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ABSTRACT 

H2 is gaining attention as energy vector, particularly if produced from renewable sources. 

It may be produced through photoreforming of organic compounds that act as hole 

scavengers to improve hydrogen productivity with respect to direct water photosplitting. 

Methanol is used here as model molecule to investigate the effect of catalyst composition 

and of substrate concentration on photocatalytic activity. Simple catalysts formulations were 

selected, in order to propose an easily scalable technology with a poorly expensive material. 

TiO2 with different structure (anatase, rutile and a mixture of them) was used as 

semiconductor, doped with a small amount of Au (0.1 wt%) to improve the lifetime of 

photogenerated charges. 

A new photoreactor was set up, with external irradiation that improves the scale up feasibility 

and possible future application with solar energy. Methanol conversion and hydrogen 

productivity increased with increasing methanol concentration up to 15 wt%. Rutile led to 

the highest conversion, but TiO2 P25 showed the highest hydrogen productivity.  
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The best result was achieved by treating a 15 wt% methanol solution with 0.1 wt%Au/TiO2 

P25, which led to 0.276 mol H2 h-1 kgcat
-1. 

 

Keywords: Hydrogen production; Photocatalytic water splitting; Photocatalytic reforming; 

Titanium dioxide. 

 

1 - INTRODUCTION 

H2 is raising attention as energy vector to feed combustors or fuel cells. In order to improve 

its sustainability, different processes are investigated to produce it from renewable sources. 

On one hand it may be produced by electrolysis of water. This system now is limited to the 

production of very high purity H2, due to the huge cost of electrical power with respect to 

competing technologies, but it can raise further interest if inexpensive and renewable 

electricity should be available. Nowadays, hydrogen is mainly produced through 

thermocatalytic processes, such as the steam reforming of hydrocarbons, thus one relatively 

direct way to turn to renewables is the adaptation of such processes to new substrates, such 

as ethanol or glycerol [1-3]. Additionally, other routes, such as the gasification or pyrolysis 

of biomass are in a demonstrative stage [4,5].  

The direct water splitting is an attractive route because it would bring to pure hydrogen and 

oxygen without byproducts. However, despite being exothermal, it is a highly endoergonic 

process, which needs 237.18 kJ/mol of water (-G0
formation at 298K). This energy should be 

supplied either in form of electrical power, as in electrolysis, or as thermal energy, but in 

such a case the temperature exceeds 2000 °C. Some thermal cycles have been developed 

to limit the decomposition temperature, but at least 800-1000°C are needed in the most 

favourable cases. 

An alternative route could be the use of solar energy, coupled with the choice of appropriate 

materials, to accomplish the process photocatalytically. Many examples are proposed in the 



literature [6]. The photocatalytic process is mediated by a semiconductor material, which 

absorbs the fraction of incident radiation with energy higher than its band gap, allowing the 

promotion of an electron from the valence band to the conduction one. The electron can be 

used to reduce a compound that has appropriate redox potential to fit the conduction band 

energy. Accordingly, the hole, left in the valence band upon photoexcitation, is available to 

oxidise any available substrate whose redox potential fits its band energy. To sum up, a 

redox reaction can occur between two redox couples that have potentials included in the 

semiconductor band gap. 

Unfortunately, in the direct water splitting the water oxidation half reaction is a multi-

electronic process and it is by far too slow to achieve practically relevant results. However, 

if more reactive compounds should be available in solution, they could improve significantly 

the overall reaction rate, possibly leading to a feasible process. 

For instance, hydrogen production can be carried out using methanol as sacrificial agent. 

This process may be called photoreforming and occurs through the following general 

scheme [7]: 

 

CxHyOz + (2x - z) H2O  x CO2 + (2x - z + y/2) H2 

 

The organic compound acts as hole scavenger, by consuming holes faster than OH- ions 

and being progressively oxidised (mineralised) to CO2 and H2O. In case of complex organic 

molecules, many different intermediates are expected. This process can be useful also to 

convert organic compounds present in waste water, for water cleaning and depuration 

purposes. In this sense, the photoreforming of organic compounds can be seen as a virtuous 

process to produce hydrogen while depurating water from contaminants or wastes. Many 

examples of organic compounds have been summarised by Christoforidis and Fornasiero 

[8]. 



Methanol has been used in this work as model molecule. Au doped TiO2 with different 

polymorph structures have been compared, together with different methanol concentrations.  

Indeed, despite many attempts to develop complex catalysts to improve productivity, 

titanium dioxide still represents a good choice due to commercial availability at moderate 

cost, stability and appropriate band potentials for the proposed reaction. One major 

drawback is that all its polymorphs (anatase, rutile or brookite) have quite big band gap (3.0-

3.2 eV) and thus it can absorb only the UV portion of the spectrum. This limits the possibility 

to exploit efficiently solar light. The addition of metals on its surface may improve the 

absorption in the visible range [9-13]. Furthermore, the metal can entrap the photogenerated 

electron by forming a Schottky barrier, so preventing its recombination with the valence band 

holes [14]. In addition, TiO2 has a high overpotential for H2, which is substantially decreased 

by adding an appropriate metal which is more suitable for hydrogen evolution [15]. The 

amount of metal should be limited and optimised, because too high loading can act as a 

recombination centre for electrons and holes [13,16]. 

In the literature, annular reactor configurations are often proposed. On one hand this allows 

lower optical path and more efficient exposure to light. On the other hand, the scale up 

possibilities are lower. Therefore, a photoreactor with external irradiation has been here 

employed, less efficient than comparative models with annular configuration, but more 

suitable to scale up and adaptable to solar light, for a more realistic prevision of system 

performances. The results obtained have been compared with similar catalytic systems, but 

tested with different photoreactor configurations. 

 

2 – EXPERIMENTAL 

2.1 – Photocatalysts 

TiO2 P25 (Evonik) has been used as semiconductor, constituted by ca. 80% anatase and 

20% rutile. The photocatalyst was loaded with 0.1 wt% Au by deposition-precipitation in 



nanostructured form. Comparative samples were prepared by deposing the same amount 

of Au on pure rutile (R) and pure anatase (A). The samples were labelled P25, A and R 

based on the three different supports.  

All the details on catalyst preparation and characterisation are reported elsewhere [9,17,18]. 

 

2.2 – Photoreactor 

A cylindrical glass photoreactor was used, with a jacket to flow cooling water and a quartz 

window to guarantee UV transparency during external irradiation. The overall volume was 

500 mL, filled with 200 mL of solution and allowing for gas accumulation for 300 mL. A Jelosil 

250 W lamp was used, with maximum of emission at 365 nm and mean measured irradiance 

113 W/m2. 

Methanol was used as hole scavenger, in variable concentration in water. The photocatalyst 

was added in 0.2 g amount. Before switching on the lamp, the solution was outgassed by 

flushing with 200 NL/h of N2 for 10 min. 

The liquid phase was analysed by means of an Agilent 6890 gaschromatograph, with a FID 

detector. The gas phase was analysed with an Agilent 7890 gaschromatograph, furnished 

with a TCD detector and calibrated to quantify H2, CO and CO2. 

Sampling of the liquid phase was periodically (every 30 min at the beginning of the reaction, 

every 1-2 hours later. Sampling of the gas phase was carried out every 2-3 h by collecting 

10 mL of gas to avoid excessive dilution of the sample.  

 

3 – RESULTS AND DISCUSSION 

 

When using methanol as sacrificial agent the following steps can be postulated to describe 

the reaction, which can compete with H2 production from water (step d): 

a) CH3OH + S ➝ CH3Oads + ½ H2 



b) Ti4+ O2- + hν➝ Ti3+ O- 

c) CH3Oads + O- ➝(HCHO)➝(HCOOH)➝ CO2 + 1.5 H2 + S + VO- 

d) H2O + VO-  + Ti3+ ➝ + H2 + Ti4+ O2- 

 

Methanol oxidation occurs through consecutive steps (formally lumped in reaction c), 

leading to HCHO and HCOOH as possible intermediates, which cannot be easily quantified 

using gaschromatography, because the FID detector is insufficiently sensitive and the TCD 

does not resolve with respect to water. Formaldehyde is also difficult to detect due to 

oligomers formation. HPLC was used when needed to highlight these intermediates. 

The effect of methanol concentration has been assessed at first on 0.1 wt%/TiO2 P25. The 

maximum methanol conversion achieved was 5.6 % after 7 h, starting from a 6 wt% 

methanol solution and increased to 8.5 % for a 15 wt% solution. The productivities of H2, 

CO2 and CO are reported in Fig. 1 depending on the initial methanol concentration.  

The higher the starting methanol concentration, the higher H2 productivity. This confirms the 

strong dependence of methanol photoreforming on substrate concentration, as already 

reviewed recently [7,8]. The amount of hydrogen produced exceeded the stoichiometric 

expectations with CO and CO2. Besides the formation of intermediates (HCHO and 

HCOOH) remaining in solution, the possible contribution of direct water splitting was also 

hypothesised and it was checked by testing oxygen formation. Sampling of the gas after 

outgassing at time 0 revealed negligible oxygen content. Sampling at different reaction time 

was carried out to monitor oxygen formation as ratio between the chromatographic areas of 

oxygen and nitrogen. Qualitatively increasing oxygen amount was observed with time, 

supporting a contribution from direct water splitting, though not determinant. 

Formic acid was also monitored by HPLC as possible reaction intermediate (Fig. 2). Its time 

evolution is compatible with the trend expected for a reaction intermediate, which 



accumulates and then converts to the final product (CO2), with a maximum between 250-

350 min. 

The performance of the different catalysts was compared with a 15 wt% starting 

concentration of methanol and summarised in Fig. 3 and 4. 

 

According to the results the highest methanol conversion was achieved for the rutile-based 

sample, whereas anatase and P25 performed similarly, with ca. halved conversion with 

respect to rutile. However, when looking at the productivity of H2 the highest value was 

attained for the P25-supported sample (Fig. 4). 

The anatase-supported sample confirmed indeed less active than rutile as for hydrogen 

productivity, but both samples were by far less active than P25.  

Rutile is characterised by a slightly lower band gap (3.0 eV) with respect to anatase and P25 

(ca. 3.2 eV). Therefore, upon light absorption a higher methanol conversion is expected with 

rutile. Nevertheless, the overall reaction to produce hydrogen is based on the multistep 

mechanism mentioned above, which needs multiple electron transfer. P25 is typically 

reported as an efficient photocatalyst because the phase junction between rutile and 

anatase allows more efficient electron-hole separation and thus an improvement of the 

lifetime of the photogenerated charges. On this basis, methanol conversion was less 

efficient with P25 than for rutile due to lower light harvesting, but the consecutive conversion 

of the surface intermediates was the opposite due to more effective use of the 

photogenerated charges with P25. 

Higher H2 yield is reported in the literature. For instance, Beltram et al. [19] investigated Pt 

0.2 wt% over various TiO2 polymorphs for the photoreforming of ethanol (50 wt%) and 

glycerol (1 M) aqueous solutions. At difference with the present results very small H2 

productivity was obtained with rutile (ca. 0.25 or 0.5 mol/h kgcat, respectively for ethanol and 

glycerol), the highest one being ascribed to anatase (ca. 1.8 or 1.25 mol/h kgcat, respectively 



for ethanol and glycerol). 15 mol/h kgcat of H2 were obtained by using a 0.5 wt% Au/TiO2 by 

glycerol photoreforming [20], while 2 mol/h kgcat of H2 were obtained with bare P25 TiO2, 

raising to 6.7 when adding Cu and using a 7.9 wt% methanol solution [21].  

The higher hydrogen productivity achieved in the above reported examples is mainly 

ascribed to the configuration of the reactor. Indeed, all these experiments were carried out 

with annular photoreactors where the lamp is immersed in the solution and/or with more 

intense irradiation. For instance, more than double irradiance with respect to the present 

case is reported in [19] and one order of magnitude higher in [20]. Nevertheless, our reactor 

configuration was here selected in spite of the lower light harvesting because the design 

proposed here is more adapt to scale up and for the future exploitation of solar light. 

 

4 – CONCLUSIONS 

The photoreforming process can be proposed as an effective route to convert organic 

compounds into hydrogen. The reaction converted in ca. 7 h up to ca. 17 % of a 15 wt% 

starting methanol solution, the conversion increasing with initial methanol concentration. 

Furthermore, there is a strong dependence of conversion and hydrogen productivity from 

the titania polymorph selected. Rutile was the most efficient in light harvesting, due to the 

smallest band gap. This led to higher methanol conversion. However, P25, though 

characterised by lower methanol conversion, was overall more efficient than the other 

polymorphs to achieve full mineralisation of the intermediates. The phase junction between 

rutile and anatase allows to prevent electron-hole recombination and thus higher charge 

utilisation. This led to higher hydrogen productivity in spite of the lower conversion of 

methanol, likely due to more efficient conversion of reaction intermediates. 
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FIGURES 

 

Fig. 1: Effect of methanol concentration on productivity. Catalyst 0.1 wt%/TiO2 P25. 1 = H2; 

2 = CO2; 3 = CO. 

 

 

 

Fig. 2: HCOOH evolution with reaction time as determined by HPLC. 



 

 

 

 

Fig. 3: Conversion vs. time for catalyst 0.1 wt%/TiO2 prepared with different titania 

polymorphs. Initial methanol concentration = 15 wt%. 

 

 

Fig. 4: Effect of the titania polymorph on productivity. 1 = H2; 2 = CO2; 3 = CO. 
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