.  

The first hint of myc transforming potential was described in 1911, when Peyton Rous used 

cell-filtrates from chicken sarcoma to infect susceptible animals
7
. The factor responsible 

for the infection was isolated only 50 years later: the virus strain MC29, which was able to 

induce cellular transformation in the hematopoietic compartment, leading either to 

myelocytomatosis or myelocytomas
8
. 

In the following years the MC29 virus was demonstrated to transform many different cell 

types
9–11

 and when the genetic element responsible for those disease features was 

identified, it was named v-myc (viral myelocytomatosis)
12,13

. In addition, homologous 

sequences were found in uninfected vertebrate cells
14,15

, confirming the hypothesis of a 

cellular origin for the viral oncogene
16

. Finally, in 1982 the c-myc gene was isolated and 

characterized in chicken cells
17

 and one year later the human gene sequence was 

identified
18

. 
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 Myc protein family 1.1.2

In mammals, the Myc protein family includes three genes: c-myc, N-myc and L-myc. The 

functions of all the family members are similar, but their expression pattern and oncogenic 

potential are notably different. Tissue-specific analysis of new born mice reveals c-myc 

expression in all the tissues analyzed, while N-myc expression is restricted to brain, kidney, 

intestine and lungs and L-myc is present only in brain, kidney and lungs
19

. Moreover, while 

c-myc is expressed in almost all dividing cells, both N-myc and L-myc expression are 

transient and limited mainly to embryo development
19

. In the adult mice N-myc is weakly 

expressed in the heart
19

, lungs
19

, brain
19,20

, some lymphoid organs
19,21

 and B-cell 

precursor
22

, while L-myc expression is restricted to brain
19,20

, lungs
19

 and ureter
23,24

. In 

addition to the tissue specificity, N-myc and L-myc do not show a homogeneous expression 

pattern within the same tissue and can be associated to distinct differentiation potential. As 

an example, it has been reported that during brain development N-myc expression is 

associated with glial commitment, while cells expressing L-myc undergo neuronal 

differentiation
20,24

. Similarly, in the fetal kidney, N-myc expression is restricted to the 

cortical areas
23,25

 while L-myc protein has been observed the ureter and derived tissues
23,24

.  

The role of Myc family members during embryonic development has been investigated by 

generating homozygous mice null for either c-myc, N-myc or L-myc. Both c-myc and N-

myc knock-out mice result in embryonic lethality between day 9.5 and 12.5
26–28

; on the 

contrary, L-myc null mice do not show any congenital defect and the animals’ life span is 

comparable to that of L-myc mice
24

. The absence of a phenotype associated with L-myc 

deficiency can be explained by the compensation by c-myc and N-myc that have been 

detected in all L-myc expressing tissues
24

. A similar compensatory effect has not been 

reported for c-myc and N-myc null mice, but substitution of the c-myc alleles with the N-

myc coding region is sufficient to revert almost completely the embryonic lethal phenotype 

of c-myc null mice
29

, supporting the idea of a functional redundancy among the Myc 

family proteins.  
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Soon after its isolation, c-myc was shown to cooperate with the ras oncogene to transform 

rat embryonic fibroblast (REFs)
30

. Later, the same cellular system was used to test the 

tumorigenic ability of N-myc and L-myc: while the transforming strength of N-myc is 

comparable to c-myc
31

, L-myc is still able to induce cellular transformation but 

significantly less than the other family members
32

. In vivo though, despite the fact that N-

myc is able to induce malignant transformation in REFs as well as c-myc, the latter has 

been reported to have a role in the neoplastic transformation of a wider set of tissues
33,34

. 

Instead, N-myc gene amplification has been reported only in neuroblastomas, where it was 

originally isolated
35

, and more sporadically in other types of neuronal-derived tumors, such 

as small cell lung cancer, retinoblastoma, glioblastoma and atrocytomas
36

. Coherently with 

the limited tissue-expression pattern, L-myc has been found overexpressed only in small 

cell lung cancer
37

. 

 

 Myc functions 1.2

Myc proteins respond to intracellular and extracellular stimuli, such as cytokines, mitogens 

and growth factors, acting on a variety of cellular processes, either up-regulating or 

repressing sets of genes. Among the Myc targets, there are genes directly involved in cells 

cycle regulation and proliferation but also many key components of the metabolic 

processes necessary to maintain the cellular growth. The main pathways regulated by Myc 

are schematically summarized in Figure 1
38

.  
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Figure 1. Schematic representation of some of Myc-dependent cellular processes [Modified from 
38

].  

 

 Proliferation and metabolism 1.2.1

Myc promotes cell division in a dual way: it upregulates genes involved in cell cycle entry, 

like cyclin D
39,40

 and cyclin E
41,42

, and meanwhile it represses cell cycle inhibitors
43–46

 and 

it was shown to bypasses the cell cycle arrest induced by cyclin-dependent kinase 

inhibitors, such as p27
KiPl

 and p16
INK4a

 
47,48

. Moreover, Myc is known to negatively 

regulate the genes required for cell growth arrest
49,50

 and to accelerate the S-phase
51

, as 

well as to upregulate genes involved in nucleotide synthesis
52,53

. Myc not only pushes the 

cells into division, but it also plays a role in the biological processes needed to support cell 

proliferation. Upregulation of genes implicated in different metabolic processes, such as 

mitochondrial biogenesis
54–56

 and glycolysis
57,58

, provides the energy required by a cycling 

cell. A relevant increase in protein content has also been observed in dividing cells and 

Myc acts on the protein synthesis machinery at multiple levels: it positively regulates the 

SHMT enzymes involved in the production of the carbon units used for amino acid 

biosynthesis
59

, it activates genes producing rRNAs and tRNAs
60–62

, as well as the 

translation initiation factors eIF4E and eIF2α
63

. 
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 Apoptosis 1.2.2

In absence of survival signals, such as growth factors and hormones, high levels of Myc 

can induce apoptosis in both p53-dependent and p53-independent ways. In the first case, 

Myc de-regulation determines an increase in ARF protein expression
64

 which in turn 

inhibits the p53 negative regulator Mdm2
65,66

. Activation of p53 increases PUMA and 

NOXA protein levels that downregulate anti-apoptotic factors, such as Bcl2 and Bcl-XL
67–

70
. p53 also activates the pro-apototic protein Bax, causing the mitochondrial outer 

membrane permeabilization to induce cell death
71

. 

Some of these factors are also directly affected by Myc; for example Bax is a 

transcriptional target of Myc which is upregulated upon Myc overexpression
72

, while 

NOXA promoter is activated by Myc in response to proteasome inhibition
73

. Also Bcl-2 

downregulation Myc can occur independently from p53 pathways
68,74

 and among the direct 

Myc targets there is also Bim
75

, the major antagonist of Bcl-2.  

Myc ability to trigger cell death is believed to provide a safeguard mechanism to prevent 

uncontrolled cell proliferation as a consequence of Myc deregulation
76,77

. Suppression of 

Myc-dependent apoptosis is a key feature for tumor onset and requires the loss of a tumor 

suppressor, such as p53 or ARF, or a second oncogene activation. An example of 

oncogenic cooperation has been observed between Myc and Bcl-2: Bcl-2 overexpression 

bypasses Myc-mediated apoptosis but does not affect the proliferative functions of Myc, so 

that the two oncogene together sustain tumor development
78–80. 

 

 Cell adhesion and morphology 1.2.3

The oncogenic activity of Myc is also exerted on cytoskeletal and cell adhesion genes, 

which play an important role in neoplastic transformation. Myc negatively regulates the 

expression of many cell surface proteins that interact with the matrix, such as N- and R-

cadherins and integrin β1, supporting the anchor-independent growth typical of 
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transformed cells
81–83

. Moreover, Myc is able to repress many cytoskeletal genes, like 

actin, cdc42 and Rho A
81,83

, and determines the morphological alterations typically 

observed in Myc-overexpressing cells, which acquire a fibroblast-like shape and become 

more refractile and able to grow at higher density. 

 

 DNA and RNA biology 1.2.4

DNA replication is among the cellular process directly regulated by Myc
84

. Different 

studies described protein-protein associations between Myc and many factors of the pre-

replication complex such as the Origin Replication Complex 1 and 2 (ORC1, ORC2)
85,86

, 

the Mcm 2-7 proteins
86,87

, cdc6 and cdt1
86

. Cdt1 gene has also been found as a 

transcriptional target of Myc
88

. In addition , Myc interacts also with cdc7
89

 and cdc45
86

, 

which are essential for the initiation of DNA replication. 

Regarding RNA biology, Myc controls the expression of other transcription factors and co-

factors, including the general transcription factors GTF2H1 and GTF2H4
90

, AP4
91

 and 

E2F
92

. Moreover, Myc is able to affect mRNA stability by regulating both the expression 

of proteins involved in mRNA turnover 
93

 and microRNA expression
94,95

.  

The role of Myc as transcription factor able to activate and repress specific sets of genes 

has been recently challenged by a model that described Myc as a transcriptional amplifier 

that generally upregulates all already active genes. The role of Myc in the cellular 

transcriptome will be discussed in the section 1.5.3.  

 

 Myc regulation  1.3

The threshold between physiological Myc level, fundamental to regulate many different 

cellular processes, and the pathogenic overexpression that leads to transformation is a 

critical issue. In order to cope with this, mammalian cells have developed a complex 

network to strictly regulate Myc expression and activity at any biological step.  
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- Transcriptional control. The starting point of Myc regulation is the control of its own 

gene transcription. As already mentioned, Myc is very lowly expressed in quiescent cells, 

but it is an immediate early gene responding to mitogenic signals
96

. Cells controls Myc 

RNA steady-state levels both by reducing the rate of transcriptional initiation and also 

blocking the nascent mRNA elongation
97–100

. 

- Post transcriptional control. Myc mRNA export to the cytoplasm is mediated by the 

translation initiation factor eIF4E
101

, whose action is controlled by mitogenic stimuli. 

eIF4E promotes the export of many other mRNAs of genes involved in cell growth 

recognizing a short sequence in the 5’UTR of the RNA messenger while it is still 

transcribed, coupling the transcription and export processes. In the cytoplasm, Myc 

transcript half-life is very short, around 10 minutes
102

, and it is controlled by a number of 

miRNAs
103–107

 as well as by many RNA binding proteins (RBPs) such as TIAR
108,109

, 

AUF1
109

 and HuR
110

. 

- Translation control. Myc mRNA instability is the key mechanism to finely regulate its 

translation both temporally and quantitatively in physiological conditions. In eukaryotes, 

the assembly of a ribonucleoprotein complex at the m
7
GTP-cap is a fundamental step for 

initiation of protein synthesis and, according to the classical cap-dependent model, mRNAs 

with a long and highly structured 5’UTR are impaired in translation initiation
111

. Myc 

5’UTR is quite long and, in contrast with the majority of the mRNA molecules, is well 

conserved across species
111

. Several studies reported the effects of Myc 5’UTR on its 

mRNA translation: both in vitro and in vivo translation of c-myc full length transcript had 

lower translational efficiency compared to the transcript lacking the exon 1
112,113

 and 

mutation in the 5’UTR region in cell lines derived from multiple myeloma patients was 

associated with an increase of Myc RNA associated with polysomes
114

. The cap-dependent 

initiation of translation can be bypassed by the presence of a ribosome internal entry site 

(IRES) in the Myc mRNA
115

. IRES mediated cap-independent translation of Myc has been 

shown to be implicated in cancer: increased Myc protein amounts in multiple myeloma 
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cells were attributed to mutations within the IRES
116,117

 as well as the high Myc levels in 

cell lines derived from Bloom’s Syndrome patients, a cancer-prone disorder
118

. 

Myc protein synthesis can also be blocked as consequence of a stressful stimulus. For 

example, in response to stress agents which could cause DNA damage and subsequent 

oncogenic mutations, the TIAR protein have been found associated to the 3’ UTR of many 

key regulators of different cellular processes, including Myc, suppressing their 

translation
108

. 

-Post translational control. Myc protein undergoes many different post-translational 

modifications, such as phosphorylation, acetylation, ubiquitinylation and sumoylation, 

which play a role in Myc stabilization and degradation
119–124

. The protein has a very short 

half-life, of around 30 minutes
125

, and regulation of protein stability critically depends on 

phosphorylation of two residues in the N-terminal domain: Threonine 58 and Serine 62. 

Cell growth stimulation leads to Myc stabilization via phosphorylation of Serine 62, which 

primes the phosphorylation of Threonine 58
119

; this second phosphorylation event, though, 

triggers the dephosphorylation of the stabilizing phosphate group at Serine 62
126,127

. The 

phosphorylated T58-Myc protein is recognized by the E3 ubiquitin ligase SCF
Fbw7 

and 

undergoes proteasomal-mediated degradation. Fbw7 is not the only enzyme involved in 

Myc ubiquitination: Skp2 (S-phase kinase-associated protein 2) has been shown to 

promote Myc poly-ubiquitination independently from any phosphorylation events
128,129

. In 

addition, contrarily to Fbw7 and Skp2, which boost Myc degradation, ubiquitination by b-

TrCP increases Myc protein stability
120

. 

Myc can also be acetylated: since both ubiquitination and acetylation occur on Lysine 

residues, it has been hypothesized that acetylation competes and interferes with the 

ubiquitination process. Indeed, experimental data showed that acetylation increases Myc 

protein stability and negatively correlates with ubiquitination
130–132

. 

Recently, Myc has been also described as a substrate of covalent addition of small 

ubiquitin-like modifier (SUMO) proteins
122,123,133

. SUMOylation occurs at Lysine residues, 
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therefore it could also compete with both ubiquitination and acetylation. N-Myc is 

modified at Lysine 349
122

, while mass spectrometry analysis of c-Myc identified a 

SUMOylation site at Lysine 326
123,133

 as well as other nine acceptor Lysines: K52, K148, 

K157, K317, K323, K389, K392, K398 and K430
123

. Both c-Myc and N-Myc 

SUMOylation has been reported to play a role in Myc quality control
122,133

; for example 

multiple SUMO monomers have been found associated to ubiquitin-proteasome 

pathway
123

 and also MYC phosphorylation and dephosphorylation at Serine 62 and 

Threonine 58 could be a SUMOylation-dependent process
124

. 

 

 Myc structure and functional domains 1.4

Myc structure resembles that of a typical transcription factor, whose fundamental domains 

are the transcriptional activation domain (TAD), which lays in Myc N-terminal region, and 

the DNA binding domain, constituted by the C-terminal portion (Figure 2). The central 

portion which connected the two terminal domains is instead characterized by many highly 

conserved motifs.  

 

 

 

 

 

 

Figure 2. Myc family functional domains
134

. 
 

 

 Myc N-terminal region 1.4.1

As mention above, the amino-terminal portion (aa 1-143) of Myc contains the 

transcriptional activation domain and, when fused to a DNA binding domain, it is 
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sufficient to trigger gene transcription
135

. The main features of Myc TAD are the two Myc-

homology boxes MbI (aa 43-63) and MbII (aa 128-143), which are highly conserved 

among Myc family members (Figure 2). Myc box I hosts the phosphorylated residues that 

regulate Myc protein turnover: Serine 62 and Threonine 58 (see above). MbI is also 

involved in Myc transcriptional activation, as it fundamental for the interaction with p-

TEFb
136

, the cyclin-CDK complex responsible for RNApolII phosphorylation that 

stimulates transcription elongation. Myc box II is important for Myc transcriptional (both 

repression
137

 and activation
138

) and transforming
135,139

 activities. A key co-factor 

interacting with MbII is TRRAP (Transformation/transcription domain-associated 

protein)
140

, an adaptor protein found in various complexes containing histone 

acetyltransferase (HAT) activity; TRRAP is thought to boost Myc-bound gene 

transcription promoting chromatin opening through histone H4 acetylation 
141

. MbII has 

also a role in Myc degradation, as it is recognized by the E3 ubiquitin-protein ligase 

complex component Skp2
128

. 

A schematic representation of some of the known Myc interactors is shown in Figure 3. 

The interaction with co-factors and other transcription factors
142–144

 characterizes Myc N-

terminus domain and most likely shapes its transient three-dimensional structure, since in 

absence of those interactors the domain is highly unstructured and no crystal structures are 

available. 

 

Figure 3. Schematic representation of Myc domains and some of its co-factors. 

 



20 
 

 Myc central region 1.4.2

While both terminal portions of Myc (N- and C-) are well-studied and described, the 

central portion of the protein is less characterized. The key element of this region is the 

nuclear localization signal. In c-Myc and N-Myc the signal is composed by two short 

peptides: the M1 (PAAKRVKLD, aa 320-328) and the M2 (RQRRNELKRSP, aa 364-

374); the first one induces complete nuclear localization while the latter determines only a 

partial nuclear localization
145

. Interestingly, the L-Myc protein lacks the M1 peptide and 

relies only on the M2 peptide for the translocation into the nucleus
145

. In this region lays 

also the Lysine 298 residue, which is the substrate of a calpain protease that generates a 

truncated form of Myc, known as Myc-nick
146

.  

The other major features of the central portion are Myc homology boxes IIIa, IIIb and IV. 

Myc box IIIa (aa 180-199) is the only Myc box that is not conserved among all the family 

members, since it is present in c-Myc and N-Myc but not in L-myc protein (Figure 2). This 

region is reported to attenuate the pro-apoptotic activity of Myc and therefore it has a role 

in transformation, both in vitro and in vivo
147

. It also contains the so called ‘D-element’, 

which promotes rapid degradation of ubiquitylated Myc proteins
148

 and it is described to 

mediate gene repression by recruitment of the histone deacetylase HDAC3
147,149

. The 

homology box IIIb (aa 259-270), despite the fact that it is conserved among all the three 

protein members, is still poorly understood. Recently a paper showed that Myc box IIIb 

can directly interact with WD repeat-containing protein 5 (WDR5), which is part of many 

chromatin remodeling complexes and could facilitate Myc recruitment to target genes
150

. 

Finally, Myc box IV (aa 304-324) is ambiguously involved in many Myc functions: its 

deletion impairs Myc-induced apoptosis and partially reduces the transforming potential, 

but it does not have any effects on cellular proliferation
151

. The SUMO acceptor Lysines 

lay within this region (N-Myc K323)
122

 or immediately outside (c-Myc K326)
123,133

. More 

recently MbIV has been reported to mediate the interaction with host cell factor 1 (HCF-1), 
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a cofactor found in many transcriptional and chromatin-modifier complexes, which seems 

to contribute to Myc tumorigenic ability
152

 . 

 

 Myc C-terminal region  1.4.3

The carboxy-terminal region of Myc is constituted by its basic helix-loop-helix-leucine 

zipper motif (bHLH-LZ, aa 355-439), which is common to the bHLH-LZ sub-family of 

transcription factors. All bHLH proteins bind DNA as obligate dimers
153

 and, since Myc 

homodimers were not detected at physiological concentrations
154–156

, great efforts have 

been spent to identify its dimerization partner. In 1991 Blackwood and Eisenman showed 

that human c-Myc, as well as N-Myc and L-Myc, interacts with the protein Max
157

 and few 

months later the same interaction was described for the mouse homologous proteins
158

. 

Max (Myc-associated factor X) belongs to the bHLH-LZ family too and, to date, it is the 

only known dimerization partner of all the Myc family members. Myc/Max dimerization 

has been shown to have a fundamental 

role in DNA binding, transcriptional 

activation
159–162

 and Myc oncogenic 

activity
163,164

.  

The bHLH-LZ domain consists of two 

α-helices connected by a random coil 

loop (Figure 4). In the crystal structures 

of Max homodimer and also Myc/Max 

heterodimer, the first α-helix is 

constituted by the basic region and the 

helix H1, which terminates with a 

Proline (Myc aa 382). Due to its 

particular structure, Proline cannot be 
Figure 4. Crystal structure of Myc/Max bHLH-LZ 

bound to DNA. 
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fit into a rigid secondary structure and it determines the protein backbone turn that results 

in the unstructured loop region. The helix H2 and the leucine zipper region compose the 

second α-helix
165,166

. The HLH-LZ domains mediates the dimerization events
157,159,166,167

. 

In particular, the leucine zipper region is based on the so called ‘heptad repeats motif’, a 

structural motif characterized by the repetition of hydrophobic and polar amino acids and 

these oppositely charged residues electrostatically interact with the complementary amino 

acids on the other dimer member
159,168

. Specifically, the crystal structure of Myc-Max 

dimer shows that for the heterodimer formation the crucial residues of the dimerization 

interface are Arg423 and Arg424 on Myc and Gln73 and Asn74 on Max 
166

.  

The central core of Myc/Max dimer is shaped into a small four-helix bundle composed by 

both the HLH domains, the helix H2 and the leucine zipper together form an extended 

parallel coiled-coil at the C-terminus of both the proteins, while helix H1 and the adjacent 

basic region of each protein diverge in opposite directions to form a scissor-like structure 

which perfectly fits into the major groove of DNA helix
166

. This tertiary structure of the 

DNA binding domain is common to all the bHLH dimers and reveals how the dimerization 

event is a fundamental pre-requisite for DNA interaction
165,166,169–172

. 

Even though it is the obligate Myc-binding partner, Max is not the only protein that 

interacts with the C-terminal domain of Myc. Examples of Myc-CTD interacting proteins 

found over the years are Miz1, Nmi, BRCA1 and AP-2. Miz1 was first identified as 

interactor of Myc in a two-hybrid screening
173

 and later the residue implicated in this 

interaction was identified as the Myc Valine 394: in fact mutation of this residue into 

Aspartic acid (Myc V394D) disrupts the Myc-Miz1 interaction
174

.  

The repression of several genes by Myc is mediated by Miz1; an example is p21Cip1 gene: 

upon UV irradiation, Miz1 promotes transcription of this gene to trigger the DNA damage-

induced cell cycle arrest, Myc binding to Miz1 however negatively regulates p21Cip1
174

. 

In contrast Myc V394D mutant fails in the downregulation of p21Cip1 and it is not able to 

switch the cell cycle arrest response to apoptosis
174

. Recently, several genomic studies tried 
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to shed light on Myc and Miz1 interaction and it has been reported that in physiological 

conditions Miz1 regulates only few target genes which contains the Miz-1 binding motif in 

their promoters
82,175–178

, but when Myc is overexpressed, as in tumor cells, Miz1 can bind 

also on new sets of promoters
179

. These observations led to a model in which the 

transcriptional response correlates with the ratio of Myc and Miz1 at promoters: in case of 

Myc upregulated genes this ratio is bigger than 1, for Myc-repressed genes instead is close 

to 1
179,180

. However, an integrative analysis of genomic and transcriptomic data from many 

cellular and in vivo systems have recently revealed that the relative Myc abundance at the 

promoters is an alternative and more accurate predictor of gene transcriptional outcome, 

while Myc/Miz1 ratio contribution has been shown to be restricted to some cell lines
181

.  

The functions of Myc interactor Nmi are not completely clear; it has been identified in 

yeast in a two hybrid screen for possible interactors with the C-terminal domain of N-

Myc
182

, but it can interact also with c-Myc and other transcription factors
182

. Later, Nmi 

has been described as an ‘adaptor’ molecule that recruits Myc to a trimeric complex 

composed by Myc, BRCA1 and Nmi itself
183

. A physical association between Myc and 

BRCA1 was described, both in vitro assays and in cellular systems
184

. BRCA1-Myc 

complex can repress gene expression
183,185

 and BRCA1 binding to the C-terminal domain 

of Myc is shown to repress Myc’s transforming ability
184

. 

AP2 is another factor that negatively regulates Myc activity: AP2 binding to the C-terminal 

region of Myc does not exclude its dimerization with Max, but impairs DNA binding of the 

complex
186,187. 

 

 Myc-DNA binding 1.5

 The E-box sequence 1.5.1

All bHLH proteins bind to a general consensus sequence, CANNTG, called E-box 

(Enhancer-box)
188

 and the family members can be classified in two subclasses according to 
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the E-box variant preference. Class A bHLH proteins, which contains AP4, MyoD and 

E12, recognize the CAGCTG hexanucleotide motif 
188,189

. Myc and Max belong to class B 

and bind the core variant CACGTG
190

. 

The protein-DNA binding is mediated by the basic region, whose amino acids composition 

determines the sequence specificity of the two subclasses. In fact, while position 11 and 14 

are constant (Glu and Arg, respectively, in red in Figure 5) and position 4 and 12 are 

highly conserved (Lys or Arg, in orange) among both classes, the residues 7 (His), 8 (Asn 

or Lys) and 15 (Arg) are well conserved in class B only (in yellow). 

  

 

Figure 5. Class A and class B bHLH protein basic region. 

 

In the crystal structures of Max/Max
165,191

 and Myc/Max
166

, the Histidine at position 7 

(which correspond to residue 359 on Myc and 28 on Max) and the Glutamate at position 11 

(363 on Myc and 32 on Max) make contacts with the G6 of the E-box and the initial C1’-A2’ 

motif on the opposite DNA strand, respectively, as shown in Figure 6. The CACGTG 

specificity instead depends on the Arginine at position 15 (R367 and R36), which 

recognizes the G4 and G4’ in the core sequence
165,166,191,192

. 
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Figure 6. E-box recognition by Myc/Max dimer. 

Schematic representation of Myc and Max residues (in blue and red, respectively) which recognize the E-box 

sequence. The nucleotides of the constant part of the E-box are shown in green, the variable portion instead is 

shown in yellow. 

 

 

Several independent in vitro studies showed that, beside the high affinity for the canonical 

CACGTG motif, Myc also binds some core variants: CACGCG, CATGCG, CACGAG, 

CATGTG
193–195

. These same sequences, named ‘non-canonical E-boxes’, were later 

identified also as in vivo Myc target sites in ChIP
196

 and ChIP-Seq
52

 experiments.  

In addition to the core variants, also the flanking nucleotides have been shown to play an 

important role in the protein-DNA binding. Myc/Max binding in yeast was shown to be 

impaired by a T at position -1 and an A at position +1 of the CACGTG binding sites
197

 and 

similar results were obtained in in vitro experiments which led to the identification of an 

extended consensus binding site of 12 nucleotides, RACCACGTGGTY
198

. Such a strict 

composition of the ±1 positions was confirmed by ChIP-Seq analysis: the canonical E-box 

CACGTG strongly prefers C or G at position -1 and, to a lower extent, also A but never T 

and in the same way A is depleted from position +1
52

. At positions ±2 and ±3 the 

CACGTG core allows any combinations. The non-canonical sequences instead are more 

restrictive and allow fewer flanking variants: at position ±1 the only possible bases are C 

or G, with different preferences among the different core variants; also the combinations 
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allowed at the other positions are fewer and in some cases the nucleotide at one side 

influences the one on the other side 
52

. In Table 1 a summary of the core E-box motifs with 

the flanking nucleotide at each position and the consensus sequence determined in a ChIP-

seq analysis
52

 is shown. More recently, many high resolution in vitro approaches such as 

Selex-seq, PBM (protein binding microarray) and gcPBM (genomic context protein 

binding microarray), revealed the influence of nucleotide composition of the E-box 

flanking regions on the tridimensional structure of the DNA binding site
199–202

. In 

particular, specific symmetries in the DNA sequences surrounding the target binding sites 

have been reported to significantly affect Myc/Max (and Max/Max) binding specificity
201

. 

Both the dimers have been tested for their binding strength to DNA sequences containing 

different kind of symmetries: αNα, αα (where α represents the same base, either A, T, G or 

C), AT/CG or ATCG. In both cases the PBM analysis revealed a strong preference for the 

E-box probes flanked by αNα type of symmetric sequences, followed by AT/CG type for 

Myc and αα type for Max; in general, the recognition of DNA sequence symmetry has 

been described as an important mechanism by which Max/Max and Myc/Max dimers can 

increase the strength of the binding to the E- box as well as a new binding mechanism in 

absence of specific nucleotide recognition
201

.  

 

 

Table 1. Summary of the flanking nucleotides of canonical and non-canonical E-box core variants 

[modified from
52

]. 

 

core CACGTG CACGCG CATGCG CACGAG CATGTG 
 

Position 
±1 

 

 

VCACGTGB 

 

 

SCACGCGG 

 

GCATGCGY 

 

CCACGAGG 

 

CCATGTGC 

 
Position 

±2 
 

 

 

N-CACGTG-N 

 

C-CACGCG-M 

A-CACGCG-C 

T-CACGCG-T 

 

C-CATGCG-A 

 

A-CACGAG-C 

 

W-CATGTG-T 

 
Position 

±3 

 

N—CACGTG--N 

 

 

A--CACGCG--C 

 

G--CATGCG--R 

 

G--CACGAG--C 

 

T--CATGTG--C 

G—CATGTG--T 

 

 
 

Consensus 
 

 

 

NNVCACGTGBNN 

 

ACSCACGCGGMC 

AASCACGCGGCC 

ATSCACGCGGTC 

 

 

 

GCGCATGCGYAR 

 

 

GACCACGAGGCC 

 

 

TWCCATGTGCTC 

GWCCATGTGCTT 
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 In vivo genome recognition 1.5.2

In eukaryotes, transcription factors binding to their target sequences is restricted by the 

chromatin context since the DNA wrapped around the nucleosomes forms a strictly 

packaged chromatin structure that occludes the target sequences. Several studies focused 

on the link between DNaseI sensitive sites, which define chromatin accessible regions, and 

transcription factor motif occupancy revealed that the presence of the target sequence in 

the open chromatin is predictive of the transcription factors binding events
203–206

. Markers 

of active chromatin include different types of histone post-translational modifications, such 

as acetylation and H3K4 methylation
207–209

 which are recognized by so-called “reader”, 

proteins, such as WDR5 and TAF1, which themselves may play a role in regulating the 

access of transcription factors to chromatin
209

. 

In the nucleus transcription does not occur diffusely in a homogenous manner but takes 

play in the so called “transcription factories”. The transcription factories are subnuclear 

domains composed of active promoters and enhancers together with other regulatory 

factors and phosphorylated RNA polymerase II
210

. This sub-compartmentalization of 

transcription was first described in the early 90’s
211,212

 and the recent development of 

chromosome conformation capture (3C) method and its variants (4C, 5C and Hi-C) 

allowed the identification of the genomic loci within the factories, revealing that hundreds 

of genes, which can be Mb apart, can be associated to the same transcription factory
213,214

. 

Moreover, biochemical purification of those complexes showed that each factory contains 

many “core” factors specific for the transcription of that set of genes, but also a number of 

ribonucleoproteins which are shared with the other factories
215

. Myc/Max binding to DNA 

is restricted to euchromatin regions
216,217

 and in response to stimuli the dimer has been 

reported to dynamically associate with transcription factories
218

.  

In physiological conditions, Myc binds preferentially to active promoters; a high 

percentage of Myc genomic binding sites are located within the CpG islands
219,220

 and E-

boxes outside an open chromatin context are not bound 
221

. Despite the strict sequence 
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preferences shown in vitro, genome-wide analysis revealed that many of these promoter 

elements do not contain an E-box and the number of the sequence independent-binding 

events tends to increase when Myc is overexpressed. This phenomenon, named “invasion”, 

occurs both at promoters and enhancers and has been described in many cellular systems 

and also during tumor progression
38,90,222,223

.  

Myc invasion can virtually involves all the active regions, probably favored also by the 

transcriptional machinery, but does not alter the binding hierarchy between high affinity 

and low affinity sites, with the former bound in the vast majority of cells and the latter only 

in a small fraction
38,90

. These two types of binding events correspond, respectively, to high 

and faint signals in ChIP-Seq experiments.  

To integrate the traditional view of Myc binding with the emerging genome-wide data, we 

proposed a model in which Myc is recruited to the chromatin through subsequent steps
224

 

(Figure 7). The enrollment of Myc/Max dimer to DNA stems from a protein-protein 

interaction with chromatin-associated proteins without a direct DNA contact (mode 1). 

After this initial event, the proximity to DNA determines the binding of Myc/Max dimer in 

a sequence-independent manner (mode 2). This is a low affinity interaction that allows the 

dimer movement along the DNA until it finds a high affinity site (the E-box) that stabilizes 

the binding (mode 3). 

The fundamental role of protein-protein interactions for Myc target recognition has been 

recently validated by two independent studies, both focused on H3K4me3-associated 

proteins. Thomas et al identified a new Myc direct interactor in WDR5, a component of 

many chromatin remodeling complexes involved in histone methylation
150

. Myc ChIP-Seq 

signal widely overlaps with WDR5 signal and this co-localization dramatically decreases 

when the Myc residues involved in the interaction with WDR5 (I262/V264/V265) are 

mutated. It is noteworthy that these mutations do not impaired WDR5 recruitment to the 

target sites, but only Myc co-localization implying that is the latter to recruit Myc at the 

common binding sites 
150

. Similarly, Myc has been found to directly interact with the 



29 
 

NURF (ATP-dependent nucleosome-remodelling factor) subunit BPTF and Myc-ChIP 

peaks distribution and intensity is reduced after BPTF knockdown
225

. These studies 

confirm the fundamental role of protein-protein interactions (mode 1) in Myc-DNA 

binding dynamics and the existence of tethering factors which recruit Myc at specific 

subsets of its own targets, limiting the portion of the genome to be scanned by Myc. 

The transition from the sequence-independent binding (mode 2) to the high affinity binding 

stabilized by sequence recognition (mode 3), instead, is supported by several biophysical 

studies on bHLH proteins. The conformational changes of human USF and yeast Pho4 in 

the presence of an E-box or a non-specific DNA sequence have been analyzed using 

fluorescent spectroscopy
226

 and NMR techniques
227

, respectively. In both cases the authors 

described a major rearrangement of the protein structures when any DNA sequence was 

present, followed by slower changes in the basic regions of the E-box bound samples only, 

supporting the idea of a two-steps binding reaction. In addition, detailed structural studies 

have been performed on Max/Max homodimers. The available crystal structures of Max 

bound to DNA
165,191

, show the homodimer perfectly fit into the major groove of the DNA, 

with the basic region making contacts with specific nucleotides. When Max is not bound to 

DNA, instead, the basic region is only partially folded but the functional moieties are 

already primed to interact with the DNA-backbone
228

. These data support the existence of 

a mechanism that allows Max to discriminate between specific and non-specific DNA 

sequences: the initial binding event is sequence-independent and led by the natural affinity 

of the basic region for the DNA backbone. The protein-DNA interaction then triggers 

conformational changes that allow Max to eventually make contacts with the E-box 

nucleotides
229

. Considering the high conservation of the basic region among all BHLH 

proteins this mechanism could be shared by other members of the family.  
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Figure 7. Myc/Max interaction with the DNA [Modified from
224

]. 

 

 Regulatory models: selective transcription versus general 1.5.3

transcriptional amplification  

As already described, Myc has a central role in the cell, by actively regulating or 

repressing many different sets of genes. Traditionally, transcriptional activation by Myc is 

described as a direct binding event to a target sequence on the promoter DNA, while Myc-

dependent repression is thought to occur mainly by indirect DNA binding thought other 

transcription factors, like Miz1
44,230

. According with this hypothesis, the E-box sequences 

and its variants have been found significantly underrepresented in the promoters of Myc 

repressed genes
231,232

.  

Recent studies pointed out that Myc overexpression is often coupled with an increase in 

global RNA levels, an event called “RNA amplification”. Such phenomenon, together with 

the spreading of Myc binding to all open chromatin (the so-called “invasion”), has been 

interpreted as the result of a general transcriptional activation wherever a Myc-DNA 

interaction occurs
222,223,233

. This model contrasts with the traditional view of Myc as a 
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transcription factor capable of either activating or repressing genes, but rather describes 

Myc as a general amplifier which universally upregulates already active genes
222,223

. In this 

scenario, Myc-dependent gene repression is considered as an artifact due to the 

normalization procedures used in gene expression analysis: comparing the RNA levels in 

samples which are characterized by a huge difference in the RNA amount would lead to 

define as “repressed” genes that are actually up-regulated at a lower level compared to the 

whole population. According to that model, the few genes which are really downregulated 

in Myc overexpressing cells can be explained as an indirect consequence: among the genes 

whose expression is enhanced by Myc there are several transcriptional repressors which in 

turn can lower the expression of their targets
222,223

.  

Unfortunately, the transcriptional amplification model failed to take into account a 

fundamental aspect: Myc activity triggers a series of cellular processes (some of which 

described in section 1.2) that dramatically impacts on cell physiology. The RNA 

amplification phenomenon can indeed be explained by the many metabolic changes that 

rely on Myc and, in turn, impact on global RNA synthesis and turnover
234–237

. As an 

example, the difference in the total RNA content has been a hallmark to discriminate 

cycling from quiescent cells for years
238

, and the RNA amplification phenomenon is more 

evident when different Myc levels co-occur with different physiological states, such as 

normal versus tumor tissues
90,223

 or quiescent B-cells versus LPS-activated cells
90,222

. In 

addition, Myc invasion and RNA amplification are separable events which can occur 

independently: in serum-stimulated fibroblasts Myc does not completely invade all the 

open chromatin but still there is an increase in the RNA level when the cells transit from 

G0/G1 into S-phase
90

 . On the other hand, when Myc is overexpressed in already 

proliferating fibroblasts it invades all the active chromatin without triggering RNA 

amplification
38,90

.  

Finally, the idea of Myc as a transcriptional amplifier postulates a cause-to-effect relation 

between Myc binding and gene regulation, but discriminating Myc productive and non-
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productive binding is a challenging issue. In fact, careful analysis of available datasets 

pointed out that DNA binding is not predictive of actual regulation of gene transcription
38

. 

Altogether these observations strongly support the long-standing concept that Myc acts as 

a “traditional” transcription factor, which is able to up- and down-regulate specific sets of 

genes in response to the environmental stimuli.  

 

 Targeting Myc in cancer 1.6

Many studies showed that inhibition of Myc activity triggers tumor regression, according 

to the idea that cancer cells depend on the oncogene for their sustenance
239–242

. This, as 

well as the widespread alterations of Myc activity in different tumors, makes targeting Myc 

one of the most appealing approaches to treat human cancer. However, Myc is not an 

easily druggable protein since it lacks an enzymatic activity or pre-folded active site, and 

exerts its function in the nucleus. Over the years, numerous strategies have been attempted 

but with various degrees of success. 

Since the essential pre-requisite for Myc activity is DNA binding and this requires 

dimerization with Max, an obvious approach to target Myc functions would be the 

disruption of Myc/Max dimerization. Several in vitro and cell-based screens have been 

performed to develop inhibitors of Myc/Max dimerization
243,244

. However, the size and the 

structure of the Myc/Max interface make it difficult to design small molecules inhibitors 

and moreover the dimerization domain lays in the leucine zipper structure, which is well 

conserved among the bHLH-LZ protein subfamily and could lead to off-target effects. 

A second strategy to affect Myc/Max interaction is the Omomyc protein. Omomyc consists 

of the Myc bHLH-LZ domain in which four amino acids in the leucine zipper domain, 

E410, E417, R423, R424, have been mutated into T, I, Q, and N, respectively. These 

substitutions confer the mutant the ability to form homodimers and to dimerize with wild- 

type Myc
245

. Several in vivo studies have shown that Omomyc has a strong anti-tumoral 
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activity, acting directly in tumor cells to reduce proliferation, increase apoptosis, and 

interfere with the maintenance of the tumor microenviroment
246–248

. Whether this dominant 

negative phenotype is due to sequestration of Myc and/or Max in inactive heterodimers
245

, 

or to the occupancy of the Myc/Max target sites by Omomyc homodimers
249

, is not fully 

understood. Whether Omomyc may be efficiently delivered to tumor cells also remains to 

be addressed. This notwithstanding, Omomyc emerges as a promising candidate for 

therapy, as it does not interfere with the physiology of normal tissues
246,250

. The inhibition 

of Myc activity by Omomyc highlights the importance of understanding the structural and 

functional features of the Myc bHLH-LZ domain and its interaction with the DNA, in 

particular toward the design of new therapeutic strategies.  

 

 Aim of the project 1.7

The dynamics of Myc-DNA interactions and the importance of the E-box recognition for 

Myc functions are still not completely understood. We have proposed a model in which the 

first step of Myc-DNA association occurs through the interaction with chromatin-bound 

proteins and only later Myc engages the DNA. This initial DNA binding event does not 

require specific sequence recognition but is driven by the general affinity of Myc basic 

region for the DNA. The sequence-independent binding allows Myc/Max dimer to “scan” 

the DNA sequence locally, to eventually recognize the E-box. In this study, I addressed 

this model by generating Myc mutants impaired in their DNA binding capacity. I will 

present experiments investigating the role of basic region-mediated DNA contacts on a 

genome-wide level, and evaluating the contribution of E-box recognition to Myc-genome 

interactions and biology. 
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2. Materials and methods 

2. Materials and methods 

 Cell culture 2.1

All the cell lines used in this work were cultured in DMEM, supplemented with 10% fetal 

bovine serum, 2 mM L-glutamine and penicillin/streptomycin. The cb9 MycΔb cell line 

and the cb9 Myc clones cultured medium was supplemented, if not indicated differently, 

with 1 µg/ml of doxycycline to activate the tet-myc transgene.  

Rat HO15.19 cells and mouse cb9 MycΔb cells were infected with the retroviral vectors 

pBabe hygro or pQCXIH, respectively, and then selected with 150 µg/ml of hygromycin 

for 4 days. Mouse 3T9 fibroblasts instead were infected with the retroviral vector pBabe 

puro and selected with 1.5 ug/ml of puromycin for 2 days; the activation of the MycER 

fusion protein was achieved added 400 nM of OHT to the culture medium. 

293T cells were transfected overnight with 5 µg of the plasmids of interest, mixed in a 

solution of 240 mM CaCl2 and HBS (25 mM HEPES, pH 7.0, 5 mM KCl, 6mM dextrose, 

140 mM NaCl, 0.750 mM NA2PO4). The next day the medium was replaced and the cells 

were collected 48h after transfection.  

 

 Pymol 2.2

The three-dimensional visualization and conformational analysis of Myc/Max-DNA 

structure (PMB 1NKP) was performed with the open-source software Pymol 

(https://www.pymol.org/). 

 

 Myc-Max co-Immunoprecipitation 2.3

293T cells were transfected with plasmids encoding for FLAG Myc
wt

, FLAG Myc
HEA

, 

FLAG Myc
RA

 or FLAG EV (empty vector) and collected 48h after transfection. 

https://www.pymol.org/
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After two washes in cold PBS, cells were scraped in 4 ml of cold NHEN buffer (20 mM 

Hepes pH 7.5, 150 nM NaCl, 0.5% NP-40, 10% glycerol, 1 mM EDTA, protease inhibitors 

cocktail) and lysed for 20 minutes on a rotating wheel at 4°C. 

Complete cell disruption and DNA fragmentation was performed with three cycles of 

sonication (30 seconds on, 30 seconds off) and the protein concentration was determined 

by Bradford-based Protein Assay kit (Bio-Rad). 

The immunoprecipitation of FLAG Myc was performed incubating 2 mg of cell lysate with 

40 µl of Anti-FLAG M2 affinity gel (Sigma-Aldrich) for 3h in agitation at 4°C. In parallel 

2.5% of the material used for the IP was collected to be loaded as input. 

The beads were then washed five times with 1 ml of wash buffer (20 mM Hepes pH 7.5, 

150 nM NaCl, 0.1% Tween, 10% glycerol, 1 mM EDTA), resuspended in 60 µl of loading 

buffer and boiled at 95°C for 10 minutes. The supernatant was then loaded on a SDS-

PAGE gel for immunoblotting analysis. 

 

 Western Blot 2.4

Protein extraction was performed resuspending the cells in lysis buffer (300 mM NaCl, 1% 

NP-40, 50 mM Tris-HCl pH 8.0, 1 mM EDTA, proteases inhibitors) and sonicating them. 

Cell extracts were quantified with the Bradford-based Protein Assay kit and separated by 

SDS-PAGE using 7.5 % polyacrylamide gels.  

The proteins were then transfered to a nitrocellulose membranes for 1 h at 0.3 A with a wet 

transfer apparatus. Membranes were washed in TBS-T (10 mM TrisHCl, 100 mM NaCl, 

0.1% Tween at pH 7.4) and blocked with 5% milk in TBS-T for 20 minutes, 

immunoblotted over-night at 4°C with the indicated primary antibodies, washed three 

times for 10 minutes with TBS-T and then incubated at room temperature for 1 h with the 

secondary antibodies. After three washes in TBS-T, chemiluminescent imaging was 

performed by ChemiDoc MP System (BioRad) using Western ECL reagent (BioRad). 
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 Antibodies 2.5

antibody company host 

Myc Y69 Abcam (ab32072) rabbit 

Max 

 

Santa Cruz (sc-197) 

 

mouse 

Vinculin Sigma-aldrich (V9264) mouse 

FLAG Abcam (ab1162) rabbit 

BrdU Becton Dickinson (347580) 

 
mouse 

Myc N262 

 

Santa Cruz (sc-764) rabbit 

 

 Table 2. Primary antibodies. 

 

 Transcriptional Factor Assay Kits: TransAM
TM

 c-Myc 2.6

The analysis of Myc
wt

, Myc
HEA

 and Myc
RA

 binding affinity to the E-box sequence 

(CACGTG) was performed with the commercially available DNA-binding ELISA 

TransAM
TM

 c-Myc kit (Active Motif, 43396), following the manufacturer's instructions. 

We used 10 µg of nuclear extract of rat HO15.19 expressing Myc
wt

, Myc
HEA

 or Myc
RA

 and 

the same amount of extract of HO15.19 EV as negative control. 2.5 µg of the provided 

nuclear extract from Jurkat cells was used as positive control. 

 

 Cycloheximide treatment 2.7

Cycloheximide (Sigma-aldrich) was added to the culture medium of rat HO15.19 

fibroblasts at a final concentration of 50 µg/ml and incubated at 37°C. At different time-

points after cycloheximide administration, cells were washed twice with cold PBS and 

collected for protein immunoblotting analysis. 
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 Myc immunofluorescence 2.8

HO15.19 and cb9 MycΔb cells were plated on cover slips. The day after the cells were 

washed twice with PBS, fixed with 4% paraformaldehyde for 10 minutes and then washed 

twice with PBS. 

The cell membranes were permeabilized incubating the cells for 10 minutes in a solution 

0.1% Triton in PBS. After two washes in PBS, cells were incubated with the blocking 

solution (4% BSA and 1% Fish gelatin) for 30 minutes, to prevent unspecific binding of 

the antibodies. Cells were then incubated with the primary antibody against Myc (abcam 

Y69, ab37072) diluted to the final concentration of 2ng/µl in the blocking solution for 1h 

and 30 minutes and then washed twice in PBS and once again with the blocking reagent for 

10 minutes. After 45 minutes of incubation with the secondary antibody (anti rabbit Cy3, 

1.25 ng/µl) the cells were washed in PBS and the nuclei were stained with DAPI for 2 

minutes. After one last wash with water the cover slips were mounted with Moviol on glass 

slides and ready for microscopic analysis. 

 

 Proliferation assays  2.9

For growth curve experiments 70,000 Rat HO15.19 cells were plated in 6-well plates in 

triplicates and counted every 3 days for 9 days. Similarly, 70,000 3T9 cells were plated in 

presence or absence of 400 nM OHT, counted every 2 days up to day 6. In the experiment 

performed with the cb9 MycΔb cells instead 80,000 cells per well were plated in presence 

of doxycycline for 2 days, then counted and re-plated, with and without doxycycline, every 

2 days for 10 days. 

For the colony forming assay (CFA) 10,000 cells were plated in 10 cm dishes, let them 

grow for 6-11 days and then stained with crystal violet (incubation with crystal violet for 

10 minutes and then washes with water). 
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For the S-phase analysis we performed a 5'-Bromo-2'Deoxyuridine (BrdU) staining; the 

cb9 MycΔb cells expressing Myc
wt

, Myc
HEA

 or Myc
RA

 (growing in presence or in absence 

of doxycycline) were incubated for 20 minutes with 30 mmol/L of BrdU (B9285, Sigma); 

the cells were then washed twice with PBS, collected and fixed with 2 ml of cold ethanol. 

After one wash in a solution PBS 1%BSA, the cells were incubated at room temperature 

for 20 minutes in 1 ml of HCl 2N, to denature the DNA; the samples were neutralized with 

3 ml of 0.1 M Na2B4O7, pH 8.5.The cells were then washed twice with PBS 1%BSA and 

then stained with antibody targeting BrdU (to a final concentration of 0.4 µg/ml) for 1 h 

light protected. The cells were then washed in PBS 1%BSA and stained with the secondary 

FITC-conjugated donkey-anti- mouse antibody (final concentration 30 µg/ml) for 1 h light 

protected. After one last wash in PBS 1%BSA the cells were resuspended in 500 µl of 

PI/RNase solution (2.5 µg/ml of PI and 250 µg/Ml RNaseA in PBS) and stained overnight 

before the acquisition with MACSQuant® Analyzer.  

 

 Genome editing: CRISPR/Cas9 2.10

The deletion of the c-myc basic region as well as the insertion of the HEA mutation in 

endogenous c-myc loci were performed exploiting the type II CRISPR-Cas tool
251

. 

This system is composed by an endonuclease, the Cas9, and a small RNA molecule called 

sgRNA (single guide RNA) that leads the Cas9 enzyme to complementary genomic region. 

The sgRNA is approximately 20 nt long and contains the protospacer adjacent motif 

(PAM) NGG, when the RNA-DNA hybrid is formed the endonuclease cuts on both DNA 

filaments close to the PAM site (Figure 8). The non-homologous ends joining machinery 

will then repair the double strand break causing insertion or deletion of nucleotides.  
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 Figure 8. Type II Cas9 [modified from
252

 ]. 

 

 

The single guide RNA (sgRNA) sequences to target the c-myc gene were designed using 

the online available software CRISPR Design Tool (http://crispr.mit.edu/). We tested 10 

different sgRNA sequences cloning them into the pSpCas9 (BB)-2A-GFP (PX458) 

plasmid, which also encodes for the Cas9 protein and GFP. To determine which sgRNA 

was more efficient, we transfected 40,000 cb9 tet-Myc cells in 12-well plates using 100 μl 

of the transfection mixture (0.5 μg plasmid, 2.5 μl Transit 2X (Mirus) in Opti-MEM) in 

900 μl of growth medium without antibiotics. After 48h we performed a PCR on genomic 

DNA (for the primer sequences see Table 3) to amplify the target region and to test for the 

cutting efficiency in the surveyor nuclease assay
251

. The assay takes advantage of the 

mismatches introduced by the DNA repair mechanism after the Cas9-mediated cut: the 

PCR products from transfected cells and untransfected control are mixed and then undergo 

to a cycle of denaturation and re-annealing, if some heteroduplex DNA are formed the T7 

endonuclease recognizes it and cuts the DNA, thereby generating the characteristic 

digestion pattern (Figure 9).  

 

http://crispr.mit.edu/
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Figure 9. Scheme of the surveyor assay [modified from
253

]. 

 

 

 cb9 MycΔb fibroblasts 2.10.1

The cb9 MycΔb cellular clone has been derived from the cb9 tet-Myc cell line, which was 

produced through the 3T3-immortalization protocol starting from mouse embryonic 

fibroblasts (E14.5) obtained from Rosa26-rtTA/Tet-Myc mice. We exploited the CRISPR-

Cas tool to delete the endogenous c-myc basic region in the cb9 tet-Myc cell line.  

As already describe, we tested 10 sgRNAs and chose the ones with the highest efficiency, 

sgRNA8 and sgRNA7 (Table 3), and combine them in a single transfection (0.5 µg sgRNA 

8 + 0.5 µg sgRNA7). The scheme of the strategy used to disrupt the basic region and the 

resulting deleted alleles of the clone we isolated are shown in Figure 10. The cellular 

clone, named cb9 MycΔb, had both c-myc alleles mutated, although in different ways: one 

allele encoded for a protein missing the basic region, the Helix I and the loop but retained 

the second Helix and the leucine zipper, while the product of the other allele was a 

truncated protein which almost completely lacked the C-terminal domain. 
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Figure 10. Deletion of the basic region of the endogenous c-myc.  

The cb9 tet-Myc mouse fibroblasts underwent to CRISPR/Cas9 genome editing to delete the basic region 

DNA sequence of the endogenous c-myc loci. (A) Endogenous Myc DNA and protein sequences are shown. 

In dark green the sequence of the basic region and in black the Helix II. The light green bars represent the 

sgRNA sequences we have used, with the PAM sequence underlined in red. (B) Alignment of Myc
wt

 DNA 

consensus sequence and the sequences of two deleted alleles. (C) Alignment of the protein sequence of 

Myc
wt

 and the two deleted forms. The protein derived from the allele 1 almost completely lacked the basic 

region, the Helix I and the loop region; the protein codified by the allele 2 was a truncated form that lacks the 

C-terminus domain. 

 

 cb9 Myc
HEA

 clones 2.10.2

The CRISPR/Cas tool was exploited also to insert the HEA mutation into the endogenous 

c-myc alleles of the cb9 tet-Myc cell line. To increase the replacement efficiency, we used 

a small donor oligo
251,254

 (192 nt, the complete sequence can be found in Table 3) whose 

characteristics are shown in Figure 11. We then followed the same protocol used to 

produce the cb9 MycΔb, transfecting the donor oligo and the SpCas9 (BB)-2A-GFP 

plasmid containing the sgRNA8. 
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Figure 11. Generation of cell lines with the endogenous c-myc loci mutated into Myc
HEA

. 

The cb9 tet-Myc mouse fibroblasts underwent to CRISPR/Cas9 mediated genome editing to replace the 

endogenous c-myc sequence codifying for the basic region. (A) the sgRNA and donor oligo used to replace 

the endogenous sequence, which was characterized by the Myc
HEA

 encoding mutation (in red), by three silent 

mutations to: disrupt the PAM site (in black), to create a XhoI restriction site (in orange, the complete 

restriction site sequence is underlined) and to disrupt the palindromic sequence flanking the XhoI site (in 

light blue). (B) The amino acid sequence derived from the substitution of the endogenous c-myc alleles, in 

red the two mutated amino acids. 

 

 RNA extraction and qPCR analysis 2.11

Total RNA was purified using Quick-RNA
TM

 Mini prep (Zymo Research) and treated on-

column with DNaseI. Complementary DNA (cDNA) was synthetized using the reverse 

transcriptase ImPromII (Promega) and 10 ng of cDNA were used for quantitative PCR 

reaction with FAST SYBR Green Master Mix (Applied Biosystems) in a final volume of 

20 µl. The primer sequences used are listed in Table 3. 

 

 Chromatin immunoprecipitation (ChIP) 2.12

Cells were fixed with formaldehyde 1% in PBS for 10 minutes after which the reaction 

was stopped by addition of glycine at a final concentration of 0.125 M for 5 minutes. The 

cells were then rinsed twice with cold PBS and collected in SDS buffer (100 mM NaCl, 50 

mM Tris-HCl pH 8.0, 5 mM EDTA, 0.5% SDS, protease inhibitors). After centrifugation 

the cell pellet was resuspended in 4 ml of cold IP-buffer (100 mM Tris at pH 8.6, 0.3% 
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SDS, 1.7% Triton X-100, and 5 mM EDTA) and the chromatin was sonicated to an 

average length of 300-500 bp and used for the immunoprecipitation. 

The samples were first precleared for 1 h at 4°C in agitation with 50 µl of protein A 

sepharose beads (blocked with 0.5 mg/ml E. coli tRNA and 0.5 mg/ml BSA). An aliquot of 

each sample was kept as input; the remaining material was incubated overnight in agitation 

at 4°C with 10 µg of Myc antibody (N262, Santa Cruz). 

The day after, 60 µl of blocked protein A beads were added to each sample and incubated 

for 2 h in agitation at 4°C. Following that, the beads were washed three times with 1 ml of 

mixed micelle buffer (150 mM NaCl, 20 mM Tris-HCl pH 8.1, 25 mM EDTA, 0.1% 

NaN3, 5% Triton-X 100, 1% SDS, 26% sucrose), twice with buffer 500 (0.1% DOC, 1mM 

EDTA, 50 nM HEPES, 500 mM NaCl, 1% Triton-X 100, 0.2% NaN3), twice with LiCl-

detergent buffer (0.5% DOC, 1 mM EDTA,250 mM LiCl, 0.5% NP-40, 10 mM Tris-HCl 

pH 8, 0.2% NaN3) and once with TE. To elute the protein-DNA complex and reverse the 

crosslink, the beads and the input were resuspended in 200 µl of 2% SDS in TE and 

incubated overnight at 65°C. DNA was then purified by Qiagen columns and quantified 

using Qubit
TM

 dsDNA Assay kit (Invitrogen). The ChIP quality was checked by qPCR 

amplification using primer pairs designed on Myc target genes and a non-targeted region 

as negative control. The reaction was performed using 600 nM primers (listed in Table 3) 

in a final volume of 20 μl of FAST SYBR Green Master Mix (Applied Biosystems). 

1.5-2 ng of ChIP DNA was then used to generate the chromatin immunoprecipitation 

sequencing (ChIP-Seq) libraries according to the Illumina protocol and then sequenced 

with HiSeq2000.  
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 Primers and oligos sequences 2.13

  

species 

 

Amplicon 

 

Forward sequence 

 

Reverse sequence 

 human c-myc 
 

GATTCTCTGCTCTCCTCGACGG AGAAGGTGATCCAGACTCTGACC 

 

Expression 

 Rplp0 GGCGACCTGGAAGTCCAACT CCATCAGCACCACAGCCTTC 

 c-myc 
 

TTTTTGTCTATTTGGGGACAGTG CATCGTCGTGGCTGTCTG 

mouse Smpdl3b GGATGGGGAGATGGTGTATG GAAGCTGTCGGTATGGTGGT 

  Reep6 
 

GTGCAATGTCATCGGATTTG TTGCCCGCGTAGTAGAAAG 

  Pus7 
 

CCCCAAGCATAAAATCAGTGAGG CCCCGATAAGGAGTAATCTCGAA 

  Rrp9 
 

AGAGACCGCACAGGAAAAGA ACTTCTGCAACCTGCCTCTC 

 

 

ChIP 

 

 

mouse 

Ncl GGCGTGGTGACTCCACGT CGAAATCACCTCTTAAAGCAGCA 

CAD CGAAGGAGCCCACGTGTGTG GAACTCAGTAGTGCGCCGC 

D7Wsu128e GCGCCGCCATGTGGACTAG CGAAGGAGCCCACGTGTGTG 

Pus7 GCTGCACCGCGTGGAGAC GGCTGGTGGGATAACCCGT 

AchR TGCTCATCTCCATCAAGGTCAA AGGCTCAGCAGGAAGTAGTTGTTG 

  C/EMPα 
 

CGCTCTCCTTAGGGTCCTTT TCTTTTTCATTGCGTCTCCA 

DNA_ 

Surveyor 

assay 

 

mouse 

 

c-myc basic 

region 

 

GGTGTCTGTGGAGAAGAGG 

 

AGCGCATCAGTTCTGTCAG 

 

 

sgRNA 

 

 

mouse 

 

Sequence 

sgRNA7 ACTCCTAGTGATGGAACCC 

sgRNA8 ACACGGAGGAAAACGACAAGAGG 

 
MycHEA 
Donor 
DNA oligo 

 
 
mouse 

GCCAAGTTGGACAGTGGCAGGGTCCTGAAGCAGATCAGCAACAACCGCAAGTGCTCGAGT
CCCAGGTCCTCAGACACGGAGGAAAACGACAAGAGACGGACAGCCAACGTCTTGGCACGT
CAGAGGAGGAACGAGCTGAAGCGCAGCTTTTTTGCCCTGCGTGACCAGATCCCTGAATTGG
AAAACAACGAA 

 

Table 3. Summary of primers and oligos. 
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 Computational analysis 2.14

 Next generation sequencing data filtering and quality evaluation  2.14.1

ChIP-Seq reads were filtered with the fastq_quality_trimmer and fastq_masker tools of the 

FASTX‐Toolkit suite (http://hannonlab.cshl.edu/fastx_toolkit/) and their quality was 

assessed with the FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

application. The reads were analyzed with our own pipeline HTS flow
255

. The HTS flow 

pipeline allows primary analysis, consisting of the quality control of the raw reads and the 

alignment to a reference genome, and secondary analysis, consisting in the peaks calling. 

 

 ChIP-Seq data analysis 2.14.2

The HTS-flow pipeline aligned the ChIP-Seq reads to the mouse reference genome (mm9) 

through the BWA aligner using default settings
255

. Later, the MACS software
256

 was used 

to call the peaks, setting as cut-off parameter a p-value<1e-5. The reads count within a 

genomic region was normalized considering the total number of aligned reads in that 

sample (library size). With the MACS software we also performed the saturation analysis, 

as control of false negatives, and also estimated the false discovery rate, defined as the 

proportion of negative (the peaks identified calling on the input using the ChIP as 

reference) VS positive peaks. 

The enrichment of a peak was defined considering the library size-normalized reads of the 

ChIP falling in the peak region (ChIPw) minus the library size-normalized reads of the 

input in the same region (inputw) as a logarithmic value, log2 (ChIPw - inputw).  

Peaks were mapped and annotated as promoter, enhancer, intragenic or distal according to 

the genomic position of the peak midpoint. More in details: 

- promoter: the peak is within the genomic region defines by -2Kb and +1Kb from an 

annotated refgene TSS 

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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- enhancer: all regions, different from -2Kb ad +1 Kb from the TSS, marked with 

H3K4me1 in 3T9 fibroblasts
90

 

- intragenic: the peak is located inside an annotated refgene (in a region different from -

2Kb ad +1 Kb from the TSS) 

- distal: the peak position does not match any of the former criteria  

Myc ChIP peaks were visualized with the UCSC Genome Browser 

(http://genome.ucsc.edu/.) 

Qualitative and quantitative heatmaps of ChIP-seq enrichment were generated using 

compEpiTools packages, a tool for computational epigenomics
257

. 

The determination of the ‘genomic background’ was performed searching for the 

sequences of interesting with the Biostrings computational packages and the difference 

between the E-box distribution in Myc
wt 

and Myc
HEA

 samples was tested with the χ
2
 test. 

Functional annotation analysis to determine the gene set categories was performed using 

Molecular signature database (MsigDB) of GSEA Broad Institute 

(http://software.broadinstitute.org/gsea/msigdb/annotate.jsp ). 

  

https://genome.ucsc.edu/index.html
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
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3. Results 

3. Results 

 Design of Myc mutants compromised in DNA binding 3.1

bHLH proteins binding to DNA is characterized by two types of interactions: the 

sequence-specific contacts with the E-box nucleotides and the generic affinity for the DNA 

backbone
165,166,170–172,191,258

. We took advantage of the published Myc/Max-DNA structure 

(PDB ID:1NKP)
166

 to analyze in detail the structural basis for Myc/Max-DNA recognition. 

In the crystal, Myc residues H359 and E363 recognized the constant part of the consensus 

E-box (CANNTG, Figure 12, in green), while the R367 contacted with the central G4 of 

the CpG core (CACGTG, Figure 12, in yellow), as originally described
166

.  

Figure 12. Schematic representation of Myc/Max dimer residues which interact with DNA. 

The amino acid residues of Myc (blue) and Max (red) that interact with the DNA backbone and/or the E-box 

nucleotides are indicated by arrows. The constant part of the E-box is showed in green, in yellow the variable 

core. 

 

The R367 side chain was also involved in an H-bond with the phosphate group of the DNA 

backbone. Two other Arginine residues, R364 and R366, mediated similar sequence-

independent interactions. The same types of protein-DNA interactions were also observed 
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on the other half of the binding site: Max residues H28 and E32 recognized the E-box 

(residues C1,A2 and G6’, respectively), while R33, R35 and R36 interacted with the 

backbone.  

The residues involved in the backbone recognition are strongly conserved among the 

bHLH protein family (Figure 13), with the exception of R15 (Myc R367) which is 

conserved only in the class B bHLH (to which Myc and Max belong) consistently to its 

role in recognizing the variable core of the E-box. Among the amino acids which contact 

the constant part of the consensus E-box only the Glutamic acid (E11) has been found 

conserved among the entire bHLH protein family, while the Histidine (H7) conservation is 

restricted to the class B. In class A proteins the Histidine can be substituted either by 

another polar amino acids, like Asparagine, which contacts the E-box nucleotide in a 

similar way
258

 or by the hydrophobic Alanine. In the latter case it has been observed that 

the Alanine residue is not involved in the DNA interaction, which instead is mediated by 

the polar amino acid in position 8, which is able to contact the T5 nucleotide 

(CANNTG)
170

. 

 

Figure 13. bHLH proteins basic region composition. 

In the alignment is shown the basic region sequences of some members of the bHLH protein family, divided 

into the two classes A and B according to the E-box core preference. The residues which recognize the E-box 

nucleotides are highlighted in green, in light blue the residues which interact with the DNA backbone. 
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In a work from 1992, the effects of mutations of Myc three Arginines R364, R366 and 

R367 into Alanines (henceforth, Myc
RA

) were analyzed; the mutant failed in the 

transactivation of a reporter gene and also lacked transforming ability consistently with our 

structural observations. This is not surprising considering the biochemical effects of 

Arginine to Alanine substitution: the positively charged guanidinium group of the Arginine 

can protrude from the helix of the Myc basic region to interact with the phosphate group of 

the DNA backbone while the Alanine, a neutral and small amino acid, would not be able of 

such interaction. We thus decided to further characterize Myc
RA

, taking advantage of this 

mutant to investigate the effects of a general DNA binding impairment on the genomic 

distribution and biological activity of Myc.  

In addition, we designed a new mutant with the aim to inhibit the base-specific contacts 

between Myc and DNA. In the crystal, the negatively charged side chain of E363 interacts 

with the E-box nucleotides C1’ and A2’, while on the other DNA strand, the G6 is 

recognized by the H359 residue. If these two residues are mutated into Alanine, the H-

bond formation between Myc and the DNA bases should be completed prevented. We thus 

generated a mutant with Alanine substitutions at those positions, which we named Myc
HEA. 

 

 Myc
HEA

 and Myc
RA

 retain normal dimerization with Max 3.2

To efficiently bind DNA, Myc needs to dimerize with its binding partner Max. The 

dimerization domain lays within the Helix-Loop-Helix Leucine zipper domain of both Myc 

and Max and the mutations we introduced in the basic region should not compromise such 

interaction. To formally address this, we performed a co-Immunoprecipitation (co-IP) 

experiment. Human embryonic kidneys (HEK) 293T cells were transfected with plasmids 

expressing Myc
wt

, Myc
HEA

 or Myc
RA

 proteins with a FLAG tag at the N-terminus. 48h 

after transfection, the cells were lysed and subjected to immunoprecipitation with FLAG-

agarose conjugated beads. Equivalent amounts of the different FLAG-tagged Myc proteins 
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co-immunoprecipitated similar amounts of endogenous Max (Figure 14) thus 

demonstrating that the RA and HEA mutations did not affect Myc/Max dimerization. 

 

Figure 14. Myc
HEA

 and Myc
RA

 mutants maintained the dimerization ability. 

Co-immunoprecipitation of Myc
wt

 or mutant with Max. The blot with the anti-FLAG antibody detected a 

comparable expression levels among the samples (input) and the immunoprecipitated FLAG-Myc protein 

(IP); the same samples are tested for the presence of Max. 

 

 Assessment of Myc mutants DNA-binding activities in vitro  3.3

The Myc protein mutants were first tested for their ability to interact with the DNA in an in 

vitro assay. We used a retroviral vector to express Myc
wt

, Myc
HEA 

or Myc
RA 

in the c-myc-

null rat fibroblast cell line HO15.19
259

, which lacks the endogenous protein. As assayed by 

immunoblotting, the various forms of Myc were expressed at comparable levels (Figure 

15A). We then used 10 µg of nuclear extracts in an ELISA-based DNA-binding assay 

(TransAM
®
 c-Myc, as referred in the Materials and Methods section 2.5). As positive 

control, we used nuclear extract from Jurkat cells (Figure 15B, yellow bar), provided by 

the manufacturer, while the HO15.19 cells infected with the empty vector (EV) acted as 

negative control. All three samples expressing Myc showed an increase in the absorbance 

compared to the EV but the OD value of Myc
wt

 was halved in the Myc
HEA

 sample, 

confirming the impairment of this mutant in E-box recognition. In turn, the OD value 

detected in the nuclear extract containing Myc
RA

 was half of the Myc
HEA

 value, according 

to the idea that the RA mutation was more detrimental for the binding. While still to be 
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addressed, we speculate that the residual DNA binding activity of the Myc
RA

 mutant was 

probably due to non-specific interactions between the DNA and other Myc residues; 

moreover, recognition of half of the palindromic E-box sequence by Max could contribute 

to the signal observed with either Myc
HEA

 or Myc
RA

.  

 

 

Figure 15. In vitro binding ability of Myc
wt

, Myc
HEA

 or Myc
RA

 protein.  

(A) Blot with anti Myc antibody to check the protein levels in the nuclear extracts used for the DNA-binding 

ELISA. (B) The binding ability of Myc
wt

 and mutants was determined by the TransAM
®

 c-Myc assay (see 

section 2.1). 10 µg of nuclear extract of rat fibroblast HO15.19 infected with the empty vector (EV) or 

expressing Myc
wt

, Myc
HEA

 or Myc
RA

 were used, while 2.5 µg of the positive control (Jurkat cells nuclear 

extract). On the top of each bar the value of OD detected. 

 

 Re-expression of Myc
wt

 and Myc mutant proteins in rat c-myc null 3.4

fibroblasts  

 Determination of Myc mutant proteins localization and stability 3.4.1

To investigate the protein stability and the cellular localization of the Myc mutants we took 

advantage of the aforementioned rat fibroblast line HO15.19, which grows in the absence 

of the endogenous Myc protein. The levels of Myc
wt

, Myc
HEA

 and Myc
RA 

expressed from 

the retroviral vector are shown in Figure 16 together with the endogenous Myc protein in 

the parental fibroblast cell line, TGR1.  
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Figure 16. Myc re-expression in rat HO15.19 Myc null fibroblasts. 

The expression levels of Myc
wt

 and mutants in the rat HO15.19 c-myc null fibroblasts were tested by western 

blot. The cells infected with an empty vector (EV) acted as negative control, while the parental cell line from 

which the HO15.19 has been derived, TGR1, has been used as positive control. 

 

 

To assess protein stability, cells expressing the different constructs were treated with the 

translation inhibitor cycloheximide (50 µg/ml) and Myc levels were analyzed at different 

time-points by western blot, which revealed a similar turnover in all the samples (Figure 

17).  

 

 

 

Figure 17. Myc
wt

 and mutants protein turnover. 

Myc protein half-life has been investigated in HO15.19 cells overexpressing Myc
wt

 and mutants. De novo 

protein synthesis was blocked by cycloheximide for different time-points and Myc protein levels were 

analyzed by western blot. 

 
 

As already described, the Myc nuclear localization signal is composed by two peptides and 

the residues we mutated in the basic region were located immediately before (E363) and 
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within (R364, R366, R367) the M2 peptide (aa 364-374). We thus investigated the cellular 

localization of Myc
HEA

 and Myc
RA

 by immunofluorescence. As shown in Figure 18, the 

Myc signal (in red) was localized within the nuclei (DAPI, in blue), as proven in the 

merged image for all the constructs, excluding that the nuclear localization of the mutant 

proteins was compromised. 

 

Figure 18. Myc
wt

 and mutants protein cellular localization. 

HO15.19 cells infected with Myc
wt

 and Myc mutants were stained for Myc (in red). The nuclei are shown in 

blue (DAPI) and in the bottom row the two signals are merged. As positive control the parental TGR1 cell 

line was used, as negative control the HO15.19 Myc null cells infected with an empty vector. 

 

 Assessment of the proliferative potential of Myc mutants 3.4.2

To address the capacity of the Myc mutants to promote proliferation we took advantage of 

the infected HO15.19 cells for a growth curve experiment (Figure 19) and a Colony 

Forming Assay (CFA, Figure 20). HO15.19 cells infected with the empty vector showed a 

doubling time of 52 hours, while the parental TGR1 cells had a doubling time of 20 hours. 

Re-expression of Myc
wt

 in HO15.19 cells reduced the doubling time to 24 hours, while 

Myc
HEA

 and Myc
RA

 only showed a marginal increase in proliferation relative to EV, with a 

doubling time around 40 hours.  
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Figure 19. Proliferative ability of rat HO15.19 cells expressing Myc
wt 

and mutants. 

HO15.19 fibroblasts re-expressing Myc
wt

, Myc
HEA

 and Myc
RA 

have been tested in a growth curve experiment. 

70,000 cells were plated at day 0 and subsequently counted and re-plated every three days until day 9.  

TGR1 and HO15.19 EV cells have been used as positive and negative control, respectively. 

 

 

This mild proliferative effect of the DNA-binding Myc mutants might be attributable to 

functions that are not DNA-binding related
146,151,260

. Nevertheless, no rescue at all was 

observed in the Colony Forming Assay, where only the cells expressing Myc
wt 

showed an 

increase in the number of colonies, even if still less than the parental TGR1 cells, while 

cells expressing Myc
HEA 

or Myc
RA

 were comparable to the ones with the EV (Figure 20). 

Moreover, re-expression of Myc
wt 

in the HO19.15 cells
 
reconstituted the spindle shape 

morphology characteristic of the parental fibroblasts TGR1, while Myc
HEA

 and Myc
RA

 

expressing cells showed a round and flat morphology similar to the cells infected with the 

EV (Figure 21), suggesting again an impairment of the two Myc mutants.  
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Figure 20. Colony Forming Assay of HO15.19 cells expressing the different Myc mutants. 

The ability to promote colonies formation of Myc
wt

 and mutants was tested in a CFA. 10,000 cells were 

plated at day 0 and after 9 days the cells were stained with crystal violet. The positive control, TGR1, and the 

negative control, HO15.19 EV, are shown at the top of the figure.  

 

 
 

 

Figure 21. Cell morphology of HO15.19 expressing Myc
wt

 and mutants. 

Cellular morphology was visualized by phase-contrast microscopy. In the top panel the positive control, 

parental TGR1 cells, and the negative control, HO15.19 infected with empty vector. 

 



56 
 

 Generation of a cellular model for the phenotypic characterization 3.5

of Myc mutants 

To more rigorously assess the activity of our Myc mutants, we decided to generate a 

cellular system which depended on Myc activity to grow. To this aim, we used an 

immortalized mouse fibroblast cell line which expressed a tet-myc transgene under the 

control of a doxycycline-inducible promoter, and targeted the endogenous c-myc alleles 

with CRISPR/Cas9 genome editing. The cellular clone we obtained, named cb9 MycΔb, 

was characterized by one c-myc allele encoding for a truncated protein completely lacking 

the C-terminal domain while the product of the other allele was a protein deleted of the 

basic region, the Helix I and the loop (see Materials and Methods, Figure 10). cb9 MycΔb 

cells were thus functionally knock-out for the endogenous mouse myc gene and relied on 

the expression of the exogenous human tet-Myc transgene for their proliferation as shown 

by growth curves and colony formation (Figure 22). The doubling time of the cells when 

the tet-Myc transgene was expressed was around 30 hours, while doxycycline removal led 

to a complete arrest of the population (Figure 22A) and suppressed colony formation 

(Figure 22B).  
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Figure 22. Proliferation ability of cb9 MycΔb fibroblasts. 

(A) Growth curve of Cb9 MycΔb cells with and without doxycycline. At day 0 80,000 cells were plated in 

presence of doxycycline, after two days (red star) the cells were counted and plated with or without 

doxycycline. The cells were then counted every two days up to day 10. (B) 10,000 cells were plated with or 

without doxycycline and let grow for 10 days in presence or absence of doxycycline. 

 

We then performed a time-course experiment, collecting cb9 MycΔb cells at different 

time-points after doxycycline withdrawal to test Myc expression, both at transcript and 

protein levels. We determined the expression level of the c-myc mRNA by qPCR, using 

primers specific for the human (the tet-Myc transgene) or mouse transcripts (the 

endogenous transcript, designed in a portion that is maintained after CRISPR/Cas9 

deletion) (Figure 23A). Human c-myc expression was already suppressed after 8h from 

doxycycline removal and was maintained silent in all the time-points analyzed. Coherently, 

the endogenous c-myc transcription increased as soon as the tet-Myc was switched off, 

consistently with the reported auto-regulatory effect
261

. The result was confirmed also by 

western blot (Figure 23B; note that the double bands visible in the samples without 

doxycycline most likely correspond to the endogenous mouse Myc). Altogether, cb9 
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MycΔb fibroblasts were proven as a good Myc-dependent cellular model in which to 

investigate the functional effects of the mutations in the Myc DNA-binding domain. 

 

Figure 23. Time-course of tet-Myc transgene expression upon doxycycline withdrawal. 

We tested the expression of the tet-Myc transgene at different time-points after doxycycline removal from the 

growth medium. (A) mRNA levels of the endogenous mouse Myc (white bars) and human tet-Myc transgene 

(gray bars) at different time-points. (B) Myc protein levels, the antibody used (Y69, abcam) recognizes both 

human and mouse Myc. 

 

 Overexpression of Myc mutants in cb9 MycΔb fibroblasts 3.5.1

We infected the cb9 MycΔb fibroblasts with retroviral vectors expressing either Myc
wt

, 

Myc
HEA

 or Myc
RA

 under the control of the CMV promoter. The expression levels of the 

different constructs were tested 24h after doxycycline removal. Most importantly, the 

protein levels of the retrovirally expressed Myc proteins were similar among them and 

lower than the one expressed from the tet-Myc transgene (Figure 24A). The mRNA level 

of the constitutive Myc
HEA

 was comparable to the Myc
wt

, while Myc
RA

 transcript level was 

closer to tet-Myc (Figure 24B). Of notice, overexpression of Myc
wt

 (both the tet-myc and 

the CMV-driven construct) but not of Myc
RA

 mutant, repressed the endogenous mouse 

Myc transcription; Myc
HEA

 instead was still able to partially downregulated the 

transcription of the endogenous loci. 
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Figure 24. Constitutive Myc expression in cb9 MycΔb cells. 

(A) Protein levels of the human Myc proteins constitutively expressed. (B) mRNA levels of the endogenous 

mouse Myc, white bars, and human Myc transgenes, white bars. Note that the human Myc primers do not 

discriminate between tet-Myc and constitutive Myc
wt

 and mutants. 

 
 

The subcellular localization of Myc
wt

 and mutants was checked also in cb9 MycΔb 

fibroblasts. We performed immunofluorescence experiments on cells growing in presence 

of doxycycline (expressing both the tet-myc and the CMV-driven constructs, Figure 25A) 

or 24h after doxycycline removal (expressing only the CMV-driven constructs, Figure 

25B): in both cases Myc signal was nuclear, as expected.  
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Figure 25. Myc cellular localization in cb9 MycΔb mouse fibroblasts. 

Immunofluorescence experiment to test the ability of Myc mutants to localized into the nucleus. The nuclei 

are shown in blue, Myc signal in red and in the bottom row the two signals are merged. (A) Cells growing in 

presence of doxycycline were used as positive control. (B) Cells fixed 24h after the doxycycline removal. 
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 Myc mutants show no proliferative activity 3.5.2

To assess the ability of the Myc mutants to sustain cellular proliferation, we determined the 

doubling time of the cells infected with EV, Myc
wt

, Myc
HEA

 and Myc
RA 

in presence or in 

absence of doxycycline (Figure 26). When the tet-Myc transgene was active, all the 

samples showed a doubling time of around 30h, with the exception of Myc
HEA

-expressing 

cells, whose doubling time was delayed to 45 h, suggesting a dominant-negative effect of 

this mutant (Figure 26A). On the contrary, when tet-Myc was switched off, only the cells 

expressing Myc
wt 

maintained proliferation (doubling time, ca. 38h), while Myc
HEA

 and 

Myc
RA

 were both unable to sustain population growth (Figure 26B). 

 

 

  

Figure 26. Proliferative ability of cb9 MycΔb cells expressing Myc
wt

, Myc
HEA

 or Myc
RA

. 

(A) Growth curve of cb9 MycΔb cells constitutively expressing Myc
wt

, Myc
HEA 

or Myc
RA 

in presence of 

doxycycline. 80,000 cells were plated at day 0, the cells were counted and re-plated every two days up to day 

10. (B) Growth curve of the same samples, at day 2 of the growth curve doxycycline was removed from the 

culture (red star). 

 

We also evaluated the fraction of cells in S-phase with BrdU staining 24h after 

doxycycline removal (Figure 27). The percentage of BrdU positive cells in the presence of 

doxycycline was comparable among the samples with a slight increase in cultures 

expressing the CMV-driven Myc compared to the EV. The removal of doxycycline 

determined a decrease in the S-phase cells in all the samples except the one expressing the 

constitutive Myc
wt

. The impairment of both Myc
HEA

 and Myc
RA

 mutants to sustain cellular 
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growth was confirmed in a colony forming assay, where only Myc
wt 

expressing
 
cells were 

able to form colonies in absence of doxycycline (Figure 28).  

 

 

Figure 27. S-phase analysis of cb9 MycΔb cells expressing Myc
wt

, Myc
HEA

 or Myc
RA

. 

Fluorescence-activated cell sorter (FACS) profiles of cb9 MycΔb cells expressing Myc
wt

, Myc
HEA

 or Myc
RA

 

in presence (upper panel) or in absence (lower panel) of doxycycline in the culture medium along with the 

percentage of BrdU-positive cells measured. 

 

 

Figure 28. Colony forming potential of cb9 MycΔb cells expressing Myc
wt

, Myc
HEA

 or Myc
RA

. 

10,000 cells constitutively expressing Myc
wt

, Myc
HEA 

or Myc
RA

 were plated and stained with crystal violet at 

day 10. As control all the samples were also grown in presence of doxycycline. 
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Of notice, cells overexpressing Myc
HEA 

in conditions of
 
the tet-Myc transgene activation 

showed an impairment in colony formation, consistent with the effect seen in the growth 

curve, again suggesting a dominant-negative effect. We also observed that Myc
wt 

overexpressing cells form less colonies relative to the EV and Myc
RA 

expressing cells 

when the tet-myc transgene was on: this may be due to the cumulative expression of Myc, 

reaching Myc levels above the threshold that induces apoptosis
179,232

. We are currently 

evaluating this hypothesis by different assays for apoptosis detection. 

 

 Genome-wide analysis of DNA-binding activities 3.5.3

The investigation of the genomic occupancy of the Myc mutants was performed by 

chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq) with a 

Myc-specific antibody. cb9 MycΔb cells infected with empty vector (EV) or vectors 

constitutively expressing Myc
wt

, Myc
HEA

 or Myc
RA 

were plated in absence of doxycycline 

and fixed with formaldehyde after 24h; as a positive control, we used the cells infected 

with the empty vector and kept in doxycycline to express the tet-myc transgene (EV doxy). 

We first checked some Myc-target (Ncl, CAD, Pus7 and D7) and non-target (AchR) 

promoters by qPCR (Figure 29). While the cells expressing Myc
wt

, either through the tet-

myc transgene (EV doxy) or the retroviral vector (Myc
wt

), showed Myc binding to all the 

regions tested, cells expressing the two mutants, showed very low enrichments, 

comparable to the negative control. 
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Figure 29. Myc binding to the promoter of some target genes. 

ChIP-qPCR at promoters of Myc selected targets (Ncl, CAD, Pus7 and D7) and negative control region 

(AchR).  

 

After next-generation sequencing of the immunoprecipitated DNA, the peak calling 

algorithm retrieved more than 22,000 Myc binding sites in the positive control, only few 

peaks in the negative, around 16,000 for Myc
wt

, 8,000 for Myc
HEA

 and only 250 for Myc
RA

 

(Figure 30). Hence, at this level already, we could surmise that Myc
HEA

 retained some 

DNA binding activity, while Myc
RA

 was profoundly impaired. 

 

 

 

Figure 30. Myc peaks number and distribution. 

Number of peaks identified in the ChIP-Seq experiment and their annotation at promoters (-2kb to +1kb from 

the TSS), enhancers (sites different from promoters and marked with H3K4me1), intragenic (in the gene 

bodies, more than +1kb away from the TSS) or distal regions (none of the above).  
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In tet-myc expressing cells, around half of the peaks were located in promoters, while the 

remaining binding sites were mainly in the enhancer regions (defined as sites marked with 

H3K4me1 different from -2Kb + 1Kb from an annotated refseq TSS) and only a low 

percentage inside gene bodies or in distal sites. The distribution of Myc-binding sites in 

Myc
wt

-infected cells
 
was similar. The number of peaks was halved in the cells expressing 

Myc
HEA

, with a percentage slightly higher on promoter regions (62%).  

Almost all the Myc peaks of each sample were a subset of the positive control EV doxy 

and interestingly the vast majority of the Myc
HEA

 peaks were retrieved also in the Myc
wt

 

sample, indicating that the binding sites retained by the Myc
HEA

 mutant were a subset of 

the Myc
wt

 targets (Figure 31). 

 

 

 

Figure 31. Overlap of Myc-ChIP peaks among the samples. 

Percentages of peaks overlapping (by at least 1 bp) among the different samples are reported in each column; 

cells expressing tet-Myc transgene (EV doxy) and the cells infected with the empty vector (EV) were 

considered as positive and negative controls, respectively. 

 

 

The same result could be visualized in a heatmap showing the union of all the peaks on 

chromosome 1 obtained in the different samples (without expression of the tet-myc 
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transgene) as shown in Figure 32. The Myc
RA 

sample presented virtually no peaks (similar 

to the empty vector) and only a very low read density (close to background) in the regions 

characterized by Myc peaks in the other samples. Myc
HEA 

instead
 
showed many of the 

Myc
wt

 peaks, but it was characterized by a lower read density.  

Of notice, the analysis of the binding intensity (defined as the value of peak enrichment) of 

Myc
wt

 and Myc
HEA

 proteins to their binding sites revealed that the peaks in common 

between the two samples, which represented the majority of the Myc
HEA

 peaks, correspond 

to the Myc high affinity targets (Figure 33). 

 

Figure 32. Intensity and distribution of Myc peaks on chromosome 1. 

Heatmap showing the library size-normalized ChIP-Seq reads count on chromosome 1 at regions bound by 

Myc in at least one sample. The first four columns show the reads coverage for Myc
wt

, Myc
HEA

, Myc
RA

 and 

the Empty vector, respectively. In columns five to eight the peaks calling from the same samples is shown. In 

the last two columns the presence of a gene in the sense (gene +) or antisense (gene -) DNA strand is 

represented. 
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Figure 33. Binding intensity of Myc
wt

 and Myc
HEA 

proteins. 

The enrichment of the peaks of each sample: in green the boxplot of all the peaks, in yellow the enrichment 

of the peaks in common between Myc
wt

 and Myc
HEA

 and in blue the boxplot of the peaks specific for each 

sample. On the x axis the number of peaks in each category is shown. 

 

 

 E-box analysis 3.5.3.1

The primary tracks of the different ChIP-seq experiments in correspondence to some Myc-

bound promoters, divided in sites without an E-box in the region ±200 bp from the peak 

summit (i.e. Stc35f5, Sept2, Gigyf2, Gin1, Figure 34 left panel) or with one or more E-

boxes (i.e. Ncl, Pus7, Ubfd1, also known as D7, Stc2, Figure 34, right panel), showed a 

complete impairment in the DNA binding by the Myc
RA

 protein, while Myc
HEA

 seemed to 

be defective more specifically in the recognition of the target sites containing the E-box. 

This observation was consistent with the HEA mutation designed, which should disrupt the 

E-box recognition without interfering with the general DNA binding. We next focused our 

investigation on Myc
wt

 and Myc
HEA

 samples, analyzing their ability to recognize the E-

box.  
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Figure 34. Genome Browser tracks at different Myc binding sites. 

Genome Browser tracks of Myc ChIP-seq peaks, divided into non E-box-containing regions (left panels) and 

E-box-containing targets (right panels). In each screenshot from top to bottom: tet-Myc expressing cells (EV 

doxy) as positive control, the cells infected with the EV as negative control and the cells expressing Myc
wt

, 

Myc
HEA

 and Myc
RA

 are represented .The RefSeq genes tracks are shown at the bottom. 

  



69 
 

We first determined the proportion of peaks that contained the canonical E-box 

(CACGTG) or, alternatively, at least one of the non-canonical sequences (CATGTG, 

CACGCG, CATGCG, CACGAG) in Myc
wt

 and Myc
HEA

 samples. As shown in Figure 35, 

the analysis was performed either on the entire set of peaks, or on peaks localized at 

promoters, or on those on enhancers. In all three cases, we observed an increase in the 

fraction of peaks not containing any E-box in the Myc
HEA

 compared to Myc
wt

 sample. 

  

 

Figure 35. Percentage of Myc binding sites containing the canonical or non-canonical E-boxes. 

The pie-charts show the percentages of peaks in Myc
wt 

and Myc
HEA

 ChIP-seq that contain (in the region ±200 

from the peak summit) the canonical E-box (CACGTG, in white), or at least one of the four non-canonical E-

boxes (CATGTG, CACGCG, CATGCG, CACGAG, gray) or none of them (light blue). The analysis was 

performed considering all the peaks, only the peaks on the promoters or only the peaks on the enhancers. 

 

 

We then investigated if the residual fraction of E-box, both canonical and non-canonical, 

present in the Myc
HEA

 peaks was significantly enriched over the random expectation. We 

first defined the so called “E-box genomic background” checking the presence of the E-
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boxes in a window of 400 nt upstream of all the open TSS (defined based on the DNAseI-

hyper-sensitivity data, GEO accession GSM1230377
90

) and then assessed the difference in 

the E-box distribution among our samples and this background using the χ
2
 test. The 

results of this analysis are shown in Figure 36. The pie-charts at the top represent the 

canonical E-box in all open promoters, Myc
wt

- and Myc
HEA

-bound promoters, respectively, 

and the pie-charts at the bottom show the same analysis for the non-canonical sequences. 

Both the canonical and non-canonical E-boxes were enriched in Myc
wt

 and Myc
HEA

, but 

with a different degree of significance: for Myc
wt

 sample the p-value for both types of 

sequences was extremely significant (p<1E-15), while the p-values in the Myc
HEA

 sample 

revealed a less significant enrichment. Interestingly, the direct comparison between Myc
wt 

and Myc
HEA

 revealed an extremely significant difference in the E-boxes content. 

 

 

Figure 36. Significance of fraction of E-boxes present in Myc
wt

 and Myc
HEA

 peaks.  

Myc
wt

 and Myc
HEA 

bound promoters have been analyzed for the presence or absence, in a window of ±200 nt 

from the peak summit, of at least one canonical E-box (A) or a non-canonical one (B). The same analysis was 

performed on all the open promoters, in a genomic range of 400 upstream the TSS of the open promoters. 

The results are shown as pie-charts and the differences among the samples were tested with the χ
2
 test, the p 

values are shown. 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1230377
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We next analyzed the binding intensity of Myc
wt

 and Myc
HEA

 at their binding sites 

stratified according to the presence of the canonical E-box, at least one of the non-

canonical E-boxes, or neither of them (Figure 37); for Myc
wt

, as expected, the regions 

containing the canonical E-box had the highest enrichment, followed by the peaks with the 

non-canonical sequences
18,52,262,263

. This hierarchy was completely lost in Myc
HEA 

sample, 

where the three categories showed comparable enrichments, suggesting that the sequence-

recognition ability was lost and the sites containing the E-box were bound as well as the 

ones without it. This result was confirmed also analyzing the enrichment of only the 

binding sites that were in common between Myc
wt 

and Myc
HEA 

both at promoters or 

enhancers
 
(Figure 38). Altogether, while Myc

HEA
 still showed a residual enrichment of the 

E-box relative to background, which may partly be due to its association with wild-type 

Max, the data were consistent with impaired sequence recognition by this mutant.  

 

 

Figure 37. Enrichment values of Myc
wt 

and Myc
HEA

 peaks. 

The enrichment of all the peaks for each sample, categorized according to the presence of the canonical E-

box (white), non-canonical E-boxes (gray) or none (light blue), is shown as boxplot. At the bottom of each 

boxplot the number of peaks belonging to each category is reported. 
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Figure 38. Binding intensity of Myc
wt 

and Myc
HEA

 protein in the common regions. 

Boxplot representing the enrichment of Myc peaks in the binding sites shared between Myc
wt

 and Myc
HEA

, 

stratified for the presence of the canonical E-boxes (white), non-canonical E-box (gray) or none (light blue). 

The analysis was performed on all peaks and also dividing the peaks in promoter-specific and enhancer-

specific. At the bottom of each boxplot the number of peaks belonging to that category is reported. 
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The loss of specific recognition of the E-box by the Myc
HEA

 mutant was also supported by 

the analysis of the distribution of the motif relative to the peak summits (Figure 39). 

Indeed, for wild type Myc (both tet-myc and CMV-driven Myc
wt

) the E-boxes were found 

exactly under the peak summit, while they were much more delocalized in the Myc
HEA

 

sample. 

The genomic data we generated suggested that mutations of the Myc residues engaged in 

the sequence-specific interaction produced a protein still able to interact with DNA and to 

maintain most of the protein-protein interactions that in part mediate the binding of Myc to 

the chromatin, but lacking the ability to recognize and get stabilized on the target DNA 

sequence, i.e. the E-box. 

 

 

Figure 39. E-box distribution under Myc peaks. 

Distribution of the distance from the peak summits of the canonical E-box (CACGTG) and each of the non-

canonical sequence (CATGTG, CACGCG, CATGCG and CACGAG) in the different samples (the positive 

control EV doxy, Myc
wt

 and Myc
HEA

). 

 

 Analysis of low-affinity non-E-box motifs  3.5.3.2

In addition to the E-box and its variants, other sequence preferences were recently found 

for Myc in high-throughput screenings performed with protein-binding microarrays 
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(PBMs). Two independent studies pointed out that, apart from the E-box and the non-

canonical E-boxes, which are the most significantly bound probes, also the sequences 

composed by half E-box (either CAC or CAT) were among the top targets 
264,265

. Since our 

Myc
HEA

 mutant was not stabilized by the complete E-box hexamer, both canonical and 

non-canonical, we did not examine our data for such sequences; for the same reason the 

contribution of the nucleotides flanking the E-box was not investigated, even if they were 

found to influence the DNA binding strength of Myc in PBM data
201,264,265

. Instead, we 

evaluated the enrichment of the hexamer AACGTT, which was identified as a motif 

preferentially bound by Myc/Max both in a PBM experiment and then confirmed with an 

electrophoretic mobility shift assay (EMSA), and also in ChIP-Seq datasets
265

. 

As already performed for the E-box, we checked for the presence of the AACGTT 

sequence in all mouse fibroblast open promoters and defined these counts as the “genomic 

background”. We than applied the χ
2
 test to assess the difference in the AACGTT 

distribution between the Myc
wt 

or Myc
HEA

 sample and this background. The results of the 

χ
2
 test revealed that the sequence AACGTT was slightly enriched both in Myc

wt
 and 

Myc
HEA

 expressing cells, with a p-value of 0.018, but not at the same degree of 

significance as the E-box sequences. To conclude, beside the new DNA sequences Myc 

has been found to interact with, the E-box remained the top target and our in vivo data 

demonstrated that when the E-box recognition is impaired the Myc functions are 

compromised. 

 

 Generation of Myc
HEA

 knock-in cell clones 3.6

The DNA binding activity of the Myc
HEA

 mutant seemed in contrast with the almost null 

biological activity of the protein in sustaining cell growth. We thus wondered whether this 

residual binding ability corresponded to a phenomenon of non-productive invasion of the 

active chromatin in conditions of Myc overexpression. We repeated the characterization of 
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the Myc
HEA

 mutant in a cellular system where its expression was driven by the endogenous 

promoter. The HEA mutations were inserted into the endogenous c-myc gene loci of cb9 

tet-Myc cells by CRISPR/Cas9. We obtained two cell clones (cb9 Myc
HEA

 clones 10 and 

33) in which both the c-myc alleles were replaced. As control, we isolated two cellular 

clones from the parental fibroblasts population that still contained the c-myc wt sequence 

(cb9 Myc
wt

 clones 6 and 10). The levels of the endogenous Myc protein differed among the 

clones and are shown in Figure 40. 

 

Figure 40. Endogenous Myc protein levels in cb9 clones. 

Myc protein levels of the cb9 clones, expressing Myc
wt

 or Myc
HEA

, with or without doxycycline, were tested 

in a western blot experiment.  

 

 

The impairment of the Myc
HEA

 mutant in promoting cellular growth as well as colony 

formation was confirmed also in this cellular system. The doubling time of the different 

clones in presence of doxycycline varied between 20 and 25 hours (Figure 41A); when 

doxycycline was removed from the medium, the growth rate of Myc
wt 

clones decreased to 

40 hours, but the cells were still proliferating. On the contrary, Myc
HEA

 clones passed from 

a doubling time of around 24h to a complete block of the proliferation (Figure 41B). The 

same phenotype was observed in a CFA (Figure 42): all the samples were able to form 

colonies in presence of doxycycline, with a variability that is in accord with their clonal 

nature, but in absence of doxycycline only the Myc
wt

-expressing clones still formed 

colonies.  
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Figure 41. Proliferative ability of cb9 clones expressing Myc
wt

 or Myc
HEA

. 

80,000 cells are plated at day 0 and counted every two-three days up to day 11. (A) cb9 clones expressing 

Myc
wt

 or Myc
HEA

 growing in presence of doxycycline. (B) Growth potential of cb9 clones expressing Myc
wt

 

or Myc
HEA

 in absence of doxycycline, the red star indicates the day when doxycycline was removed from the 

medium. 

 

 

 

Figure 42. Colony forming assay (CFA) of cb9 clones expressing Myc
wt

 or Myc
HEA

. 

The Myc
wt 

clones and the Myc
HEA

 clones were plated four days at low concentration, 10,000 cells, with or 

without doxycycline. After 11 days the samples were stained with crystal violet. 
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We performed a ChIP-Seq experiment on the different clones both in presence and in 

absence of doxycycline. We first checked by qPCR two Myc-target promoters (Ncl and 

CAD) and a non-target sequence (C/EMP α): all the samples grown with doxycycline 

showed Myc binding to the target regions (Figure 43A). In the absence of doxycycline 

instead, cells expressing Myc
wt 

showed binding to Ncl and CAD promoters, while those 

expressing Myc
HEA

 showed a dramatic decrease in the % of input values (Figure 43B). 

 

Figure 43. Myc binding to target promoters was impaired in Myc
HEA

-expressing samples. 

ChIP-qPCR of selected promoters bound by Myc (Ncl and CAD) and a negative control locus (C/EMPα), in 

cb9 Myc clones grown in presence (A) or in absence of doxycycline (B). 

 

 

All the samples were then subjected to sequencing. Among the samples grown in presence 

of doxycycline (Figure 44A) we observed a decrease in the number of peaks in the two 

clones expressing Myc
HEA

 compared to the two Myc
wt 

samples, maybe as consequence of 

the dominant negative activity the mutant have already shown in the cb9 MycΔb cellular 

system. Nevertheless the number of binding sites recovered spanned from 17,000 to 

30,000, and 24h after doxycycline withdrawal all the samples showed a decrease in peak 
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numbers: the clones expressing Myc
wt 

still
 
had around 10,000 peaks, while in the samples 

expressing Myc
HEA

 the number of binding sites was dramatically reduced and the few 

residual peaks were mainly located in promoter regions (Figure 44B). 

 

Figure 44. Myc ChIP-Seq peaks number and genomic distribution. 

Number of binding sites called in the ChIP-Seq experiment and their annotation at promoters, enhancers, 

intragenic sites and distal regions. (A) Samples grown in presence of doxycycline were considered as the 

positive controls. (B) Cells fixed 24h after doxycycline withdrawal.  

 
 

More than 80% of the peaks retrieved when Myc (wt or HEA) was expressed from the 

endogenous loci were a subset of the binding sites recovered when it was overexpressed 

from the CMV promoter, i.e in the cb9 MycΔb dataset (Figure 45). The direct comparison 

among the clones is shown in the blue box in Figure 45, revealing that the clones 

expressing Myc
wt

 contained almost all the peaks of the Myc
HEA 

samples. Accordingly, the 
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heatmap representing the union of all the peaks of the different clones (without 

doxycycline) on chromosome 1 (Figure 46) showed that the samples expressing Myc
wt

 

were comparable in the intensity and hierarchy of peaks, while the clones expressing the 

mutant
 
conserved only very few peaks.  

 

 

 

 

Figure 45. Myc-ChIP peaks overlap. 

Percentages of Myc peaks overlapping (at least by 1 bp) among all dataset we generated (cb9 MycΔb CMV-

driven Myc expression and the cb9 clones) are shown in each column. The overlap among the four cb9 

clones is highlighted in the blue box. 
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Figure 46. Intensity and distribution of Myc peaks on chromosome 1 in cb9 cellular clones. 

Heatmap showing the library size-normalized ChIP-Seq reads count on chromosome 1 at regions bound in at 

least one clone sample. The first four columns show the reads coverage for the clones expressing Myc
wt 

and 

Myc
HEA

, respectively. In columns five to eight the peaks calling from the same samples is shown. In the last 

two columns the presence of a gene in the sense (gene +) or antisense (gene -) DNA strand. 

 

 

We then analyzed the fraction of peaks containing E-boxes in each sample (Figure 47). In 

these settings, the differences between Myc
wt

 and Myc
HEA

 were minimal; we observed a 

decrease in the non-canonical E-box peaks in favor of sequence-independent binding 

events in the samples expressing the mutant, while the fraction of peaks with the canonical 

E-box remained constant or even slightly increased.  
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Figure 47. Fractions of Myc binding sites containing the canonical or the non-canonical E-boxes. 

The pie-charts show the percentages of total and promoter peaks in cb9 clones expressing either Myc
wt 

or 

Myc
HEA

 that contain (in the region ±200 from the summit) the canonical E-box (CACGTG, in white), at least 

one of the four non-canonical E-boxes (CACGCG, CATGCG, CACGAG, CATGTG, gray) or none of them 

(light blue).  

 

 

These results were confirmed by the analysis of the significance of the E-box fraction over 

the background. As before, we tested the differences among the samples and the genomic 

background, defined as the open promoters, and in this data set both the Myc
wt

- and the 

Myc
HEA

-expressing samples showed the same degree of significance in the enrichment for 
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the canonical E-box (p value<1E-15, Figure 48A), while the enrichment of non-canonical 

sequences was still higher in the Myc
wt

 samples than in the mutant ones (Figure 48B). 

 

 

 

Figure 48. Significance of the E-boxes fractions in the cb9 clones expressing Myc
wt 

or Myc
HEA

. 

The promoter bound by the cb9 expressing Myc
wt 

or Myc
HEA 

have been analyzed for the presence or absence 

(in the window of ±200 nt from the peak summit), of at least one canonical E-box (A) or a non-canonical 

sequence (B). The difference between the samples and the fibroblasts active promoters (-400, o from the 

TSS) was tested with the χ
2
 test and the p values are shown. 
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Nevertheless, by plotting the enrichment of the different categories of peaks (containing a 

canonical E-box, a non-canonical E-box or none), we noticed again that while the Myc
wt 

bound was stronger in the regions containing a canonical E-box or, to a lesser extent, a 

non-canonical sequence, Myc
HEA

 binding intensity was completely sequence-independent 

(Figure 49), suggesting the E-box found under the Myc
HEA

 peaks were not actually bound 

by the protein but may be merely present in the CpG islands Myc usually is associated to. 

 

Figure 49. Enrichment analysis of Myc-ChIP peaks in cb9 clones expressing Myc
wt

 or Myc
HEA

. 

The enrichment of all the peaks of each cellular clone is shown as boxplot. At the bottom of each boxplot the 

number of peaks is reported. The peaks are categorized according to the presence of the canonical E-box 

(white), non-canonical E-boxes (gray) or none (light blue). 

 

 

Moreover, analyzing the distribution of the E-boxes under the summit of the peaks we 

found that, similarly to the experiments in which we immunoprecipitated the 

overexpressed proteins, the E-boxes present under the Myc
HEA

 peaks were not localized 

under the summit (Figure 50). Altogether, our data suggest that the Myc
HEA 

mutant when 

expressed at endogenous levels is almost completely impaired in DNA binding, while 

when overexpressed it can still interact with a large number of open regions, most probably 

in non-productive manner. 
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Figure 50. E-box distribution under Myc peaks in the cb9 clones.  

Distribution of the distance from the peak summits of the canonical E-box (CACGTG) and each of the non-

canonical sequence (CATGTG, CACGCG, CATGCG and CACGAG) in the Myc
wt

 and Myc
HEA

 clones.  

 

 Myc
HEA

 is impaired in activating gene expression 3.7

To investigate the transcriptional activity of our Myc mutants, we selected several known 

Myc-activated genes with promoters containing either canonical E-boxex (smpdl3b and 

pus7) or non-canonical E-boxes (CATGTG, reep6) and analyzed their transcriptional 

response in cb9 MycΔb cells overexpressing Myc
wt

, Myc
HEA

 or Myc
RA

 (Figure 51). The 

expression of all loci was induced by Myc
wt

 (both tet-Myc and CMV-driven Myc) and 

dramatically decreased in the negative EV control. Myc
HEA

 instead, was not able to 

activate the expression of those genes, even if it was physically present on their promoter, 

as shown by the genome browser tracks of the ChIP-Seq experiment (Figure 51, right); a 

similar impairment in triggering gene expression was observed also in the Myc
RA

 sample 

but in this case its occupancy on the genomic regions was minimal.  
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Figure 51. Expression analysis of some Myc target genes in cb9 MycΔb cells constitutively expressing 

Myc
wt

 or mutants. 

On the left RNA expression levels of two Myc-target promoters containing the canonical E-box (smpdl3b 

and pus7) and one containing the non-canonical E-box CATGCG (reep6) are shown. On the right the 

Genome Browser tracks of the same targets in which are represented, in order from the top to the bottom: tet-

Myc expressing cells (EV doxy), the cells infected with the empty vector (EV) and the cells expressing 

Myc
wt

, Myc
HEA

 and Myc
RA

. 

 

If this failure in gene regulation was extended to all Myc
HEA

 bound promoters, it would 

justify the growth impairment of the Myc
HEA

-expressing cells. An alternative, not mutually 

exclusive, explanation could be that among the genes mostly affected by the Myc
HEA

 

DNA-binding defect there were key factors for the cell cycle progression. We already 

showed that the binding to the E-box-containing promoters was the most compromised in 
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the Myc
HEA

 mutant, so we applied a gene set enrichment analysis (GSEA) to this class of 

genes. The sets of genes identified are listed according to their p-value in Figure 52 and 

contains fundamental biological processes, such as metabolism of amino acids and 

proteins, RNA metabolism and translation, nucleotides and carbohydrates metabolism 

(Figure 52, blue stars). Other interesting categories were G2M_CHECKPOINT and 

CELL_CYCLE (Figure 52, red stars), which included cdk4, cdk7 and cyclin D1 and E2 

genes. Failure in the regulation of one or more of these gene categories would led to cell 

cycle arrest and could explained the biological impairment of the Myc
HEA

 expressing cells.  

 

Figure 52. Gene set categories enriched in Myc
wt

 and Myc
HEA

 common E-box containing peaks. 

The gene set categories are listed according to the -(log10(p-value)), for each category the number of genes 

overlapping between our samples and the gene sets is shown in brackets. The blue stars highlight the 

metabolic processes of protein, nucleotides and carbohydrates, in red instead the cell cycle-related processes.  
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In order to complete the picture of the effects of the impairment in the DNA binding 

ability, we are currently investigating by RNA-Seq the transcriptomes of cb9 MycΔb 

fibroblasts overexpressing Myc
wt

, Myc
HEA

 or Myc
RA

. This analysis will give us the 

opportunity to better understand the controversial connection between Myc genome 

binding and its transcriptional activity. 

Moreover, we are planning to address the transcriptional responses to the Myc mutants in 

another cellular system: the 3T9 mouse fibroblasts infected with retroviral vectors 

expressing the protein MycER
wt

, MycER
HEA

 or MycER
RA

 (Figure 53). MycER is a well 

characterized fusion protein between Myc and the ligand-binding domain of a mutant 

estrogen receptor (ER)
266

. The ER domain lacks a transcriptional activity but responds to 

the synthetic steroid 4-hydroxytamoxifen (OHT) translocating the MycER protein from the 

cytoplasm into the nucleus.  

 

Figure 53. MycER
wt

 and mutants protein levels in 3T9 fibroblasts. 

Protein levels of the fusion protein MycER
wt

 and mutants and of the endogenous mouse Myc expressed in the 

3T9 fibroblasts. 

 

An advantage of this setting is that the growth of the cells does not depend on exogenous 

Myc; as shown in the growth curve experiment and the CFA (Figure 54 and Figure55) all 

the samples grew in a comparable way in absence of OHT (of notice, also in this cellular 

system the overexpression of Myc
HEA

 in presence of Myc
wt

 is detrimental for the cells). 
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This will allow the characterization of the short-term response to the MycER activation 

and also could obviate transcriptional differences due to secondary effects.  

 

Figure 54. Proliferative ability of 3T9 cells expressing MycER
wt

, MycER
HEA

 or MycER
RA

. 

70,000 3T9 cells were plated at day 0 in absence (A) or in presence (B) of 400 nM OHT. The cells were kept 

in culture and counted every two days until day 6. 

 

 

 
 

Figure 55. Colony forming potential of 3T9 cells expressing MycER
wt

 or mutants. 

We plated 10,000 cells in presence or absence of OHT and the cells were stained with crystal violet ad day 6. 

 

 

 

At the moment, we have checked the responses of some Myc target genes with promoters 

containing the E-box (CACGTG smpdl3b, CATGTG reep6 and rrp9, Figure 56). Myc
HEA

 

completely failed in triggering the activation of smpdl3b and rrp9, similarly to the Myc
RA

 

sample, while it was able to induce reep6 expression, showing a residual transcriptional 

activity, even though less pronounced that the wt protein. 
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Figure 56. Activation of some Myc-dependent genes upon OHT addition in 3T9 MycER cells. 

Some Myc target genes were analyzed for their expression at 0h, 4h, 8h, 16h and 24h after MycER
wt

 (in 

green), MycER
HEA

 (in red) or MycER
RA 

(in gray) activation. In black the expression level of the 3T9 cells 

infected with the EV. 
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Altogether the data presented in this thesis consistently show the fundamental role of the 

E-box recognition for Myc biological activity. In all systems analyzed the cells expressing 

Myc
HEA

 were unable to sustain the cellular growth, similarly to the Myc
RA

 mutant.  

Genomic analysis revealed that the biological impairment was not coupled to the complete 

absence of the Myc
HEA

 mutant protein from the chromatin, but the binding to a 

conspicuous subset of Myc
wt

 targets in the cb9 MycΔb cells was not enough to ensure 

cellular proliferation. Our hypothesis that the Myc
HEA

 binding events were not coupled to 

the transcriptional regulation of the bound targets was partially confirmed by the 

expression analysis by qPCR of few Myc targets, proving the necessity of a deeper 

characterization of the transcriptional events depending on Myc
HEA 

and Myc
RA

, which is 

currently ongoing. 
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4. Discussion 

4. Discussion 

 Mutations in the Myc DNA binding domain impair its ability to 4.1

sustain cellular growth 

Myc, as all the members of the bHLH protein family, cannot bind DNA as a monomer but 

needs to dimerize with its partner Max to form a tertiary structure that interacts with the 

DNA helix. This binding is believed to occur in two steps: a sequence-independent contact 

with the DNA backbone and a specific interaction relying on the E-box sequence 

(CACGTG or variants thereof). Based on the crystal structure of the Myc/Max dimer, Myc 

residues involved in the recognition of the constant part of the consensus E-box 

(CANNTG) are Histidine 359 and Glutamic acid 363, while Arginine 367 interacts with 

the G of the central dinucleotide CpG
166

. Our re-analysis of the structure (PDB 

ID:1NKP)
166

 confirmed that both the Histidine and the Glutamic residues make contacts 

with the E-box sequence, while Arginine 367, beside interacting with the E-box core, could 

mediate the generic binding to the DNA backbone, together with two other Arginine 

residues (R366 and R367). Our observations were in agreement with the knowledge that 

Arginine to Alanine substitutions of Myc R364, R366 and R367 residues completely 

abolished Myc-induced transformation and its ability to transactivate a reporter gene 
159

. 

We took advantage of this already published mutant (Myc
RA

) to investigate the effects of 

the general DNA binding disruption on Myc functions. Instead, to evaluate the impact of 

the impairment in the other mode of DNA interaction, we generated the Myc
HEA

 mutant, in 

which the residues involved in sequence specific recognition, H359 and E363, were 

mutated into Alanine.  

In an in vitro assay both Myc
HEA

 and Myc
RA

 mutants showed an impairment in DNA 

binding, at different extent according to their original design. Since both the mutants 



92 
 

retained a residual binding ability when compared to a negative control, we are planning to 

assess the specificity of Myc
HEA

 and Myc
RA

 binding to the E-box probe by competition 

binding assays. 

These mutant proteins were used to further investigate the role of the two types of DNA 

interactions in Myc biology and functions. 

We characterized the ability of the Myc mutants to sustain and/or promote cellular 

proliferation in different cellular models: rat fibroblasts knock out for the c-myc gene (rat 

HO15.19) and mouse fibroblasts in which we engineered the endogenous c-myc alleles in 

order to produce a Myc protein devoid of the basic region (cb9 MycΔb). 

In the first system we used, the rat HO15.19 cells, overexpression of both Myc
RA

 and 

Myc
HEA

 mutants produced a slight advantage in proliferation (as assessed by growth 

curves) if compared to the cells infected with the empty vector. These cells were produced 

by targeted homologous recombination that disrupted both the endogenous c-myc loci and 

are characterized by a lengthened cell cycle and growth impairment
259

. In 2007 Cowling 

and Cole used this cellular system to investigate Myc biological activity which did not 

depend on the direct DNA binding
260

 by taking advantage of two Myc mutants, one 

completely lacking the C-terminal bHLH-LZ domain and the other with the residues 364-

367 of the basic region, RQRR, mutated into ADAA. Of notice, this second mutant is quite 

similar to our Myc
RA

 mutant and its expression in the HO15.19 cells partially rescued the 

proliferative defects of those cells, as we also observed for the Myc
RA

 and Myc
HEA 

mutants. Surprisingly, also the mutant devoid of the entire C-terminal domain (and thus 

completely unable to bind the DNA) showed similar rescue ability. Given this data, we 

interpreted the growth advantage of the HO15.19 cells expressing Myc
RA

 or Myc
HEA

 as an 

effect of DNA binding-unrelated functions of Myc in a cellular system which is adapted to 

grow without Myc at all.  

Indeed, in the mouse cb9 MycΔb cells, whose growth was dependent on the presence of 

Myc, both Myc
HEA

 and Myc
RA

 were totally unable to sustain cellular proliferation when 
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wild-type Myc was inactivated, demonstrating that both kinds of Myc-DNA interactions 

(general backbone recognition and sequence-driven binding) are fundamental for Myc 

functions. 

 

 E-box recognition is required for stabilization of Myc binding to 4.2

DNA 

Despite a similar phenotype, Myc
HEA

 and Myc
RA

 mutants were dramatically different in 

their genomic distribution: the number of Myc binding sites retrieved after a ChIP-Seq 

experiment in cells overexpressing Myc
HEA

 was around 8,000 (half respect to Myc
wt

), 

while Myc
RA

 showed less than 300 peaks, consistent with the fact that mutations of the 

residues involved in the interaction with the DNA backbone completely disrupted the 

binding ability of the protein. In depth analysis of Myc
HEA

 binding sites revealed that half 

of them still contained an E-box (canonical or non-canonical), but those sites were not 

bound at higher enrichment relative to regions devoid of binding motifs, as instead 

observed for Myc
wt

,
 
in our own experiments as well as in several others

52,90,219,222,223
. These 

data suggested that the E-boxes found under the Myc
HEA

 peaks were actually not 

specifically recognized by the mutant protein. This hypothesis was confirmed by the fact 

that while the E-box was exactly positioned under the peak summits in the Myc
wt 

ChIP-

seq,
 
it was more de-localized in the Myc

HEA
 sample. We thus concluded that the Myc

HEA
 

protein was not able to discriminate and preferentially bind the E-box compared to any 

other sequence, validating the rationale followed for the generation of this mutant. The 

residual enrichment of the E-boxes observed in the Myc
HEA 

bound sites may be partially 

due to the protein association with wild-type Max that can recognize half of the 

palindromic sequence. Even more important, the E-box sequence is a CpG-containing 

motif and CpG islands were one of the first genomic features to be described as major 

determinant for Myc binding in vivo
219,220

.  
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The above results were confirmed in another cellular system, the cb9 clones, in which the 

Myc
HEA

 mutant was not overexpressed, but transcribed from the endogenous loci. In this 

case, the number of ChIP-seq peaks retained by the Myc
HEA

 samples was drastically 

reduced compared to the Myc
wt

 samples: indeed, only few hundreds high affinity peaks 

were maintained.  

Of the two datasets we generated for the analysis of the Myc
HEA

 mutant, the first one was 

characterized by the overexpression of the protein (cb9 MycΔb cells), while the second one 

allowed the investigation of the DNA binding capacity of the endogenously expressed 

protein (cb9 clones). Even if the phenotypic characterization in both cellular systems 

showed a similar impairment of the Myc
HEA

 mutant in sustaining cellular growth, at the 

genomic level the differences were striking: when Myc
HEA

 was expressed at endogenous 

levels, it retained hundred peaks, which corresponded to the top targets of the Myc
wt

 

samples; when it was overexpressed instead, it still bound half of the Myc
wt

 binding sites. 

We interpreted the difference in the DNA binding profiles as the effect of the so called 

chromatin invasion capacity of Myc: when overexpressed, Myc can be crosslinked to 

virtually all active chromatin
38,90,222,223

, most probably thanks to the non-specific DNA 

binding events and the protein/protein interactions that the Myc
HEA 

protein still retained. 

The sequence-recognition impairment of the Myc
HEA

 mutant led to a unique situation in 

which on one hand the DNA binding was widespread along the open chromatin, but on the 

other hand the binding hierarchy was completely lost, as the high affinity sites containing 

the E-box were bound with the same strength as the sites without any target sequences. 

 

 Myc binding to chromatin is not predictive of gene regulation 4.3

Given the ability of the overexpressed Myc
HEA

 mutant to invade the open chromatin we 

had to face another issue: why did the HEA and RA mutations have a similar effect on the 

capacity of Myc to sustain cellular proliferation, given the differences observed in their 
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DNA binding capacity at the genome-wide level? In fact, while the Myc
RA

 mutant was 

almost completely impaired as DNA binding protein, the Myc
HEA

 protein, at least when 

overexpressed, still had around 8,000 binding sites, many of them localized in promoter 

regions. The most conservative explanation would be that, even if bound to DNA, this 

mutant was actually transcriptionally inactive. Indeed, we verified that this was the case, at 

least at selected Myc target genes, and we are now planning transcriptomic analysis at the 

genome-wide level by RNA-Seq to obtain a more complete picture. If this would be 

confirmed, it will reinforce the notion that Myc DNA binding, even at promoters, is not 

predictive of gene regulation, which implies that, although often co-occurring, Myc 

invasion and RNA amplification are functionally independent phenomena
38,52,90,267

.  

 

 Myc genome recognition in vivo 4.4

As already described, when Myc is overexpressed it invades all the open chromatin 

regions, maintaining nevertheless the binding hierarchy between high affinity and low 

affinity sites. Recently, from the analysis of genome-wide data, a debate emerged 

regarding the recruitment of Myc to chromatin and the actual relevance of sequence-

dependent binding. Our group proposed a stepwise model for Myc/Max recruitment to its 

high affinity targets, illustrated in Figure 57
224

: we hypothesized an initial protein-protein 

interaction with chromatin-associated factors, which does not require any direct DNA 

contacts and would already restrict Myc binding to a subset of the potential targets in the 

whole genome. This first event would be followed by sequence-independent engagement 

of Myc/Max onto DNA, allowing sliding of the dimer along the DNA until encountering a 

high affinity site (E-box) to which it binds in a more stable way. This stepwise binding 

model found a confirmation in the analysis of the genome-wide profiles of Myc
HEA

 and 

Myc
RA

 mutants. The few peaks retained by the Myc
RA

 protein in our ChIP-seq experiment 

were consistent with the notion that this mutant was designed to be completely impaired in 
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DNA binding, so it could undertake only the first mode of interaction (Figure 57B); since 

the crosslink with formaldehyde does not efficiently stabilize the protein-protein 

interactions, the number of binding sites obtained was comparable to the negative control. 

The Myc
HEA

 mutant instead was designed to be able to interact with the DNA, but to fail in 

the third mode of interaction, the sequence-specific binding (Figure 57 A). Myc
HEA

 protein 

was recruited to the chromatin by protein-protein interactions, as Myc
RA

, and once in 

proximity to the DNA it engaged a non-specific interaction which allowed the dimer 

sliding along the DNA in search of high affinity targets. Of notice, even in those Myc
HEA

 

peaks which actually contained an E-box, or a non-canonical E-box, the target sequences 

were not found under the peak summit (as in the Myc
wt

 sample) but were widespread 

around, indicating that binding of the Myc
HEA

 protein was not stabilized by the E-box.  

The differences in the DNA binding mechanisms of the Myc
HEA

 and Myc
RA

 mutants led 

also to an interesting condition: Myc
HEA

, when overexpressed in presence of Myc
wt

 (both 

endogenous or expressed from a transgene) acted as dominant negative protein and we 

hypothesized that this phenotype, which was not observed with the Myc
RA

 mutant, may be 

intrinsic of the Myc
HEA 

ability to bind DNA. It is known that Myc/Max dimers are 

stabilized through the interaction with DNA, a feature preserved in Myc
HEA

/Max but not in 

Myc
RA

/Max dimers: consequently only Myc
HEA

 would efficiently sequester Max in 

transcriptionally inactive complexes.  

Interestingly, substitutions of the E residue in human bHLH proteins Twist1 and Twist2 

have been found associated with different craniofacial disorders and the characterization of 

such mutations in Caenorhabditis elegans revealed that both the mutated proteins retained 

DNA-binding ability but acted as dominant negative, thus affecting gene expression
268–270

. 

As all the bHLH proteins, Twist1 and Twist2 have to bind the DNA as obligate dimers and 

the authors proposed a model in which the mutated proteins titrate the binding partner, 

similarly to how we hypothesized Myc
HEA

 could sequester Max. 
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Figure 57. In vivo Myc/Max DNA binding model. 

This model described Myc/Max binding to DNA as a stepwise process; first the dimer is recruited to 

chromatin by protein-protein interactions, without a direct DNA contact (mode1). This initial event is 

followed by the direct interaction with the DNA in a sequence independent way (mode 2) and the low affinity 

interaction between Myc/Max basic regions and the DNA backbone allows the dimer to move along the 

DNA scanning for an E-box, giving rise at last to a transcriptional productive binding (mode 3). 

The two mutants are impaired in different modes of interaction. (A) Myc
HEA

, in purple, can bind the DNA 

and moving along it but is not able to recognize the E-box sequence (transition from mode 2 to 3); 

nevertheless the Myc/Max dimer is stabilized by the generic interaction with the DNA. (B) Instead Myc
RA

, in 

light blue, is unable to go from mode 1 to mode 2 and this impairment leads to the dissociation of the dimer.  

 

Altogether, the data presented in this thesis not only confirmed our model of Myc-

chromatin interactions, but also suggested that Myc unspecific binding to DNA is not 

sufficient for the transcriptional regulation since the sequence-specific DNA binding is 

fundamental to trigger the gene expression. 
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