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ABSTRACT 

 

Cocaine is a psychostimulant whose abuse causes a social and economic burden for our society. Most 

of the published literature deals with acute effects of cocaine or short-term abstinence in adult animals 

whereas much less information exists on neuroplastic changes following long-term abstinence. We have 

recently shown that long-term abstinence following developmental exposure to cocaine results in 

increased Activity Regulated Cytoskeletal-associated protein (Arc/Arg3.1) expression in the crude 

synaptosomal fraction (Giannotti et al., 2013). Given that Arc/Arg3.1 localizes not only at active synapse 

but also in the nucleus (Ozuno et al., 2012; Korb et al., 2013; Bloomer et al., 2007), we investigated 

Arc/Arg3.1 protein levels in the whole homogenate and the nuclear fraction of animals exposed to 

cocaine during adolescence.  

We observed increased expression of Arc/Arg3.1 in both fractions suggesting that up-regulation of 

Arc/Arg3.1 protein may be partly due to increased nuclear expression of Arc/Arg3.1 in the rat medial 

prefrontal cortex (mPFC) of rats sacrificed at postnatal day 90, i.e. following 48 days of abstinence. This 

effect seems to cause reduced Gria1 transcription. We also found reduced expression of fragile X mental 

retardation gene (FMR1), which normally inhibits Arc/Arg3.1 translation together with reduced expression 

of Ubiquitin-protein ligase E3A (Ube3a) that normally causes Arc/Arg3.1 protein degradation via 

ubiquitination. Further, we found increased expression of metabotropic glutamate receptor 5 (GRM5), 

which is also involved in the regulation of Arc/Arg3.1 expression. Taken together, our findings show that 

abstinence from developmental exposure to cocaine is associated with alterations in the finely tuned 

mechanisms that regulate Arc/Arg3.1 expression. 
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Introduction 

 
Understanding the reason(s) why people get addicted and crave for drugs represents a critical, 

although still unmet, need. Repeated exposure to cocaine brings about a constellation of changes in 

brain homeostasis ranging from altered release of neurotransmitters and changes in the expression of 

neuroplastic molecules to structural modifications, with recent results casting fresh light on epigenetic 

and microRNA mechanisms (Jonkman and Kenny, 2013). Taken together, these findings show that 

cocaine exerts its deleterious effects through a series of coordinated changes that occur in specific brain 

areas. 

Among the molecules that participate in the action of cocaine, attention has been recently 

focused on the effector immediate early gene (IEG) Activity Regulated Cytoskeletal-associated protein 

(Arc/Arg3.1) (Lyford et al., 1995). While initial studies showed a prominent localization of Arc/Arg3.1 at 

active synapses (Dynes and Steward, 2007) where it can be locally synthesized, recent lines of evidence 

have challenged this observation showing that Arc/Arg3.1 protein is also localized in inactive synapses 

where it can be accumulated (Okuno et al., 2012). Interestingly, Arc/Arg3.1 is present not only in 

dendrites (Korb et al., 2013; Bloomer et al., 2007) but also in the cell nucleus adding complexity, but 

perhaps also specificity, to its modulation, although the role of nuclear Arc/Arg3.1 is largely unknown. 

Single or repeated cocaine exposure increase Arc/Arg3.1 expression (Fosnaugh et al., 1995; 

Freeman et al., 2002), an effect that is strictly related to the activation of dopamine D1 receptors 

(Fumagalli et al., 2006). A role for Arc/Arg3.1 in rat medial prefrontal cortex (mPFC) has been suggested 

in the associative processing of drug-associated contextual stimuli, in the extinction of cocaine-seeking 

as well as in cue-elicited reinstatement of cocaine seeking (Fumagalli et al., 2009; Hearing et al., 2008; 

Hearing et al., 2011; Ziolkowska et al., 2011) pointing to Arc/Arg3.1 as a critical mediator of cocaine’s 

action.  

We have previously shown that changes in Arc/Arg3.1 mRNA and protein levels vanished within 

two weeks after the end of treatment in the adult animals (Fumagalli et al., 2006) indicating that adult 

exposure to cocaine does not cause long-lasting changes in Arc/Arg3.1 protein levels. Interestingly, we 

have recently shown that the expression of the neurotrophin BDNF, a molecule strictly connected to 

Arc/Arg3.1 (Yin et al., 2002; Ying et al., 2002), and Arc/Arg3.1 itself in the crude synaptosomal fraction 

are elevated as a result of long-term abstinence following exposure to cocaine during adolescence 

(Giannotti et al., 2013b). However, while we have dissected in details the mechanisms of BDNF up-

regulation (Giannotti et al., 2013b), we have not investigated whether long-term abstinence from 

developmental cocaine exposure alters nuclear Arc/Arg3.1 expression and whether it alters the inhibitory 

and degradative cellular mechanisms that may contribute to Arc/Arg3.1 up-regulation. To this end, we 
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decided to focus our attention on the nuclear expression of Arc and on several proteins such as FMR1, 

Ube3a and GRM5 (Park et al., 2008; Shepherd and Bear, 2011) that are known to regulate Arc/Arg3.1 

protein levels and analyzed the mPFC of rats exposed to cocaine from postnatal day (PND) 28 to PND 

42, a period of life that approximates adolescence in humans. Animals were sacrificed early after the end 

of treatment (PND 45) or at adulthood (PND 90) in an attempt to draw a dynamic picture of the effects 

produced by short- and long-term abstinence from developmental cocaine exposure. 
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Experimental procedures 

The adolescent rats used in this study were generated by mating Sprague Dawley rats 

weighting 250g (Charles River, Calco, Italy) and housed under standard conditions of temperature 

and humidity under artificial light (from 07:00 to 19:00 hours). A maximum of two male siblings were 

taken from each litter in order to reduce “litter effects” (Chapman and Stern, 1978). Male rats were 

treated subcutaneously with cocaine (20 mg/kg/day) (MacFarlan-Smith, Edinburgh, UK) or saline 

from postnatal day 28 (PND 28) to PND 42, a period that roughly approximates adolescence in 

humans (Collins and Izenwasser, 2004).  

Following the end of this treatment, animals were left undisturbed in their home cages until 

PND 45 or PND 90. At the scheduled time of sacrifice, the mPFC (defined as Cg1, Cg3, and IL 

subregions) was dissected from a 2mm section extending from approximately bregma +5.16 to 

+3.24 (Paxinos and Watson, 2005), frozen on dry ice and stored at -80°C. Procedures involving 

animals and their care were conducted in conformity with the institutional guidelines that are in 

compliance with national (D.L. n. 116, G.U., supplement 40, 18 Febbraio, 1992, Circolare No. 8, 

G.U., 14 Luglio, 1994) and international laws and policies (EEC Council Directive 86/609, OJL 358, 

1, December 12, 1987; Guide for the Care and Use of Laboratory Animals, National Academies 

Press, 8th Edition, 2011). 

 

RNA Preparation and Real-Time Polymerase Chain Reaction 

RNA measures were taken in the same animals as the protein measures. Total RNA was 

isolated by single step guanidinium isothiocyanate/phenol extraction using PureZol RNA isolation 

reagent (Bio-Rad Laboratories, Segrate, Milan, Italy) according to the manufacturer’s instructions and 

quantified by spectrophotometric analysis (Giannotti et al., 2013a). Following total RNA extraction, 

the samples were processed for real-time reverse transcription polymerase chain reaction (real time 

RT-PCR) to assess mRNA levels, as previously described (Fumagalli et al., 2012). Briefly, an aliquot 

of each sample was treated with DNase to avoid DNA contamination. RNA was analyzed by TaqMan 

qRT-PCR instrument (CFX384 real time system, Bio-Rad Laboratories) using the iScript
TM

 one-step 

RT-PCR kit for probes (Bio-Rad Laboratories). Each experimental group was composed of at least 6 

rats. Samples were run in 384 well formats in triplicate as multiplexed reactions with a normalizing 

internal control (36B4).  

Probes and primers were purchased from Eurofins MWG-Operon. Their sequences are shown in 

Table 1. The primer efficiencies were experimentally set up for each couple of primers. Thermal 

cycling was initiated with an incubation at 50°C for 10 min (RNA retrotranscription) and then at 95°C 
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for 5 min (TaqMan polymerase activation). After this initial step, 39 cycles of PCR were performed. 

Each PCR cycle consisted of heating the samples at 95°C for 10 s to enable the melting process and 

then for 30 s at 60°C for the annealing and extension reaction. A comparative cycle threshold (DDCt) 

method was used to calculate the relative target gene expression. 

 

Preparation of Protein Extracts and Western Blot Analysis 

Preparation of protein extracts was described previously (Fumagalli et al., 2010). mPFC 

was homogenized in a glass-glass potter using a cold buffer containing 0.32 M sucrose, 1mM Hepes 

solution, 0.1 mM EGTA, 0.1 mM PMSF, pH=7.4, in presence of a complete set of protease inhibitors 

and a phosphatase inhibitor cocktail. The homogenized tissues were centrifuged at 1000 g for 10 

min; the resulting pellet corresponding to the nuclear fraction was resuspended in a buffer containing 

20 mM Hepes, 0.1 mM DTT, 0.1 mM EGTA, in presence of a complete set of protease inhibitors and 

a phosphatase inhibitor cocktail. Total proteins have been measured in the whole homogenate and 

in the nuclear fraction by the Bio-Rad Protein Assay, using bovine serum albumin as the calibration 

standard (Bio-Rad Laboratories, Milan, Italy). 

Western blot analysis was performed on the whole homogenate and on the nuclear 

fraction. Total protein concentrations were adjusted to the same amount for all samples (10 mg per 

lane). All the samples were run on a sodium dodecyl sulfate (SDS)-10% polyacrilamide gel under 

reducing conditions, and proteins were then electrophoretically transferred onto nitrocellulose 

membranes (Bio-Rad). Blots were blocked with 10% nonfat dry milk then incubated with primary 

antibody. The conditions of the primary antibodies were the following: anti Arc/Arg3.1 (1:500, BD 

Transduction Laboratories, USA), anti GluA1 (1:2000, Santa Cruz Biotechnology, USA) and anti β-

Actin (1:10000, Sigma-Aldrich, Italy). Results were standardized using β-actin as the control protein, 

which was detected by evaluating the band density at 43 kDa. Immunocomplexes were visualized by 

chemiluminescence using the Chemidoc MP Imaging System (Bio-Rad Laboratories). 

 

Statistical analysis 

Data were collected in individual animals (independent determinations) and are presented 

as means and standard errors. The effects produced by repeated cocaine treatment were analyzed 

by an unpaired Student’s t test. Statistical significance was assumed at p<0.05. 

 

 



   

 7 

Results and Discussion 

Figure 1 shows the effect of repeated exposure to cocaine during adolescence on Arc/Arg3.1 

mRNA and protein levels at PND 45 and PND 90. Arc/Arg3.1 mRNA levels were markedly increased at 

PND 45 (+111%, p<0.001) (Fig. 1A) with no effects at PND 90 (-14%, p>0.05) (Fig. 1B). Conversely, 

Arc/Arg3.1 protein levels were not affected at PND 45 (-15%, p>0.05) (Fig. 2A) while significantly 

increased in the mPFC homogenate of PND 90 rats (+63%, p<0.05) (Fig. 2B). Such increase may be 

ascribed to enhanced Arc/Arg3.1 protein levels in the nucleus (+41%, p<0.05), as shown in Fig. 3b. No 

changes were instead observed in the nuclear expression of Arc/Arg3.1 at PND 45 (-6%%, p>0.05) (Fig. 

3a). Based on these data, from now on we decided to focus our attention to the mPFC of PND 90 rats, 

in an attempt to find a potential molecular explanation of the increased levels of Arc/Arg3.1 protein 

observed as a result of long-term abstinence. 

Besides neurotransmitters, other mechanisms come into play in the physiological regulation of 

Arc/Arg3.1 thus providing other potential sites of regulation by cocaine. Arc/Arg3.1 translation at 

dendrites is inhibited by FMRP (fragile X mental retardation protein) (Shepherd and Bear, 2011). 

Interestingly, its mRNA, FMR1, is significantly reduced in the mPFC of PND 90 rats (-19%, p<0.05) (Fig. 

4A). Also, the turn-over of Arc/Arg3.1 protein is modulated at different levels, i.e. via ubiquitination and 

sumoylation, both leading to Arc/Arg3.1 degradation through the proteasome system (Shepherd and 

Bear, 2011). Arc/Arg3.1 protein is degraded via ubiquitination, primarily via the action of Ubiquitin-

protein ligase E3A (Ube3a) (Shepherd and Bear, 2011). Intriguingly, the analysis of Ube3a reveals a 

reduction (-26%, p<0.01) (Fig. 4B). No changes in the expression levels of Sentrin/SUMO-specific 

protease 1 (SENP1) (+2%, p>0.05), that controls Arc/Arg3.1 SUMOylation, were observed (Fig. 4D). A 

further level of regulation of Arc/Arg3.1 protein is through the activation of the metabotropic glutamate 

receptor 5 (GRM5) (Shepherd and Bear, 2011). Interestingly, long-term abstinence from cocaine 

enhanced the expression of GRM5 (+37%, p<0.05) (Fig. 4C). While these changes may contribute to 

explain Arc/Arg3.1 up-regulation, we next measured the transcription of Gria1, the main glutamate 

AMPA receptor subunit, a target of increased nuclear Arc/Arg3.1 expression (Korb et al., 2013). Indeed, 

we found reduced Gria1 mRNA levels (-21%, p<0.05) (Fig. 5A). Also, we evaluated the levels of AMPA 

subunit GluA1 protein land found them reduced too (-29%; p<0.01) (Fig 5B), presumably as a 

consequence of reduced transcription. 

Interesting differences were observed when comparing short (3 days) and long (48 days) 

abstinence from developmental exposure to cocaine. Arc/Arg3.1 mRNA levels were markedly increased 

3 days after the end of the treatment (PND 45) but declined back to control levels at PND 90; conversely, 

Arc/Arg3.1 protein levels were markedly enhanced at PND 90 while unchanged at PND 45. Whereas 

evidence exists that increased Arc/Arg3.1 protein levels dissipate within two weeks if cocaine is 
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administered at adulthood (Fumagalli et al., 2006), we here show that long-term abstinence from 

developmental cocaine exposure causes an enduring Arc/Arg3.1 up-regulation, which persists until, at 

least, PND 90. Of note, this is in line with the evidence that Arc/Arg3.1 protein levels are increased in the 

mPFC of mice that were withdrawn for one month from repeated amphetamine administered at 

adolescence (Calabrese et al., 2013), suggesting that the enhancement of Arc/Arg3.1 expression might 

be a sign of abstinence-triggered adaptations following long-term withdrawal of psychostimulants. The 

most parsimonious explanation for such long-lasting increase is that the timing of cocaine exposure 

(adolescence or adulthood) dictates the profile and duration of Arc/Arg3.1 expression. 

While there is no doubt that Arc/Arg3.1 mRNA is locally translated in dendrites and plays an 

important role in synaptic changes underlying plastic modifications necessary for long-term memory 

formation (Bramham et al., 2010; Shepherd and Bear, 2011), it must be taken into account that 

Arc/Arg3.1 protein is found not only in dendrites, but also at high levels in the nucleus (Bloomer et al., 

2007; Korb et al., 2013). Thus, we hypothesize that the increased expression of Arc/Arg3.1 in the whole 

homogenate may depend not only on its enhancement in the crude synaptosomal fraction (Giannotti et 

al., 2013b)  but also on the up-regulation herein observed in the nuclear fraction. Also, the increase of 

nuclear Arc/Arg3.1 might participate to the regulation of glutamate AMPA receptors since we observed 

reduced Gria1 transcription, which in turn may lead to reduced GluA1 synthesis, adding novel evidence 

to the inverse relationships existing between Arc/Arg3.1 and AMPA receptors following long-term 

cocaine withdrawal (Giannotti et al., 2013b; Korb et al., 2013). 

It is acknowledged that FMR1 and Ube3a contribute to the physiological Arc/Arg3.1 modulation 

(Shepherd and Bear, 2011); our data suggest their implication in the modulation of the effects on 

Arc/Arg3.1 expression in the long-term abstinence from cocaine. We found that abstinence from 

developmental exposure to cocaine reduced the expression of FMR1, which physiologically represses 

Arc/Arg3.1 translation (Shepherd and Bear, 2011), and Ube3a, that targets Arc/Arg3.1 to proteasome for 

degradation (Greer et al., 2010), suggesting that both mechanisms might contribute to the observed 

increase in Arc/Arg3.1 expression. Concomitantly, we found that abstinence increased the expression of 

GRM5 that, under normal conditions, promotes Arc/Arg3.1 translation and synthesis (Park et al., 2008).  

Taken together, it appears that long-term abstinence from repeated exposure to cocaine during 

adolescence alters the machinery responsible of the regulation of Arc/Arg3.1 expression through the 

concomitant alteration of various, independent mechanisms involved in its physiological regulation and 

that were not previously associated with cocaine-induced abstinence (Fig. 6). These mechanisms involve 

both the nucleus (present manuscript) and the crude synaptosomal fraction (Giannotti et al., 2013b). We 

have recently shown that long-term abstinence after exposure to cocaine during adolescence up-

regulates BDNF and its transduction pathways in the mPFC of adult rats (Giannotti et al., 2013b). These 
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results, together with the data of the current manuscript, reveal novel mechanisms associated with 

prolonged abstinence from cocaine that cause enduring changes in brain homeostasis, via Arc/Arg3.1 

modulation. It might seem premature, although suggested by these data, to propose a cohesive, 

mechanistic hypothesis that links changes in BDNF and Arc/Arg3.1 as molecular signatures of long-term 

abstinence from cocaine. However, given that Arc/Arg3.1 may be a partner of BDNF in mediating the 

adaptive changes caused by psychostimulants (Calabrese et al., 2013), we may speculate that an 

abstinence-induced alteration in the pathway of BDNF signaling together with changes in the inhibitory 

and degradation pathways that regulate Arc/Arg3.1 synthesis may contribute to the incubation of cocaine 

craving (Grimm et al., 2003).  
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Table 1 Sequences of forward and reverse primers and probes used in Real-Time PCR analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Forward primer Reverse Primer Probe 

Arc/Arg3.1 5’- ACTGTCTCTGTAGGTGTGGG -3’ 5’- GGGCTAACAGTGTAGTCGTAG -3’ 5’- ATCAGCTTCCTGGCAGTAGGGC -3’ 

Ube3a 5’- GTCCTGGGTCTGGCTATTTAC -3’ 5’- AGTCTCCCAAGTCACAAAACG -3’ 5’- TCCCCATTAGCTTCCTGTACACAACC-3’ 

FMR1 5’- ATGGTCAAGGAATGGGTCG -3’ 5’- TCTCCCTCTCTTCCTCTGTTG -3’ 5’- CTGCCGTGCCCCCTATTTCTGTAA -3’ 

GRM5 5’- AGCGCCTGTGCTCAGTTAGT -3’ 5’- AGACTTCTCGGATGCTTGGA -3’ 5’- GCTTTCATTCTCATCTGTATTCAGC -3’ 

SENP1 5’- CTCTACACCGAGCTTTCACG -3’ 5’- AGTTTCTCCATTGTCCATTTGC -3’ 5’- ACCCTTCCTCAGACAGTTTCCTTGG -3’ 

Gria1 5’-CCTCGAAGATCCTTACGTGATG-3’ 5’-TCGCTGACAATCTCAAGTCG-3’ 5’-ATAGCGGTCATTGCCCTCAAACTGG-3’ 

36B4 5’-TTCCCACTGGCTGAAAAGGT-3’ 5’-CGCAGCCGCAAATGC-3’ 5’-AAGGCCTTCCTGGCCGATCCATC-3’ 
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FIGURE LEGENDS 
 

 

Figure 1. Abstinence from developmental exposure to cocaine alters the transcriptional 

regulation of Arc/Arg3.1. 

Panel A and B show Arc/Arg3.1 mRNA levels in the mPFC of PND 45 (A) and PND 90 (B) 

rats following repeated exposure to cocaine during adolescence. The results, expressed as 

% of control rats, represent the mean ± S.E.M. of, at least, 8 samples.  

* p<0.05 and ***p<0.001 vs. control rats.  

 

Figure 2. Abstinence from developmental exposure to cocaine alters the translational 

regulation of Arc/Arg3.1. 

Panel A and B show Arc/Arg3.1 protein levels in the whole homogenate of the mPFC of 

PND 45 (A) and PND 90 (B) rats. The results, expressed as % of control rats, represent the 

mean ± S.E.M. of, at least, 6 samples.  

* p<0.05 vs. control rats.  

 

Figure 3. Abstinence from developmental exposure to cocaine alters Arc/Arg3.1 protein 

levels in the nuclear fraction. 

Panel A and B show Arc/Arg3.1 protein levels in the nuclear fraction of the mPFC of PND 

45 (A) and PND 90 (B) rats. The results, expressed as % of control rats, represent the 

mean ± S.E.M. of, at least, 6 samples.  

* p<0.05 vs. control rats.  

 

Figure 4. Abstinence from developmental exposure to cocaine alters the mechanisms 

responsible of Arc/Arg3.1 translation: effects at PND 90. 

Panel A shows FMR1 mRNA levels, panel B shows Ube3a mRNA levels, panel C shows 

GRM5 mRNA levels, while panel D shows SENP1 mRNA levels. These measures were 

undertaken in the mPFC of PND 90 cocaine-withdrawn rats. The results, expressed as % 

of control rats, represent the mean ± S.E.M. of, at least, 6 samples. 

* p<0.05 and **p<0.01 vs. control rats.  
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Figure 5. Abstinence from developmental exposure to cocaine alters Gria1 transcription 

and translation: effects at PND 90. 

Panel A shows Gria1 mRNA levels, whereas panel B shows GluA1 protein levels in the 

whole homogenate. These measures were undertaken in the mPFC of PND 90 cocaine-

withdrawn rats. The results are expressed as % of control rats and represent the mean ± 

S.E.M. of, at least, 6 samples.  

* p<0.05 and **p<0.01 vs. control rats.  

 

Figure 6. Abstinence from repeated cocaine administration during adolescence up-

regulates Arc/Arg3.1 expression in the rat mPFC (panel B):  comparison with control rats 

(panel A). 

Under physiological conditions, Arc/Arg3.1 protein levels are regulated by several, different 

but converging and finely tuned, mechanisms. Following long-term abstinence from 

developmental exposure to cocaine, these mechanisms are altered. In details, we have 

previously shown that long-term abstinence from early exposure to cocaine up-regulates 

BDNF levels and its signaling pathways leading to increased levels of Arc/Arg3.1 in the 

crude synaptosomal fraction, an effect that promoted GluA1 AMPA receptor endocytosis and 

subsequent reduction of these receptors at the membrane level (Giannotti et al., 2013b). 

In the present manuscript we show that abstinence from developmental exposure to 

cocaine up-regulates Arc/Arg3.1 protein levels in the whole homogenate, an effect 

presumably due to increased nuclear expression of Arc/Arg3.1 that, in turn, leads to 

reduced Gria1 mRNA levels: this reduction might contribute to Arc/Arg3.1-induced down-

regulation of glutamate AMPA receptors. Further, long-term withdrawal from developmental 

cocaine has also altered the inhibitory and degradative molecules that contribute to the 

regulation of Arc/Arg3.1 protein levels. In fact, we found reduced expression of FMR1, 

which physiologically represses Arc/Arg3.1 translation and Ube3a, that normally targets 

Arc/Arg3.1 to proteasome for degradation together with enhanced expression of GRM5 

that, under normal conditions, promotes Arc/Arg3.1 translation and synthesis.  
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