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Abstract. Differential Dynamic Microscopy (DDM) analyzes traditional real-space microscope images to extract
information on sample dynamics in a way akin to light scattering, by decomposing each image in a sequence into
Fourier modes, and evaluating their time correlation properties. DDM has been applied in a number of soft-matter and
colloidal systems. However, objects observed to move out of the microscope’s captured field of view, intersecting the
edges of the acquired images, can introduce spurious but significant errors in the subsequent analysis. Here we show
that application of a spatial windowing filter to images in a sequence before they enter the standard DDM analysis
can reduce these artifacts substantially. Moreover, windowing can increase significantly the accessible range of wave
vectors probed by DDM, and may further yield unexpected information, such as the size polydispersity of a colloidal
suspension.

1 Introduction

Differential Dynamic Microscopy (DDM) uses Fourier analy-
sis of microscope image sequences to characterize the structure
and dynamics of a wide variety of physical and biological sys-
tems [1], including dilute isotropic [2,3] and anisotropic [4,5]
colloidal particles, dense colloidal suspensions [6–8], molecu-
lar [9] and complex [10,11] fluids, motile microorganisms [6,
12,13], and sub-cellular structures [14,15]. This broad adop-
tion of DDM stems from its numerous advantages [16], includ-
ing simple implementation with ordinary microscopy, no need
for custom instrumentation, insensitivity to normal amounts of
dirt or multiple scattering, and an ability to focus on regions
of interest in images collected with a variety of image-contrast
mechanisms: bright field [2], dark-field [3], phase contrast [12],
wide field fluorescence [17], polarized [5,11], differential inter-
ference contrast [14], light sheet [18] and confocal microscopy
(ConDDM) [6–8].

Theoretically, DDM probes a range of wave-vectors q that
is determined by two factors: the lower bound qmin,th = 2π/L
is constrained by the image size L, while the upper bound
qmax,th = π/a is controlled by the pixel size a. In real ex-
periments, the practical range [qmin, qmax] for which the statics
and the dynamics can be measured reliably is often more lim-
ited. Limitations can arise from both the statics (e.g. the signal
to noise ratio is too low) and the dynamics (e.g. the observation
time window is too short to adequately sample the dynamics
associated with the slowest modes, or the temporal resolution
is too poor to capture the faster dynamics, typically associated
with the smaller length scales). Other relevant practical lim-
itations may result from mechanical drifts, vibrations or ad-
vective/convective flows driven by thermal inhomogeneities or

pressure imbalance. We note that most of these limitations are
by no means unique to DDM, as other methods (e.g. particle
tracking) are also affected for instance by a poor temporal res-
olution, vibrations and mechanical/convective drifts.

An additional limitation constraining the range of probed
wavevectors arises from the fact that, in any sequence of im-
ages with finite size, particles crossing the edge of the im-
age boundary will be imaged only partially. Thus, the images
contain particles with straight, sharp edges that, as is well-
known in signal processing theory [19], create significant ar-
tifacts in the static Fourier spectrum. This effect is particu-
larly pronounced in systems with limited spatial bandwidth, as
is common in microscope images due to the resolution con-
straints imposed by the diffraction limit. Although, thus far,
this problem has been given little attention, it nonetheless leads
to spurious artifacts in the Fourier transforms of the images,
thereby potentially affecting also the DDM results for the sam-
ple dynamics, though the specific effects have not yet been es-
tablished.

In this paper, we combine theory and experiments to show
that the partial imaging of particles at the boundary, inevitable
for all images of finite size, introduces significant artifacts, namely
a spurious, nearly-q-independent secondary decay in the DDM
image structure functions. This decay, present in principle for
all q, dominates the dynamics at the largest q values, where the
signal associated with particle dynamics vanishes due to the
particle form factor P (q). We mitigate this artifact with a sim-
ple preprocessing step: spatial windowing (apodization) of the
images, which does not increase substantially computational
complexity, yet increases significantly qmax. The expansion of
the accessible range of q values not only improves the accuracy
of DDM in general, but also opens up new analyses in specific

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187976086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Fabio Giavazzi, Paolo Edera, Peter J. Lu, Roberto Cerbino: Windowing mitigates edge effects in DDM

cases; for example, we show how windowing may enable the
estimation of size polydispersity in a colloidal suspension us-
ing a method common in Dynamic Light Scattering (DLS) ex-
periments [20,21]. Remarkably, we show that this artifact also
arises with molecular fluids, as a consequence of the limits im-
posed by diffraction on the detection of sub-wavelength enti-
ties.

2 Boundary effects in dynamic microscopy

A detailed description of the image processing algorithm on
which DDM is based can be found in Refs. [22,2,23,16]. In
brief, a sequence ofN digital images I(x, t) is acquired, where
x = a0 (nx, ny) and t = n∆t0. Here a0 is the effective pixel
size (the physical pixel size divided by the objective magnifica-
tion), nx, ny are integer numbers comprised between 1 and the
image size M (assumed to be the same for both dimensions)
and ∆t0 is the time interval between two consecutive images.
The key quantity from which the dynamical information is ex-
tracted is the so-called image structure function D(q, ∆t), that
is calculated as

D(q, ∆t) =
〈
|FFT [I(x, t0 +∆t)− I(x, t0)]|2

〉
(1)

where FFT indicates the the Fast Fourier Transform opera-
tion and q = q0 (mx,my), with mx,my integers comprised
between−

(
M
2 − 1

)
and M

2 . q0 = 2π
Ma0

. The expectation value
〈·〉 is taken over time and, possibly, over different replicas of
the same experiment.

For a linear space-invariant imaging process, the image struc-
ture function takes the form [23]

D(q, ∆t) = A(q) [1− f(q, ∆t)] +B(q) (2)

where A(q) is an amplitude term that depends on the spatial
intensity correlations present in the images and B(q) accounts
for the noise of the detection chain. The function f(q, ∆t) =
f2D(q, ∆t)fz(q, ∆t) is defined in terms of a transverse part
f2D encoding dynamics in the image plane and an axial contri-
bution fz , which accounts for dynamics in the axial direction.
In most cases of interest, such as for instance when the axial
dynamics can be neglected or when small wave-vectors are of
interest, f(q, ∆t) coincides with the normalized intermediate
scattering function probed by DLS [24,16].

Starting from Eq. 2, the usual strategy in DDM experiments
is based on

1. assuming a suitable functional form describing the time de-
pendence of f(q, ∆t)

2. fitting the image structure function D(q, ∆t) to estimate
the q-dependent parameters describing the relaxation of the
different Fourier modes

3. collecting together the results obtained at different q to ex-
tract the relevant quantity characterizing the dynamics and
the statics of the sample.

For example, for a dispersion of dilute, non-interacting Brow-
nian particles, the expected intermediate scattering function is
f(q,∆t) = exp (−Γ (q)∆t). The fitting procedure provides an

estimate of Γ (q), whose expected scaling with q is Γ (q) =
Dtq

2, where Dt is the translational diffusion coefficient of the
particles. The best estimate for Dt is then obtained by a fit of
Γ (q). In this particular case, no structural correlations are ex-
pected, which means that the estimate for A(q) provided by
the fitting procedure provides information about the form fac-
tor P (q) of the particles and the transfer function T (q) of the
optical setup [23]. In other cases, additional information about
the structural correlations within the sample can be extracted
[6,10,11].

Further insight can be obtained by making explicit the rela-
tionship between the sampled intensity I(x, t) on the detector
and the actual intensity i(x, t) in the image plane as

I(x, t) =W0(x) [i(x, t) + b(x, t)] , (3)

which is helpful to account for finite sampling effects. Here,
W0(x) is a window function that takes value 1 within the image
boundaries and 0 outside and b is a detection noise term that we
assume to be delta-correlated both in space and time.

In the following, we will focus on the case of a collection of
Np identical particles, whose positions are labeled by the coor-
dinates (xn, zn)n=1,2,..,Np . For a linear, space-invariant imag-
ing process [23], we obtain

i(x, t) = i0 +
∑
n

ψ (x− xn(t), zn(t)) (4)

where i0 is the average intensity in the absence of the parti-
cles and ψ represents the intensity distribution associated with
a single particle. In general, ψ is the result of the 2D convolu-
tion of the spatial distribution of the relevant optical parameter
within the particle (e.g. refractive index in the case of bright-
field or dye density in the case of florescence microscopy) with
the three-dimensional point-spread function of the microscope
[23]. By introducing the spatial 2D Fourier transform of the
function g(x):

ĝ(q) =

∫ +∞

−∞
dx

∫ +∞

−∞
dyg(x)e−jq·x. (5)

we obtain after some manipulation the following expres-
sions for the intermediate scattering function f(q, ∆t) and the
amplitude A(q):

A(q) = 2ÑpP (q) (6)

and

f(q, ∆t) =
|Ŵ0(q)|2 ∗ [f∞(q, ∆t)P∞(q)]

P (q)
(7)

where Ñp is the average number of particles within the image
and where we have defined the form factor

P (q) = |Ŵ0(q)|2 ∗ P∞(q) (8)

and its limit for infinitely large samples

P∞(q) = 〈|ψ̂ (q, z) |2〉. (9)
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Fig. 1. Spectral leakage in DDM. A particle crossing image boundaries (top row) excites high-q wave-vectors in the reconstructed Fourier
spectrum (bottom row) along the direction perpendicular to the image boundary. Consequently, the characteristic dynamics associated with
these events produce strong effects at large q. All images are simulated and represented using the same settings (image size: N = 256 pixels,
effective particle radius: σP = 10 pixels), and Fourier spectra are represented on a logarithmic scale with the same color code. The size bar for
real-space images shown in panel (a) corresponds to 100 pixels, while the size bar for Fourier-space images shown in panel (e) corresponds to
2π/σP . A dynamic version of this figure is also available as supplementary movie M1.

The noise term B(q) is expected to be q independent and
proportional to 〈b2〉. These equations describe how the stati-
cal and dynamical properties of particles, when reconstructed
from the FFT analysis of the images, are affected by the pres-
ence of the boundaries and may differ from the ones calculated
for an infinitely extended image, i.e. when Ŵ0(q) ' δ(q). In
fact, only in the latter case the intermediate scattering function
is given by f(q, ∆t) = f∞(q, ∆t). In all other cases, a mix-
ing between different Fourier components occurs, which for
the static amplitude is known as spectral leakage in the signal
processing literature [25].

To have a physical intuition of why spectral leakage also
affects the dynamics, one can consider Fig. 1, where simulated
real-space images of a spherical particle in different positions
(a-d) are compared with the corresponding FFT spectra (e-
h). As far as the particle is well within the image area, the
FFT spectrum does not depend on the particle position and it
closely mirrors the effective shape factor P (q). When the parti-
cle reaches the image boundary, instead (panel 1(c)), a spurious
signal is generated, which affects in particular the largest wave-
vectors, where the amplitude of the ”bulk” signal is lower. This
extra contribution appears as a ”band” localized around the
axis and perpendicular to the image boundary, whose ampli-
tude reach a maximum when the particle is cut in half by the
image boundary (panel 1(d)). If one thinks of the particle dis-
placement as a dynamical process, the temporal persistence of
this extra contribution corresponds to the time needed for the
particle to completely cross the boundary (see also supplemen-
tary movie M1). In the case of a Brownian particle, this char-

acteristic time can be estimated as τP ≈ σ2
P /Dt, where Dt is

the particle diffusion coefficient and σP is the width of its ef-
fective shape, which is the largest number between the particle
size and the size of the microscope point-spread-function. If a
large number of particles is imaged, the boundary contribution
is expected to be always present and to fluctuate with the same
characteristic correlation time τP .

To quantitatively assess this effect, we performed a direct
numerical integration of Eq. 7 for the case of a collection of in-
dependent Brownian particles. The shape of the particles is de-
scribed by a Gaussian profile (with standard deviation σP ) and
the window function W0 is chosen as the characteristic func-
tion of a square with side length N . We assume that the axial
dynamics can be neglected i.e. that f(q, ∆t) ' f2D(q, ∆t) =
exp(−Dtq

2∆t). As a consequence of the spectral leakage, we
find that for q > 1/σP the intermediate scattering functions are
no longer described by a simple exponential function and tend
to decay with a q-independent characteristic time τP ≈ σ2

P /Dt

(Fig. 2b).

Our simulations indicate that these dynamic artifacts can be
avoided if one employs the same windowing procedure that is
popular in the signal processing community for the removal of
spurious static signal correlations [19,25]. Windowing consists
in multiplying the data, before performing the FFT operation,
by a window function, usually a symmetric, bell-shaped profile
that smoothly goes to zero at both ends of the sampling inter-
val. In this way, the virtual periodic signal that the FFT algo-
rithm produces by combining an infinite collection of replicas
of the original image is no longer discontinuous at the bound-
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Fig. 2. Results obtained by numerical integration of Eq. 7 in the case of Brownian particles with Gaussian effective shape with standard deviation
σP = 0.05N (dotted profile in panels (a) and (d)). The image size is assumed to beN pixels. In the absence of explicit windowing, the window
function coincides with the characteristic function of the image area (continuous line in panel (a)). In panel (b) the corresponding normalized
intermediate scattering functions for different qs in the range 0.1σ−1

P < q < 4σ−1
P are shown as a function of the dimensionless time delay

∆t/τP , where τP = σ2
P /Dt is the characteristic self-diffusion time of the particle (see main text for details). For large q, the curves converge

to a q-independent decay. Such deviation from the expected exponential behavior f(q,∆t) = exp(−Dtq
2∆t) is made evident in panel (c),

where the same curves are plotted as a function of the rescaled time ∆tDtq
2. The application of a smooth window function (continuous curve

in panel (d), see also Eq. 10) substantially reduces the spurious effects on the dynamics, as shown in panels (e-f) where the corresponding
normalized intermediate scattering functions are shown for the same q values considered in panels (b-c). The collapse in panel (f) means that
all of the intermediate scattering functions have the same functional form, the exponential decay.

aries between tiles. In our case, we find that spatial windowing
(Fig. 2(d)) has a dramatic effect on the reconstructed dynam-
ics (Fig. 2(e-f)): all the intermediate scattering functions that
were previously shown to be corrupted by finite-size artifacts,
now display a clean exponential relaxation with the expected
relaxation rate Γ (q) = Dtq

2.
The spatial window function chosen in the numerical cal-

culations above and also used in the rest of this article is a
Blackman-Harris window function WBN (x)WBN (y), a gen-
eralized cosine window function whose 1D version reads [25]:

WBN (x) =

3∑
j=0

(−1)jaj cos
(
2πjx

L

)
, (10)

where the values of the aj parameters are fixed. More specifi-
cally, they are a0 = 0.3635819, a1 = 0.4891775, a2 = 0.1365995,
a3 = 0.0106411 [25]. Both for simulations and experiments,
we have also tested other options for the window function, in
particular the Hann and Dolph-Chebyshev windowing func-
tions [25]. In both cases, we obtained results equivalent to those
obtained with the Blackman-Harris function. We will further
comment on this issue in the next Section.

3 Spatial windowing in dynamic microscopy
experiments

To assess the validity of the proposed approach in real experi-
ments, we evaluate in this Section the effect of spatial window-
ing on experimental data acquired with bright-field and con-
focal microscopy. We will show that spatial windowing of the
images before performing the standard DDM analysis drasti-
cally reduces the impact of boundary-related artifacts on both
the statics and the dynamics. To focus on the dynamics, we
will show in the following experimental results obtained with
and without windowing for the intermediate scattering function
f(q,∆t). Such estimate is obtained by assuming a functional
form for f(q,∆t) and fitting the D(q,∆t) experimental data
to equation Eq. 2. Such fit, performed with a custom MATLAB
routine, provides also estimates for A(q) and B(q).

3.1 Confocal microscopy

The sample is a semi-diluted (0.04 volume fraction) suspen-
sion of sterically stabilized polymethylmethacrylate (PMMA)
0.5 µm fluorescent particles in a density- and refractive index-
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Fig. 3. (a) Representative raw confocal image of a semi-diluted suspension of hard-sphere colloidal particles (see main text for details). (b)
2D image structure function D(q,∆t) for ∆t ' 20 s, showing the characteristic ”bands” along the axes due to spectral leakage. In addition,
some bright cross-hairs/dots are also visible that are due to the scanning disk acquisition. The data that correspond to these cross-hairs/dots are
excluded from the DDM analysis. (c) Azimuthally-averaged intermediate scattering functions as a function of the time delay ∆t for different
values of the wave vectors q in the range 2 µm−1 < q < 15 µm−1. (d) Same as in panel (c), but as a function of the rescaled time delay
∆tDtq

2. The fact that, at large q, the curves fail to collapse indicates that the spurious dynamics becomes dominant. (e) Same image shown in
panel (a) after spatial windowing with a Blackman-Harris window function (Eq. 10). (f) 2D image structure function for∆t ' 20 s as obtained
from the windowed image sequence, showing a nice azimuthal symmetry and no bands. The azimuthally-averaged intermediate scattering
functions are plotted as a function of the time delay ∆t in panel (g) and of the rescaled time delay ∆tDtq

2 in panel (h), for the same q-
values considered in panels (c-d). After windowing, the intermediate scattering functions do not show any significant deviation from a purely
exponential relaxation with diffusive scaling of the relaxation rate Γ (q) = Dtq

2.

matching solvent [6]. The suspension is imaged by a confocal
microscope equipped with a Nipkow disk [Yokogawa], a CCD
camera [QIimaging], a 100X oil immersion objective [Leica],
and a solid-state laser source [Laserglow]. Image sequences of
a single plane from a depth of 20 µm from the lower coverslip
are acquired at a frame rate 1/∆t0 = 33.9 fr/s. Image size is
256x256 pixels, with an effective pixel size of 127 nm.

A representative image of the suspension is shown in Fig.
3(a). The corresponding two-dimensional image structure func-
tion for a large time delay ∆t = 20 s (Fig. 3(b)) shows marked
artifacts, mainly localized along the horizontal and the vertical
axis that are due to spectral leakage. The impact on the dynam-
ics of the edge-effects can be well appreciated from Fig. 3(c-
d), where the intermediate scattering functions obtained from
DDM analysis are shown for different values of q in the range
2 µm−1 < q < 15 µm−1. Some of the curves appear non-
exponential when plotted as a function of the time delay ∆t
(panel c) and do not collapse on a unique master curve when
plotted as a function of ∆tDtq

2 (panel d).
The effectiveness of windowing in amending these effects

can be appreciated in Fig. 3 e-h. A representative 2D structure
function obtained for the time delay ∆t = 20 s by analyz-
ing windowed images such as the one in Fig. 3(e) is shown in
(Fig. 3(f). It is evident that the expected azimuthal symmetry
is recovered. In addition, the temporal dependence of the in-
termediate scattering functions at different q now exhibits the

expected exponential decay, with a rate Γ (q) ' Dtq
2 (Fig.

3(g-h)).
To better compare the results of the standard DDM anal-

ysis with those obtained by prior windowing of the images,
we show in Fig. 4 the relaxation rate Γ (q) obtained by fitting
the intermediate scattering functions in Fig. 3 (c) and (e) with
the model f(q,∆t) = e−Γ (q)∆t

√
1+γ∆t

. In this expression, obtained
by assuming an isotropic diffusive dynamics and a Gaussian-
Lorentzian model for the confocal point-spread function [16,
6], the denominator accounts for the axial dynamics and the
q-independent rate γ is the one associated with the diffusion
across the confocal optical section [16,6]. If we focus only on
the horizontal dynamics, the obtained values for Γ (q), both in
the absence and in the presence of windowing, are compared
in Fig. 4. In the absence of windowing, a systematic devia-
tion from the expected scaling Γ (q) = Dtq

2 is observed for
q > 8.5 µm−1, where a sudden drop is observed. On the
contrary, windowing allows the reliable reconstruction of the
dynamics up to q ' 16 µm−1, a limit determined only by
the acquisition frame rate that inhibits the access to timescales
shorter that about∆t0. Remarkably, the three windowing func-
tions that we tested give very similar results.

Interestingly, the increased wave-vector range made avail-
able by the windowing procedure is such that a minimum in
the static amplitude is now visible for q∗ ' 10.5 µm−1. This
minimum, corresponding to the dark ring around the central
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Fig. 4. q-dependent correlation rate Γ (q) obtained from the fit of the
intermediate scattering function with and without (orange circles) spa-
tial windowing in a confocal microscopy experiment on a semi-diluted
suspension of ' 500 nm colloidal particles (see text for details). Dif-
ferent symbols correspond to different choices of the window func-
tions (blue square: Blackman-Harris, green diamonds: Hann, purple
dots: Dolph-Chebyshev with sidelobe attenuation equal to -100 dB).
The vertical dashed line is drawn in correspondence of the position the
calculated first minimum of the shape factor q∗ ' 4.4934/R, where
R is the particle’s radius. The dashed gray area indicates the wave-
vector range q > 4πNA/λ ' 24 µm−1 falling below the diffraction
limit.

lobe of the Fourier spectrum in Fig.3(f), may be attributed to
a zero in the particle’s form factor. For a sphere of radius R∗
the first zero in the from factor is expected to occur for q∗ =
4.4934/R∗ [20], which provides the estimateR∗ = 4.4934/q∗ '
0.44 µm for our particles. This value is smaller than the one ob-
tained with the same particles in a previous study [6], where a
series of measurements were performed for different volume
fractions in the range 0.005 < φ < 0.4. In Ref. [6], by measur-
ing the diffusion coefficient in a very dilute sample the estimate
RH = 0.505 µm was obtained for the particle’s hydrodynamic
radius. This value was also found to be in good agreement with
the size obtained from the Percus-Yevick fit of the static struc-
ture factors of the hard spheres. The observed difference may
be attributed to the known fact that for these particles the op-
tical signal is generated by the emission of a fluorescent dye
that is physically trapped within the particle itself, in a region
that is smaller than the physical size of the particle [8]. For this
reason, R∗ provides an estimate of the size of the fluorescent
portion of the particle.

The improved visibility of the minimum in the static am-
plitude is accompanied by its dynamical counterpart, which
brings in additional physics. Careful inspection of the behav-
ior of Γ (q) in the vicinity of q∗ (Fig. 5(a)) reveals the presence
of a characteristic swing on top of the average diffusive scal-
ing Dtq

2, consisting in a slight speed up of the dynamics for
q < q∗, followed by a slowing down for q > q∗. This effect

has been predicted and observed in the context of dynamic light
scattering and can be ascribed to the polydispersity of the par-
ticles [20,21]. The normalized fluctuation D0q

2/Γ (q) is well
fitted to the expression given in Eq. 33 in Ref. [20] from which
a polydispersity σ of about 10% can be estimated. This value is
larger than the expected particle batch polydispersity, which in
our case is estimated to be of the order of 5%. This discrepancy
is not surprising because of the non-uniform internal distribu-
tion of the dye in our particles [8].

3.2 Bright-field microscopy

To test the generality of the proposed approach with respect
to the imaging contrast mechanism, we applied the same pro-
cedure described in previous paragraph to data obtained with
bright-field microscopy. We used two samples: a very diluted
suspension of colloidal particles and a binary mixture close to
its critical consolution point.

Colloidal suspension

We chose a suspension of monodisperse polystyrene colloidal
particles of nominal radius R = 230 ± 10 nm and volume
fraction φ ' 0.0014 in a dispersing medium made of water
(51.2% w/w) and glycerol. Bright-field images are collected
with a water immersion objective (40X , NA = 1.15) mounted
on an inverted microscope (Nikon Eclipse). The microscope
is equipped with a fast CMOS camera (Hamamatsu ORCA
Flash4 V2, effective pixel size 0.163 µm). Sequences of im-
ages were acquired with frame rate 1/∆t0 = 777 s−1. DDM
analysis was performed both on temporal sequences of raw im-
ages and of Blackman-Harris windowed (see Eq. 10) images.

Fitting the temporal dependence of the azimuthally-averaged
image structure functions D(q,∆t) with a simple exponential
decay provides the q-dependent relaxation rates Γ (q) shown in
Fig. 6(a). Fitting of the data for q � 9 µm−1 with Γ (q) =
Dtq

2 provides the estimate Dt = 0.208 ± 0.005 µm−1. For
q > 9 µm−1, we observe that the results obtained without
windowing deviate systematically from the expected diffusive
scaling Γ (q) = Dtq

2. Such deviation is due to the increas-
ing relevance of the spurious, q-independent dynamics of the
particles that diffuse in-and-out of the region of interest across
its edges. The characteristic rate of the latter process can be
roughly estimated as τ−1P ' Dt/σ

2
P ' 3 s−1, which is com-

patible with the saturation trend observed for the largest q in
Fig. 6(a). We note that for the previous estimate we have used
σP ' λ/(2NA) ' 0.26 µm, our particle size being close to
the diffraction limit.

On the contrary, the analysis of the windowed sequence
provides consistent results up to q ' 14 µm−1, this limit be-
ing only set by the signal-to-noise ratio. Indeed, the amplitude
A(q) is about 400 times smaller than the noiseB(q) for q ' 14
µm−1. The reliable extraction of quantitative static and dy-
namic information under this rather unfavorable signal-to-noise
ratio is made possible by the use of windowing, which rejects
efficiently the finite image-size artifacts. Without windowing
the dynamics becomes corrupted as soon as the amplitude of
signal falls below the noise level, as spectral leakage effects
dominate the signal.
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Fig. 5. (a) q-dependent decorrelation rates Γ (q) obtained from the
fit of the intermediate scattering function, with and without (or-
ange circles) spatial windowing using the window functions (blue
square: Blackman-Harris, green diamonds: Hann, purple dots: Dolph-
Chebyshev with sidelobe attenuation equal to -100 dB) in a confocal
microscopy experiment on a semi-diluted colloidal suspension (see
text for details). The continuous line is the best-fit curve to the data
with a quadratic function; the vertical dotted line, drawn for q = 8.5
µm−1, marks where the curve Γ (q), obtained without windowing,
starts deviating significantly from the expected scaling. (b) Ampli-
tude A(q) obtained from the fit of the intermediate scattering function.
Symbols are as in (a). In the presence of windowing, the amplitude
is reduced by about 75% (Hann) and 85% (Hann and Blackmann-
Harris) (c) Ratio between the effective, q-dependent diffusion coeffi-
cient Dt(q) = Γ (q)/q2 and its mean value D0 (symbols as in (a));
continuous line is a best-fit of the data to Eq. 33 in Ref. [20]. The in-
flection point in D0/Dt(q) occurs for q∗ = 10.5 µm−1, in very good
agreement with the position of the first minimum in A(q) (vertical
dashed line in all panels).

Molecular liquid

Thermally-excited concentration fluctuations in a binary mix-
ture are difficult to probe with visible light, mostly because
their amplitude is usually very small. A notable exception is
represented by the case of a mixture that is brought close to a
critical point, condition in which the concentration fluctuations
develop long-range correlations that make both their amplitude
and their correlation length incredibly large. Despite its dra-
matic increase close to a critical point, in typical experimental
conditions the correlation length remains well below the opti-
cal resolution, providing us with the ideal sample for assessing
the validity of image windowing in sample where the intensity
fluctuations are originated by small-size density fluctuations.

To this aim, we have analyzed bright-field movies (Nikon
Ti-U, Hamamatsu ORCA-Flash4.0, 2x2 binning, 20x magnifi-
cation, 50000 images, 128 × 128 pixels, 200 fps). We show in
Fig. 6(b) results obtained at a temperature T = 0.1 oC above
the critical temperature Tc in a mixture aniline-cyclohexane
prepared at the critical concentration [9]. Without windowing
(circles), the relaxation rate exhibits a sudden decrease of the
experimental relaxation rate that is likely due to the edge-effects
described in this work. This is confirmed by application of the
windowing procedure, which is found to effectively remove
this artifact, with no substantial differences between the three
windowing functions tested (squares, diamonds and dots in Fig.
6(b)).

The fact that edge-related artifacts arise also when the indi-
vidual scattering objects are molecules should not surprise be-
cause, as also described in Section 2, the characteristic length-
scale of the problem is the largest quantity between the par-
ticle size and the optical resolution width of the microscope.
This distinction can be appreciated by inspecting Figs. 4 and
6: when the individual scattering entities are large (Fig. 4), the
edge-induced artifact occurs for q ' q∗, whereas when they
are small (Fig. 6), the onset of the edge effects is set by the
resolution width 2πNA/λ.

4 Conclusion

We have demonstrated that, in a DDM experiment, particles
crossing the boundaries of the images limit and distort the gen-
uine dynamics at high-q. Notably, this happens also when the
intensity fluctuations in the microscope images are originated
by density fluctuations in molecular fluids. The associated q-
independent dynamic signal leads to a spurious suppression of
the relaxation rates measured at large q. This peculiar feature
appears in sebhveral DDM-related investigations (e.g. in Refs.
[4,18,26]), and has thus far not yet been explicitly discussed,
nor its origin investigated or explained. In response, we propose
a simple solution – applying a smooth window function to the
images before the standard Fourier processing, which despite
its conceptual and computational simplicity, significantly en-
hances the DDM analysis and extending the q-range over which
meaningful, reliable estimates of the statics and of the dynam-
ics are obtained. However, our solution may have some poten-
tial limitations. For example, we have observed (see for exam-
ple Fig. 5(b)) that image windowing by using the Blackmann-
Harris function causes an overall decrease in signal of about



8 Fabio Giavazzi, Paolo Edera, Peter J. Lu, Roberto Cerbino: Windowing mitigates edge effects in DDM

q [7m-1]

100 101

!
(q

) 
[s

-1
]

10-2

10-1

100

101

102

(a) 

q [7m-1]

10-1 100 101

!
(q

) 
[s

-1
]

10-3

100

103

(b) 

Fig. 6. q-dependent correlation rates Γ (q) obtained from the fit of
the intermediate scattering function with and without (orange circles)
spatial windowing for the two bright-field microscopy experiments
described in the main text: (a) a diluted suspension of ' 230 nm
polystyrene particles and (b) a critical binary mixture close to its con-
solution point. In both panels, different symbols correspond to differ-
ent choices of the window functions (blue square: Blackman-Harris,
green diamonds: Hann, purple dots: Dolph-Chebyshev with sidelobe
attenuation equal to -100 dB), while the dashed gray area indicates the
wave-vector range q > 2πNA/λ falling below the diffraction limit.

85%. Similarly, the decrease amounts to 75% and 85% for
the Hann and Dolph-Chebyshev functions, respectively. Also,
a ”line broadening” effect is observed as a consequence of the
fact that multiplication with the window function in real space
leads to convolution with its Fourier transform in the recip-
rocal domain [19]. In general, we expect that both intensity
loss and broadening will not lead to serious consequences in
most practical cases, because both the static amplitude A(q)

and the intermediate scattering function f(q,∆t) are smooth
functions of q. In particular, for all the cases studied here we
have not observed any artifacts from the use of windowing, also
for the smallest wave-vectors corresponding to the width of the
window function. Consequently, we believe applying a smooth
window function as a preprocessing step before Fourier analy-
sis should be an integral part of most DDM implementations,
and may also have positive impact in other digital Fourier Mi-
croscopy methods [16], such as near field scattering or shad-
owgraphy. In particular, we have recently shown that window-
ing can extend the wave-vector range in DDM microrheology
experiments, providing a more robust determination of the vis-
coelastic moduli of complex fluids [27].
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5. F. Giavazzi, C. Haro-Pérez, R. Cerbino, J. Phys.: Condens. Matter

28, 195201 (2016)
6. P.J. Lu, F. Giavazzi, T.E. Angelini, E. Zaccarelli, F. Jargstorff,

A.B. Schofield, J.N. Wilking, M.B. Romanowsky, D.A. Weitz,
R. Cerbino, Phys. Rev. Lett. 108 (2012)

7. T. Sentjabrskaja, E. Zaccarelli, C.D. Michele, F. Sciortino,
P. Tartaglia, T. Voigtmann, S.U. Egelhaaf, M. Laurati, Nat. Com-
mun. 7, 11133 (2016)

8. T.E. Kodger, P.J. Lu, G.R. Wiseman, D.A. Weitz, Langmuir 33,
6382 (2017)

9. F. Giavazzi, A. Fornasieri, A. Vailati, R. Cerbino, Eur. Phys. J. E
39, 103 (2016)

10. F. Giavazzi, G. Savorana, A. Vailati, R. Cerbino, Soft Matter 12,
6588 (2016)

11. F. Giavazzi, S. Crotti, A. Speciale, F. Serra, G. Zanchetta,
V. Trappe, M. Buscaglia, T. Bellini, R. Cerbino, Soft Matter 10,
3938 (2014)

12. L.G. Wilson, V.A. Martinez, J. Schwarz-Linek, J. Tailleur,
G. Bryant, P. Pusey, W.C. Poon, Phys. Rev. Lett. 106, 018101
(2011)



Fabio Giavazzi, Paolo Edera, Peter J. Lu, Roberto Cerbino: Windowing mitigates edge effects in DDM 9

13. V.A. Martinez, R. Besseling, O.A. Croze, J. Tailleur, M. Reufer,
J. Schwarz-Linek, L.G. Wilson, M.A. Bees, W.C.K. Poon, Bio-
phys. J. 103, 1637 (2012)

14. M. Drechsler, F. Giavazzi, R. Cerbino, I.M. Palacios, Nature
Communications, in press (2017)

15. L. Feriani, M. Juenet, C.J. Fowler, N. Bruot, Biophys. J. 113, 109
(2017)

16. F. Giavazzi, R. Cerbino, J. Opt. 16, 083001 (2014)
17. K. He, M. Spannuth, J.C. Conrad, R. Krishnamoorti, Soft Matter

8, 11933 (2012)
18. D.M. Wulstein, K.E. Regan, R.M. Robertson-Anderson, R. Mc-

Gorty, Opt. Express 24, 20881 (2016)
19. R. Priemer, Introductory Signal Processing (World scientific,

1990)
20. P.N. Pusey, W. van Megen, J. Chem. Phys. 80, 3513 (1984)
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