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Abstract  

This study utilized 2D-DIGE, isotope-coded protein labelling (ICPL) and biochemical assays to characterize 

protein alteration in Ulcerative Colitis (UC) and Crohn’s Disease (CD) in human epithelial cell and mucosal 

biopsies in Inflammatory Bowel Disease (IBD)-affected patients. The aim of this study is to identify the key 

molecular signatures involved in epithelial cell structure of IBDs.  

In non-inflamed UC (QUC) keratins, vimentin and FAK increased, whereas vinculin and de-tyrosinated α-

tubulin decreased; inflammation (IUC) exacerbated molecular changes, being COL6A1, tenascin-C and 

vimentin increased. In non-inflamed CD (QCD) TNC, de-tyrosinated α-tubulin, vinculin, FAK and ROCK1 

decreased while vimentin increased; in inflamed CD (ICD) COL6A1 and vimentin increased. In QUC, cell 

metabolism was characterized by a decrease of the TCA cycle enzymes and a decrease of ACADSB, FASN, 

pparα and pparγ. In QCD a metabolic rewiring occurred, as suggested by GPD2, PDHB, NDUFS3 and 

ALDH9A1 increment, while DLD decreased. Macroautophagy was activated in QUC and IUC, with 

increased levels of p62, HSC70, MVP, MYH9, whereas it was blunted in QCD and ICD. 

The differing pattern of ECM, cytoskeletal derangements, cellular metabolism and autophagy in UC and CD 

may contribute to the pathophysiological understanding of these disorders and serve as diagnostic markers in 

IBD patients.  
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Statement of significance of the study  

The identification of potential disease molecular signatures in UC and CD help shed light onto these 

complex disorders, highlighting new molecules, at cytoskeletal, metabolic and cell renewal level, which 

have never been described before in IBD. The study provides clear indication on the cytoskeletal 

rearrangement taking place in UC with the contribution of ECM and microenvironment to cell signalling 

from outside to inside the epithelial cell. Inflammation exacerbates this rearrangement, modifying membrane 

stiffness and favouring leucocytes homing. For the first time in IBD, the authors have described the 

increment of a specific enzyme involved in isoleucine catabolism with activity towards the degradation of 

branched-chain fatty acids (HSD17B10) that contribute to cell homeostasis and make cells able to support 

energy requirements by promoting the activation of the mTOR signalling. Another original observation is 

that in UC, macroautophagy is sustained by over-expression of p62, MVP and MYH9.  

Concerning CD, its severity is highlighted by the absence of autophagy and cell renewal, whereas a 

metabolic rewiring to sustain cell metabolism occurred. Another unique aspect is the increase of vimentin, 

which can promote, together with impaired autophagy and an increase in COLVI, myofibroblasts 

transformation leading to fibrosis, a condition that characterises CD patients. 
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1 Introduction 

Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory conditions of the 

gastrointestinal tract. They comprise Crohn’s Disease (CD) and Ulcerative Colitis (UC). Both CD and UC 

are characterized by a persistent inflammation that disrupts both the structure and functioning of the 

gastrointestinal mucosa. The aetiology and exact pathogenic mechanisms of IBD are unknown, however 

much interest has recently focused on an aberrant immune-inflammatory response to intestinal microbiota in 

genetically predisposed individuals. An important role in the interaction between microbiota and external 

antigens with our organism is attributed to the intestinal epithelium, which is no longer identified as a mere 

effector of absorptive and secretory activities but is recognized as an immunologically active cell population 

as well as a critical barrier to the penetration of threatening external factors. Normally, the intestinal 

epithelium is covered by a single layer of intestinal epithelial cells (IECs), which are characterised by a fast 

renewal rate, and it acts as a protective barrier against luminal antigens. Cells are linked by intercellular tight 

junctions, located at the apical ends of the lateral membrane, and they are coated by a thick adherent mucus 

gel, which forms a dynamic physical interface [1]. This barrier represents the largest area of contact between 

the inside of our body and the external environment and it is surrounded by many inflammatory cell types. 

Despite its robust and multi-faceted nature, this barrier can be damaged, thus promoting a state of chronic 

inflammation due to mucosal immune cell infiltration, as is typically observed in IBD patients [2]. Indeed, at 

least for UC, the important role of intestinal epithelial dysfunction has been suggested and the possible role 

of intestinal epithelium-derived antigens as the autoantigen has been proposed [3]. More recently, several 

genome-wide association studies (GWAS) have identified the intestinal epithelium as an important actor in 

the pathogenesis of IBD, indicating several genes related to the epithelial structure. The mechanism of 

autophagy may also be a possible contributor to IBD predisposition [4, 5]. Indeed, the presence of specific 

polymorphisms in the following genes has been shown to be associated with the development of IBD: 

Nucleotide- binding oligomerisation domain-containing protein2 (NOD2) [6, 7], Autophagy-related protein 

16-like 1 (ATG16L1) [8], Unc-51 like autophagy activating kinase 1 (ULK1) [9], Extracellular matrix 

protein 1 (ECM1), Tubulin polymerization-promoting protein (TPP1), Collagen Type VII Alpha 1 Chain 

(COL7A1) [10], ADAM Metallopeptidase Domain 17 (ADAM17) [11] and Fermitin Family Member 1 
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(FERMT1) [12].   

The typical activation of the inflammatory pathways and the consequent unbalance between pro- and anti-

inflammatory cytokines and mediators have been discussed in IBD for a long time; on the other hand, 

molecular changes of the epithelial tissue, including extracellular matrix and junction proteins in both 

inflamed and non-inflamed regions of the intestinal tract in IBD, have only partially been addressed. Thus, it 

appears that studies focusing on intestinal epithelium are warranted. In this respect, the classic proteomic 

approach has been frequently fruitful in the study of several other diseases of unknown aetiology and of 

possible immune-mediated pathogenesis. Thus far, proteomic studies on IBD patients have been mainly 

focused on the effects of inflammation rather than on the understanding of molecular mechanisms leading to 

disease onset or disease exacerbation. Overall, these studies have provided hints on the association of 

inflammation, energy metabolism and oxidative stress as possible driving forces for disease onset and 

exacerbation [13-17].    

Recent independent studies by our group have highlighted the relationship between ECM dysregulation 

caused by Collagen VI deficiency and signal transmission from outside to inside the muscle cell. This 

signalling impacts on mitochondrial homeostasis and autophagy leading to muscle lipotoxicity [18, 19]. In 

the present paper, in order to address the above issues on intestinal epithelial cells from IBD patients, an 

unbiased “omics” approach was carried out to possibly unravel the physiopathological mechanisms that may 

be involved in intestinal epithelial cells homeostasis disruption in UC and CD patients and to detect selective 

changes that are able to differentiate between CD and UC.  

2 Materials and methods 

2.1 Sample collection 

2.1.1 Ethics statement 

The Internal Review Board of the local Ethical Committee approved the study (Ethical Committee Protocol 

number n. 2726, ASL Milano-2, approved on October 2
nd

 2012), in accordance with the 1964 Declaration of 

Helsinki.  

2.1.2 Patients 
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Colonic surgical specimens and non-inflammatory controls were obtained from either UC- or CD-affected 

male and female patients, aged 21 to 82 years, who were admitted to the IRCCS Policlinico San Donato 

(San Donato Milanese, Italy) and who underwent therapeutic bowel resection for IBD or for malignant and 

other non-malignant non-inflammatory conditions. Full-thickness colonic tissues were used as a source for 

the mucosal IEC. In patients who underwent surgical resection for colonic neoplasia, the part of surgical 

specimen that was collected and used for IEC isolation was macroscopically normal and was the most 

distant from the neoplasia. 

Colonic endoscopic biopsies and controls were harvested from male and female patients affected by CD or 

UC, aged 25-70 years, who underwent colonoscopy for diagnostic or surveillance purposes at the IRCCS 

Policlinico San Donato; these were used for protein extraction. 

2.1.3 Isolation of Intestinal Epithelial Cells from surgical specimens 

Colonic surgical specimens were collected and processed immediately after surgical resection, as previously 

described [20]. Briefly, specimens were opened longitudinally, rinsed and examined for macroscopic 

morphological alterations, and representative full-thickness samples were obtained. Intestinal mucosa was 

stripped from the muscularis mucosa, cut into strips and washed in Hank's Balanced Salt Solution (HBSS; 

Invitrogen/GIBCO) containing 10 mM DTT (Sigma-Aldrich) in order to remove mucus. IEC were isolated 

by repeated incubations in HBSS containing 1 mM EDTA (Sigma-Aldrich). A 40% Percoll Plus gradient 

(GE Healthcare), where the IEC was equilibrated at the interface, was used in order to remove mononuclear, 

red blood and dead cells; resulting preparations enriched for IEC were collected and washed twice in PBS, 

and subsequently counted. Cell preparations were stained by means of an immunoperoxidase method, with 

an anti-keratin mAb and a monoclonal antibody directed against a leukocyte common Ag (CD45), resulting 

in a <1% contamination of epithelial cell preparations by LPMC.  

2.2 Proteomic analysis 

Intestinal epithelial cell extracts from surgical specimens were obtained from patients with inflamed UC and 

CD (IUC, ICD; n=10) and patients with non-inflamed UC and CD (QUC, QCD; n=10) and from normal 

pathological specimens obtained from individuals without IBD (control, C; n=10); these were analysed by 
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2D-DIGE, isotope-coded protein labeling (ICPL) and immunoblot assay to evaluate proteome changes in 

inflamed and non-inflamed UC and CD patients compared to healthy controls. 

Confirmatory blots were performed on biopsy specimens from inflamed and non-inflamed colonic mucosa 

obtained during colonoscopy by means of endoscopic biopsies from IUC, QUC, ICD and QCD patients 

(n=5/experimental group) and controls (n=6).  

2.2.1 Protein extraction 

For 2D-DIGE and immunoblot assays, each sample from each subject was suspended in lysis buffer (7 M 

urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, and 1 mM PMSF) and solubilized by sonication on ice. 

Proteins were selectively precipitated using PlusOne 2D-Clean up Kit (GE Healthcare, Little Chalfont, UK) 

in order to remove non-protein impurities, and they were re-suspended in lysis buffer. The pH of the protein 

extracts was adjusted to pH 8.5 by addition of 1 M NaOH. Protein concentrations were determined by 

PlusOne 2D-Quant Kit (GE Healthcare). 

2.2.2 2D-DIGE 

Intestinal epithelial cells extracts were analysed by quantitative 2D-DIGE, followed by mass spectrometry. 

The 2D-DIGE method was inserted in a MIAPE-GE compliant form [21] in Supporting Information Table 

1S. Protein minimal labelling with cyanine dyes (Cy3 and Cy5), 2D separation and analyses were performed 

as described previously [22]. Briefly, the proteins extracted (50 µg) from each individual sample were 

labelled with Cy5, while internal standards were generated by pooling (50 µg) individual samples that were 

Cy3-labeled. Samples were separated on 3–10 nonlinear immobilized pH gradient (IPG) strips; each 

individual sample was run in triplicate (analytical replicates) to minimize the inter-gel variability and 

increase the reliability of the results. Image analysis was performed using DeCyder 6.5 software (GE 

Healthcare). All gel images were imported into individual differential in-gel analysis (DIA) workspaces. 

Using the Batch Processor tool, automated detection of protein spots was performed with the following filter 

settings: estimated number of spots=10000, exclusion slope>1.2; minimal area cutoff<200, and peak 

height=100000. DIA workspaces were then manually edited to eliminate gel artefacts (e.g., plate scratches 

and dust specks) and include any incorrectly excluded spot. The resulting spot maps (containing the spot 

identifiers, locations and normalized volumes for all protein spots in each channel of each gel) were further 
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processed in the biological variation analysis (BVA) module. Individual DIA workspaces for all analytical 

gels were imported into the BVA module. The BVA workspace was used for inter-gel protein spot 

matching. Statistical analysis was performed using the DeCyder 1.0 extended data analysis (EDA) module. 

Protein filters were set to select only those protein spots that matched 90% of the gel images and these 

protein spots were included in data analysis. For proteomic experiments, statistically significant differences 

were computed by independent one-way ANOVA, coupled to Turkey’s multiple group comparison test; the 

significance level was set at p<0.01. To minimize inclusion of false-positive protein spot changes, protein 

expression data were filtered using the following criteria: independent one-way ANOVA, coupled to 

Turkey’s multiple group comparison test (p<0.01), 1.15-fold difference in abundance, and false discovery 

rate (FDR). The change of 1.15-fold and above in protein abundance was adopted for the present analysis, 

taking into account the power of the DIGE method to detect reliable differences in protein abundance down 

to 15% [23, 24]. FDR correction was applied as a multiple testing correction method to keep the overall 

error rate as low as possible [25]. Proteins of interest were identified by mass spectrometry. 

2.2.3 Protein identification by MALDI-TOF MS 

Semipreparative gels, containing 400 µg of total protein extract per strip, were loaded; electrophoretic 

conditions were the same as for 2D-DIGE, except that gels were stained with a protein fluorescent stain 

(Deep Purple Total Protein Stain, GE Healthcare). Image acquisition was performed using the Typhoon 

9200 laser scanner. Proteins were identified by PMF utilizing a MALDI-ToF mass spectrometer (Ultraflex 

III ToF/ToF; Bruker Daltonics, Bremen, Germany), as previously described [26]. In particular, the search 

was performed by correlation of uninterpreted spectra to Homo sapiens entries in NCBInr database 

20100918 (11833178 sequences; 4040378175 residues). Protein identification methods are provided in a 

MIAPE-MS compliant form [21] in Supporting Information Table 1S. (For further information about protein 

identification, see Supporting Information Table 2S and Supporting Information Figure 1S). 

2.2.4 ICPL 

Intestinal epithelial cell extracts obtained from QUC, QCD and C were analysed by differential proteomics 

based on ICPL. A total of 100 µg of proteins per sample were purified using the PlusOne 2D-Clean up Kit 

(GE Healthcare) and protein pellets were then dissolved in 6 M guanidine HCl, pH 8.5. Protein 
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concentration was determined using the PlusOne 2D-Quant Kit (GE Healthcare) and adjusted to 5-10 µg/µL 

in all samples. ICPL labelling of proteins was performed according to the manufacturer’s instructions using 

the SERVA ICPL
TM

 Quadruplex PLUS Kit (Serva, Heidelberg, Germany). C, QUC and QCD were labelled 

using light ICPL_0, heavy ICPL_6 and ICPL_10 labeled reagents, respectively. The three labeled samples 

were then combined and the proteins were purified by acetone precipitation at −20°C overnight. The mixture 

was centrifuged at 20000 × g for 30 min at +4°C. The supernatant was discarded and remaining acetone was 

removed by evaporation at RT. The protein pellet was then dissolved in 50 mM ammonium bicarbonate and 

RapiGest SF surfactant (Waters Corporation) and protein concentration was determined using the PlusOne 

2D-Quant Kit. Reduction and alkylation were performed after adjusting the pH of each sample to 8.5, and 

using DTT (incubation at 60°C for 30 min) and iodoacetamide (incubation at RT in the dark for 30 min), 

respectively. Finally, proteins were digested using trypsin at an enzyme/substrate ratio of 1:50 overnight at 

37°C. Digestion was stopped by formic acid 0.1% (v/v, final concentration). The resulting peptides were 

separated by reverse phase chromatography (75 µm id x15cm PepMap column, Thermo Fisher Scientific) 

using the nano-HPLC EASY-nLC (Bruker Daltonics) through a linear gradient of 85 minutes from 5 % B to 

60 % B (solvent A: water/0.05 % TFA, solvent B: 90% ACN/9.95% water/0.05% TFA) with a flow of 300 

nL/min. The n-LC was coupled with the high-resolution mass spectrometer MaXis hybrid UHR-QToF 

(Bruker Daltonics) for protein identification. Protein quantification was performed on the basis of peptides, 

by using Warp-LC v. 1.2 (Bruker Daltonics). The extracted ion chromatograms (EICs) were calculated by 

using the m/z values of identified peptides and summing the intensities of the mass peaks (mass tolerance of 

0.5 Da). A retention time window was fixed at 0.4 min around the elution time of the identified peptides, and 

only charge states +2, +3 and +4 were taken into account when the EIC was generated. The chromatographic 

peak finder in Data Analysis (Bruker Daltonics) was adopted to detect peaks, and only peptides with an ion 

score above 20 were used to quantify protein species. The areas under the curve were calculated by Data 

Analysis chromatographic peak finder; of the first three peaks of the isotopic distribution were summed for 

both the heavy and light components of an isotopic pair. The regulation ratio was calculated using the 

summed intensities. For statistical analysis, all data were converted in the log space to maintain symmetry 

around zero. The global mean and SD of protein ratios were calculated for each couple of the sample. The 
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cut-off point for protein differential abundance was determined as the mean ± 2SD (95% confidence 

interval) and protein differential abundance was assessed using the Student's t-test. (For further information 

about protein identification, see Supporting Information Table 3S) 

2.2.5 2D-DIGE and ICPL orthogonal validation by immunoblotting 

The 2D-DIGE and ICPL results were validated performing a random analysis via immunoblotting of 16% of 

the identified proteins (Supporting Information Figure 2). Protein extracts (50 µg) from pooled samples were 

loaded in triplicate and resolved on 6–14% polyacrylamide gels. Blots were incubated with rabbit, mouse or 

goat polyclonal primary antibodies as follows: anti-keratin type I cytoskeletal 19 (KRT19; GeneTex, CA, 

USA), 1:3000; anti-tubulin beta-2C chain (TUBB4B; Sigma Aldrich, USA), 1:1000; anti-succinate 

dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial (SDHA; Santa CruzBiotechnology, CA, 

USA), 1:1000; anti-galectin-3 (LGALS3; Abnova, Taipei City, Taiwan), 1:5000; anti-prohibitin (PHB, 

GeneTex), 1:5000; anti-keratin type I cytoskeletal 18 (KRT18; Cell Signaling Technology, Danvers, MA, 

USA), 1:2000; anti-heat shock cognate 71 kDa protein (HSC70; Cell Signaling Technology), 1:1000; anti-

78 kDa glucose-regulated protein (GRP78; Santa Cruz Biotechnology), 1:500.  

After washing, membranes were incubated with anti-rabbit or anti-mouse (GE Healthcare, Milan, Italy) or 

anti-goat (Santa Cruz Biotechnology) secondary antibodies, conjugated with horseradish peroxidase. Signals 

were visualized by chemiluminescence using the ECL Prime detection kit (GE Healthcare). Image analysis 

(Image Quant TL, Molecular Dynamics, Ragusa, Italy) was performed, followed by statistical analysis 

(Student’s t-test, p < 0.05). Data were normalized against the total amount of loaded proteins stained with 

Sypro Ruby Blot Stain (Life Technologies Europe BV, Monza, Italy). 

2.3 Protein quantitation by immunoblotting 

Immunoblotting procedures were as described above. Blots were incubated with rabbit, mouse or goat 

polyclonal primary antibodies (Santa Cruz Biotechnology, except when differently stated) as follows: anti-

collagen type VI alpha 1 chain (COL6A1), 1:200; anti-tenascin C (TNC), 1:1000; anti-integrin β7, 1:500; 

anti-integrin α4, 1:500; anti-focal adhesion kinase (FAK; Cell Signaling Technology), 1:1000; anti-Rho-

associated protein kinase 1 (ROCK1; Cell Signaling Technology), 1:1000; anti-vimentin, 1:1000; anti-

detyrosinated α-tubulin (de Tyr α-Tubulin; Abcam, Cambridge, UK), 1:500; anti-vinculin, 1:500; anti-citrate 
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synthase, 1:500; anti-fatty acid synthase (FASN), 1:100; anti-peroxisome proliferator-activated receptors 

gamma (pparγ), 1:500; anti-peroxisome proliferator-activated receptors alpha (pparα), 1:500; anti-heat shock 

cognate 71 kDa protein (HSC70), 1:1000; anti-myosin heavy chain 9 (MYH9), 1:500; anti-major vault 

protein (MVP); 1:2000; anti-ubiquitin-binding protein p62 (p62; Sigma Aldrich), 1:1000; anti-light chain 3B 

(LC3B; Cell Signaling Technology), 1:500; anti-bcl-2-like protein 4 (BAX), 1:1000; anti-beclin1, 1:1000; 

anti-B-cell lymphoma-extra large (Bcl-xL; Cell Signaling Technology), 1:1000; anti-BCL2/adenovirus E1B 

19 kDa protein-interacting protein 3 (Bnip3) 1:1000; B-cell leukemia/lymphoma 2 (Bcl-2; Cell Signaling 

Technology). 

3 Results 

3.1 Comparative proteomic analysis  

To unravel possible molecular processes involved in disease aetiology, intestinal epithelial cell extracts from 

UC, CD patients and controls were analysed by 2D-DIGE, ICPL LC MS/MS and immunoblot assay. 

3.1.1 2D-DIGE 

Intestinal epithelial cell extracts were analysed by 2D-DIGE to assess proteome changes in non-inflamed 

UC and CD patients, compared to controls. 

Concerning UC, epithelial cells were purified from surgical specimens from 10 patients with non-inflamed 

UC and 10 controls. Overall, 1000 spots were matched among gels and 22 spots were changed in abundance 

in QUC vs C. With regard to CD, epithelial cells obtained from patients with non-inflamed CD (n=10) and 

individuals without obvious inflammatory colonic disorder (n=10) were purified as previously described 

[20]. The proteomic analysis provided 27 spots changes in abundance in QCD vs C. A representative 2D 

map of intestinal epithelial cells, after cell extract separation in 3-10 non linear pH gradient IPG strips, is 

shown in Supporting Information Figure 3S. The entire list of proteins differentially expressed together with 

statistical analyses, protein accession number, gene name, theoretical molecular mass, isoelectric points and 

MS data are listed in Supporting Information Table 2S. The protein identification was validated performing 

a random analysis via immunoblotting of 16% of the identified proteins (see Supporting Information Figure 

2S). The identified proteins were then grouped according to their role.  
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The semiquantitative proteomic profile of QUC and QCD vs C (Figure 1) revealed a peculiar signature for 

UC and CD, in which changes of proteins involved in cytoskeleton organization, metabolism, stress and 

antioxidant response played a prominent role. 

Cytoskeletal dysregulation in QUC vs C was characterized by a decrease in keratin type II cytoskeletal 8 

(KRT8) [27], actin cytoplasmic 1 (ACTB), tubulin beta-2C chain (TUBB4B) and mitochondrial inner 

membrane protein (IMMT), whereas keratin type I cytoskeletal 19 (KRT19) increased. Several metabolic 

proteins were decreased, such as: succinate dehydrogenase [ubiquinone] flavoprotein subunit (SDHA), ATP 

synthase subunit beta (ATP5B) and short/branched chain specific acyl-CoA dehydrogenase (ACADSB). The 

latter catalyses the dehydrogenation of acyl-CoA derivatives and is involved in L-leucin catabolism. 

Conversely, there was an increase in 3-hydroxyacyl-CoA dehydrogenase type-2 (HSD17B10), which 

catalyses the oxidation of neuroactive steroids and represents the third step in the beta oxidation of fatty 

acids [28]. Among the proteins involved in stress response: 60 kDa heat shock protein (HSP60), preventing 

protein misfolding) and peroxiredoxin-2 (PRDX2) both decreased, whereas the protein disulfide-isomerase 

A3 (GRP58) was more abundant in QUC than in C. The Elongation factor tu (TUFM), which regulates 

protein synthesis, was down-regulated in QUC compared to controls. 

Conversely, QCD vs C was characterized by a down-regulation of KRT8 and keratin type I cytoskeletal 18 

(KRT18). Metabolic proteins of QCD vs C showed a down-regulation of dihydrolipoyl dehydrogenase 

(DLD), whereas the authors observed an up-regulation of glycerol-3-phosphate dehydrogenase (GPD2), 

pyruvate dehydrogenase E1 component subunit beta (PDHB), NADH dehydrogenase [ubiquinone] iron-

sulfur protein 3 (NDUFS3) and 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1), involved in 

the pathway of carnitine and polyamine biosynthesis. Concerning stress response proteins: heat shock 

cognate 71 kDa protein (HSC70), which is involved in chaperone-mediated autophagy; heat shock 70 kDa 

protein 1A/1B (HSPA1A/B), which contributes to the homeostasis of the immune system by directly 

modulating the expansion and function of conventional T-cells; 78 kDa glucose-regulated protein (GRP78), 

GRP58 and PRDX2 were decreased, thus suggesting the activation of endothelial reticulum (ER) stress and 

unfolded protein response (UPR). Annexin A4 (ANXA4) and annexin A5 (ANXA5), which bind negatively 

charged phospholipids in a calcium dependent manner, were less abundant in QCD, compared to controls. 
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Voltage-dependent anion-selective channel protein 1 (VDAC1), the mitochondrial 28S ribosomal protein 

S22 (MRPS22), the endoplasmic reticulum lipid raft-associated protein 2 (ERLIN2), which mediates the 

endoplasmic reticulum-associated sterol degradation (ERAD), and the complement component 1 Q 

subcomponent-binding protein (C1QBP) involved in inflammation and infection processes, were up-

regulated in QCD. 

Both QUC and QCD compared to C were characterized by a down-regulation of prohibitin. The 

mitochondrial prohibitin complex controls cell proliferation, cristae morphogenesis and the functional 

integrity of mitochondria and inhibits DNA synthesis. Galectin-3 (LGALS3) and carbonic anhydrase 1 

(CA1) were also decreased. Conversely, the receptor of activated protein C kinase 1 (RACK1, shuttling 

proteins around the cell and anchoring proteins at particular locations stabilising protein activity) was up-

regulated, compared to controls [29]. 

3.1.2 ICPL 

To increase the data set of proteomic changes in UC and CD epithelial cell extracts, an ICPL analysis was 

performed (Figure 2). This quantitative proteomic approach allowed for the identification and quantification 

of 2648 peptides, corresponding to 1058 proteins. A stringent statistical analysis was applied to this set of 

identified proteins and only proteins identified by 5 peptides and common to all analysed samples were 

considered. Collectively, 19 proteins were dysregulated in QUC compared to controls, 18 increased and one 

decreased, whereas 5 were at variance in QCD vs C (2 increased and 3 decreased). The first observation is 

that the set of dysregulated proteins is different from the group recognized by 2D-DIGE, but few proteins 

were common to both proteomic analyses, confirming the relevance of these two independent proteomic 

approaches.  

QUC compared to C is characterized by increased levels of structural proteins like myosin-9 (MYH9), 

keratin type I cytoskeletal 10 (KRT10), keratin type I cytoskeletal 14 (KRT14), KRT18, tubulin alpha-

ubiquitous chain (TUBA1B) and vimentin (VIM). On the contrary, the corticosteroid 11-beta-

dehydrogenase isozyme 2 (HSD11B2), which is related to the transformation of cortisol into cortisone to 

counteract inflammation by increasing glucocorticoids, was significantly decreased. Proteins involved in 

transcription regulation and folding were also increased, particularly, the heterogeneous nuclear 
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ribonucleoprotein A1 (HNRPNA1), which is involved in the packaging of pre-mRNA into hnRNP particles 

and transport of poly(A) mRNA from the nucleus, and the major vault protein (MVP), which acts as 

scaffolds for proteins involved in signal transduction. A number of proteins playing a role in chromatin 

remodelling, like histone H2A type 2-A (HIST2H2AA 3), type 1-B (HIST1H2AB), type 1-C (HIST1H2AC), 

histone H3.1 (HIST1H3A) and histone H4 (HIST1H4A), which is a core components of the nucleosome, 

were increased. Proteins associated to protein folding and transport were increased, including: the splicing 

factor proline- and glutamine-rich (SFPQ), which is involved in transcriptional regulation and recruitment of 

histone deacetylases (HDACs); the heat shock protein 75 kDa (TRAP1), which is involved in maintaining 

mitochondrial function and polarization most likely through stabilization of mitochondrial complex I; the 

peptidyl-prolyl cis-trans isomerase B precursor (PPIB), which catalyses the transcription of DNA into RNA; 

the ribosome-binding protein 1 (RRBP1), which mediates the interaction between the ribosome and the 

endoplasmic reticulum membrane; and coatomer subunit alpha (COPA), which is a cytosolic protein 

complex essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins.    

Concerning QCD, this study confirmed a smaller and different spectrum of protein variations compared to 

QUC: sodium/potassium-transporting ATPase alpha-1 chain precursor (ATP1A1) and HIST1H3A increased, 

whereas MYH9, MVP and HIST1H2AC decreased in QCD compared to C.    

From the present proteomic data, protein variation suggests that at epithelial cell level the disease impacts 

differently on the proteome signature of UC and CD, though some features appear common. 

As a result, proteomic analysis offers a hint to decipher the pathophysiological mechanisms associated to 

diseases [18, 30], therefore further analysis to demonstrate the validity of proteomic data, not only through 

the validation of proteomic results by an independent technology but also assessing the impact of 

dysregulated protein on specific sub cellular compartments, could be relevant to gain better insight onto the 

pathophysiological mechanisms of these complex disorders.  

3.2 Protein quantitation by immunoblotting 

To further prove the role of cytoskeleton, metabolism and stress response dysregulations in the intestinal 

mucosa of UC and CD patients, quantitation of selected proteins and of some upstream regulators 

controlling their expression levels was evaluated by immunoblotting.  
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These experiments focused on those cellular metabolic/structural pathways that were identified by previous 

proteomic analyses (e.g. cytoskeleton rearrangement, metabolism and stress response). Interestingly, these 

pathways can significantly impact cell signalling from inside to outside the epithelial cell and vice-versa, 

leading to cell death and failure of cell renewal.  

In this experimental section, protein extracts from colonic endoscopic biopsies from inflamed and non-

inflamed regions of the gastrointestinal tract of UC and CD patients were analysed to explore the role of 

inflammation on the above-mentioned pathways in UC and CD. 

3.2.1 Cytoskeleton rearrangements: Stiffness and cell signal mechanotransduction 

Proteomic results indicated that the cytoskeletal components appear at variance in non-inflamed UC and CD 

compared to controls. In QUC versus controls, different proteoforms of KRT8, ACTB and TUBB4B were 

reduced, whereas KRT10, KRT14, KRT18, KRT19 and vimentin were increased. In QCD vs C, KRT8 and 

KRT18 were decreased. Collectively, these results suggest a possible remodelling of the cytoskeletal 

structure and an altered signal transmission from inside to outside or vice-versa of the epithelial barrier in 

UC, whereas in CD changes appear modest, further supporting the need for upstream regulators of the 

mechanical signal transduction from outside to inside the epithelia cell to understand mechanisms associated 

to epithelial damage.  

Figure 3 panel A and B shows the immunoblotting quantitative analysis of molecules involved in ECM 

molecular structure and signal mechanotransduction in QUC and IUC, compared to controls. With regards to 

QUC vs C, collagen VI alpha 1 chain (COL6A1) and tenascin C (TNC) were unchanged, whereas vinculin 

and detyrosinated α-tubulin (de Tyr α-Tubulin), localized on membrane surface, were reduced. Interestingly, 

focal adhesion kinase (FAK), which are the sensors inside the cell involved in cellular adhesion, and the 

structural protein vimentin were increased, whereas Rho-associated protein kinase 1 (ROCK1), which is 

involved in actin cytoskeleton organization and remodelling, decreased; this suggests a disconnection of the 

system. Inflammation of intestinal mucosa exacerbated molecular changes, being COL6A1, and TNC 

increased, whereas FAK decreased and ROCK1 increased, together with vimentin. Inflammation induces 

further cytoskeletal and ECM remodelling, which might have an impact on membrane mechanical properties. 

Concerning detyrosinated α-tubulin and vinculin, these molecules were decreased similarly to non-inflamed 
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IBD tissue, suggesting that these molecules are not targeted by inflammation and their expression changes 

are primary features of the IBD epithelial layer. To support the differential expression of proteins involved 

in signal mechanotransduction from outside to inside in inflamed tissues, and to determine whether 

lymphocytes’ homing induced by inflammation can be associated to ECM and cytoskeletal protein 

dysregulation, integrin β7 and α4, known to interact with the endothelial VCAM1 proteins [31, 32], were 

analysed by immunoblotting in colonic endoscopic biopsies. Results indicated that integrin β7 and α4 were 

unchanged in QUC vs C, whereas they increased in IUC vs C, confirming the specific role of these 

molecules in inflammation [33].  

Conversely (Figure 3 panel C and D), colonic endoscopic biopsies from QCD patients vs controls were 

characterized by normal levels of COL6A1 and integrin α4, whereas TNC, integrin β7, detyrosinated α-

tubulin, vinculin, FAK and ROCK1 were decreased and vimentin was increased. In ICD vs controls, an 

increase of COL6A1, vimentin and integrin α4 was observed, whereas FAK, TNC, vinculin and 

detyrosinated α-tubulin remained down-regulated, and ROCK1 and integrin β7 remained unchanged. 

Overall, these data suggest the inability of epithelial cells to reorganize their structure under inflammatory 

conditions. These results also indicate that the response of ICD patients is at variance compared to IUC 

patients. In particular, what appears peculiar is the absence of signal response from outside to inside 

epithelia and, in this context, the increase of COL6A1 could be associated to integrin overexpression. 

Furthermore, the increase of vimentin is not related to inflammation response, but could be associated to the 

transformation of interstitial sub-epithelial fibroblasts into myofibroblasts contributing to fibrosis [34-36]. 

Further experiments are required to clearly demonstrate this hypothesis. Collectively, these results indicate 

that substantial differences in the molecules involved in epithelial molecular homeostasis and in 

inflammatory response are present between UC and CD. 

3.2.2 Metabolism 

Proteomic results indicate dysregulation of enzymes involved in fatty acid oxidation (ACADSB and 

HSD17B10) and a decrease in two enzymes of oxidative phosphorylation (SDHA and ATP5B) in QUC vs C. 

QCD patients were characterized by an increase in GPD2, PDHB, NDUFS3 and ALDH9A1, whereas DLD 

enzyme appeared lower, suggesting that a metabolic rewiring could be adopted by the epithelial cell to 
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sustain energy demand, involving polyamine synthesis finalized to citrate homeostasis maintenance. 

According to the alteration of mechanotransduction signalling and to enzymes involved in oxidative energy 

production, the authors question whether citrate and fatty acids could be at variance, together with some 

upstream regulators, of the energy balance. Figure 4 shows citrate synthase, fatty acid synthase (FASN), 

peroxisome proliferator-activated receptors gamma (pparγ) and alpha (pparα) assessed by antigen antibody 

reaction in QUC, IUC, QCD and ICD vs controls.  

UC is characterized by an unchanged level of citrate synthase in non-inflamed patients, but this enzyme is 

decreased in IUC. Conversely, FASN, pparγ and pparα were down-regulated both in QUC and IUC [37], 

suggesting a lipid synthesis and oxidation impairment not supported by alternative metabolic pathways. 

Whereas the reduced expression/activation of pparγ in UC has been repeatedly demonstrated, data on pparα 

appear at variance compared to recent results by Zhou X. et al., Nature Communication 2014, in chronic 

dextran sulphate sodium (DSS)-induced colitis mouse model, in which the genes involved in PPARα-UGTs 

signalling were increased. Further experiments will be required to precisely clarify this discrepancy between 

DSS-induced colitis mice and UC patients [38].  

Concerning CD, decreased citrate levels could be associated to the dysregulation of specific metabolic 

enzymes, revealed by proteomics, suggesting a metabolic rewiring to compensate energy deficiency due to a 

decrement of lipid synthesis and oxidation characterizing non-inflamed epithelial CD cells. Under 

inflammation in CD, the citrate synthase levels were normalized, whereas pparγ increased. These results in 

QCD patients suggested a metabolic dysregulation at the alpha ketoglutarate metabolic node, which can 

induce a metabolic flux deviation toward polyamine and carnitine biosynthesis to refuel energy [39, 40].  

3.2.3 Autophagy in UC and CD 

Proteomic results indicate dysregulation of MYH9 and MVP proteins (for the first time described in IBDs), 

in both diseases and decrement of HSC70 and annexin 4 and 5 in QCD. Figure 5 shows levels of HSC70, 

MYH9 and MVP, respectively, in QUC and IUC compared to controls (panel A) and QCD and ICD 

compared to controls (panel B). The results indicate that HSC70 was unchanged in QUC while it increased 

in IUC. This result in UC cell extracts further supports the ability of these cells to activate the chaperone-

mediated autophagy. MYH9 only increased in QUC, while MVP increased in both QUC and IUC. 
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Conversely, the MYH9 and MVP proteins were reduced in QCD and ICD, while HSC70 was down-

regulated in QCD and it remained unchanged in ICD, thus confirming the proteomic results. Collectively, 

these data suggest that, due to their involvement in cellular homeostasis, these proteins can influence the 

autophagic process. The role of MYH9 has been recently associated to cell renewal following the axis 

Myh9-Rac1-PAK1-Akt pathway in the maintenance of Lgr5+ stem cells in DSS induced colitis [41]. The 

same protein has also been recently associated to p62 levels [42].  

Figure 5 panel D shows that p62 levels were increased in QUC and IUC compared to controls.   

Conversely, p62 levels were decreased in QCD and were increased in ICD (Figure 5, panel F), even though 

in ICD the down regulation of LC3, of MYH9 and MVP indicates that, despite inflammation, rescue 

processes for eliminating damaged material are not efficiently activated.  

To further clarify the nature of the autophagic process (macroautophagy vs chaperone-mediated autophagy) 

other molecules known to be involved in the autophagic flux regulation were assessed by immunoblotting. 

Autophagic flux was estimated by the autolysosome formation through LC3-II increase and p62 protein 

degradation or chaperone-mediated autophagy was assessed by the increase of the HSC70. Besides this, the 

molecules involved in autophagy activation/inhibition, such as BAX, beclin-1, Bcl-xL and BNIP3 were also 

considered. QUC was characterized by a decrease of BAX and BNIP3 and an increase of Beclin-1 and Bcl-

xL, whereas Bcl2 was decreased though not enough to reach statistical significance. In IUC, the pattern is 

characterized by an increase in Bcl-xL and BNIP3 and a decrease in Bcl2.  

Conversely, in QCD no changes were observed in BAX, Beclin-1 and Bcl2, whereas Bcl-xL was increased 

and BNIP 3 was decreased. ICD were characterized by increments of BAX, Bcl-xL and Bcl2, and a 

decreased of BNIP3, whereas Beclin-1 was unchanged [43].   

4 Discussion 

The unbiased differential proteomic approaches adopted in the present study provide evidence of several 

dysregulated molecules that characterise QUC and QCD epithelial cells. Collectively, these data suggest that 

ECM, mechanotransduction, metabolic rewiring and autophagy appear to be crucial nodes highlighting 

discrepancies and similarities in UC and CD at the molecular level and they may help shed light onto the 

physiopathological mechanisms characterizing these two disorders. It is worth noting that some results 
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provided by this study have also been previously observed, both at genetic and protein level; while others 

are original and support the use of a global proteomic approach to investigate physiopathological 

mechanisms of a disease [13-17]. The major pitfall of this study is represented by the restricted number of 

samples analysed and the small, but still present, degree of contamination in our IEC preparation. Despite 

this, a rigorous methodological approach of analysis was used, since only proteins being differentially 

expressed in all samples were considered and, in the case of ICPL methodology, only proteins recognized by 

5 peptides and with the same trend in all samples were taken into consideration. Finally, the validation step 

by antigen antibody reactions, in an independent set of samples and on mucosal biopsies was quite extensive, 

involving results from proteomic analyses and markers of upstream regulating pathways.  

Given that, QUC vs C were characterized by a cytoskeletal rearrangement in which keratin 8 (which was 

recently described as an autoantigen in rheumatoid arthritis [27]) is decreased, whereas other keratins 

(KRT10, KRT14, KRT18, KRT19) are increased, thus suggesting a structural re-arrangement at the 

epithelial level. The latter can account for several pieces of evidence, indicating that physical modifications 

of the epithelial layers, leading to an impaired permeability and cell renewal, have a prominent role in UC 

pathogenesis [44, 45].  

Indeed, IEC structural alterations parallel characteristic shifts in cell metabolic activity; in fact, in QUC vs 

controls, a decrease in enzymes of the TCA cycle and oxidative phosphorylation (succinate dehydrogenase 

and ATP synthase subunit beta), ACADSB, FASN, pparα and pparγ was observed, suggesting a down-

regulation of oxidative metabolism and fatty acid synthesis. Unexpectedly, the proteomic analysis 

highlighted the increase of a specific mitochondrial enzyme involved in isoleucine catabolism, with activity 

towards the degradation of short branched-chain fatty acids (HSD17B10). This amino acid is both 

glucogenic and ketogenic, and under starvation, the reduced carbon skeleton is used for energy production. 

This metabolic route to produce acetyl-CoA is typical of QUC patients and could be adopted by cells to 

support energy requirements and promote the activation of mTOR signalling (see Supporting Information 

Figure 4S). On the other hand, GWAS data [5] are supportive of our results, indicating the role of the ULK1 

gene in IBD. ULK1 is a tight regulator of TORC1/AMPK signalling pathway to sustain intracellular energy 

and nutrient levels in IBD counteracting starvation [9].Interestingly, in 1980, the hypothesis that UC may 
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originate from a defect of fatty acid (n-butyrate) oxidation of IEC was first proposed [46]; along the same 

lines, topical treatment with butyrate enemas showed some efficacy in distal UC [47, 48]. The increase in 

HSD17B10 can suggest an adaptation of the epithelial cell to counteract energy deficiency. Furthermore, 

HSD17B10 is also essential for intracellular steroid metabolism, and altered HSD17B10 enzyme level levels 

may cause a dysregulation in steroid pathways affecting the inflammatory response of colonic mucosa [28].  

The ECM components, such as COL6A1 and TNC, are involved in the integrity of the epithelial barrier and 

can influence outside to inside signalling, thus contributing to the lymphocytes homing. In this context, 

COLVI can promote the formation of the characteristic beaded microfilaments network in the ECM and act 

as a structural support and binding partner for other ECM proteins. Furthermore, it is involved in the 

inhibition of apoptosis and oxidative damage [49]. COL6A1 is a sensor of TGF-β signalling [50, 51] and 

vinculin is the cross-talk between ECM and actin cytoskeleton for the mature focal adhesion assembly [52, 

53]. FAK are necessary for the regulation of mechano-sensory activity of focal adhesions, and the small 

GTPase RhoA links the actin polymerisation at focal adhesions to the global actin dynamics [54]; FAK 

activation leads to the recruitment of PI3 kinase to focal adhesion, activating AKT. ROCK1 is a major 

downstream effector of RhoA and it is a regulator of the actomyosin cytoskeleton, influencing cell 

morphology, cell–cell and cell–matrix adhesion [55]. All these molecules are involved in the regulation of 

matrix stiffness. The latter influences cell migration, proliferation and survival [56, 57], and focal adhesions 

can form and grow only if they experience pulling forces through their cytoskeleton. It is known that growth 

on soft substrates leads to smaller focal adhesions, containing less phosphotyrosine and reduced cytoskeletal 

organisation [58]. In QUC, molecules associated to the cytoskeletal stiffness, such as vinculin and 

detyrosinated α-tubulin, are decreased, suggesting that the mechanical properties of the epithelial barrier are 

changed and the stiffness reduced [53, 59]. This reduction, described for the first time in QUC patients, 

could account also for an impaired cell renewal due to alteration of the mechanical properties of the tissue 

[57]. Further studies, specifically conducted on primary cultures are in progress and are aimed at precisely 

deciphering the role of membrane stiffness in invasion and cell renewal in IBDs. Interestingly, FAK and 

vimentin increased, whereas ROCK1, which is involved in actin cytoskeleton organization and remodelling, 

decreased, thus supporting the hypothesis of a decreased stiffness in QUC patients. Inflammation of the 
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mucosa exacerbated both molecular changes, as pinpointed by the increase in COL6A1, TNC, ROCK1, 

vimentin and lymphocyte homing to intestinal mucosa, which was indicated by increased integrin β7 and α4 

levels; on the contrary, decreased levels of FAK were observed. Concerning detyrosinated α-tubulin and 

vinculin, these molecules were not affected by the inflammatory process; their expression remained low, 

further suggesting the presence of constitutive alterations of the epithelial structure in UC. Indeed, changes 

in the epithelial barrier integrity may impact the autophagic process to eliminate damaged protein and 

organelles, and possible infiltrating bacteria. However, QUC patients are characterized by the activation of 

chaperone-mediated autophagy and macroautophagy. This conclusion is supported by many evidences at the 

molecular level, such as the metabolic stimulation of mTOR, thanks to increased isoleucine production, the 

activation of TORC promoting cell survival, the unchanged levels of HSC70, the increased levels of p62, 

MYH9 and MVP. All these molecules act in synergy and are harmonically regulated to sustain this process. 

In fact, the increase of beclin-1 was paralleled by the inhibitory action of Bcl-xL. Furthermore, 

LC3BII/LC3BI was down-regulated, indicating that LC3BI is not converted to LC3BII through lipidation. 

Collectively, these results suggest that the chaperone-mediated autophagy was not active and the cell 

adopted macroautophagy to eliminate waste material. Under inflammation, MVP, p62 and Bcl-xl remained 

up-regulated this indicates that macroautophagy is a characteristic trait of UC patients. 

Given the role of autophagy in alleviating ER stress and in regulating immune response, further support to 

this process is provided by COPA. COPA is able to promote the binding of proteins targeted for retrograde 

Golgi to ER transport and its increase can counteract ER stress and upregulation of Th17 priming cytokines 

in QUC patients. Interestingly, it has been recently described that gene mutations are associated to arthritis 

and to the COPA syndrome [60]. 

At variance, a different picture characterized QCD, Keratin 8 and 18 were decreased, leading to increased 

sensitivity of the epithelium to stress conditions and to TNF-mediated apoptosis [45]. COL6A1 increased in 

ICD only, while TNC decreased, together with detyrosinated α-tubulin and vinculin, both in quiescent and 

inflamed CD, indicating that the latter are structural variations that are not influenced by the inflammatory 

process and are typical traits of IBDs. However, the decrease of TNC combined with vinculin and 

detyrosinated α-tubulin have an impact on signalling inside the cell, thus inhibiting FAK and ROCK1 
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expression in QCD and hindering cell adhesion and actin filament assembly. Also in this case, the signalling 

is influenced by an increase in TGF-β and inflammation, which stimulate collagen VI expression, but it is 

unable to rescue FAK and ROCK 1 signalling. Collectively, these data suggest that some rescue 

mechanisms of mechanical membrane integrity are blunted in QCD patients, leaving them more exposed to 

bacterial invasion. Furthermore, because vimentin increased both in QCD and ICD, it could be associated to 

interstitial sub-epithelial fibroblasts-to-myofibroblasts transition and therefore contribute to fibrotic 

structures generation [34-36], which is a common complication of CD. To support this hypothesis, further 

experiments adopting primary cell cultures will be required.  

Metabolic rewiring is another point characterising QCD, when it is finalised to sustain energy demand 

involving polyamine synthesis and citrate homeostasis maintenance. Furthermore, the increase in ERLIN2, 

which mediates the endoplasmic reticulum-associated degradation (ERAD) of inositol 1,4,5-trisphosphate 

receptors (IP3Rs) [61, 62] and of sterol-accelerated of HMGCR [63], indicates that the deregulation of 

cellular cholesterol homeostasis may promote ER retention of the SCAP-SREBP complex [64-66], thus 

highlighting the role of changes in cholesterol homeostasis in CD. Such changes have never been described 

before: interestingly, they may account for alterations of cell membrane, ER and Golgi apparatus' structure 

in IEC from CD.  

Furthermore, the disease appears to be characterized by ER stress and UPR, since GRP78, GRP58, and 

PRDX2 are reduced.  

Autophagic impairment represents another critical point in CD. This impairment has already been suggested, 

since ATG genes polymorphysms have been identified in CD, though a detailed analysis at molecular level 

in patients is still lacking. Proteomics indicate a decrease in HSC70, which is a key factor regulating 

chaperone-mediated autophagy. This decrease implies the absence of the chaperone-mediated autophagy, 

which is an important process for the clearance of damaged cells and organelles. The analysis of 

AKT/mTOR pathways, shown as supporting information in Figure 4S, combined with the decrease of p62, 

MYH9 and MVP, the inhibition of beclin-1 by Bcl-xL and the down regulation of LC3BII/LC3BI, indicates 

that both micro and macroautophagy are impaired and inflammation does not induce significant changes to 

overcome this issue. According to the present results, it can be concluded that, not only autophagy is 
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impaired in CD but several processes involved in protein degradation are also blunted. To counteract this 

severe authophagic impairment associated with energy deficiency, it could be relevant, at least for QCD 

patients, to sustain citrate production through polyamines supplementation, which can possibly ameliorate 

the CD phenotype. 

In conclusion, this study shows that specific protein profiles are associated with UC and CD. The study also 

outlines the relevance of autophagy and epithelial cell integrity and identifies specific markers that are likely 

to characterise UC and CD in quiescent and inflammatory conditions. Furthermore, our study identifies the 

role of membrane stiffness in mechanotransduction signalling and its impact on cell death, metabolism and 

stress response. Finally, these results highlight the importance of unbiased proteomic approaches, which 

have been valuable tools in understanding the complex mechanisms associated to IBD. The authors hope 

these results help pave the way for more specific validations of dysregulated proteins in larger cohorts.  
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Legends 

Figure 1. Proteomic analysis by 2D-DIGE. Histograms of differentially expressed proteins observed by 2D-

DIGE in non-inflamed UC (QUC) and CD (QCD) versus controls (C). Two different comparisons were 

performed: QUC vs C (gray bars) and QCD vs C (black bars). Statistical analysis was performed using 

DeCyder EDA 1.0 module; independent one-way ANOVA coupled to Turkey’s multiple group comparison 

test (P<0.01) were used to determine protein spots significantly different between the analyses. 

Differentially expressed proteins are indicated by their gene name and they are expressed as % of fold 

change. List of proteins differentially expressed in all comparisons were grouped according to their role 

together with statistical analysis and are presented as raw data sets in Supplementary Tables 2S. 

Cytoskeleton organization: KRT8, Keratin type II cytoskeletal 8; KRT18, Keratin type I cytoskeletal 18; 

KRT19, Keratin type I cytoskeletal 19; ACTB, Actin cytoplasmic 1; TUBB4B, Tubulin beta-2C chain; 

IMMT, Mitochondrial inner membrane protein. Metabolic proteins: GPD2, Glycerol-3-phosphate 

dehydrogenase mitochondrial; PDHB, Pyruvate dehydrogenase E1 component subunit beta mitochondrial 

precursor; DLD, Dihydrolipoyl dehydrogenase mitochondrial; SDHA, Succinate dehydrogenase 

[ubiquinone] flavoprotein subunit mitochondrial; NDUFS3, NADH dehydrogenase [ubiquinone] iron-sulfur 

protein 3 mitochondrial; ATP5B, ATP synthase subunit beta; ACADSB, Short/branched chain specific acyl-

CoA dehydrogenase mitochondrial; HSD17B10, 3-hydroxyacyl-CoA dehydrogenase type-2; ALDH9A1, 4-

trimethylaminobutyraldehyde dehydrogenase. Stress and antioxidant proteins: HSP60, 60 kDa heat shock 

protein mitochondrial; HSC70, Heat shock cognate 71 kDa protein; HSPA1A/B, Heat shock 70 kDa protein 

1A/1B; GRP78, 78 kDa glucose-regulated protein (GRP78); GRP58, Protein disulfide-isomerase A3; 

PRDX2, Peroxiredoxin-2. DNA synthesis: PHB, Prohibitin. RNA processing: LGALS3, Galectin-3. Protein 

biosynthesis: TUFM, Elongation factor tu mitochondrial. Transport proteins: VDAC1, Voltage-dependent 

anion-selective channel protein 1; MRPS22, 28S ribosomal protein S22 mitochondrial; ERLIN2, 

Endoplasmic reticulum lipid raft-associated protein 2. Others proteins: ANXA4, Annexin A4; ANXA5, 

Annexin A5; CA1, Carbonic anhydrase 1; RACK1, Receptor of activated protein C kinase 1; C1QBP, 

Complement component 1 Q subcomponent-binding protein, mitochondrial. 
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Figure 2. Proteomic analysis by Isotope-Coded Protein Labeling (ICPL). Histograms of differentially 

expressed proteins observed by ICPL in non-inflamed UC (QUC) and CD (QCD) versus controls (C). Two 

different comparisons were performed: QUC vs C (gray bars) and QCD vs C (black bars). Differentially 

expressed proteins are indicated by their gene name and they are expressed as % of fold change. List of 

proteins differentially expressed in all comparisons were grouped according to their role together with 

statistical analysis and are presented as raw data sets in Supplementary Tables 3S. Cytoskeleton 

organization: MYH9, Myosin-9; KRT10, Keratin type I cytoskeletal 10; KRT14, Keratin type I cytoskeletal 

14; KRT18, Keratin type I cytoskeletal 18; TUBA1B, Tubulin alpha-ubiquitous chain; VIM, Vimentin. 

Metabolic protein: HSD11B2, Corticosteroid 11-beta-dehydrogenase isozyme 2. RNA splicing and 

transport: HNRNPA1, Heterogeneous nuclear ribonucleoprotein A1; MVP, Major vault protein. Chromatin 

organization: HIST2H2AA3, Histone H2A type 2-A; HIST1H2AB, Histone H2A type 1-B; HIST1H2AC, 

Histone H2A type 1-C; HIST1H3A, Histone H3.1; HIST1H4A, Histone H4; SFPQ, Splicing factor proline- 

and glutamine-rich. Protein folding: TRAP1, Heat shock protein 75 kDa mitochondrial precursor; PPIB, 

Peptidyl-prolyl cis-trans isomerase B precursor. Transport proteins: RRBP1, Ribosome-binding protein 1; 

COPA, Coatomer subunit alpha; ATP1A1, Sodium/potassium-transporting ATPase alpha-1 chain precursor. 

Figure 3. Stiffness and mechanotransduction. Representative immunoblot images (A, C) and histograms 

(means ± SD; B, D) of proteins expression of collagen type VI Alpha 1 Chain (COL6A1), tenascin C (TNC), 

Integrin β7, Integrin α4, focal adhesion kinase (FAK), Rho-associated protein kinase 1 (ROCK1), Vinculin, 

detyrosinated α-Tubulin (de Tyr α-Tubulin) and Vimentin, in inflamed and quiescent ulcerative colitis (IUC, 

QUC) compared to controls (C), and in inflamed and quiescent Crohn’s Disease (ICD, QCD) compared to C. 

The data were normalized against the total amount of loaded proteins stained with Sypro Ruby. Statistical 

analysis was performed by Student’s t-test (p<0.05). * change compared to control; ‡ variation between 

QUC vs IUC and QCD vs ICD. 

Figure 4. Upstream regulators of fatty acid metabolism. Representative immunoblot images (A, C) and 

histograms (means ± SD; B, D) of proteins expression of citrate synthase, fatty acid synthase (FASN), 

peroxisome proliferator-activated receptors gamma (pparγ) and peroxisome proliferator-activated receptors 

alpha (pparα), in inflamed and quiescent ulcerative colitis (IUC, QUC) compared to controls (C), and in 
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inflamed and quiescent Crohn’s Disease (ICD, QCD) compared to C. The data were normalized against the 

total amount of loaded proteins stained with Sypro Ruby. Statistical analysis was performed by Student’s t-

test (p<0.05). * change compared to control; ‡ variation between QUC vs IUC and QCD vs ICD. 

Figure 5. Autophagy. Representative immunoblot images (C, E, G) and histograms (means ± SD; A, B, D, 

F) of proteins expression of Heat shock cognate 71 kDa protein (HSC70), myosin heavy chain 9 (MYH9), 

major vault protein (MVP), ubiquitin-binding protein p62 (p62), light chain 3B (LC3B), bcl-2-like protein 4 

(Bax), beclin1, B-cell lymphoma-extra large (Bcl-xL), BCL2/adenovirus E1B 19 kDa protein-interacting 

protein 3 (Bnip3) and B-cell leukemia/lymphoma 2 (Bcl-2), in inflamed and quiescent ulcerative colitis 

(IUC, QUC) compared to controls (C), and in inflamed and quiescent Crohn’s Disease (ICD, QCD) 

compared to C. The data were normalized against the total amount of loaded proteins stained with Sypro 

Ruby. Statistical analysis was performed by Student’s t-test (p<0.05). * change compared to control; ‡ 

variation between QUC vs IUC and QCD vs ICD. 
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