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Abbreviation List: 

Å   Ångström 

br  Broad signal 

°C  Celsius degree 

cat  Catalyst 

COD  1,5-Cyclooctadiene 

COSY  Correlation spectrometry 

CDMT  2-Chloro-4,6-dimethoxy-1,3,5-

triazine 

δ   Chemical shift 

d   Doublet 

dd  Double doublet 

ddd  Double double doublet 

DIC  N,N′-Diisopropylcarbodiimide 

DiPEA  N,N-Diisopropylethylamine 

DMAP  4-Dimethylaminopyridine 

DME  1,2-Dimethoxyethan 

DCE  1,2-Dichloroethane 

DCM  Dichloromethane 

DMF  Dimethylformamide 

DMSO  Dimethylsufoxide 

dt  Double triplet  

ED  Electron-donating 

EDA  Ethyl-diazoacetate 

EI   Electron collision ionization 

Eq.  Equivalents 

ESI  Electrospray ionization 

EW  Electron-withdrawing 

FAB  Fast atom bombardment 

h   Hours 

HPLC  High Performance Liquid 

Chromatography 

HSQC  Heteronuclear Correlation 

Hz  Hertz 

J   Coupling constant 

L   Ligand 

m   Multiplet 

[M+]  Molecular ion peak 

MS  Mass spectrometry 

m/z  Mass/Charge 

NMR  Nuclear Magnetic Resonance 

PcL  Pyridine-containing 

macrocyclic ligand 

q   Quartet 

rt   Room temperature 

s   Singlet 

T   Temperature 

t   Triplet 

td  Triplet doublet 

TFA  Trifluoroacetate 

THF  Tetrahydrofuran 

TLC  Thin layer chromatography 
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1.  INTRODUCTION 

1.1  Hystory of Macrocycles 

The history of macrocyclic compounds dates back a long time; we could say they are as ancient as 

life. We know several examples such as porphyrins, corrins and chlorins that are natural compounds 

with biological and vital roles in the animal (haemoglobin) and plant worlds (chlorophyll). The great 

role played by the biologically occurring macrocycles directed most early synthetic studies to the 

imitation of those species. Natural ligands were taken as models in the synthesis, resulting in an 

evident predominance of nitrogen-containing ligands over ligands containing other heteroatoms. 

Fisher, considered the pioneer of the chemistry of porphyrins, reported the first total synthesis of 

etioporphyrin-III and octamethylporphyrin in 1926,1 but the first “artificial” macrocycle came on the 

scene only in 1960,2 when Curtis synthesized a nickel(II) complex from tris(ethylenediamine) 

nickel(II) perchlorate and acetone. Polyazamacrocycles are a common class of macrocyclic 

compounds, that find application across a great number of fields including (but not limited to) 

catalysis, selective metal recovery and recycling, medical therapy, materials and sensors. Worthy of 

note is their ability to form stable complexes with a considerable number of transition metal cations. 

Alternative geometries of the resulting complex, deviating from planarity, often leads to uncommon 

oxidation states of the coordinated metal atom. Both the thermodynamic properties and the 

complexation kinetics are affected by the introduction of a pyridine moiety into the backbone of a 

ligand by increasing the conformational rigidity and tuning the basicity. Pyridinecontaining ligands 

have attracted great interest due to various potential fields of applications and have been 

successfully employed in biology, magnetic resonance imaging and molecular recognition.  

Much effort in the use of macrocyclic pyridine-containing ligands has been devoted to the study of 

catalytic oxidation reactions. The first studies were inspired by nature and the understanding of 

metalloenzymes, which use molecular oxygen from air as the main oxidant and the final goal of 

these class of studies would be to find a cheap alternative to the use of heme-like catalysts. 
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1.2  Macrocyclic versus acyclic chelators 

Even if the first macrocycles were synthesized in 1960, it was only in 1969 that in literature was 

introduced the concept of “macrocyclic effect”.3 Under this name undergoes the notable 

enhancement of the complex stability constants of ligands with cyclic structure compared to the 

acyclic analogues. The thermodynamic stabilities of macrocycles and acyclic compounds have been 

demonstrated to be approximately the same, but there is a great difference for what regards the 

kinetic stability, since macrocycles are by far more inert than acyclic ligands. It is well known that 

the stability of the complexes is enhanced by the presence of one, or more, coordinating atoms and 

this phenomenon is called “chelating effect”. At the same time, the cyclic structure imposes a 

reduced structural freedom to the ligands, determining a pre-organized geometry. On the contrary, 

acyclic chelators, must undergo to a heavy change of geometry to organize the binding atoms in the 

right orientation to coordinate the metal ion: for this reason, the entropy drastically decreases, 

making the coordination unfavorable compared to macrocyclic ligands.4 

 

1.3  Aza-Macrocycles 

As mentioned above, the polyaza macrocycles are a common class of macrocyclic compounds, 

thanks to their similarity with natural molecules and to their ability to form stable complexes with 

metals from the later transition, more than with alkali or alkaline earth metal ions. This important 

difference with respect to other ligands makes polyaza macrocycles more suitable for application in 

organometallic chemistry. 

The similarity to other natural macrocycles like porphyrins and corrins made Cyclam (1, 4, 8, 11-

tetraazacyclotetradecane) and related ligands, the most investigated among the polyaza 

compounds. They have been mainly applied in stabilizing high oxidation state metals and in 

formation of chelators with more than one function. This kind of molecules is also used for the 

binding of radioisotopes to biological targets. 

Tetramethylcyclam is frequently employed as stabilizer of reactive high valent iron oxo compounds, 

since it forms stable iron(IV)-oxo complexes with a wide range of anions coordinated.5 

Delgado and co-workers reported the monopicolinate cyclam derivatives (Figure 1.1); they formed 

stable copper(II) complexes demonstrating preference for Cu(II) coordination over other metal 

ions.6 
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Figure 1.1 – Cyclam derivatives. 

As analogue of the crown ether 12-crown-4, also the Cyclen (1,4,7,10-tetraazacyclododecane) and 

its derivatives were studied since a long time. One of the most important applications of such 

compounds was in the biological NMR field, like the paramagnetic lanthanide(III) chelating protein 

probe (Figure 1.2), that shows different properties depending on the pH.7 

 

Figure 1.2 – Lantanide (III) chelating protein probe. 

Delgado and coworkers developed also several other cyclen analogues, like ligands with pinacolate 

arms, and tested their reactivity toward copper(II).5 The coordination of the cyclen derivative 

switched between the carboxylate and the nitrogen donors depending on the pH. They reported 

also an example of a macrocycle with two trans-N-acetate arms, very selective for Cu(II).8  

In the literature, it is frequent to find some tetraaza macrocycles described as “cyclen derivatives”, 

especially in the last years, due to their ability to form very stable complexes with a wide range of 

metal cations. In 2012 were reported twelve-membered pyridine-based macrocycles with quinoline 

as pendant arms (compound C, Figure 1.3). The copper(II) complexes of these ligands showed that 

the reaction kinetics and the stability of the complexes are affected by the N-substituent of the 

quinoline.9 

These macrocycles give to the relative complexes with relevant isotopes a wide range of important 

chemical properties as thermodynamic stability and mild complex formation. These features, 

together with the possibility of coupling with targeting biomolecules, are necessary to make 
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complexes usable in medical and pharmaceutical field.10 For these reasons, Cooper and co-workers 

(as well as Ferreira) employed this pyridine-based twelve-membered pattern for 64Cu complexes for 

labeling of antibodies (compound A and B, Figure 1.3).11  

In order to coordinate a bulkier ion as iron(IV), also the fourteen-membered pyridine containing 

cyclam derivatives were synthesized and studied as mediator for catalytic epoxidations of 

cyclooctene and other olefins (compound D, Figure 1.3).12 

 

 

Figure 1.3 – Some examples of twelve- and fourteen-membered pyridine containing ligands. 

The ligands studied and synthesized in our group are part of this category, since they are twelve-

membered tetraaza macrocycles and they include a pyridine moiety in their backbone. 

Another important class of polyaza macrocycles are Cyclidenes (1,4,7-triazacyclononane). They are 

ligands with a cavity synthesized and extensively studied by D. H. Busch. They can coordinate a single 

metal ion and maintain a cavity, which allows access to small molecules. For this reason, they are 

still studied and their complexes are applied in many different field as for example catalysis.13  

This kind of compounds were also employed in building metallorganic framework structures for the 

absorption of CO2.14 The zinc(II) complexes of the ligands shown below (figure 1.4) are able to form 

a framework with a surface area of 1350 m2/g and shows a good selectivity for CO2 over other gases 

similar in dimension as CO, CH4 and N2.15  

 

Figure 1.4 – Structural formulae of symmetrical cyclidene. 

 

C 

A B D 
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Finally, it is important to cite also larger polyaza macrocycles. They can be classified by increasing 

macrocyclic ring size and number of donor atoms. The application for this kind of compounds is 

often the chelation of metal ions, as for what concern the macrocyclic pentaaza ligands that were 

synthesized and evaluated as novel chelating agents in copper(II) and nickel(II).16  

 

1.4  Porphyrins 

As particular class of tetraaza macrocycles is represented by porphyrins. The general structure of 

this molecule is made by four pyrrolic units, connected by methinic bonds (Figure 1.5). In 

dependence of the position, carbon atoms could be known as meso-carbon (5, 10, 15 and 20) or β-

pyrrolic. Meso-carbons are the ones involved in methinic bonds. 

The importance of porphyrins is due mainly to their natural abundance, where they play crucial roles 

in the metabolism of living beings, often associated to metal ions coordinated in porphyrins. After 

the deprotonation of the two N-H of the pyrroles, porphyrins act as tetradentate dianionic ligand 

and they can coordinate nearly every metal ion in their cavity. Porphyrin complexes for all the 

transition metals, all the lanthanides, several of the actinides and even some of the main group 

metals are known. The reason of such a kind of versatility is due to the high electron density and to 

the high electron stabilization of the porphyrin ring. 

Among the metalloporphyrins, one of the most known is iron protoporphyrin IX, also known as 

heme, that is the cofactor of the hemoglobin, responsive of the O2/CO2 transportation in blood and 

also stated as pigment of the red blood cells (Figure 1.5)  

 

Figure 1.5 – Porphirine with numbering scheme adopted; Heme B. 

In 1926 Hans Fisher and Bruno Walach described the first synthesis of a porphyrin1 and laid the first 

stone for the different and increasingly optimized routes reported between 1930s and 1950s, in 

particular by Rothermund.17 These new works, despite the limitations in the number of aldehydes 
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used and the low yields, paved the way for the studies by Adler and Longo, who published a one pot 

procedure for the reaction of different benzaldehydes and pyrrole in presence of propionic acid. 

The yield of this synthetic pathway is up to 20-25%.18 This method is still used nowadays, when large 

amounts of non-symmetrical porphyrins are needed. Higher yields (50%) and milder conditions are 

reported in the work of Lindsey and co-workers, who proposed a way of synthesis via porphyrinogen 

(Scheme 1.1).19 

 

Scheme 1.1 – Synthetic method reported by Linsdey. The porphyrinogen intermediate can be directly aromatized by 

2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). 

Synthetic chiral porphyrin derivatives have been developed over the years, to extend the application 

of metalloporphyrins also to enantioselective applications. Chiral derivatives have been mainly 

prepared by the approach of Groves and Meyers that involves the attachment of chiral units to 

preformed porphyrins.20 Then O’Malley and Kodadek demonstrated that it is possible to insert chiral 

substituent on the porphyrin by using the classical Lindsey procedure with chiral aldehydes.21 Since 

then, the number of chiral porphyrins appeared in literature is still growing. 

A significant example of chiral porphyrin is the single-face protected picket fence and picnic basked 

compounds (Figure 1.6), synthesized by Collman in 1993 and used as ligands for iron(III)-chloride 

complexes in enantioselective epoxidation of styrene by Rose and colleagues.22 Important works in 

asymmetric catalysis mediated by chiral porphyrines are those by Che and Berkessel, who employed 

ruthenium and manganese complexes of the simplest D4-symmetric double-faced porphyrins for 

stoichiometric and catalytic oxidation,23 cyclopropanation,24 and amination25 reactions of 

unfunctionalized hydrocarbons, always reaching good to very good results in term of yields. 

It is important to mention also the family of the “bis-strapped” porphyrins, characterized by the 

presence of a chiral binaphthyl (BINAP) moiety, which produces a significant steric hindrance in the 

proximity of the active cavity. In this way, the catalytic activity and, in particular, the selectivity are 

drastically enhanced. Collman and Rose reported the synthesis of C2-symmetric bis-binaphthyl chiral 
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porphyrin and the corresponding Fe(III) complex that gave TON of 16000 in the epoxidation of some 

terminal olefins (Figure 1.7).26 

 

Figure 1.7 – Schematic representation of the single-face protected picket fence and picnic basket; picnic basket 

porphyrin bearing isophthalate amide loops and a binaphthyl dieter linkers; iron (II) complex of the C2 bis-strapped 

porphyrin. 

 

1.5  Tetra-aza macrocycles 

The group in which I conducted my PhD thesis is interested in the use of nitrogen containing ligands, 

in particular tetra-aza macrocyclic compounds, and on the studies of their reactivity and their 

catalytic activity as metal complexes. Several years ago, Cenini and co-workers reported the 

synthesis of CoII-porphyrin complexes that catalyzed the amination of benzyl compounds27 and the 

cyclopropanation of alkenes.28 Since then, other interesting reactions were exploited, such as the 

amination of 1,2-dihydronaphthalene derivatives, demonstrating an unusual reactivity of 

dihydronaphthalene towards several aryl azides.29 Using another porphyrin [Ru-(CO)(TPP)] (TPP = 

dianion of tetraphenylporphyrin) as catalyst we catalyzed the aziridination of olefins using aryl 

azides as nitrogen source.30 This ruthenium complex has been found to catalyze the direct 

aziridination of conjugated dienes by aryl azides with high chemoselectivity, to provide N-aryl-2-

vinylaziridines.31 More recently, our research group discovered that [Ru-(CO)(TPP)] promoted the 

amination of both exocyclic and endocyclic benzylic C-H bonds (Scheme 1.2).32 
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Scheme 1.2 – General scheme for the synthesis of cobalt and ruthenium complexes. 

Finally, we have explored cyclopropanation reactions employing a new chiral iron porphyrin 

(Scheme 1.3), obtaining cyclopropanes with excellent yields (up to 99%), enantio- and 

diastereoselectivities (eetrans up to 87%, trans/cis ratios up to 99:1) and outstanding TON and TOF 

values (up to 20,000 and 120,000/h respectively).33 

 

Scheme 1.3 – Porphyrin complex highly active in carbene transfer reactions. 

Porphyrin complexes have shown excellent catalysts turnovers and unusual selectivities, thanks to 

the high versatility of the porphyrin ligand and to its ability to coordinate the metal in one way only. 

For example, chiral porphyrin complexes of cobalt(II) and ruthenium(II) were tested in catalytic 

cyclopropanation34 and amination reactions.35 

From another point of view the synthesis of this class of compound generates several problems, 

especially if some functional groups are introduced on the framework or if the optical pure form is 

synthesized. Moreover, the synthetic methodologies reported in literature concerning chiral 
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porphyrins require difficult and long procedures, expensive reagents and lead to very low overall 

yields. For this reason, our attention turned to the development of synthetic pathways that allow 

to obtain a class of tetraaza macrocyclic ligands that we could functionalize easily and in few 

synthetic steps, in good yield and with economic and commercially available starting materials. In 

collaboration with Prof. Sisti of Università dell’Insubria, we synthesized a new type of tetraaza 

macrocycle containing a pyridinic ring. Sisti and co-workers studied these classes of compounds and 

their use as ligand for gadolinium(III) since their complexes are useful contrast agents for magnetic-

resonance images (MRI) (Figure 1.8).36 

 

Figure 1.8 – Structure of the PC-type ligand. 

We decided to modify this kind of ligands making them suitable for catalytic purpose. In 2008 the 

new pyridine based 12-membered tetraaza-macrocyclic ligands, named Pyridine containing Ligands 

(PcL) were obtained. The synthetic approach employed to synthesize these macrocyclic ligands, is 

reported in scheme 1.4.37 

 

Scheme 1.4 – Synthesis of macrocyclic molecules PcL. 

The synthesis of the macrocycle is simple and it involves three main steps. Firstly ethanolamine is 

reacted with tosyl chloride and the obtained N,O-ditosylethanolamine undergoes a ring closure 
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reaction after treatment with a base to obtain the tosyl-aziridine. Then a solution of the tosyl-

aziridine (2 equivalents) is added to a commercially available chiral aryl-amine to yield a substituted 

bis-sulfonamide. Finally, the bis-sulfonamide is reacted with 2,6-bis(chloromethyl)pyridine, yielding 

the desired macrocycle. It should be underlined that the crucial step of the macrocyclization, is 

conducted under heterogeneous conditions as a modification of the Richman-Atkins protocol 

(NaH/DMF). This synthetic strategy allows to avoid high dilution techniques and to obtain the 12-

membered macrocycles in 80–99% yields, without any racemization at the asymmetric carbon. 

Moreover, it is worth of note that, even conducting this step in concentrated condition, we never 

observed any polymerization side-reaction. The presence of different types of variously substituted 

nitrogen atoms (one sp2 and three sp3) makes this class of compounds of great interest. 

 
Figure 1.9 – Ortep view of a PcL. The ORTEP view shows the good conformational degree of freedom of the 

macrocyclic cavity. 

 

This synthetic methodology is simple and to apply different functionalizations on the macrocyclic 

framework, in order to change the steric hindrance and to create stereocenters on the backbone. It 

is possible to develop a modular design of the ligand by varying – for example – the structure of the 

amine nucleophile, starting from different commercially available chiral or non-chiral amines. 

Moreover, the tosyl groups can be removed and/or replaced with others protecting groups.  

Metal complex formation with PcL was investigated with copper(I) triflate toluene complex 

([Cu(OTf)]2·C7H8) as copper(I) source (Scheme 1.5).37 
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Scheme 1.5 – Synthesis of the copper(I) complex. 

 

Treating the ligand with [Cu(OTf)]2·C7H8, a pale-yellow Cu(I) complex, quite sensitive to air and 

moisture, was obtained. On the other hand, by layering with benzene a 1,2-dichloroethane (DCE) 

solution of the ligand, after treatment of the ligand with an equimolar amount of [Cu(OTf)]2·C7H8, a 

colorless crystalline solid was obtained (Scheme 1.6).  

 

Scheme 1.6 – Cu(I) complex formation from the ligand, highlighting the η2 coordination mode of naphthyl moiety. 

 

All the analytical data confirmed the formation of a mono-metallic Cu(I) complex (45% yield) which 

did not readily oxidize to Cu(II). This complex has been isolated and fully characterized. The 1H NMR 

spectrum of the complex in CDCl3 displays a very low symmetry: particularly, in the 1H NMR (figure 

1.10) spectrum, the proton directly bound to carbon 1 shifted to higher frequencies, 8.93 ppm 

compared to 8.16 ppm for the free ligand. 



 

16 

 

 

Figure 1.10 – 1H NMRspectrum of complex XXXI 2 in CDCl3. 

Moreover, two sets of signals are observed for the sulfonamide moieties and this can be due only 

to very low symmetry of the molecule, retained also in solution. Indeed, the solid-state structure of 

the complex shows that the copper atom is placed in the large macrocyclic cavity of the ligand, 

which has five potential coordination sites (the four nitrogens and the naphthyl moiety) in a strongly 

distorted trigonal bipyramidal geometry (figure 1.11). 

 

Figure 1.11 – Selected bond distances: Cu–N1 1.980 Ǻ, Cu–N2 2.151Ǻ, Cu–N3 2.346 Ǻ, Cu–N4 2.820 Ǻ, Cu–C1 2.017 Ǻ, 

Cu–C2 2.428 Ǻ. 

To be precise, in this complex the copper is tetra-coordinated since for steric reasons it is shifted 

toward one side of the cavity, away from N4 (at a distance in excess of 2.8 A˚, well above a regular 
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Cu–N bond). The η2 coordination mode of the naphthyl on copper(I) in solution has been also 

observed by 13C NMR studies in CDCl3 solution. The signal of naphthyl carbon 1 involved in the η2 

bond with copper shifts from 124.5 ppm in the free ligand, to 94.2 ppm in the complex (see figure 

1.11 for labeling of the carbon atoms 1 and 2). Conversely, carbon 2 is affected to a lower extent 

(low frequency shift from 124.6 to 118.2 ppm). The observed coupling constant 1J (13C, 1H) of 149 

Hz for carbon 1 provides hints of a partial re-hybridization state from sp2 to sp3. Since carbon 2, 

instead, is less affected a predictable 1J (13C, 1H) of 163 Hz is observed.38 

The effect of the copper complexation to the ligand was also evidenced by the 15N NMR chemical 

shifts observed in CDCl3 solution. The 15N NMR spectrum shows a marked shift for the pyridinic 

nitrogen atom (from 313 to 245 ppm), while the sp3 nitrogen atom bonded to the asymmetric 

carbon is affected to a lesser extent (from 39 to 51 ppm). 

The η2 coordination mode of the naphthyl on copper(I) can explain not only the better stability of 

the copper complex but also the higher performances in term of enantioselection observed in the 

catalysis.37 The reactivity of the complex was then tested with acetonitrile (scheme 1.7).  

 

Scheme 1.7 – Shnthesis of the acetonitrile Cu(I) complexes of PcL. 

The 1H NMR spectrum discloses a marked shift of all the signals, especially in the aliphatic region. 

The 15N NMR spectrum shows that the position of the pyridine nitrogen signal is unaffected while 

the sp3 nitrogen atom bonded to the stereogenic carbon is located at 38 ppm.  

All the obtained complexes were fully characterized and in some cases crystals suitable for an X-ray 

structural determination were obtained by crystallization from dichloroethane/n-hexane (figure 

1.11), showing the coordination of the incoming acetonitrile molecule and the displacement of the 

naphthyl pendant arm.  
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Figure 1.12 – Crystal structures of the acetonitrile Cu(I) complexes of PcL ligands, showing the displacement of the 

naphthyl moiety. 
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1.6  Structural modifications 

As it will be discussed in the next chapter (result and discussion), it is easy to insert new substituents, 

and hence new stereocenters, on the backbone of the ligand, just by changing one or more of the 

starting reagents. The easiest and cheapest way to modify the final outlook of the ligands is to use 

an enantiomerically pure aminoalcohol instead of the 1,2 – ethanolamine. Since 1,2 aminoalcohols 

are derivatives of naturally available aminoacids, these latter compounds are perfect to be used as 

starting material in the synthesis of our ligands. As first test, we used L-valinol for the synthesis of a 

chiral ligand, bearing two isopropyl substituents on the backbone. While the synthesis of the 

corresponding aziridine is simple and quite fast, the ring opening reaction is slower and it could be 

stopped after the addition of 1 equiv. of the aziridine. Hence, the mono-adducts could be isolated, 

although in moderate yields (13-50%). 

 

1.7  Ligands derived from aminoacids  

In the last years, several new classes of ligands, containing chiral, biologically inspired, building 

blocks such as proteins and/or peptides as well as synthetic ligands structurally modified by 

introducing natural-derived compounds able to act as coordination sites for metal cations, have 

been reported in the literature. 

The use of small peptides able to mimic the activity of natural metalloenzymes presents important 

advantages like an easy synthetic protocol and the possibility to modify the sequence in order to 

finely tune the catalytic activity and the coordination kinetics.39 Finally, thanks to the ability of the 

peptide to adopt several different conformations and to form complex supramolecular structures, 

it is possible to influence also the second coordination sphere of the metal cation.40 

In the case of the synthetic modified ligands, the most recent examples are represented by synthetic 

dipeptides, such as small peptidic chains characterized by the presence of β-turns and by modified 

aminoacids containing phosphorous atoms (Figure 1.13).41 
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Figure 1.13 – Example of modified synthetic peptides. 

 

The presence of building blocks with natural origin allows the development of catalysts able to 

induce more selectivity thanks to the local chirality of a single aminoacid and to the global chirality 

generated by the entire system. 

This new class of ligands could have affinity for macromolecules, such as proteins, and can be able 

to form artifitial metalloenzymes.42 In the last years this class of catalysts became a valid alternative 

to the traditional ones due to their unique features that couples the characteristics of homogeneous 

catalysis with those of natural metalloenzymes.  

Important examples are the artificial metalloenzimes based on the interaction between biotine and 

streptavidine.43 Biotine is known especially for its role as cofactor of several carboxylases and is 

essential due to its ability to act as carrier of CO2, that binds on the nitrogen of the imidazole ring 

opposite to the chain of valerianic acid. 

In the second half of the last century, the study of the interaction between biotine and streptavidine 

has been explored in detail and nowadays their interaction is considered the strongest non-covalent 

bond ever known (Figure 1.14). 

 

Figure 1.14 – Biotin-streptavidine interaction. 

MODIFIED DIPEPTIDES 
MODIFIED DIPEPTIDES CYCLIC PEPTIDES 3,4 DIAZAPHOSPHOLANES 
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Inspired by these works, we developed a structurally modified PcL containing an aminoacid pendant 

arm of alanine or lysine in order to further functionalise the macrocycle by implementing a dipeptide 

or a biotine moiety. In this way the resulting metal complex could be incorporated in streptavidine 

(in the case of lysine) or in a peptide chain (in the case of alanine) leading potentially to 

enantioselective and/or diasteroselective catalytic activities. 

 

1.8  Catalytic applications 

1.8.1  Cyclopropanation 

Among the simplest compounds in organic chemistry, we find cyclopropanes and, for this reason, 

they are very common in nature. Thanks to their importance in natural – and also biological and 

pharmaceutical – products,44 they continue to gain interest in the last years. They are versatile and 

useful intermediates in the synthesis of more complex molecules. They have been found to show a 

wide range of biological proprieties and applications encompassing enzyme inhibitions to 

insecticidal,45 antibacterial, 46 antimicrobial,47 antibiotic and antitumor activities.  

The cyclopropane rings are present also in industrially relevant and largely produced 

pharmaceuticals such as antidepressants48 and drugs for the treatment of sleep disorders.49 

Many different methods have been reported up to now for the synthesis of cyclopropane 

derivatives from various achiral substrates (scheme 1.8). 

 

Scheme 1.8 – Various approaches to cyclopropane derivatives 
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After the pioneering work of Emschwiller in 1929,50 the conversion of alkenes to cyclopropane 

derivatives was officially attributed to Simmons and Smith in 1958, using zinc-derived carbenoids51 

and, up to now, this method remains one of the most important for the synthesis of this class of 

molecules. Several zinc carbenoid reagents have been synthesized after Simmons and Smith, 

Wittig,52 and Furukawa publications.53  

Different and alternative routes have been reported to obtain more highly functionalized 

substrates. Zhu and co-workers in 2012 proposed a methodology based on a highly soluble 

iodonium ylides in the Rh-catalyzed cyclopropanation under homogeneous conditions (Scheme 

1.9).54 

 

Scheme 1.9 – Synthesis of functionalized cyclopropane molecules proposed by Zhu and co-workers. 
 

One of the most useful methods for cyclopropanation reaction in based on the transition metal 

catalyzed decomposition of a carbene precursor, such as a diazoalkane, or iodonium ylide, or a 

triazole, leading to the real reactive species (Figure 1.15). 

 

Figure 1.15 – Most commonly used types of carbene precursors in asymmetric cyclopropanation. 

The formed metallo-carbene is then able to react with an alkene to produce a cyclopropane 

derivative in a concerted, [2+1] cycloaddition (Scheme 1.10).  
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Scheme 1.10 – General mechanism of the intermolecular cyclopropanation using metal carbenes. 

 

Up to now, even if a great variety of transition metal catalysts has been used for this transformation, 

only rhodium(II), copper(I/II), ruthenium(II), iridium(III), iron(III) and cobalt(II) have found to be 

active with a reasonable stereoinduction, but only with the metal center surrounded by the 

appropriate chiral environment. With these transition metals, the formed carbene has an 

electrophilic character (Fischer-type carbene) and instantly reacts with electron-rich substrates. The 

electronic nature of the substituents on the carbene influences its reactivity and, thus, the 

stereoselectivity of the reaction. The cyclopropanation of olefins using the transition metal-

catalyzed decomposition of diazoalkanes is one of the most extensively studied reaction. Both inter- 

and intramolecular versions of this reaction have been developed and exploited in synthesis.  

The first example of an enantioselective copper based intermolecular cyclopropanation reaction 

was reported by Nozaki in 1966.55  

 

Scheme 1.11 – Nozaki’s copper catalyzed cyclopropanation. 
 

Although the enantiomeric ratios were modest, this catalyst defined the basis for further ligand 

optimization. In particular, the copper-catalyzed enantioselective version of the reaction is now well 
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established, and chiral C2 symmetric bidentate ligands such as bisoxazolines are56 are the most 

widely used, generally employing EDA57 as carbene source. As an example, very recently Kellehan 

et al. described copper complexes of chiral BOX ligands applied as catalysts for the asymmetric 

cyclopropanation reaction of styrene with ethyldiazoacetate and enantioselectivities of up to 70% 

were obtained. (Figure 1.16).58 

 

Figure 1.16 – Two different PhPrAraBOX (a and b) and MePrArBOX (c) synthesized by Kellehan et al. 

Also porphyrines are widely employed as ligands in cyclopropanation reactions.59 For example very 

recently, S. Gharaati et al. described tin(IV) tetraphenylporphyrinato trifluoromethanesulfonate, 

[SnIV(TPP)(OTf)2], and tin(IV)tetraphenylporphyrinato tetrafluoroborate, [SnIV(TPP)(BF4)2] as 

catalysts for cyclopropanation of styrene derivatives with EDA.60 These electron-deficient catalysts 

catalyzed the cyclopropanation of styrene derivatives in high yields, with very high 

diasteroselectivity and under mild conditions. 

The literature concerning the cyclopropanation reaction is continuously expanding:61 new and more 

efficient methods for the preparation of these functionalities in enantiomerically pure form are still 

evolving. Few years ago, our group reported the synthesis and characterization of copper(I) 

complexes of the previously described ligands (PcL) and very promising results on their use as 

catalysts in asymmetric cyclopropanation reactions.62 Here we report our new findings concerning 

the extremely challenging diastereoselective cyclopropanation reaction of 2- and 3-vinylindoles 

exploring the catalytic performances of copper(I) complexes derived from our coordinated PcLs.  
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1.8.2  X-H carbene insertion 

Seen the catalytic competence of our Cu(I) catalysts in alkene cyclopropanation reactions62-63 and 

knowing that Cu(I)-PcL complexes showed to be able to promote cyclopropanations even on vinyl 

indoles in good yields and high diasteroselectivity, we decided to explore also the field of the X-H 

bond insertion of carbenes. 

The selective functionalization of X-H bonds, particularly those with high bonding energies, 

constitutes appealing transformations with interest from synthetic and theoretical perspectives. 

Electrophilic metal-carbene intermediates generated from diazocompounds enable the 

functionalization of strong X-H bonds under very mild reaction conditions.64 With the aim to expand 

the scope and selectivity of Cu(I)-PcL complexes in carbene transfer reactions, we decide to evaluate 

them in archetypal X-H bond functionalization reactions. Considering the relevance of silicon-

containing compounds,65 which can be used as versatile synthetic intermediates, we selected the 

metal-promoted carbene insertion into Si-H bonds66 to test the activity and selectivity of the Cu(I)-

PcL catalytic system. After that, we expanded our investigation by testing the Cu(I)-PcL catalytic 

activity also in O-H and N-H bond insertion64 of carbene deriving from diazo-compounds as well as 

the X-H insertion of furyl-carbenes deriving from relative precursors called enynones (Scheme 

1.12).67 Our findings, despite the modest enantioselectivity, showed to be very interesting in terms 

of stability and activity of the catalyst as well as in terms of generality of the reaction and of 

tournover number (TON). 

 

 

 

 

 

Scheme 1.12 – Cu(I) PcL catalyzed X-H bond insertion of carbenes. 
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1.8.3  Henry reaction 

Carbon–carbon bond forming reactions, thanks to their unique capability of generating molecular 

complexity, represent a very strong tool for synthetic chemist.68 In the last decade considerable 

advances in the catalytic generation and enantioselective addition of carbon nucleophiles to 

different types of electrophiles were made. In this context, nitroalkanes are remarkable reagents 

not only due to their propensity to undergo easy dehydrogenation but also for their easy and direct 

interconversion to other organic functional groups.69 

Even weak bases are able to deprotonate the -position of a nitro group (pKa = 10) and the 

nucleophilic attack of the generated nitronate anion on a carbonyl to give the corresponding -nitro 

alcohol is commonly called Henry (or nitroaldol) reaction.70 Even though more than one century old, 

this reaction is still to be considered one of the most important examples of an atom-economical 

transformation.71 No need for a stoichiometric amount of a base, metal catalysts,72 enzymes73 or 

organocatalysts74 can efficiently promote the Henry reaction. Among the metal complexes 

commonly employed as catalysts, copper(I)75 and copper(II)76 complexes play a huge role but to the 

best of our knowledge the activity of silver salts and complexes have not been tested. In several 

cases reported in the literature, the replacement of Cu with Zn gave comparable results but in some 

of them a reversed enantioselectivity was observed. Surprisingly, such a correlation in reactivity 

with silver has never been made and the few examples appeared in the literature report that silver 

salts either failed in promoting the reaction, or gave very poor yields. 

In the last years, several studies on the Henry reaction were made in our research group. The 

copper(I) complexes of the 12-membered pyridine-containing ligands (PcL) have been successfully 

employed as catalysts in the Henry reaction.75b Among transition metals, reports on the catalytic 

activity of silver complexes are relatively sparse when 

compared to the more extensively studied copper and gold. 

We have recently reported the full characterization of 

[silver(I)(PcL)] complexes and their organometallic 

reactivity,77 and we have demonstrated their catalytic activity 

in the regiospecific domino synthesis of 1-alkoxy-

isochromenes under mild conditions78 and in the microwave 

enhanced A3-coupling multicomponent reaction.79 Compared 
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with simple silver salts, the great advantages of [Ag(I)(PcL)] complexes are their solubility, their 

enhanced stability and the easy way of handling (Figure 1.17). 

Prompted by the interesting results above mentioned, we were intrigued to check if our well-

defined silver(I) complexes were suitable catalysts also for the Henry reaction. Thanks to this study, 

we were pleased to find that [Ag(I)(Pc-L)] complexes can actually activate the aldehyde toward the 

nitronate nucleophilic attack, in the first example of a silver mediated Henry reaction.80 

Since the Henry reaction has provided a good platform for testing the dual activation of metal/base 

catalysts, we have modified our ligands by attaching in the proper position a suitable internal base 

in order to drive the reaction without the need of any basic cocatalyst. 

 

1.8.4  Isochromene cycloisomerization 

Encouraged by the promising results in the nitroaldol reaction mentioned above (see section 1.7.3) 

and in connection with our ongoing interest in the study of domino nucleophilic addition/cyclization 

reaction involving alkynes characterized by the presence of a proximate nucleophile (see also 

section 1.7.3) we decided to test the reaction on proper bifunctional substrates.  

Based on our experience, we chose the o-alkynylarylaldehydes with the ambition to join the Ag 

catalyzed Henry reaction (by activation of the aldehyde moiety) to the Ag catalyzed 

cycloisomerisation (by activation of the triple bond). In this manner we can obtain, in a cascade 

fashion, new interesting O-heterocycles such as isochromenes carrying a -NO2 substituent making 

them extremely useful for further functionalizations. A two-step process that takes advantage of a 

Cu(II) catalysed Henry reaction followed by an Au(I) mediated cycloisomerisation81 has recently 

been reported by Y. Gong and coworkers (Figure 1.18).82 

 

Figure 1.18 – Two steps approach for the synthesis of nitro functionalized O-heterocycles by Gong, compared with our 

domino sequence. 
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1.8.5  Iron catalyzed alkene oxidation 

Much efforts in the use of macrocyclic pyridine-containing ligands have been devoted to the study 

of catalytic oxidation reactions. Early studies were inspired by Nature and the understanding of 

metalloenzymes, which use molecular oxygen from air as the primary oxidant. Copper proteins such 

as haemocyanin, the enzymes tyrosinase and catechol oxidase and nonhaem iron enzymes are very 

sophisticated catalysts and their reactions are fast and highly selective under mild experimental 

conditions. The prospect of using model compounds for such metalloenzymes as industrial 

oxygenation catalysts83 has driven efforts to synthesise molecules capable of mimicking the oxygen 

binding and activation in natural systems.84 

The interest in understanding the structures and properties of iron complexes containing 

coordinated dioxygen has led the scientific community to explore ligands capable of stabilizing 

superoxo and/or μ-peroxo intermediates before their rapid autoxidation to Fe(III)–oxo species, due 

either to the presence of water or to oxidative dehydration of the ligands.85 

In a pioneering paper that appeared in 1982, Kimura and co-workers reported a new pyridine-

containing pentaaza macrocyclic ligand (Pyan) capable of stabilising the O2 adduct of its iron(II) 

complex in aqueous solutions at room temperature (Figure 1.19).86  

 

Figure 1.19 – Pyan ligand and its O2 iron adduct. 

The presence of the pyridine ring in the macrocycleskeleton, altering both the electronic and steric 

properties, was of fundamental importance in the stabilisation of the dioxygen adduct. The more 

rigid configuration imposed on the macrocycle by the presence of the pyridine ring in the diiron(III)–

μ-peroxo complex rendered the complex kinetically inert by preventing ligand dissociation.  

Some years later, in the course of modelling the intradiol cleavage of catechol dioxygenase, Koch 

and Krüger reported the structure and the catalytic reactivity of an Fe(III) catecholate complex of a 

pyridinophane ligand (Figure 1.20).87  
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Figure 1.20 – Synthetic scheme for the preparation of different pyridinophane ligands. 

One attractive feature of pyridine containing macrocycles is represented by the different synthetic 

paths to their synthesis, allowing easy modulation of the substitution pattern of the macrocyclic 

skeleton. Another feature is the presence of inequivalent nitrogen donor atoms, which can be used 

to introduce coordinating groups on the pendant arm.88 In the search for non-haem iron complexes 

that are active as catalysts for oxygen and peroxide activation, it is important to prepare ligands that 

can fix the donor atoms in a square-pyramidal (or square-planar) geometry around the metal ion.  

 

Figure 1.21 – Synthesis of 12-membered tetraazamacrocycles following the modified Richman-Atkins procedure. 

Another approach to the synthesis of pyridine-containing macrocyclic ligands consists of the 

modified Richman–Atkins procedure,89 by treatment of an N-tosyl-protected polyamine with 2,6-

bis(bromomethyl)pyridine, in the presence of K2CO3 as a base under heterogeneous conditions 

(Figure 1.21).90 After the hydrolysis, promoted by HBr, of the Ts protecting group, the free-base 

ligand could be further functionalized. This synthetic scheme was mainly applied to obtain 12-

membered macrocycles. The iron(II) complex obtained by treating the final ligand of Figure 1.21 

with [FeII(CF3SO3)2(CH3CN)2], upon treatment with peracetic acid gave rise to the fastest non-heme 
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oxo–iron complex for cyclohexane oxidation ever, that also proved to be a competent catalyst in 

alkene epoxidation with peracetic acid.91 

In this work we developed a new tetraaza macrocyclic pyridine containing ligand (PcL) starting by 

the modified Richman–Atkins procedure, by treatment of an N-tritosyl-diethylenetriamine with 

pyridine-2,6-diylbis(methylene) dimethanesulfonate, in the presence of K2CO3 as a base under 

heterogeneous conditions. After the hydrolysis in HBr of the Ts protecting groups, the free-base 

ligand has been perbenzylated on the three sp3 nitrogens. The resulting product has been 

coordinated with different sources of iron(III) and tested as catalyst in the oxidation of alkenes 

showing a surprisingly good and complementary activity in epoxidation and diol formation in mild 

conditions and strictly dependent on the counteranion. 
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2.  RESULTS AND DISCUSSION 

The first aim of this work was the development of a synthetic strategy for obtaining an increased 

number of ligands with several different substituents and protecting groups. This class of ligands 

has the general structure reported below (Figure 2.1) and a lot of attention has been payed to the 

optimization of all the synthetic steps, in order to increase yields and to reduce reaction times. 

We choose the tosyl (Ts) moieties as  protecting groups thanks to the easy synthesis of the starting 

materials, their excellent general stability, their ability in forming stable complexes with coinage 

metals in +1 oxidation state (the presence of two less basic nitrogen in the ligand, in fact is useful 

for the catalytic properties of the corresponding metal complexes) and the low cost of tosyl chloride 

compared to other protecting groups. Finally, since the tosyl groups require harsh conditions for the 

deprotection reaction (use of HBr 47%), we developed a new class of ortho-nosyl protected ligands. 

We used them to obtain unprotected macrocycles bearing -NH moieties. 

 

Figure 2.1 – General structure of the PcL ligands. 

2.1  Synthesis of aminoalcohols 

As detailed in the introduction, one of the easiest modification that can be made to the skeleton of 

the ligands, is the change of the starting aminoalcohol in order to provide substituents and 

stereogenic carbons on the backbone of the molecule. Enantiomerically pure aminoalcohols are 

available on commerce with accessible prices. However, the cost of the direct synthesis from the 

corresponding aminoacids is much lower. 

The classical procedure starts with the esterification of the carboxylic group, followed by the 

reduction of the ester. This pathway allowed us to obtain the products in good yields (75-90%), but 

it was very time-expensive. We found in literature only one direct synthesis of aminoalcohols from 

aminoacids, reported by Cozzi et al., involving NaBH4 and H2SO4 (Scheme 2.1). The procedure 

worked well with all the tested substrates and leaded us to obtain the aminoalcohols 1a-d in 

excellent yields (90-99%) with complete retention of configuration. 
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Scheme 2.1 – Reduction of aminoacids. 

 

2.2  Synthesis of aziridines 

2.2.1  Synthesis of tosyl protected aziridines 

The synthetic path that we used to convert aminoalcohols into tosyl protected aziridines depended 

on the nature of the substituents. The easiest reaction is the one with ethanolamine, L-valinol and 

L-t-leucinol that involves a first tosylation of both nitrogen and oxygen atoms and the subsquent 

ring closure driven by a strong base (Scheme 2.2). 

 

 

 
Scheme 2.2 – Synthesis of N-Ts-aziridines. 

 

For others, more sterically hindered aminoalcohols, we searched in literature for a different 

pathway involving the tosylation of the nitrogen atom, followed by the mesylation of the oxygen 

and the final ring closure.92 We were pleased to find that these two steps one pot reaction allowed 

us to obtain the product in high yields (about 80%) without further chromatographic purifications 

(Scheme 2.3).  

 
Scheme 2.3 – Synthesis of substituted N-Ts-aziridines. 
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2.2.2  Synthesis of o-nosyl protected aziridines 

The synthesis of o-nosyl (Ns) protected aziridines was easy and fast. For aminoethanol, the pathway 

consists in a three-step reaction, where the first two steps are the protection of the nitrogen and 

oxygen atoms respectively with o-nosyl and mesyl groups. The last step is the base-catalyzed ring-

closure reaction that leads to the formation of the ortho-nosyl protected aziridine (Scheme 2.4). 

The aziridine, if needed, is purified by precipitation of the impurities, and the overall yield of the 

three steps is high (>90%). 

 

 
Scheme 2.4 – Synthesis of N-Ns-aziridine. 

 

The pathway for L-valinol is much simpler and it involves a one pot reaction (Scheme 2.5).93 This 

reaction allowed us to obtain the aziridine with a reasonable 65% of yield after mandatory 

chromatographic purification. 

 

 
 

Scheme 2.5 – Synthesis of 2-isopropyl-N-Ns-aziridine. 

 

2.3  Synthesis of bisulfonamides 

The general procedure for this step involves the ring opening reaction of two aziridines by a primary 

aromatic amine: the ones used in this work are benzylamine, 1-R- and 1-S-methyl benzylamine, 

naphthylmethylamine and both the isomers of 1-naphthylethylamine. In addition to the low price 

of these compounds, we chose them because of the availability of the pure enantiomers and their 

stability towardsracemization. An important feature that needs to be highlighted is that, for every 

amine used, the attack at the terminal position of the aziridines is highly regioselective and we never 

observed a competing ring opening reaction at the more substituted carbon atom. Moreover, the 

absolute configuration of the stereocenters was always maintained. 
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2.3.1  Synthesis of “Disubstituted” bisulfonamides 

The procedure for this step consisted in refluxing two equivalents of aziridine and one of amine in 

the appropriate solvent until the reaction was complete. In some more challenging cases more than 

two equivalents of aziridine are required to drive the reaction to completion. In some much more 

challenging cases a mixture of bsiulfonamide and monosulfonamide was obtained, thus requiring a 

separation of the two products by flash chromatography. The so-recovered monosulfonamide can 

be reacted with further aziridine in order to provide again the corresponding bsiulfonamide. 

For tosyl protected aziridines, the solvent chosen is a mixture of toluene and acetonitrile. The first 

one allows higher temperatures and avoids the formation of byproducts and the second one being 

polar helps the SN2 reaction of this step. Anyway, while the reaction takes only few hours for 

unsubstituted aziridines, it requires prolonged times (more than one week) for substituted 

aziridines (Scheme 2.6).  

 
Scheme 2.6 – Synthesis of tosyl protected sulfonamides. 

 

With the aim to synthesize macrocycles bearing an aminoacid moiety, we applied this last procedure 

also in the case in which, instead of using one of the organic amines already described, the amine 

function of natural aminoacids such as β-alanine and N(α)-Cbz-lysine were employed as 

nucleophiles for the aziridine ring-opening. In this way, the resulting ligand could be employed in 

pepetidic chains as a new synthetic macrocyclic aminoacid capable to coordinate different metals. 

The number of fields of possible applications is extremely high and heterogeneous (from catalytic 

to biomedical applications). 

First, we had to protect the acid function of the aminoacids as esters in order to avoid side reactions 

and to increase the compound solubility. The reaction between the aminoacid and TMS-Cl (TMS = 

trimethylsylil) in the presence of methanol provided the resulting methyl ester in quantitative yields 

(Scheme 2.7). 
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Scheme 2.7 – Aminoacid protection.  

 

Using the aminoacids, a mixture of monosulfonamide and bisulfonamide has always been observed, 

probably due to the higher polarity of the species. Nevertheless, bisulfonamides 3j-k-l were 

obtained in more than reasonable yields, especially after the recovery of the monosulfonamides 

and their subsequent conversion to bisulfonamides with a further aziridine equivalent (Scheme 2.8). 

 

 

Scheme 2.8 – Bisulfonamides derived from aminoacids. 

 

On the other hand, the reactions between the nosyl protected aziridines and the amines were by 

far shorter thanks to the activating effect of the protecting groups. For this reason, milder conditions 

have been employed (Scheme 2.9). 

 

Scheme 2.9 – Ns-protected bisulfonamides. 
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2.3.2  Synthesis of “Monosubstituted” bisulfonamides 

The monosulfonamides products 4a-d obtained as by-products in the synthesis of the 

bisulfonamides precedently described, were subsequently employed as starting material for the 

preparation of completely un-symmetric bissulfonamides (Scheme 2.10). 

 

 

Scheme 2.10 – Ts and Ns-protected monosulfonamides 4a-d. 

 

To the scope, we conducted a step by step reaction, using a substituted aziridine in the first part 

and a different aziridine in the second step. In this case, MeOH was the best solvent concerning the 

yield, while a mixture of toluene and acetonitrile avoided the formation of by-products (Scheme 

2.11). 

We easily obtained in this way the bissulfonamides 5a-d, in high yields (80-85%) after 

chromatographic purification. 

 

 
 

Scheme 2.11 – Synthesis of monosubstituted bissulfonamides 5a-d. 
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2.4  Synthesis of the macrocycles 

All the bissulfonamides obtained were used to synthesize the corresponding macrocycles, by 

reaction with 2,6-bis(mesylmethyl)pyridine. This step was conducted in heterogeneous conditions, 

employing K2CO3 as base, in order to avoid high dilution techniques and to prevent the formation 

of polymeric byproducts. The reaction allows to obtain the desired macrocycles in yields ranging 

from 50 to 99% after chromatographic purification (Scheme 2.12). 

 

 
 

Scheme 2.12 – Synthesis of the macrocycles 6a-q. 

 

In fact, in the research group it was discovered that 2,6-bis(mesylmethyl)pyridine is more reactive 

(and cheap) with respect to the commercially available 2,6-bis(chloromethyl)pyridine. It is 

synthetized in almost quantitative yields by reacting 2,6-bis(hydroxymethyl)pyridine with 

mesylchloride (Scheme 2.13).94 

 

 
 

Scheme 2.13 – Synthesis of 2,6-bis(mesylmethyl)-pyridine. 

 

With the same procedure already described, we have also synthesized the aminoacid-derived 

macrocycles 6r-u in quantitative yields (scheme 2.14). This new class of bio-inspired ligands was 

fully characterized and employed directly in coordination of metals, in deprotection and further 

functionalization. 
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Scheme 2.14 – Synthesis of aminoacid-derived ligands 6r-u. 

 

In the same way we have also prepared other three macrocycles with different electronic features 

and properties with the aim to test different coordination environments for other metals. The first 

one is ligand 6v, already known in literature and obtained by the reaction of N,N’,N’’-

tritosyldiethylenetriamine with the already mentioned 2,6-bis(mesylmethyl)pyridine (Scheme 

2.15). Despite the fact that this ligand is already reported in the literature, its structure is not known. 

We have thus grown crystals suitable for an X-Ray structural determination in order to have insights 

into the distances of the coordination pocket (Figure 2.2). The most relevant feature of the structure 

is the parallel arrangement of the lateral tosyl substituents, which is in contrast to what we observed 

for ligands 6f and 6h, where the conformation of the cycle brings the two tosyl aromatic rings far 

from each other in antiparallel arrangement.62 This ligand has been subsequently deprotected and 

further functionalized as described in the next subchapter. 

 
Scheme 2.15 – Synthesis of ligand 6v. 
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Figure 2.2 – Structure of compound 6v (thermal ellipsoids are shown at 50% probability level). To give an idea of the 

size available for coordination inside the cycle, the distances N1⋯N3 and N2⋯N4 are 3.968 Å and 5.607 Å, 

respectively. 

The second one, product 6w, was obtained by the reaction between 1,3-dibromopropane and 

bisulfonamide 3a and have been synthesized in order to test the coordination activity of a 10-

membered tridentate macrocyclic ligand (Scheme 2.16).  

 

Scheme 2.16 – Synthesis of ligand 6v. 

Finally, ligand 6x, was obtained by the reaction between α,α′-dibromo-m-xylene and bisulfonamide 

3a and it has been synthesized in order to test the coordination activity of a 12-membered 

tridentate macrocyclic ligand (Scheme 2.17). 
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Scheme 2.17 – Synthesis of ligand 6x. 

 

2.4.1  Synthesis of deprotected ligands 

In the previous years, our research group have studied the coordinative behavior of the PcL ligands 

with the coinage metals copper and silver in +1 oxidation state. Some trials made up to now with 

gold(I) salts met with failure, probably due to the size and electronics of the macrocyclic ligands. 

The good catalytic activities observed in the previous works for Cu(I) and Ag(I) complexes are due 

to the weak coordinative ability of the sulfonyl protected nitrogen atoms, possessing a very low 

basicity, and to the much more pronounced basicity of the other two nitrogen atoms, which results 

in the formation of very stable complexes. In order to extend the range of metals suitable for 

complexation, we decided to deprotect the N-sulfonilated atoms. This transformation should 

increase the basicity of the two nitrogens and give access to dianionic complexes with different 

catalytic features. Moreover, the two -NH moieties could be further functionalized. 

First, we tried to remove the tosyl moieties from the ligand 6a. The classical procedures involve the 

use of strong acids, strong bases or powerful reactants.95 Aime et al.96 used concentrated sulphuric 

acid to deprotect similar ligands. An alternative method involves the use of SmI2 under various 

condition; Anker and Hilmersson optimized this reaction for many tosylamides, tosylaziridines and 

tosylesters.97 

The route that we chose involves the use of an HBr solution (47% w/w in water). The reaction 

worked well and we obtained the product in 60% of yield. 

However, the same method turned out to be effective just on macrocycles bearing substituents that 

cannot undergo to beta-elimination reaction. In fact, the simplest macrocycle 6a, bearing a benzyl 

substituent and 6s bearing the six-carbon lysine-derived chain, have demonstrated to be suitable 

for this deprotection reaction. In particular, product 6s was completely deprotected also from Cbz- 
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and methyl ester protecting groups resulting in a tri-hydrobromide salt. On the contrary, employing 

the macrocycles with a chiral aryl pendant arm or alanine-derived pendal, the same conditions 

caused also the cleavage of the aryl/alkyl moiety probably due to a beta-elimination favoured 

cleavage. The same result was obviously obtained by applying this deprotection procedure also on 

ligand 6v leading to the formation of the tri-hydrobromide salt (Scheme 2.18). 

 

Scheme 2.18 – Deprotected ligands from tosyls. 

These problems prompted us to develop a new class of ortho-nosyl protected macrocycles as 

previously described. We successfully deprotected the o-Ns protected ligands providing the free-

base products 7a-f with good yields (Scheme 2.19).98 

 

 

Scheme 2.19 – Deprotected ligands from o-nosyls. 
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Concerning the deprotection of these ligands, we successfully employed the conditions reported by 

Fukayama: we allowed our ligands to react with thiophenol in acetonitrile in the presence of K2CO3 

as base.98 The base generates a thiolate anion that attacks the nosyl aromatic ring, forming a 

thioether and SO2 as byproducts. It is important to note that both the base and the solvent 

employed for this step are the same used for the macrocyclization reaction, meaning that it could 

be ideally possible to conduct the two steps in one pot. 

Other deprotection strategies have been applied for the selective deprotection of the groups 

present on the aminoacid-derived macrocycles 6r and 6s. In fact, for the alanine-derived product 6r, 

a methyl ester hydrolysis with LiOH has been performed leading to the formation of the free acid 

product 7k with a yield of 90% (Scheme 2.20). Single crystals for X-ray diffraction studies for ligand 

7k were obtained from slow diffusion of THF in a water solution of ligand 7k (Figure 2.3). The high 

symmetry of the crystals, (triclinic crystal system with space group P-1) allowed locating the acidic 

proton atom. Ligand 7k crystallizes as zwitterion, with the H+ coordinate into the catalytic pocket, 

more closely bound to N4 (Distance N4-H = 1.03(5) Å). 

 

Scheme 2.20 – Deprotected ligand 7k. 
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Figure 2.3 – Structure of compound 7k (thermal ellipsoids are shown at 50% probability level). 

On the other hand, Cbz-lysine derived ligand 6s has been treated with Pd/C in H2 atmosphere leading 

to the formation of the free -NH2 product 7j in very good yields (90%). (Scheme 2.21). 

 

 
Scheme 2.21 – Deprotected ligand 7j. 

 

2.4.2  Functionalizations of deprotected ligands 

Generally, all of the deprotected ligands were used as synthesized for the study of the coordination 

activity towards transition metals. In some cases, they were further functionalized with the aim to 

use them in a specific field of application. We chose three specific deprotected ligands to perform 

these studies, namely 7g-j-k. 
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Ligand 7g has been chosen for studies of direct alkylation of the three  -NH functionalities. For this 

reason it was treated with one to three equivalents of propargyl bromide in presence of DiPEA 

(diisopropylethylamine) in order to verify the rate of the direct alkylation and the final symmetry of 

the alkylated macrocycle (Scheme 2.22). The reaction proceeds easily and without formation of 

byproducts. Moreover, the so-obtained product 8a was selectively the trisubstituted one. Propargyl 

bromide was chosen as model alkylating agent, since it can be easily functionalized further. In fact, 

propargyl can undergo to a  3+2 condensation with an azide in the Huysgen’s reaction, also known 

as “click” chemistry. In this way, any kind of compound bearing an azide can be bound to the 

macrocycle in an easy way (i.e. chiral moieties, biocompatible molecules, polar compounds 

enhancing the hydrofilicity of the final ligand, etc). 

 

Scheme 2.22 – Synthesis of trifunctionalized ligand 8a. 

With the same protocol, ligand 7g was treated also with benzyl bromide leading to the formation of 

the desired trisubstituted compound 8b with the encouraging yields of 70% (Scheme 2.23). This new 

macrocycle was originally designed with the aim to promote π-stacking interactions in a possible 

aromatic catalytic reaction media. Moreover, the resulting product showed increased solubility in 

non-polar solvents. 

 

Scheme 2.23 – Synthesis of trifunctionalized ligand 8a. 

 

The second deprotected ligand chosen for functionalization was 7j. This compound, thanks to the -

NH2 pendal and the potential free acidic function, can be employed in peptidic bonds with the aim 

to implement the macrocyclic monomer in a peptide chain. Ideally, more than one unit can be 
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inserted in such a chain, leading to a non-natural peptide suitable for the coordination of different 

metals (Figure 2.2). 

 

Figure 2.4 – Non-natural peptide with several macrocyclic pendals. 

Moreover, 7j can be also used for double alkylation of -NH2 in order to provide a macrocycle bearing 

an internal non-nucleophilic base. Such a bifunctional compound was successfully employed as Ag(I) 

catalyst in the study of the nitroaldol reaction without the addition of external bases (see catalysis 

subchapter). To do so, 7j was treated with NaCNBH3 in presence of acetaldehyde resulting in a 

reductive amination that lead us to obtain the macrocycle 8c in 61% yield (Scheme 2.24). 

 

Scheme 2.24 – Synthesis of diethylated ligand 8c. 

Another reaction performed on 7j involved the water-soluble vitamin B7 also known as biotin. In 

collaboration with Dr. Rimoldi of our Univeristy (DISFARM), the starting material was treated with 

biotin in presence of CDMT (2-Chloro-4,6-dimethoxy-1,3,5-triazine) and N-methylmorpholine 

leading to the formation of the petide bond (Scheme 2.25). The so-obtained ligand 8d, thanks to 

the biotin arm, showed a great affinity for the protein substructure called streptavidine (as 

Cu(I) selective 
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explained in the introduction) and the resulting complex can be used in asymmetric catalytic 

applications in water media with chiral information induced by the protein substructure itself. 

 

Scheme 2.25 – Synthesis of biotin ligand 8d. 

An analogous treatment was the one to which underwent the alanine-derived deprotected 

macrocycle 7k, but in this case was the free acidic function of the molecule that was involved in a 

peptidic bond with the synthetic dipeptide “D2” synthesized in the laboratories of Prof. Gelmi of our 

University (DISFARM). The reaction was performed in DCM (dichloromethane) in the presence of 

one equivalent of DIC (N,N′-Diisopropylcarbodiimide), ethylene cyano oxime and DiPEA and led to 

the final product 8e with acceptable yields (Scheme 2.26). 

 

Scheme 2.26 – Synthesis of ligand 8e. 

The resulting product 8e can be coordinated with Ag(I) or Cu(I) metal salts and used as catalyst in 

many organic transformations, performed in water media, leading to high added value products and 

using conditions in agreement with the principles of the green chemistry. 
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2.5  Copper complexes 

2.5.1  Synthesis 

Having discovered in the previous years that our PcLs can coordinate in excellent way Cu(I) salts, 

providing complexes with remarkable catalytic activity in many organic transformations, we decided 

to focus our initial attention on Cu(I) coordination on our new macrocycles. 

The coordination of Cu(I) salts to our ligands is straightforward and just by treating a solution of the 

copper salt and our ligand (1:1 ratio) in 1,2-dichloroethane (DCE) at room temperature followed by 

layering of n-hexane under inert atmosphere yielded the desired metal complexes. The complex 

precipitated as a white powder, in quantitative yields. The copper(I) complexes shown in scheme 

2.27 were isolated and fully characterized.  

 

Scheme 2.27 – Synthesis of Cu complexes. 

 

As reported in previous works of the research group, the effect of the copper complexation to the 

ligands is evident by the shift of the signals in 1H, 13C and 15N NMR spectra. Moreover, although the 

synthesis is better performed under protecting atmosphere to maximize the yield, many of the final 

complexes can be manipulated in air without oxidation or decomposition. The reason of this greater 

stability is due to the presence of the naphthyl group that acts as a further coordination site for the 

metal. In these cases, low symmetry is retained in solution, as shown by NMR studies (Figure 2.3). 

Again, the 15N NMR spectrum shows a marked shift for the pyridinic nitrogen atom (from 313 to 245 

ppm), while the N-6 atom bonded to the stereogenic carbon, is affected to a lower extent (from 39 

to 51 ppm). All these complexes were isolated in good yields and fully characterized.  
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Figure 2.5 – 1H NMR relative to complex 6g-CuOTf. In the 1H NMR the proton directly bound to the highlighted carbon 

shifted to higher frequencies 8.68 ppm compared to 8.58 ppm for the free ligand 6g. 

 

To better understand the behavior of the naphthyl group, in the past were studied the coordination 

of these complexes in the presence of added ligands such as CO and acetonitrile showing a 

displacement of the η2-cooridnated naphtyl operated by the incoming new ligand (Scheme 2.28). 

This displacement is visible via 1H NMR in which the highlighted signal shown before shifts once 

again to lower ppm. 

 

Scheme 2.28 – Reaction of complex 6e-CuOTf with carbon monoxide. 

  

6g-CuOTf 
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2.5.2  Cu(I) catalysis: cyclopropanation 

As described in the introduction, cyclopropanes are one of the simplest cyclic compounds in organic 

chemistry and, probably for this reason, they are very common in nature. Thanks to their 

importance in natural, biological and pharmaceutical products, they are attracting a lot of interest 

in the recent years. They are versatile building-blocks in the synthesis of complex molecules in any 

field of application.  

In particular, the copper-catalyzed enantioselective version of cyclopropanation is now well known 

and chiral C2 symmetric bidentate ligands such as bisoxazolinesare are widely used, normally 

employing diazo-compounds as carbene source.  

In recent years, our research group studied in detail the catalytic activity of our Cu(I) PcL complexes 

in the reaction of cyclopropanation of styrenes using EDA as the carbene source.62, 75b The 

enantioselective version of this reaction was also developed, providing extremely good results in 

terms of enantiomeric excess, reaching up to 99% ee in some cases. Moreover, the scope of the 

reaction was demonstrated to be quite general but, despite the excellent ee%, poor 

disatereoselection was observed.63 

Encouraged by these exciting results, we decided to push the research activity towards much more 

challenging targets, such as the Cu(I)PcL catalyzed cyclopropanation of 2- and 3-vinylindoles in 

collaboration with Dr. Valentina Pirovano of our University (DISFARM).  

One of the first examples of cyclopropanation of an indole derivative date back to 1998. Raj and 

coworkers presented in this work the synthesis of indol-3-cyclopropyl derivatives from 3-vinylindole 

protected with benzensulfonyl group, EDA and bisoxazoline copper(II) as catalyst.99 They obtained 

a mixture of trans and cis stereoisomers with a good overall yield. Using this method, they obtained 

preferentially the trans stereoisomer (Scheme 2.29). 

 

Scheme 2.29 – Raj and coworkers first examples of cyclopropanation of vinylindoles. 
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Recently, Boysen and coworkers investigated the cyclopropanation of N-Boc 3-methyl indole for the 

synthesis of a product with an all-carbon quaternary stereocenter, useful as precursor of indole 

alkaloids.100 In order to obtain a good enantioselectivity, CuOTf and particular bisoxazolines bearing 

D-glucosamine moiety were employed as catalytic system (scheme 2.30). 

 

Scheme 2.30 – Boysen and coworkers cyclopropanation of vinylindoles using BOX ligands. 

In 2013, Gaich and coworkers proposed an enantioselective cyclopropanation of Z 2- and 3-

vinylindoles using zinc as catalyst in Simmons-Smith type reaction.101 In this case, the cyclopropane 

ring was formed only at the vinylic double bond in high yield and with good enantioselection 

(Scheme 2.31). No remarkable difference was observed between substituent in 2- or 3-position. 

 

Scheme 2.31 – Gaich and coworkers Simmons-Smith cyclopropanation of vinylindoles. 
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Taking into account these last results, and the previous literature reports, it is clear that the 

selectivity of the formation of cyclopropane on C2-C3 position of the indole or on the vinyl moiety 

relies principally on the catalytic system that is employed. 

Considering the experience of our collaborating research group on indole functionalization and the 

literature reports on cyclopropanation of indoles and vinylindoles, our main objective was to test 

the feasibility of the reaction between 2-vinylindoles and diazoesters catalyzed by Cu(I) PcL 

complexes.  

The preliminary results demonstrated that our catalysts were not only active, but also very 

chemoselective and diasteroselective, especially if compared with Cu(I) complexes of BOX ligands 

(previously described) that were almost inactive and inefficient towards a so challenging 

application.  

 

To start our investigations, we decided to test two different N-substituted 2-vinylindoles in a 

reaction with EDA. As metal to form the carbene, we employed a Cu(I) species by considering 

previous reports on cyclopropanation with vinylindoles. Using N-methyl 2-vinylindole, EDA and 

Cu(MeCN)4BF4, the principal product was the one arising from carbene insertion on nucleophilic C3 

position (Scheme 2.32). Instead, using the same 2-vinylindole but with ethyl carbamate as 

protecting group, we were able to isolate a cyclopropyl indoline 11a as single product besides 

unreacted starting material (Scheme 2.32). Thus, it was clear that the different electronic properties 

of the protecting group had a strong influence on the reactivity of 2- and 3-position of the 2-

vinylindole. 

 
Scheme 2.32 – Our preliminary tests of cyclopropanation of vinylindoles. 
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Starting from these results, we decided to focus our research on the synthesis of product 11h 

bearing a cyclopropyl group. In fact, despite of the very low yield, the reaction was totally regio- and 

diasteroselective, affording an interesting dearomatized tricyclic indoline. 

As first step to improve the yield, we consider necessary to use a more reactive copper(I) salt as 

catalyst and to this scope copper(I) triflate (CuOTf) appeared as the best choice. However, this salt 

is characterized by low solubility in some organic solvents and by low stability to oxidation. As 

consequence, we tested our Cu(I) complex of PcL 6a. Thus, when the reaction was conducted in the 

presence of 6a-CuOTf, generated in situ from CuOTf and the corresponding ligand 6a, the yield was 

significantly increased to 47% (Scheme 2.33).  

 
Scheme 2.33 – Cu(I)PcL catalyzed cyclopropanation of vinylindoles. 

Subsequently, for the screening of the reaction conditions, we selected a 2-vinylindole having a 

methyl group instead than a p-tolyl on the vinyl moiety, in order to avoid any possible interference 

due to the conjugated aromatic ring. Moreover, the reduced steric hindrance of the methyl group 

could have beneficial effects in increasing the yield. 

The model reaction previously described was used to test the activity of different Cu(I) catalysts.  

 
Figure 2.6 – Ligands used for the optimization of cyclopropanation of 2-vinylindoles. 
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Table 2.1 – Cu(I)PcL catalyzed cyclopropanation of vinylindoles. 
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The screening of the reaction conditions was performed by modifying the equivalents and the 

addition time of EDA and the catalytic system.  

We firstly tested the reaction using 2-vinylindole 9a, instead of 9h, [Cu(OTf)]2*C6H6 (2.5 mol%), 

ligand 6a (5 mol%) in anhydrous DCE at room temperature, according to the procedure described in 

table 2.1. Then 1.5 equivalents of EDA were added in 2 h using a syringe pump. The desired product 

was isolated in 43% yield (entry 1). To compare the activity of the Cu complex to the one of CuOTf, 

the salt was used alone with a strong decrease of the yield (entry 2). Then, we tried a different PcL 

6d (entry 3), an increase of temperature (entry 7) and a lower concentration of the reaction (entry 

8). However, we did not obtain any progresses, while increasing the equivalent of EDA (2.5 equiv) 

the yield was higher (entry 4). We decided to try a different anion than triflate, for example BArF
- 

known as one of the lesser coordinating counteranion. However, this change (entry 6) did not 

improve the results.  Nevertheless, when the speed of addition of EDA was reduced and molecular 

sieves were used to maintain anhydrous conditions, we reached a satisfying yield of 68% (entry 9). 

The use of toluene as reaction solvent was not tolerated by the system and yield decreased (entry 

10). Worth to note the fact that the use of a ligand commonly used in combination with copper(I) 

for the cyclopropanation reaction such as BOX-L did not improve the results (entry 11). 

In literature, different types of transition metals are employed for generating a carbene from EDA. 

In order to verify the ability of different metals to obtain our product of interest, we employed Rh, 

Au, Pd and another Cu(I) complex, but none of these showed to be active in this transformation. 

Using the best reaction condition (Table 2.2, entry 9), 2-vinylindoles 9a-o with different electronic 

and steric characteristics and diazo-compounds 10a-d were tested. In particular, the influence of 

the substituents on 2-vinylindoles was investigated. Moreover, diazo-compounds with diverse 

degree of hindrance were tested. The entire scope of this transformation was studied by Dr. 

Valentina Pirovano in the laboratories of DISFARM (Department of Pharamacy of Università degli 

Studi di Milano) and the results have been just accepted for publication in Org. Lett. 
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Table 2.2 – Scope of Cu(I)PcL catalyzed cyclopropanation of vinylindoles. 

 

The results demonstrated that the reaction tolerated a wide substituent pattern on vinylindole and 

the formation of products 11a-o was successful in all the cases. In particular, three alkyl substituted 

2-vinylindoles (9b-d), with different steric hindrances, were tested (entries 1-3). Longer alkyl chain 

than methyl (entry 1) as well as secondary cyclic alkyl groups (entry 2-3) led to products 11b-d with 

good yields. Also, 9e, having an endocyclic vinyl moiety, reacted with EDA forming the product even 

if with a lower yield (entry 4), probably because of the steric hindrance of the lateral chain. Also the 

use of 2-vinyindoles with ED moiety 9f (entry 5) or EW moiety 9g (entry 6) in 5-position did not show 

any significant difference.  

Moreover, we decided to use also aryl substituted 2-vinylindoles and we verified that the presence 

of an aromatic ring did not influence the reaction outcome. Apart from 4-Me (entry 7), also ED 4-

OMe (entry 8) and EW 3-F (entry 9) aryl substituted ring could be employed with formation of 

products 11h-l in good yields.  
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Considering the good results obtained with vinylindoles 9a-l, we decided to verify the possibility of 

forming the product using more challenging substrates 9m-o.  

 
Table 2.3 – Cyclopropanation of challenging substrates. 

 

The use of 2-allylindole 9m showed a low yield (Table 2.3, entry 1) for the desired product because 

part of the activated diazo-compound reacted on the allylic double bond. In fact, these double bonds 

presented approximately the same reactivity. 2-vinylindole 9n did not react with EDA (entry 2) 

probably because of the reduced reactivity of C-3 due to the methyl group also the use of 2-alkynyl 

indole 9o was tolerated affording 11o in 61% yield (entry 3). 

 
Table 2.4 – Different diazo-compounds tested. 
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We tried also three others diazo-compounds in addition to EDA. In the first two examples, we used 

diazo-compounds with a different ester moiety. In entry 1, the reaction was conducted with t-

butyldiazo acetate and the desired product 11p was obtained in a yield lower than with EDA. Using 

the diazo-compound with benzyl ester the product was found only in traces probably because of 

steric hindrance (Table 2.4, entry 2). Besides, we decided to try the α-disubstituted diazo compound. 

In this case, the yield was higher than in the standard conditions, with a surprising formation of 11r 

as single isomer also in this case (entry 3). 

Considering the obtained results with the non-chiral PcL, we decided also to explore the possibility 

of having an enantioselective version of this reaction and this will be a certain future study of our 

research group. 
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2.5.3  Cu(I) catalysis: X-H bond insertion 

Encouraged by the results obtained until now in cyclopropanations catalyzed by Cu(I) PcL 

complexes, we decided to move towards the challenging X-H bond insertion of carbenes. 

Considering the relevance of silicon-containing compounds, which can be used as versatile synthetic 

intermediates, we selected the metal-promoted carbene insertion into Si-H bonds to test the 

activity and selectivity of the Cu(I)-PcL catalytic system. 

In our study, ethyl 2-diazo-2-phenylacetate (12a) and dimethyl(phenyl)silane (13a, 3.0 equiv.) were 

used as benchmark substrates for the study of the reaction (Scheme 2.34).  

 

Scheme 2.34 – Cu(I)/PcL-catalyzed Si-H bond carbene insertion. 

The catalytic system based on (CuOTf)2∙C6H6 and ligand 6a promoted efficiently the Si-H bond 

insertion under mild reaction conditions (r.t, DCE, 18 h, slow addition of 12a in 1.5 h), affording 

compound 14a in 85% isolated yield and with a remarkably high product selectivity, since only 

residual amounts of alkenes arising from homo-coupling of the carbene were detected. 

Heterogeneous system employing (CuOTf)2∙C6H6 in the absence of the ligand led to the formation 

of 14a (75% yield) along with alkenes by-products derived from diazo homocoupling (ca. 25%). It 

should be noticed that the formation of these by-products influences dramatically the usefulness of 

the reaction since product isolation and purification by standard techniques becomes difficult to 

perform. With this result in hands and based on our previous studies, pseudo-C2-symmetric ligand 

6g was used to promote a stereoselective Si-H insertion. Even though 6g showed similar yields, 14a 

was unfortunately obtained as a racemate. As explained in previous works regarding 

cyclopropanation reactions, we believe that the chiral information is provided preferentially by the 

presence of the stereogenic carbon of the amine pendal. Moreover, an overcrowded and hindered 

environment around the metal probably influences negatively the selectivity of the carbene 
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transfer. In fact, unsubstituted enantiopure ligand 6e provided 14a as a single reaction product in 

excellent yield (92%) and with a promising preliminary 16% of ee. Moreover, ligand 6e provides 

complete product selectivity since dimers arising from diazo compounds 12a were not detected in 

the reaction crude. Anyway, despite various modifications on the reaction conditions, the 

asymmetric version of the reaction could be obtained only with 46% ee at low temperatures with a 

5.0 mol% catalyst loading.  

Despite the modest values of ee obtained, we explored the scope of the transformation using 

ligands 6a and 6e. Thus, various diazo compounds were subsequently tested, as shown in table 2.5.  

 
a T = 70 ºC. b Diazo/silane ratio 5:1. 14s was obtained as a mixture of diastereoisomers 

Table 2.5 – Scope of Cu(I)/PcL-catalyzed Si-H bond carbene insertion. 

We can see how several 2-aryl diazo compounds could be employed to provide the corresponding 

functionalized silanes in good to excellent yields. Neither the electronic properties nor the steric 

hindrance of the arene influenced the yields. Modification on the ester of the diazo could be also 
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done as demonstrated in the scope. Remarkably, a diazo phosphonate could also be employed, yet 

higher temperature was required to reach a satisfying yield. Unfortunately, the use of alkyl- or 

vinylsubstituted diazo compounds seemed not to be compatible with this protocol. Commercially 

available ethyl diazoacetate was also employed in the reaction with triethylsilane, leading to 

compound 14k almost quantitatively (96% yield) and, more important, avoiding the undesired 

maleate and fumarate homo-coupling products.  

With respect to the silane, commonly employed silanes, such as diphenylmethylsilane or 

triethylsilane underwent the insertion in generally good yields. It should be noticed that sterically 

hindered silanes, as triphenylsilane or triisopropylsilane were well tolerated from our system 

(14n,e,o). The preparation in good yields of 14p,e,q, which can be further modified, demonstrated 

the broad scope of the transformation. Interestingly, by tuning the stoichiometry of diazocompound 

and 1,1,3,3-tetramethyldisiloxane (TMDS, 13h) we have been able to prepare mono and 

difunctionalized silanes 14r and 14s with very good overall yield and complete product selectivity. 

As already noted before, copper(I) triflate in the absence of the ligand is a competent catalyst for 

the diazoalkane activation but, especially with more hindered substrates such as triphenylsilane, 

the carbene dimerization side-products are formed preferentially.  

In the recent years, the use of conjugated enynones as precursors of furyl carbene intermediates 

has been fruitfully exploited in metal-catalyzed carbene transfer.67b, 67c We wondered if the Cu(I)-

PcL catalytic system could be used with this type of carbenes for the Si-H insertion reaction. Indeed, 

when enynones were treated with silane under our standard conditions, the corresponding 2-

furylmethylsilanes 16a,b were obtained in good yields, confirming the activity of the catalyst 

(Scheme 2.35). Noteworthy, despite the absence of stereoselection, the formation of furyl-carbene 

dimerization products was also minimized by using our catalytic system.  

 

Scheme 2.35 – Cu(I)/PcL-catalyzed Si-H bond carbene insertions using conjugated enynones as the carbene source. 
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In addition to the scope in Si-H bond insertion reactions, we also tested the robustness of the 

catalytic system Cu(I)-PcL using 6a and 6e by performing the model reaction at lower catalyst 

loadings (Scheme 2.36).  

 

Scheme 2.36 – Robustness of the catalytic system Cu(I)/PcL in Si-H bond carbene insertions at low catalyst loadings. 

Interestingly, a 100-fold decrease in the catalyst loading with 6a under identical reaction conditions 

(r.t, DCE, 18 h, slow addition of 1a in 1.5 h), led to the formation of 14a in a useful 64% yield (68% 

conversion of 1a by 1H NMR, 94% selectivity). It should be pointed out that the same reaction in the 

absence of added ligand resulted in a lower conversion (35% 1H NMR yield) and product selectivity 

(a 3:1 ratio of 14a with respect to dimers arising from carbene homo-coupling). A slow addition of 

the diazocompound was still required in order to avoid the formation of dimerization products. A 

one order of magnitude diminution of the catalyst loading revealed the formation of 14a in lower 

yield (27% yield, 36% conv.). Moreover, the use of 6e at low catalyst loadings was also feasible. 

Indeed, silane 14a was obtained in 85% yield by using 0.02 mol% of catalyst loading after 48 h (>95% 

conv.). A decrease in the loading to 0.002 mol%, resulted in a slower reaction, nevertheless, a 

remarkable 60% yield of 14a was obtained after 84 h (70% conv.), meaning a respectable TON 

number of 30000. Further decrease in the catalyst loading (0.0002 mol%) led to the formation of 

only carbene dimerization products (20% NMR yield; 24% conv.). It is important to highlight the high 

product selectivity of both catalytic systems. 

Finally, we wondered if the present catalytic system could be able to promote other typical X-H 

bond insertion reactions (Table 2.6).  
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Table 2.6 – X-H insertion catalyzed by Cu(I)/PcL complexes. 

For instance, under the standard reaction conditions (with 6e), the reaction of diazo compound 12a 

with phenol afforded the corresponding insertion product 18a in a good isolated yield of 83% as 

racemic mixture. The catalytic system was active with both electron rich and electron poor phenols, 

leading to the corresponding ethers in reasonable yields. Additionally, the analogous transformation 

using aniline led to the formation of secondary amine 20a in 81% isolated yield. In this case, also 

EDG- or EWG-substituted anilines were used. 
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2.6  Silver complexes 

2.6.1  Synthesis 

As already reported, our ligands are capable to complex and stabilize copper (I) salts; for this reason 

we decided to extend our research on the complexation of another metal of the group: silver. We 

have prepared silver(I) complexes of our macrocycle from different sources, such as silver 

tetrafluoroborate and silver triflate. 

 

 

Scheme 2.37 – Synthesis of silver(I) PcL complexes. 

 

We added the silver salt to the solution of the ligand in DCE and we stirred the solution for one hour, 

keeping the mixture in the dark until we isolated the final product. Silver complexes were easily 

obtained by precipitation, concentrating the solvent and layering n-hexane. We filtered and 

collected the white precipitated in yields up to 91%. 

Ag(I) complexes demonstrated to be very stable and could be used under open-air atmosphere 

without any problem. Anyway, they are more sensitive to the atmospheric moisture and tend to 

form monoaquo species. 
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As reported in previous works of our research group, for silver(I) complexes the effect of the metal 

complexation to the ligand could be easily followed in solution by the 1H and 13C NMR spectra. 

Moreover, the stability of these Ag(I) PcL complexes resulted comparable with the Cu(I) ones, and 

when a naphtyl moiety was present on the backbone an η2-coordination mode was observed in 

solution, as well as the displacement of this last one by an incoming external ligand such as 

acetonitrile or carbon monoxide. 

 

2.6.2  Ag(I) catalysis: Henry reaction 

Our research group has recently reported the full characterization of [silver(I)(pyridinecontaining 

ligand)] complexes and their organometallic reactivity.77 Their catalytic activity has been 

demonstrated in the regiospecific domino synthesis of 1-alkoxy-isochromenes under mild 

conditions78 and in the microwave enhanced A3-coupling multicomponent reaction.79 Compared 

with simple silver salts, the great advantages of Ag(I) PcL complexes are their solubility, their 

enhanced stability and the easiness of handling. 

Encouraged by the interesting results above mentioned, we wanted to check if our Ag(I)-PcL 

complexes were suitable catalysts also for the Henry reaction. As a result of this study, we were 

pleased to find that our complexes can actually activate the aldehyde toward the nitronate 

nucleophilic attack, in the first example of a silver mediated Henry reaction.80 

At first, we decided to test the ability of silver to promote the Henry reaction by using simple silver(I) 

salts such as Ag(OTf) or Ag(BF4) and the PcL silver(I) complex (already used in the A3-coupling study). 

We compared then their reactivity with those of the corresponding PcL copper(I) complex (Figure 

2.5).  

 

Figure 2.7 – Silver(I) and copper(I) PcL complexes used. 
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As model reaction, we chose the condensation between 4-nitrobenzaldehyde and nitromethane 

(Table 2.7). To promote the generation of the nitronate anion, a catalytic amount of triethylamine 

(TEA) – equal to the catalyst loading – was added to the reaction mixture. 

 

Entry Cat. X Solv. Base Yield (%)b 

1  Ag(OTf)  CH2Cl2 TEA 21 

2c  Ag(BF4)  CH2Cl2 Cs2CO3 25 

3d  -  CH2Cl2 TEA 35 

4  6f-Ag OTf CH2Cl2 TEA 84 

5  6f-Ag BF4 CH2Cl2 TEA 75 

6e 6f-Ag BF4 CH2Cl2 TEA 85 

7  6f-Ag OTf CH3NO2 TEA 84 

8  6f-Ag OTf Tol TEA 60 

9  6f-Cu OTf CH2Cl2 TEA 85 
a Reactions were performed with [Ag(I)] (3.2 x 10-2 mmol) in the solvent (5 mL) at a 

cat./base/aldehyde/nitromethane ratio of 1:1:10:50 at rt for 20 h; lower catalyst loadings 

(1 mol%), resulted in very slow reactions. b Isolated yields based on initial 4-

nitrobenzaldehyde; unreacted aldehyde accounted for the rest of the reaction mass balance. 
c T = 30 °C, t = 6 h. d Reaction conditions in the absence of metal catalyst: 

TEA/aldehyde/nitromethane ratio of 1:10:500 at rt for 20 h. Unreacted 4-nitrobenzaldehyde 

did not account for the rest of the reaction mass balance and some unidentified by-products 

derived from competitive side reactions were observed. e In the presence of molecular sieves 

(4 Å). 
Table 2.7 – Preliminary study of the silver(I) PcL catalyzed Henry reaction. 

Simple silver(I) salts gave results comparable with those observed just in the presence of the base, 

the only difference being that in the last case several byproducts were observed. On the other hand, 

complex 6f-AgOTf, which is fully soluble in chlorinated solvents, gave results comparable to those 

obtained with the related copper complex 6f-CuOTf (Table 2.7, entries 4 and 9). Under these 

conditions, the reaction gave identical results either employing the preformed complex 6f-AgOTf or 

the in situ formed 1:1 ligand/Ag(I) complex. We also investigated the role of the counteranion, by 

changing from OTf to BF4, obtaining a slightly lower yield with the latter (Table 2.7, entry 5). 

However, when the same reaction was repeated in the presence of molecular sieves, a comparable 

conversion was again obtained (Table 2.7, entry 6). The use of a large excess of nitromethane (Table 
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2.7, entry 7) did not affect the reaction yield. We previously observed that the copper PcL complexes 

failed to catalyse the Henry reaction when it was performed in aromatic hydrocarbons and that PcL 

ligands alone, in the absence of any metal, are not active catalysts. 

On the contrary, our complex 6f-AgOTf demonstrated to be active also in toluene, giving the desired 

nitroalcohol 22a in 60% yield (Table 2.7, entry 8). Finally, despite the presence of a defined 

stereocentre on the ligand, under all conditions tested we always obtained the nitroalcohol 22a as 

a racemic mixture. 

Having in hand a quite active catalytic system, we decided to further optimize the ligand 

characteristics and then to explore the scope and the limitations of the Henry reaction. In order to 

extend our method to the synthesis of PcL's bearing a noninnocent pendant arm we thought that 

natural amino acids (i.e., β-alanine and lysine) could be perfect nucleophilic partners for the ring 

opening reaction of the aziridine. 

The main advantage of this synthetic approach is that a modification of a key moiety of the 

macrocycle can be done easily by exploiting both chiral and functional properties of the natural 

amino acids. The new Ag(I) complexes shown in Figure 2.6 were tested as catalysts in the model 

nitroaldol reaction between 4-nitrobenzaldehyde and nitromethane.  

 

Figure 2.8 – Silver(I) PcL complexes derived from aminoacids. 
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With the exception of complex 7j-AgBF4, which is the only one not soluble in dichloromethane, all 

other silver complexes gave the nitroalcohol 22a from moderate to very good yields in the model 

reaction. Together with the desired nitroalcohol 22a, the starting aldehyde 21a was the only product 

recovered from the reaction crude, meaning that the reported yields are coincident with 

conversions and that a selectivity >99% was observed. Silver complex 6r-AgOTf/BF4 (Table 2.8, 

entries 1–8), characterised by the presence of a slightly coordinating lysine-derived pendant arm, 

gave results comparable to those observed by using complex 6f-AgOTf. 

Entry Cat. X Base Solv. t (h) T (°C) Yield 22a (%)b 

1 6r-Ag OTf TEA CH2Cl2 20 rt 60 

2 6r-Ag OTf TEA Tol 40 rt 15 

3 6r-Ag OTf DiPEA CH2Cl2 20 rt 53 

4 6r-Ag OTf DMAP CH2Cl2 20 rt 53 

5 6r-Ag OTf Morfoline CH2Cl2 20 rt 50 

6 6r-Ag OTf K2CO3 CH2Cl2 20 rt 45 

7 6r-Ag OTf Cs2CO3 CH2Cl2 20 rt 70 

8 6r-Ag BF4 Cs2CO3 CH2Cl2 20 rt 70 

9 6s-Ag OTf TEA CH2Cl2 20 rt 67 

10 6s-Ag BF4 TEA CH2Cl2 20 rt 65 

11 6s-Ag BF4 DiPEA CH2Cl2 20 rt 75 

12 6s-Ag BF4 Cs2CO3 CH2Cl2 20 rt 90 

13 6s-Ag BF4 Cs2CO3 CH2Cl2 20 30 95 

14 6s-Ag BF4 Cs2CO3 CH2Cl2 12 30 92 

15 6s-Ag BF4 Cs2CO3 CH2Cl2 6 30 75 

16 6s-Ag BF4 Cs2CO3 CH2Cl2 3 30 45 

17 6s-Ag OTf - CH2Cl2 20 rt 25 

18 - - Cs2CO3 CH2Cl2 20 30 55 

19c 7j-Ag BF4 - CH2Cl2 20 rt - 

20c 7j-Ag BF4 - MeNO2 20 rt - 

21 7j-Ag BF4 - MeOH 20 rt -d 

22 8c-Ag BF4 Cs2CO3 CH2Cl2 12 30 90 

23 8c-Ag BF4 - CH2Cl2 12 30 64 
a Reactions were performed with [Ag(I)] (3.2 x 10-2 mmol) in the solvent (5 mL) at a cat./base/aldehyde/nitromethane 

ratio of 1:1:10:50 in the presence of molecular sieves (4 Å). b Yields based on initial 4-nitrobenzaldehyde calculated 

via 1H NMR using 2,4-dinitrotoluene (DNT) as internal standard; unreacted aldehyde accounted for the rest of the 

reaction mass balance. c The metal complex 8c is not soluble in the reaction medium: no reaction after 20 h as judged 

by TLC analysis. d Dimethyl acetal derived from the nucleophilic attack of MeO- on the 4-nitrobenzaldehyde was 

recovered in 25% yield (see SI). 
Table 2.8 – Screening of the catalysts and of the reaction conditions. 
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Several bases were tested (Table 2.8, entries 3–7), and best results were obtained with cesium 

carbonate (Table 2.8, entry 7). The counter anion do not seem to infuence the reaction yields (Table 

2.8, entry 8). 

Complex 6s-AgOTf/BF4, characterised by the presence of a Cbz protectecting group on the pendant 

arm, displayed a similar behaviour regarding counter anion (Table 2.8, entries 9 and 10) and base 

(Table 2.8, entries 10–12), but the yields were higher. Rising the temperature to 30 °C resulted in 

increasing the yield to 95% (Table 2.8, entry 13). In the absence of a base, poor results were 

obtained (Table 2.8, entry 17). It should be pointed out that Cs2CO3 alone is able to promote the 

Henry reaction, but under the same reaction conditions only a 55% of nitroalcohol 22a was formed 

(Table 2.8, entry 18).  

In order to avoid the addition of the base as co-catalyst, we tested complexes 7j-AgBF4 and 8c-

AgBF4, both containing a basic amine functionality on the pendant arm. As above pointed out, 

complex 7j-AgBF4 is insoluble in dichloromethane, as well as in nitromethane and failed to give any 

reaction in such heterogeneous system (Table 2.8, entries 19 and 20). When methanol was used as 

solvent, we observed the formation of the dimethyl acetal derived from the nucleophilic attack of 

MeO- on the 4-nitrobenzaldehyde in 25% yield (Table 2.8, entry 21). 

Under standard conditions, complex 8c-AgBF4, which is fully soluble in dichloromethane, gave the 

Henry product 22a in excellent yields (Table 2.8, entry 22). Moreover, we were pleased to observe 

that the presence of a tertiary amino group on the active-pendant made this complex able to 

promote the formation of 22a in 64% yields without any basic co-catalyst in just 12 h at 30 °C (Table 

2.8, entry 23).  

We next explored scope and limitation of the approach (Table 2.9), employing complex 6s-AgBF4 

under the best reaction conditions (Table 2.8, entries 13 and 14). In particular, our interest was to 

verify the activity of our catalytic system in the promotion of the reaction of aldehydes of different 

nature (aryl, heteroaryl and cycloalkyl) also in the presence of EW or ED groups on the aromatic 

ring. We decide to perform all reactions in CH2Cl2 at 30 °C and stop them after 12 h with the aim to 

compare the results obtained by changing the electronic properties of the aldehyde at fixed reaction 

time and temperature. 
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It is well known that the Henry reaction is an equilibrium reaction and temperature plays an 

important role. The 12 h reaction time was decided based on a simple kinetic study performed on 

the model reaction (Table 2.9, entries 13–16), which displayed that a plateau in terms of % of 

conversion of the starting aldehyde is reached after 12 h (Fig. 2.7). 

 

Figure 2.9 – Kinetic study of conversion vs time. 

Good results in terms of yields were obtained when one or more EWGs were present on the aryl 

ring (Table 2.9, entries 1–6 and 12–16). Although not linearly correlated with -para Hammet 

constants, yields between 83% and 93% were obtained with aromatic aldehydes having high 

positive values of para substituent constant (Table 2.9, entries 1–5). Slightly lower yields have been 

observed for para- and per-fluorobenzaldehydes (Table 2.9, entries 6 and 12), and neutral 

benzaldehyde (Table 2.9, entry 7). On the other hand, electron-rich aromatic aldehydes failed to 

give the Henry products (Table 2.9, entries 8–11). These latter results can be easily rationalised 

based on the less pronounced electrophilic character of the aldehyde. The presence of EW groups 

is well tolerated also in meta and ortho positions (Table 2.9, entries 13–16), suggesting that steric 

hindrance does not limit the transformation. 
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Entry R1 R2 Product syn/antib 
Yieldc 

(%) 

1 4-NO2C6H4 H 22a - 
92 

(90) 

2  4-CNC6H4 H 22b - 
83 

(80) 

3  4-CF3C6H4 H 22c - 
93 

(92) 

4  4-BrC6H4 H 22d - 
85 

(82) 

5  4-ClC6H4 H 22e - 
83 

(80) 

6  4-FC6H4 H 22f - 
70 

(64) 

7  C6H5 H 22g - 
60 

(55) 

8d  4-MeC6H4 H 22h - 15 

9  4-ButC6H4 H - - n.d. 

10  
4-

MeOC6H4 
H - - n.d. 

11  4-Et2NC6H4 H - - n.d. 

12 C6F5 H 22i - 
72 

(68) 

13  
3,5-

(CF3)2C6H4 
H 22j - 

70 

(66) 

14  2-NO2C6H4 H 22k - 
97 

(95) 

15  2-BrC6H4 H 22l - 
72 

(65) 

16  2,6-Cl2C6H4 H 22m - 
70 

(68) 

17  
2-

MeOC6H4 
H 22n - 10 

18  
3-

MeOC6H4 
H - - n.d. 

19  Cy H - - n.d. 

20   H - - n.d. 

21  

 

H - - n.d. 

22  
 

H 22o - 
65 

(62) 

23  
 

H 22p - 10 

24 4-NO2C6H4 CH3 22q 60:40 
95 

(90) 

25e  4-NO2C6H4 CH3 22q 60:40 90 

26  2-NO2C6H4 CH3 22r 45:55 
96 

(93) 

27  4-CF3C6H4 CH3 22s 51:49 
93 

(89) 

28  4-ClC6H4 CH3 22t 61:39 
80 

(75) 

29 C6H5 CH3 22u 55:45 
75 

(60) 
a Reactions were performed with [Ag(I)] (3.2 x 10-2 mmol) in CH2Cl2 

(5 mL) at a cat./Cs2CO3/aldehyde/nitromethane ratio of 1:1:10:50 

in the presence of molecular sieves (4 Å) at 30 °C for 12 h. b Syn/anti 

ratio determined by 1H NMR. c Yields based on initial aldehyde 

calculated via 1H NMR using 2,4-dinitrotoluene (DNT) as internal 

standard (isolated yields); unreacted aldehyde accounted for the 

rest of the reaction mass balance. d Reaction performed with 

complex 6r-AgBF4 as catalyst. e Reaction performed with complex 

8c-AgBF4 as catalyst and in the absence of Cs2CO3. 

Table 2.9 – Scope of the Ag(I) PcL catalyzed Henry reaction. 

As for electron-rich benzaldehydes, no reaction was observed with aliphatic aldehydes (Table 2.9, 

entry 19) and with cinnamaldehyde (Table 2.9, entry 20). Among furan, tiophene and pyrrole 

carbaldehydes, a good reactivity was observed only in the case of furfural (Table 2.9, entry 22). Next, 
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we briefly explored the reactivity of some aromatic aldehydes with nitroethane. In all cases, almost 

identical results were obtained switching from nitromethane to nitroethane, and all the reactions 

with electron poor aromatic aldehydes gave the corresponding Henry product in very good yields, 

but with very modest syn/anti ratio (Table 2.9, entries 24–29). Again, we were pleased to verify that 

complex 8c-AgBF4 was able to catalyse the reaction between 4-nitrobenzaldehyde and nitroethane 

without the need of any additional base, yielding 22q in a very satisfying 90% yield (Table 2.9, entry 

25).  

Taking into account that the indole nucleus is present in a large number of compounds of biological 

and/or pharmaceutical interest, we tested our approach also on isatin (Scheme 2.38).  

 
Scheme 2.38 – 6s-AgBF4 catalyzed reaction of nitromethane and nitroethane with isatin. 

The reaction with nitromethane gave the desired 3-hydroxy- 3-(nitromethyl)-1,3-dihydro-2H-indol-

2-one 23a in 80% isolated yield whereas the reaction with nitroethane gave a 6:4 diastereoisomeric 

mixture of 23b with an overall yield of 97% (yield based on initial isatine calculated via 1H NMR using 

2,4-dinitrotoluene as internal standard). It should be emphasized that this transformation on isatin 

opens up new routes for the synthesis of a plethora of interesting oxindole alkaloids related 

molecules. 
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2.6.3  Ag(I) catalysis: isochromene cycloisomerization vs Henry reaction 

As mentioned above, our research group has recently reported that [silver(I)(Pc-L)] complexes are 

competent catalysts for the regioselective synthesis of 3-substituted-1-alkoxyisochromenes starting 

from 2-alkynylbenzaldehydes in the presence of alcohols as nucleophiles.78 Having seen their ability 

in promoting the Henry reaction, we were thus intrigued to see if it was possible to combine in a 

single domino sequence the Henry reaction of 2-alkynylbenzaldehydes and the cycloisomerisation 

step to yield isochromenes 26. A two-step process that take advantage of a Cu(II) catalysed Henry 

reaction followed by an Au(I) mediated cycloisomerisation has recently been reported by Y. Gong 

and co-workers (Scheme 2.39).82 

 

Scheme 2.39 – Alternative domino silver(I) catalysed synthesis of 1-isochromenes. 

The reaction between 2-[(4-methoxyphenyl)-ethynyl]benzaldehyde 24a and nitromethane was 

selected as model reaction for the optimization of reaction conditions. Firstly, we compared the 

activity copper(I) catalyst 6f-CuOTf and silver(I) catalyst 6f-AgOTf (10 mol%) in dichloromethane in 

the presence of 5 equiv. of nitromethane and 10 mol% of TEA (Table 2.10, entries 1 and 2). This 

preliminary test interestingly revealed that while the copper complex 6f-CuOTf gave selectively the 

Henry reaction product 25a in 56% yield, the silver complex 6f-AgOTf was able to promote the 

domino sequence, although with low selectivity, yielding the desired 1-isochromene 26a and the 

nitroalcohol 25a in equal amount, beside a 12% of unreacted aldehyde 24a and a complex mixture 

of unidentified by-products. An increase of the reaction temperature resulted in lower yields and 

selectivity, with an increase of by-products formation (Table 2.10, entries 3 and 4). The addition of 

an excess of TEA resulted in the selective formation of the Henry product in 45% yield, but was 

detrimental for the formation of the desired product 26a (Table 2.10, entry 5). As already stated 

above, while the Henry product can be formed also in the absence of the silver catalyst (although in 
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poor yields), the presence of the metal is essential for the formation of the isochromene 26. In fact, 

in the presence of 1 equiv. of TEA and without the metal catalyst, the nitroalcohol 25a was selectively 

obtained in 77% yield (Table 2.10, entry 6).  

The screening of solvent effect (Table 2.10, entries 7-9) revealed that polar aprotic solvents favor 

the formation of the nitroalcohol 25a. The reduction of the equivalent of nitromethane was 

detrimental to the reaction outcome (Table 2.10, entry 10), whereas, when CH3NO2 was employed 

as a reagent/solvent, the formation of 25a (39%) was accompanied by the formation of a discrete 

amount of isochromene 26a (29%, Table 2.10, entry 11). This last result suggests that an excess of 

nitroalkane is able to promote both isochromene and nitroalcohol formation. Interestingly, when 

simple AgOTf salt was used no trace of Henry product 25a was observed, and only a little amount of 

26a was obtained (Table 2.10, entry 12). 

Thus, a 50 fold excess of the nitromethane (with respect to aldehyde 24a) was used and this seems 

to favor the formation of the isochromene product, especially when freshly distilled nitromethane 

was used (Table 2.10, entries 13 and 14).  

Among the counter anion tested, BF4
- and OTf- displayed very close results, while NTf2

- led to slightly 

lower overall yields (Table 2.10, entries 14-16). It is interesting to note that the presence of 4 Å 

molecular sieves as water scavenger seems to speed up the formation of the Henry product at the 

expense of the isochromene (Table 2.10, entry 17). Complete selectivity in favour of the Henry 

product 25a was observed when the reaction was performed in acetonitrile (Table 2.10, entry 18). 

We tried to improve the formation of the isochromene 26a by using bases with different pKb, ranging 

from organic to inorganic ones (Table 2.10 entries 19-24), but the more acceptable results remained 

those obtained with TEA or with the more sterically demanding diisopropylethyl amine (DiPEA) 

(Table 2.10, entry 19).  

Finally, the use of the catalytic systems previously selected for the Henry approach, confirm their 

tendency to promote preferentially the formation of the corresponding nitroalcohol (Table 2.10, 

entries 25 and 26), also in the absence of the additional base (Table 2.10, entry 26). 
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Entry Catalyst 
Base 

(equiv.) 

MeNO2 

(equiv.) 
Solvent t (h) T (°C) 

Yield 25ab 

(%) 

Yield 26ab 

(%) 

Rec. 24a 

(%) 

1 6f-CuOTf TEA (1) 50 CH2Cl2 20 rt (56) - (35) 

2 6f-AgOTf TEA (1) 50 CH2Cl2 20 rt (17) (17) (12) 

3 6f-AgOTf TEA (1) 50 CH2Cl2 30 40 12 6 7 

4 6f-AgOTf TEA (1) 50 CH2Cl2 30 60 11 4 4 

5 6f-AgOTf TEA (5) 50 CH2Cl2 22 rt 45 (39) - 11 (10) 

6c 6f-AgOTf TEAc c CH2Cl2 22 rt 77 - 10 

7 6f-AgOTf TEA (1) 50 Tol 20 30 30 8 11 

8 6f-AgOTf TEA (1) 50 DMF 24 30 53 - 6 

9 6f-AgOTf TEA (1) 50 THF 22 rt 46 2 21 

10 6f-AgOTf TEA (1) 11 CH2Cl2 22 rt 3 - 5 

11 6f-AgOTf TEA (1) - CH3NO2 20 rt 39 29 - 

12    AgOTf TEA (1) - CH3NO2 20 rt - 15 15 

13d 6f-AgOTf TEA (1) 500 CH2Cl2 22 rt 18 24 - 

14d 6f-AgOTf TEA (1) 500 CH2Cl2 22 rt 25 33 - 

15d 6f-AgNTf2 TEA (1) 500 CH2Cl2 22 rt 16 29 5 

16d 6f-AgBF4 TEA (1) 500 CH2Cl2 22 rt 21 (18) 33 (30) 10 (9) 

17d,e 6f-AgBF4 TEA (1) 500 CH2Cl2 22 rt 60 (57) 19 (17) - 

18d,e 6f-AgBF4 TEA (1) 500 CH3CN 22 rt 96 - - 

19d 6f-AgBF4 DIPEA (1) 500 CH2Cl2 22 rt 36 27 - 

20d 6f-AgBF4 DMAP (1) 500 CH2Cl2 22 rt 50 - 4 

21d 6f-AgOTf DBU (1) 500 CH2Cl2 22 rt 11 4 16 

22d 6f-AgBF4 
NaHCO3 

(1) 
500 CH2Cl2 22 rt 5 1 65 

23d 6f-AgOTf Cs2CO3 (1) 500 CH2Cl2 22 rt 72 - 2 

24d 6f-AgNTf2 K2CO3 (1) 500 CH2Cl2 22 rt 78 - 2 

25e 6s-AgBF4 TEA (1) 500 CH2Cl2 22 rt 57 15 8 

26e 8c-AgBF4 - 500 CH2Cl2 22 rt 60 15 13 

a Reactions were performed with [Ag(I)] (2.5 x 10-2 mmol) in the solvent (1.25 mL) at a catalyst/aldehyde ratio of 1:10. 

b Yields based on initial 24a calculated via 1H NMR using 2,4-dinitrotoluene (DNT) as internal standard; isolated yields 

in brackets. Under these conditions, unreacted starting aldehyde did not always account for the rest of the reaction 

mass balance. In some cases, unidentified by-products derived from competitive side reactions were detected. c TEA 

(2.5 x 10-2 mmol)/aldehyde/nitromethane ratio of 1:1:5. d Reaction performed with freshly distilled nitromethane. e 

In the presence of molecular sieves (4 Å). 

Table 2.10 – Study on the silver catalysed Henry reaction versus cycloisomerisation reaction.a 
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With the aim to explain the behaviour observed, we made an additional experiment. Isolated 25a 

was reacted in toluene at rt in the presence of 10 mol% of the silver(I) complex 6f-AgOTf. After 24 h 

no reaction occurred and the TLC analysis showed the presence of unreacted 25a. Upon addition of 

10 mol% of TEA the mixture was reacted for additional 24 h at rt, then the crude was analysed by 1H 

NMR which reveals the presence of unreacted 25a (44%) along with traces of 2-[(4-methoxyphenyl)-

ethynyl]benzaldehyde 24a ( 5%), isochromene 25a ( 5%) and some unidentified by-products. This 

result suggests that the formation of the nitroalcohol 25a (Path B in scheme 2.39) and the cascade 

synthesis of isochromene 26a (Path A in scheme 2.39) are probably alternative and competitive 

pathways. According to reported metal catalysed domino synthesis of isochromenes in the presence 

of nucleophiles, 78, 102 78, 102 78, 102 26a is most likely formed by nucleophilic attack of the nitronate 

anion on a preformed isochromenilium ion intermediate I (Path A in scheme 2.39), while a 

subsequent silver catalysed cycloisomerisation of the nitroalcohol 25a (Path C) seems to be most 

unlikely. Endorsing this hypothesis, under our reaction conditions we never isolated or detected in 

the reactions crude the alternative isobenzofuran isomers obtained by Gong and co-workers (see 

scheme 2.40). 

 

Scheme 2.40 – Alternative/competitive pathways in the reaction of 2-alkynylarylalehydes and nitroalkanes. 

Up to now, any attempt to obtain in an exclusive fashion the desired isochromene 26a meet with 

failure, thus we decided to briefly investigate the substrate effect under the best reaction condition 

achieved for the synthesis of isochromenes (Table 2.10, entry 16). The results are reported in Table 

2.11. 
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Entry SM R1 X R2 R3 t (h) 
Yield 25b 

(%) 

Yield 26b 

(%) 

Rec. SM 

(%) 

1 

24a p-MeO-Ph CH 

H H 22 25a 18 26a 30 9 

2 Me H 22 
25b + 

25b’ 70c 

26b + 

26b’ 7 d 
21 

3 Me Me 22 - - 42e 

4 
24b p-Me-Ph CH 

H H 22 25c 32 26c 31 5 

5f H H 22 25c 60 26c 5 9 

6 24c p-CF3-Ph CH H H 22 25d 45 
26d 

traces 
14 

7 
24d Me3Si CH 

H H 22 25e 48 - 45 

8f H H 22 25e 83 - 15 

9 24 n-Pr CH H H 22 25f 15 26f 54 - 

10 24f n-Pr N H H 1 25g 52 - - 

11 
24g p-MeO-Ph N 

H H 22 25h 68 - 15 

12f H H 22 25h 78 - - 

a Reactions were performed with [Ag(I)] (2.5 x 10-2 mmol) in CH2Cl2 (1.25 mL) at a 

catalyst/TEA/aldehyde/nitromethane ratio of 1:1:10:500. b Isolated yields based on initial 

alkynylbenzaldehyde 10. Under these conditions, unreacted starting aldehyde did not always account for the 

rest of the reaction mass balance. In some cases, unidentified by-products derived from competitive side 

reactions were detected. c Mixture of two diastereoisomers in 70:30. ratio. d Mixture of two diastereoisomers 

in 75:25 ratio calculated on the 1H NMR. e In this case, the isocumarine (29%) was recovered as major by-

product. f In the presence of molecular sieves (4 Å). 

Table 2.11 – Substrate effect in the divergent silver catalysed Henry versus cycloisomerisation reaction.a 

All tested o-alkynylarylaldehydes 24 were readily obtained in moderate to excellent yields by 

PdCl2(PPh3)2 catalysed Sonogashira coupling reactions starting from commercially available 2-

bromo(hetero)arylaldehydes and terminal acetylenes (see experimental section for details).  
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Compared to the model reaction (Table 2.11, entry 1) when nitroethane was used under standard 

conditions we observed the formation of only a small amount of distereoisomeric isochromenes 26b 

and 26’b (not separated), while the Henry products 25b and 25’b were recovered in 70:30 

diastereoisomeric ratio in 70% overall yield (Table 5, entry 2). On the other hand, the reaction with 

bulkier 2-nitropropane gave the 3-(4-methoxyphenyl)isocumarine (27) (29%) as main reaction by-

product, beside a huge amount of unreacted starting material (42%) (Table 2.11, entry 3). The 

formation of isocumarine 27 probably derived from the oxidation of the aldehyde 24a to a carboxylic 

acid, which was transformed by the alkaline reaction condition in a carboxylate nucleophile able to 

make an intramolecular attack to the silver(I) activated triple bond103103103 (Scheme 2.41). 

 

Scheme 2.41 – Plausible path for the formation of isocumarine 27. 

The presence of a neutral aryl substituent on the alkynylbenzaldehyde 24b gave an almost equal 

amount of nitroalcohol 25c, and isochromene 26c, (Table 2.11, entry 4). As already observed (Table 

2.10 entries 16 and 17), the presence of traces of water seems to be important to promote the 

formation of the isochromene products 26. When the reaction of 24b was performed under strictly 

anhydrous conditions in the presence of 4 Å molecular sieves, the yield of 26c fall down while the 

yield of 25c doubled (Table 2.11, compare entries 4 and 5). The presence of EWG on the aryl moiety 

was not suitable for the formation of the isochromene 26d, and the corresponding nitroalcohol 25d 

was the main product obtained (Table 2.11, entry 6). In addition, trimethylsilyl substituted 

alkynylbenzaldehyde 24d, gave exclusively the nitroaldol product 25e (Table 2.11, entry 7), and 

when the reaction was conducted in the presence of a water scavenger, the yield of 25e skyrocket 

to 83 % (Table 2.11, entry 8). Alkyl substitution on the triple bond was the only substitution that lead 

a good selectivity in favour of the cyclic product (Table 2.11, entry 9). More basic and coordinating 

nicotinaldehyde derivatives 24g,h yielded exclusively to the Henry products 25h and 25i (Table 2.11, 

entries 10 and 11). In the latter cases, the selectivity in favour of the Henry product could be 

explained by a speeding up of the nucleophilic attack of the nitronate anion to the aldehyde, 

promoted by the presence of an additional basic nitrogen on the pyridine moiety and by the EW 



 

78 

 

activating effect of the electron-poor pyridine on the proximate aldehyde group. Also in this case, 

the presence of molecular sieves resulted in higher yields of nitroalcohol 25i (Table 2.11, entry 12). 

 

2.7  Iron complexes 

2.7.1  Synthesis 

As already illustrated in the introduction, macrocyclic pyridine-containing ligands have been 

frequently devoted to the study of catalytic oxidation reactions. The first studies were inspired by 

nature and the understanding of metalloenzymes, which use molecular oxygen from air as the 

primary oxidant.104  

A common approach to the synthesis of pyridine-containing macrocyclic ligands consists of the 

modified Richman–Atkins procedure,89 by treatment of an N-tosyl-protected polyamine with 2,6-

bis(bromomethyl)pyridine, in the presence of K2CO3 as a base under heterogeneous conditions. 

Costas and coworkers proposed this synthetic approach for their ligands, in which, after the 

hydrolysis, promoted by HBr, of the Ts protecting groups, the free-base ligand could be further 

functionalized. The iron(II) complex obtained by treating the corresponding ligand with 

[FeII(CF3SO3)2(CH3CN)2], upon treatment with peracetic acid gave rise to the fastest non-heme oxo–

iron complex for cyclohexane oxidation ever reported.105 It also proved to be a a good catalyst in 

alkene epoxidation with peracetic acid. 

Triggered by these works and having synthetized a large number of pyridine-containing 

macrocycles, we decided to investigate the coordination properties of our ligands with transition 

metals other than copper(I) and silver(I). To do so, we needed to deprotect the sulfonyl protected 

nitrogens of the backbone of our macrocycles in order to increase the basicity of those nitrogens. 

In fact, nosyl and tosyl are extremely EW groups, resulting in a lower coordination ability of the 

nitrogens in position 3 and 9. Contrarily, a deprotection provides NH functions which donate easily 

the douplet to an incoming host like a transition metal. Moreover, the two -NH moieties could be 

further functionalized. 

We choose Fe(III) as preferred metal for the oxidation of alkenes due to its well know great activity 

towards the generation of metal-oxo complexes and relative oxygen transfer reactions. The ideal 

ligand for preliminary coordination studies was the simplest one, i.e. 7a, bearing only a benzyl group 

as pendant and without overcrowding substituents on the skeleton. The iron(III) sources chosen for 

this work were FeCl3 and Fe(OTf)3. The first one is one of the cheapest iron(III) commercially 
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available sources, the second one carries triflates as counteranions known for being “low-

coordinating” ones and, for our purpouse, a possible ideal candidate in order to leave more 

accessible space to the incoming substrate during the oxygen transfer step. 

The complexes were obtained by treating an acetonitrile solution of the selected ligand with an 

acetonitrile solution of the metal source at room temperature. After one hour of stirring the 

acetonitrile was evaporated and n-hexane was added. The suspension was filtered in open-air 

atmosphere after 30 minutes of stirring leading to the desired complex without need of any further 

purification. All complexes were characterized by elemental analysis to have an idea of the purity 

and by mass analysis as detailed in the experimental chapter. Good results have been obtained by 

using the FAB (fast atomic bombardment) ionization technique and with NBA as matrix. Based on 

the ionization observed and the structure determination of parent metal complexes of other metals 

(see next subchapter), together with literature data, we propose for the metal complexes the 

structure depicted in Scheme 2.42, with the iron placed in an octahedral environment and only two 

X groups directly bounded to the metal. 

 
Scheme 2.42 – Fe(III) PcL complexes obtained with the previously described procedure. 

2.7.2  Fe(III) catalysis: highly selective alkene oxidation 
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The new Fe(III)-PcL complex 7a-FeCl3 was fully characterized and used for the preliminary study of 

the catalytic activity and for determining the best conditions of the reaction between trans-stilbene 

and hydrogen peroxide (Table 2.12). 

 

Entry Catalyst Solvent Temp Time 
Epoxide (29) % 

Select (conv) 

Acetal (30) %  

Select (conv) 

1 

7a-FeCl3 

acetone RT 72h 90 (95) - 

2 acetone 60 °C 36h 77 (95) - 

3 acetone 30 °C 48h 95 (97) - 

4 CH3CN 30 °C 48h 75 (99) - 

5 TFE 30 °C 48h no reaction - 

6 H2O 30 °C 48h no reaction - 

7 H2O/DCM 30 °C 48h no reaction - 

8 t-BuOH 60 °C 48h 96 (45) - 

9 t-amylOH 30 °C 48h 88 (32) - 

10 PhCl 30 °C 48h no reaction - 

11 

8b-FeCl3 

acetone 30 °C 48h 97 (95) - 

12 acetonea 60 °C 24h 95 (99) - 

13 acetoneb 60 °C 24h 85 (58) - 

14 7a-Fe(OTf)3 acetonea 60 °C 48h - 65 (99) 

15 8b-Fe(OTf)3 acetonea 60 °C 24h - 87 (99) 

16 Fe(OTf)3 acetone 60 °C 5 days - traces 

General reaction conditions: Cat/substrate/H2O2 = 1/20/180, solvent = 10 mL, H2O2 30%  added 3eq every 12h.  
a 

Cat/substrate/H2O2 = 1/20/120 . 
b 

Cat/substrate/H2O2 = 1/100/600. 

Table 2.12 – Optimization of Fe(III) PcL catalyzed alkene oxidation. 

First, we studied the reaction in different solvents and temperatures in order to find the best 

conditions. The reaction proceeded well using acetone, in presence of 5 mol% of 7a-FeCl3, leading 
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to the formation of the epoxide with very good selectivities at RT in 72 h (90%, entry 1, Table 2.12). 

Higher temperatures (60 °C) resulted in a faster reaction but in a loss of selectivity (77%, entry 3, 

Table 2.12), while the best combination was in acetone at 30 °C leading to the desired epoxide with 

almost full conversion and 95% of selectivity in 48 h (entry 2, Table 2.12). Other solvents like 

acetonitrile, t-BuOH and tert-amyl alcohol promoted also the reaction but with some limitations. In 

fact, with acetonitrile we obtained the total conversion of the starting material but with a lower 

selectivity compared to acetone (entry 4, Table 2.12). On the other hand, branched alcohols, known 

for being solvents compatible and often used in oxdidations, showed good selectivities but with 

poor conversions (entries 8-9, Table 2.12). In all the other reaction media used, the reaction did not 

take place (i.e. water, chlorobenzene, TFE). 

In the meantime, the corresponding 8b-FeCl3 complex was synthesized with the procedure 

previously described and we were pleased to obtain a faster and more stable catalyst. In fact, using 

5 mol% of this complex in acetone and at 60 °C, only the epoxide was selectively formed in 24 h 

(95% selectivity, 99% conversion, entry 12, Table 2.12). Moreover, a lower quantity of hydrogen 

peroxide was needed using this complex as the catalyst (6 eq instead of 9 eq). A lower catalyst 

loading of 1 mol% resulted in lower conversions and selectivities (entry 13, Table 2.12). 

By exchanging the counteranion from chloride to triflate we were surprised to obtain a completely 

reverted chemoselectivity. In fact, by using complex 7a-Fe(OTf)3, the dimethyl acetal of the 

corresponding diol of trans-stilbene was obtained in a complete conversion and 65% of selectivity 

(no epoxide traces detected, the remaining yield attributed to benzaldehyde, entry 14, Table 2.12). 

Even in this case, by using 8b-Fe(OTf)3, the selectivity was improved to a respectable 87% (entry 15, 

Table 2.12).  

In order to check if iron(III) triflate alone could have been responsible for this reverted selectivity 

we run also a blank reaction using the metal salt as given without the addition of any ligand nor 

additive. After 5 days, only few traces of diol/acetal were detected, confirming the actual activity 

and selectivity of our catalytic system (entry 16, Table 2.12). 

In order to explain this change of behaviour dependant on the anion, we hypothized an acidic 

environment leading to a protonated epoxide, resulting in the formation of a sp2 carbocation 

subsequently undergoing to ring opening and transformation to the corresponding diol. Having in 

our hands the mass analysis of our iron(III) complexes and knowing their octahedral structure, we 

hypothized that the third triflate anion, present in the second coordination sphere, transforms in 
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catalytic quantities of triflic acid in the protic environment of the reaction. This triflic acid would be 

the responsible of the protonation of the just formed epoxide leading to the formation of the 

diol/acetal product. 

In order to confirm our hypothesis, we decided to perform some control experiments. First of all, 

the isolated trans-stilbene epoxide was reacted with catalytic triflic acid in acetone and actually 

formed the corresponding acetal in 8 hours, confirming the results reported in literature. Then, the 

isolated trans-stilbene epoxide was reacted also with our 8b-Fe(OTf)3 complex in acetone leading 

to the same results obtained with the catalytic triflic acid and confirming our supposition. 

We next moved to test the robustness of our catalytic system by performing several cycles in the 

same batch, seeing that the recovery of the catalyst was not possible after a single batch due to the 

celite filtration to which undergoes the reaction mixture in order to remove metal sources before 

the GC and GC-MS analyses. We were pleased to discover that both 8b-FeCl3 and 8b-Fe(OTf)3 were 

active for more cycles (respectively 3 and 5 cycles) before undergoing to inhibition from the formed 

product. Then we wandered if our catalytic system could find industrial application and to do so we 

started a cost evaluation of the process in collaboration with Prof. Ilenia Rossetti of our University 

(Department of Chemistry).  

During the screening of several process alternatives, a common approach in the beginning stage in 

estimation of the feasibility of new chemical processes is the evaluation of the economic potential 

of level 2 (EP2), based on material balances with current raw materials and product prices: 

𝐸𝑃2 = 𝑆𝑎𝑙𝑒𝑠 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑅𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 

Where “sales revenue” represents the sum of product and byproduct selling prices times the 

relative amount necessary. If the EP2 value is less than zero the process is not economic sustainable.   

Usually EP2 is expressed as $/time for continuous processes, however this study deals with a batch 

process. For our investigation all mass and volume values of reagents were related to 1 g of catalyst 

usage, which is the mass produced after one whole batch synthesis.  

In particular, this formula was adopted: 

𝐸𝑃2 = ∑ 𝑊𝑘𝑃𝑘

𝑘

− ∑ 𝑊𝑖𝑃𝑖

𝑖

 

Where Wk (g) and Wi (g) are the mass of the product and reagents respectively after the use of 1 g 

of catalyst, whereas Pk and Pi are the product selling price and the raw material costs respectively 

(including solvents). Raw materials costs and prices were obtained from Sigma Aldrich website.  
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In the beginning the cost of the catalyst per gram produced was evaluated. To this purpose the costs 

of all the synthetic steps of the catalyst were taken in count (Figure 2.8) Data and results for the 

catalyst cost calculation are reported in Table 2.13. 

 

Figure 2.10 – Synthetic steps for the catalyst synthesis. 

Reagent Unit cost   Quantity for 1g of cat.  cost (€/gcat)   

tritosyldiethylentriamine 4,28 €/g 1 g  4,28  

Py(CH2Cl)2 50,80 €/g 0.3 g  15,24  

potassium carbonate 0,08 €/g 0.8 g  0,064  

HBr 47% 0,05 €/mL 17 mL 0,765  

Acetic acid 0,04 €/mL 4 mL 0,152  

Phenol 0,72 €/g 1.4 g 1,008  

Benzyl Bromide 0,56 €/mL 0.4 mL 0,224 

DiPEA 0,42 €/mL 2 mL 0,8  

acetonitrile 0,02 €/mL 100 mL 1,5  

Iron(III) trichloride hydrate 0,13 €/g 0.5 g 0.065  

Total   24 

Table 2.13 – Synthetic steps for the catalyst synthesis. 
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Then the EP2 value was calculated considering the use of 1 gram of catalyst, which is the exact 

amount for having 200 cycles in catalytic tests. Table 2.14 report the data of the reagents involved 

in the reaction using the catalyst, whilst table 2.15 the calculation of EP2.  

Reagent per reaction  Unit cost   Quantity for 1g of cat.  cost (€/gcat)   

trans-stilbene 1,40 €/g 0.090 g  0,13  

H2O2 30% 0,04 €/mL 0.34 mL  0,0136  

acetone 0,00025 €/mL 10mL  0,0025 

Table 2.14 - Cost evaluation of reagents per catalytic cycle. 

Catalytic data  

Catalyst mass per reaction 15 mg 

recycle of catalyst  3 cycles 

number of cycles with 1 g 200 

mass of transtilbene per cycle 0,09 g  

mass of product per cycle 0,089 g  

yield per cycle  93 % 

Reagent costs per cycle 0,14 € 

Reagent costs for 200 cycles 28 €/gcat 

Reagent + Cat 54 €/gcat 

Sales Revenue  219 €/gcat 

EP 2 167 €/gcat 

 Table 2.15 – Economic potential (EP2) of our catalytic system. 

The process was compared to the traditional epoxidation strategies, which involve the use of 

stoichiometric oxidants, in particular the epoxidation with percarboxylic acids (the first one is the 

m-CPBA, while the second one is the TFPA). Both the processes were considered using acetone as 

solvent, which is the most commonly used option in these kind of oxidation reactions. Yields and 

reagents of industrial processes were obtained by Ullmann's Encyclopedia of Industrial Chemistry: 

Epoxides (DOI: 10.1002/14356007.a09_531). The calculation was carried out considering the same 

amount of transtilbene in the beginning of the process considered for the catalytic process 

previously descripted.  

Reagent per reaction  Unit cost   Quantity  cost (€)   

m-CPBA 1,40 €/g 0.086 g  0,12  

trans stilbene 1,40 €/g 0.090 g  0,13  

acetone 0,00025 €/mL 10mL  0,0025 
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Table 2.16 – Cost evaluation of epoxidation using mCPBA as oxidant. 

In the case of TFPA the formation in situ was considered using H2O2 70% and trifluoracetic 

anhydride. 

Reagent per reaction  Unit cost   Quantity  cost (€)   

trifluoracetic anhydride 1,28 €/g 0.105 g 0,13  

H2O2 70% 1E-06 €/g 0.017 g 1,7E-05 

trans stilbene 1,40 €/g 0.090 g 0,13  

acetone 0,00025 €/mL 10 mL 0,0025 

Table 2.17 – Cost evaluation of epoxidation using trifluoroperacetic acid generated in situ as oxidant. 

Process Cat-H2O2 m-CPBA TFPA 

Catalyst mass per reaction 15 mg   

recycle of catalyst  3 cycles   

number of cycles with 1 g 200   

mass of transtilbene per cycle 0,09 g  0,09 g 0,09 g 

mass of product per cycle 0,089 g  0,072 g 0,067 g 

yield per cycle  93 % 75 % 70 % 

Reagent costs per cycle 0,14 € 0,25 € 0,26 € 

Reagent costs for 200 cycles 28 € 50 € 53 € 

Reagent + Cat 54 € - - 

Sales Revenue  219 € 177 € 165 € 

EP 2 167 € 128 € 113 € 

Table 2.18 – Comparison between economic potentials (EP2). 

 

Figure 2.11 – Comparison between economic potentials (EP2). 
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The EP2 was positive and higher than traditional industrial processes. In addition, the problem for 

the conventional pathways without catalysts are the significant amount of waste generated, 

especially containing the acid analogue of the peracid used, which are often not easy to separate.  

With these preliminary studies in our hands we decided to study the scope of the reaction by using 

the catalysts 8b-FeCl3 and 8b-Fe(OTf)3. 

 

Table 2.19 – Scope of alkenes epoxidation catalyzed by 8b-FeCl3. 

The catalytic system was found to tolerate a wide range of substrates. The reaction proceeds with 

excellent yields and selectivities for internal tri- and disubstituted alkenes (Table 2.19, products 

29a,b,c). The reaction shows a preference towards the formation of trans products, even starting 

from cis substrates (Table 2.19, products 29a), possible evidence of a radicalic mechanism. In order 

to verify this hypothesis the model reaction was performed in presence of a radical trap such as BHT 

as found in the literature. The reaction proceeded to the formation of 29a, excluding radical 

mechanism and driving our thoughts to a non-concerted mechanism. Electron-poor styrenes 

showed complete conversions but only moderate selectivities (Table 2.19, products 29d,e) while 

electron-rich styrenes reacted giving only the corresponding aldehydes and acids demonstrating the 

too high oxidative activity of our catalytic system. More challenging substrates such as cinnamates, 

despite the modest conversion, gave excellent results in terms of selectivity (Table 2.19, products 
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29f). Aliphatic alkenes resulted in higher conversions and selectivities compared to those reported 

in the literature. 1-octene reacted to provide the corresponding epoxide in almost quantitative 

selectivity and very good yield (Table 2.19, product 29g). On the other hand, cyclohexene produced 

the corresponding epoxide in only 26% of selectivity while the diol was found to be the main product 

of the reaction with a modest selectivity of 37% (Table 2.19, product 29h). The rest of the yield was 

attributed to the plethora of oxidation products of cyclohexene. This result is the evidence of a 

preference to diol formation starting from endocyclic substrates and was confimed even perferming 

the reaction on limonene, where the corresponding diol was formed as main product with 50% of 

selectivity and complete regioselectivity towards the epoxidation of the internal double bond over 

the terminal one (Table 2.19, product 29i). 
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Table 2.20 – Scope of diol formation catalyzed by 8b-Fe(OTf)3. 

By exchanging the counter anion from chloride to triflate, using 8b-Fe(OTf)3, the chemoselectivity 

of the reaction was completely changed providing the dimethyl acetal, coming from the 

corresponding diol selfprotecting in acetone solution. Generally, the dimethyl acetal was obtained 

as single product. In few cases traces of the corresponding non-protected diols were also detected 

by GC-MS. Given that the two products actually are the same species the results expressed in 

selectivity and conversion were given as sum of the two.  

The reaction proceeds with excellent yields and selectivities for internal tri- and disubstituted 

alkenes (Table 2.20, products 30a,b,c,d,e) and shows a preference towards the formation of trans 
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products, even starting from cis substrates, exactly like in the epoxidations previously reported. 

Styrenes were tolerated but showed lower selectivities (Table 2.20, products 30f,g,i,m) while 

challenging alkenes, such as indane and cinnamate, gave good results but with low conversions in 

the case of the last one (Table 2.20, products 30h,l). Even with aliphatic substrates the reaction 

proceeded well, giving excellent selectivity in the case of 1-octene (Table 2.20, product 30n) and 

reasonable results for cyclohexene and limonene (Table 2.20, products 30o,p) and in this last case 

with total regioselectivity for the internal double bond over the terminal one. 

Other iron complexes were synthesized but these have not been used in catalysis yet. The ligands 

chosen for further structural studies on coordinated iron PcL were 7b, 7f and 7i. The first one was 

chosen because of its similarity with 7a, while also carrying a well-defined stereocenter. 7f was 

chosen as benchmark macrocycle for the aminoacid-derived PcLs. Finally, 7i was chosen as 

benchmark for the aminoacid-derived fully deprotected ligands (Figure 2.12). 

 

 

 

 

 

Figure 2.12 – Other iron PcL complexes. 

 

 

2.8  Other metals 

In the previous chapters, we have described the synthesis and application in catalysis of some metal 

complexes of our pyridine macrocycles. During the course of the thesis, we have synthetized also a 

plethora of other metal complexes with the objective either to prepare other possible catalysts to 

be used in the next future or to better understand the coordination modes of our ligands. In 

particular Zn(II), Cd(II), Co(II), Ru(II), Pd(II) and Ni(II) metal complexes were prepared. 

2.8.1  Zinc complexes 
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A logical extension of the coordination studies with copper and silver was the use of zinc. For this 

pourpose, however, it was necessary as for iron, to remove the tosyl protecting groups of the 

starting macrocycle. 7a and 7e were chosen as model ligands for the coordination of Zn(II) salts. For 

the synthesis of zinc complexes, a solution of the selected ligand in acetonitrile was treated with a 

solution of the zinc salt in the same solvent. After one hour under stirring at rt, the solvent was 

evaporated and Et2O was added. The resulting suspension was stirred for 15 minutes and filtrered 

leading to the desired compound. At first, we started coordinating zinc(II) acetate to our simplest 

ligand, 7a (Scheme 2.43). Then, in order to verify the effect of the anion, we switched to Zn(OTf)2 

(Scheme 2.43). 

 

 

Scheme 2.43 – 7a Zn complexes. 
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Then, we decided to coordinate also non-simmetrical monosubstituted ligands, such as 7e (Scheme 

2.44). To this purpose ZnCl2 and Zn(AcO)2 were used as sources. 

 

 

Scheme 2.44 – 7e Zn complexes. 

Elemental analyses confirmed the identity of the proposed metal complexes. An additional 

advantage of these complexes is the fact that, being diamagnetic, it is possible to follow the 

coordination by NMR sudies. Thus, although up to now we were not able to grow crystals suitable 

for X-Ray analysis of good quality to have a structural characterization, NMR studies enabled us to 

propose the structures proposed in scheme 2.43 and 2.44. In fact, by careful integration of the 

signals in the 1H NMR spectra, we were able to identify two protons bounded to nitrogen atoms, 

thus confirming that the ligand was neutral. Mass analyses instead suggested us that actually, of the 

two X- anions only one is directly bound to the metal in the first coordination sphere (see 

Experimental Part). This hypothesis was supported also by a preliminary X-Ray analyisis of 7e-ZnCl2 

that showed the zinc atom pentacoordinated in a strongly distorted square pyramidal geometry 

with a chlorine atom as apical ligand. Unfortunately, collected data are of very low quality and not 

suitables to be reported here.  

Next, we moved towards the coordination of the new generation of PcL, the ones with three 

identical substituents on the three sp3 nitrogen atoms. We studied macrocycle 8a bearing three 

propargyl moieties and we synthesized the corresponding zinc(II) acetate complex (Scheme 2.45). 
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In this case, the zinc coordination has been used also as a protecting strategy for the macrocycle 

since the resulting complex was then further functionalized via triple Huysgen’s condensation, also 

known as click chemistry (Scheme 2.46). The reaction, in fact, involves the use of a copper(I) salt, 

usually formed in situ by reduction of copper(II) with sodium ascorbate. In order to avoid the 

coordination of copper by the ligand, it was thus necessary to protect it by forming a zinc complex. 

 

Scheme 2.45 – 8a-Zn(AcO)2 complex. 

 

 

Scheme 2.46 – 8a-Zn(AcO)2 click complex. 

In this last functionalization we choose 3,5-bis(trifluoromethyl)phenylazide due to the presence of 

-CF3 groups, helping us during 19F NMR analysis. The successful triple condensation is evident from 

1H, 3C and 19F NMR experiments (Figure 2.12). 
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Figure 2.12 – 1H and 19F NMR experiments of complex 8a-Zn(AcO)2-CLICK in CDCl3. 

In 1H NMR, protons c and c’ of the triazole moiety show integration 2:1 confirming the different 

nature of the two lateral substituents from the bottom one. The same can be noticed also for 

protons d and d’. In 13C NMR experiment the expected quartets of CF3 substituents are split in two 

almost overlapping quartets, with one of the two having half of the height compared to the other. 

Moreover, in 19F NMR experiment two singlets of fluorine atoms are present with area ratio 1:2. In 

this case, data in our hands are not sufficient to discriminate between a penta- and a 

hexacoordinated central metal atom. 

Finally, we decided to coordinate with Zn(OTf)2 also the fully deprotected lysine-derived ligand 7i. 

For this synthesis we followed the already described procedure but in presence of 4 equivalents of 

TEA in order to remove the three HBr molecules. The precipitated product was directly filtered and 

washed with Et2O in open air atmosphere (Scheme 2.47). 
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Scheme 2.47 – 7i-Zn complex. 

 In this case, by slow diffusion of acetone in water, we were able to grow crystals of sufficient quality 

for an X-Ray structural determination. As we expected, the acidic pendant is not innocent and 

coordinate to the zinc atom as acetate. However, instead of forming a monomer, despite the quite 

long alkyl chain, it prefers to crystallize as a trimer (Figure 2.13). The structure is highly symmetric 

and all the zinc atoms are hexacoordinated. Such an arrangement imposes to the whole crystal 

paking the presence of large voids (more than 38%), thus suggesting a potential application of this 

serendipitous MOF (metal-organic framework) for gas storage or catalyitic purposes. 

 

 

Figure 2.13 – Structure of compound 7i-Zn(OTf) showing the trimeric arrangement of the zinc atoms (A) and crystal 

paking with voids evidenced (B). 
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2.8.2  Cadmium complexes 

Knowing that very often cadmium complexes are isostructural with zinc ones, we decided to move 

on in the same group by coordinating cadmium(II) chloride. The complex was obtained by treating 

a solution of the ligand 7e in EtOH with a solution of the metal salt in EtOH. The resulting mixture 

was refluxed and after cooling, the final precipitated complex was recovered by filtration (Scheme 

2.48). In this case we were able to grow crystals of good quality. The structure is shown in Figure 

2.14 and confirmed our hypothesis that the ligand is not easily deprotonated. Actually, cadmium is 

hexacoordinated with two chloride atoms in cis position. Again, the presence of an heavy atom, 

allowed us to confirm the correct absolute configuration of all the stereocenters. 

 

 

Scheme 2.48 – Synthesis of 7e-CdCl2. 

 

Figure 2.14 – Structure of compound 7e-CdCl2 (thermal ellipsoids are shown at 50% probability level) Selected bond 

distances (Å) and angle (°): Cd-N1 2.45(3), Cd-N2 2.33(3), Cd-N3 2.39(3), Cd-N4 2.44(3), Cd-Cl1 2.504(1), Cd-Cl2 

2.545(1), Cl1-Cd-Cl2 90.3(4). 
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2.8.3  Cobalt complexes 

Being part of the first-row transition metals, cobalt(II) complexes are particularly relevant in 

catalysis thanks to their good activity and low cost. It was then a logical extension to our studies on 

iron coordination. 

Co(II) PcL complexes were obtained by treating a solution of the selected ligand in EtOH with a 

solution of the Co(II) salt in MeOH. The resulting mixture was refluxed for one hour. The solvent was 

removed and replaced by Et2O. The resulting suspension was stirred for 15 minutes, then the solid 

was recovered by filtration. 

We started by coordinating the simplest PcL in our hands, ligand 7a, with cobalt(II) acetate (Scheme 

2.49). Of this Co (II) PcL complex single crystals were obtained by layering an alcoholic solution of 

the complex with n-hexane and an X-Ray diffraction study was performed (Figure 2.15). 

 

Scheme 2.49 – Synthesis of 7a-Co(OAc)2. 

 

Figure 2.15 – Structure of compound 7a-Co(AcO)2 (thermal ellipsoids are shown at 50% probability level) Selected 

bond distances (Å) and angle (°): Co-N1 2.305(2), Co-N2 2.099(2), Co-N3 2.201(3), Co-N4 2.207(3), Co-O1 2.080(2), Co-

O3 2.033(2), O1-Co-O3 88.77(4). 
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Again, the macrocycle behaves as a neutral tetradentate ligand and two acetate molecules are 

completing the distorted octahedral geometry around the metal ion. The most interesting feature 

of this complex is the presence of two hydrogen bonds between the hydrogen atoms of the 

secondary amines of the macrocycle and the acetate residues. However, the complex does not show 

any tendency to loose acetic acid neither in the solid state nor in solution.  

Mass spectra and elemental analyses confirmed us that a very similar coordination mode is found 

also for the cobalt(II) complexes of the chiral ligand 7d and the monosubstituted non-symmetrical 

ligand 7e (Scheme 2.50). In this last case two different cobalt(II) sources were used. 

 

 

Scheme 2.50 – 7d and 7e Co complexes. 

Just before completing the writing of this thesis, we obtained single crystals of sufficient quality for 

an X-Ray structural determination of a Co(II) complex obtained by treatment of ligand 8b with 

Co(AcO)2. These crystals were obtained by dissolving the complex in DCM, not distilled, and by 

layering n-hexane. Much to our surprise, one of the two acetate ligands in the complex was 

selectively replaced by a chloride anion, located outside the coordination sphere of the metal. The 

distorted octahedral geometry at the metal is thus provided by the four nitrogen of the macrocycle, 

one acetate ion and an adventitious water molecule, as shown in figure 2.16. The water molecule is 

hydrogen bonded to the acetate. 
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Figure 2.16 – Structure of compound 8b-Co(AcO)(Cl). 

This again suggests that in these complexes X anionic ligands can be easily displaced and thus 

potential catalytic applications can be sought of. 

 

2.8.4  Ruthenium complexes 

Having in our hands the good results obtained in the coordination of iron(III), we decided to move 

on in the same group by coordinating ligands 7a and 7e with Ru(COD)Cl2 (Scheme 2.51). The 

complexes were obtained by treating a solution of the lingand in dry THF with a solution of BuLi in  

n-hexane. Ru(II) salt was added and the mixture was refluxed for 30 minutes. The precipitated solid 

was recovered by filtration and extracted in soxhlet until obtaining a brownish powder. Proposed 

structures are supported by the NMR data. Again, two N-H signals could be located, thus confirming 

the neutral beaviour of the ligand and the presence of a coordinated COD molecule was clearly seen. 

The formulation as an ion-separated complex was also supported by the low solubility in non-polar 

solvents. Good solubility was observed in water and DMSO. In this last solvent a conductance typical 

of an ionic compound was observed. Further evidences of the proposed structures were provided 

by both the MS spectra (FAB) and the elemental analyses. To confirm the presence of the two 

chloride atoms, an ion exchange reaction was performed, by using AgBF4 in a DMSO solution. The 

precipitation of AgCl confirmed our assumption. Although in this case the products were obtained 

in very low yield, the weak acidity of the N-H groups in the free base macrocycle is confirmed by 

their lack of reactivity even with a strong base such as BuLi. 
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Scheme 2.51 – 7a and 7e Ru complexes. 

2.8.5  Group 10 complexes 

Ligand 7e was also used for other coordinations with PdCl2 and NiCl2. In the first case a solution of 

the ligand in DCM was treated with a solution of PdCl2 in DCM. After one hour of reflux the mixture 

was cooled down and the product was recovered by filtration (Scheme 2.52). Single crystals of this 

complex were obtained and X-ray diffraction was performed (Figure 2.17). Surprisingly we noticed 

that an interesting palladium-bridged dimer was obtained. Again, the identity of the stereocenters 

was confirmed. 

 

Scheme 2.52 – 7e-PdCl2 dimeric complex. 
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Figure 2.17 – Structure of compound 7e-PdCl2 (thermal ellipsoids are shown at 50% probability level) Selected bond 

distances (Å) and angles (°): Pd-N1 2.014(1), Pd-N5 2.071(2), Pd-Cl1 2.283(7), Pd-Cl2 2.298(6), N1-Pd-N5 174.7(2), Cl1-

Pd-Cl2 174.9(2). 

In the case of NiCl2 coordination, the procedure adopted was the same but replacing DCM with EtOH 

(Scheme 2.53). The identity of the complex was confirmed by mass spectrum and elemental 

analysis. Unfortunately, the low solubility in common solvents of the complex hampered any NMR 

study (the molecule is however diamagnetic) and probably imposes a serious limit to any possible 

application in catalysis. For this reason, we did not proceed to further studies. 

 

Scheme 2.53 – 7e-NiCl2 complex. 
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3.  CONCLUSIONS 

During these three years of PhD studies the reactivity and coordination behaviour of our class of 

Pyridine-containing Ligands (PcL) was studied deeply resulting in a better understanding of their 

structural features and of the final geometry of the corresponding transition metal complexes. 

New ways of functionalizations were attempted and successfully realized and optimized, such as 

the synthesis of macrocycles bearing aminoacid-derived pendant arms or naturally functionalized 

ligands, such as with biotine or synthetic dipeptides, that in future could allow biological applications 

or catalysis in water media. 

The new class of iron(III) PcL complexes demonstrated to be highly active in oxidation, as expected 

from studies reported in literature of iron complexes of similar ligands. The cost evaluation 

demonstrated that our iron(III) catalytic system is suitable for industrial application and competitive 

with the common synthetic industrial pathways.  

Anyway, the complexes of our macrocycles demonstrated very good catalytic activity even in 

unpredictable fields leading us to the first example of silver(I) catalized Henry reaction with results 

comparable to the already reported Cu(I) and Zn(II) catalytic systems. The same complexes were 

also able to promote, even with modest results, two-step one-pot challenging isochromene 

cyclization versus nitroaldol reaction.80 

Moreover, the already studied Cu(I) PcL catalyzed carbene transfer, recently published by our group, 

was investigated also in new and different forms. Cyclopropanation of highly challenging substrates, 

such as vinylindoles, gave us excellent results in terms of yields and diasteroselectivities compared 

to other examples reported in literature. In future will be possible to develop also an entioselective 

version of this transformation.  

Last but not least, our Cu(I) catalytic system showed a wide range of applicability involving also Si-

H, N-H, O-H bond insertion of carbenes, even deriving from different sources (diazo-compounds, 

enynones). The TON of 30.000 demonstrates the high activity of the catalytic system and will prompt 

our research group to the development of an industrially suitable methodology for the synthesis of 

such important compounds.106  

In future new catalytic applications for our transition metals PcL complexes will be studied and new 

functionalizations will be investigated. Moreover, the grafting of our catalysts on a proper stationary 

phase (already proposed in recent years for cyclopropanation)63 will allow also for heterogeneous 

catalytic applications. 
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4.  EXPERIMENTAL PART 

General remarks 

All the reactions that involved the use of reagents sensitive to oxygen or hydrolysis were carried out 

under an inert atmosphere. The glassware was previously dried in an oven at 110 °C and was set 

with cycles of vacuum and nitrogen. All chemicals and solvents were commercially available and 

were used as given except where specified. The chromatographic column separations were 

performed by a flash technique, using silica gel (pore size 60 Å, particle size 230−400 mesh, Merck 

grade 9385) or by gravimetric technique using basic Al2O3. For TLC, silica was used on TLC Alu foils 

with fluorescent indicator (254 nm) and the detection was performed by irradiation with UV light (λ 

= 254 nm or 366 nm). 1H NMR analyses were performed with 200, 300, 400 or 600 MHz 

spectrometers at room temperature. The coupling constants (J) are expressed in hertz (Hz), and the 

chemical shifts (δ) in ppm. 13C NMR analyses were performed with the same instruments at 75.5, 

100 or 150 MHz, and attached proton test (APT) sequence was used to distinguish the methine and 

methyl carbon signals from those arising from methylene and quaternary carbon atoms. All 13C NMR 

spectra were recorded with complete proton decoupling. The 1H NMR signals of the ligands 

described in the following have been attributed by correlation spectroscopy (COSY) and nuclear 

Overhauser effect spectroscopy (NOESY) techniques. Assignments of the resonance in 13C NMR 

were made using the APT pulse sequence and heteronuclear single quantum correlation (HSQC) and 

heteronuclear multiple bond correlation (HMBC) techniques. Low resolution MS spectra were 

recorded with instruments equipped with electron ionization (EI), ESI/ion trap (using a syringe pump 

device to directly inject sample solutions), or fast atom bombardment (FAB) (for Pc-L and metal 

complexes) sources. The values are expressed as mass−charge ratio and the relative intensities of 

the most significant peaks are shown in brackets. Gaschromatographic analyses were performed 

with GC-FAST technique using a Shimadzu GC-2010 equipped with a Supelco SLBTM-5ms capillary 

column. GC-MS analyses were performed using a ISQ™ QD Single Quadrupole GC-MS (Thermo 

Fisher) equipped with a VF-5ms (30 m x 0.25 mm i.d. x 0.25 µm; Agielent Technology). Elemental 

analyses were recorded in the analytical laboratories of Università degli Studi di Milano. 2,6 

pyridinedimethanol 2,6-dimesylate was synthetized as previously reported.  
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4.A  Synthesis 

Synthesis of β-alanine methyl ester hydrochloride 

 

TMS-Cl (7.85 mmol) was added dropwise under stirring directly on β-alanine (3.55 mmol). Then 

MeOH (10.0 mL) was added dropwise carefully. The mixture was left to react 24h at RT, then the 

solvent was removed in vacuum leading to the product as a colourless oil. 

Yield: 97% 

1H NMR (300MHz, D2O) δ, ppm 3.81 (3H, s, OCH3), 3.36 (2H, t, J = 6.4 Hz, CH2), 2.89 (2H, t, J = 6.5 

Hz, CH2). 

 

Synthesis of N(𝜶)-Cbz-lysine methyl ester hydrochloride 

 

TMS-Cl (7.88 mmol) was added dropwise under stirring directly on N(α)-Cbz-lysine (3.57 mmol). 

Then MeOH (10.0 mL) was added dropwise carefully. The mixture was left to react 24h at RT, then 

the solvent was removed in vacuum leading to the product as a colourless oil. 

Yield: 99% 

1H NMR (300 MHz, CDCl3) δ 7.95 (s, 2H, Har Cbz), 7.31 (s, 4H, Har Cbz + NH), 5.07 (s, 2H, CH2 Cbz), 

4.92 (s, 2H, NH2), 4.28 (s, 1H, CH), 3.69 (s, 2H, CH2), 3.46 (s, 3H, OCH3), 2.98 (s, 2H, CH2), 1.75 (s, 4H, 

CH2), 1.45 (s, 2H, CH2). 
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4.1  Aminoalcohols 

 

 

Aminoacid (100mmol) was added to a suspension of NaBH4 (220mmol) in THF (100ml), at a 

temperature between 10 and 15°C. A chilled solution of H2SO4 conc. (6.6ml, 125mmol) and Et2O 

(13.3ml) was carefully added monitoring the temperature. The solution was allowed to react 

overnight at room temperature, then MeOH (20ml) was carefully added drop by drop to destroy the 

unreacted NaBH4 and the solution was concentrated to half the volume. The solution was diluted in 

100mL of a 5N solution of NaOH in water and the volatile solvents were distilled away. Finally, the 

solution was allowed to reflux for three hours. The water layer was separated and the aminoalcohol 

was recovered as uncolored oil, concentrated in vacuum, and used without further purifications. 

The products were characterized by 1H NMR spectroscopy and the results are according with the 

tabulated data. 

Yields  L-valinol  94% 

  L-leucinol  97% 

  L-t-leucinol  98% 

  L-cycloexylglicinol 95% 
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4.2  Tosyl protected aziridines 

4.2.1  2-tosyl ammine ethyl toluene sulfonate 

 

 

A solution of ethanolamine (12.1mL, 200.0 mmol) in pyridine (20.0 mL) was added dropwise to a 

suspension of tosyl chloride (80.26g, 421.0 mmol) in pyridine (50.0 mL) at -40 C°. The suspension 

was vigorously stirred for 2 hours at -10 C° then transferred in an ice bath. Ice was added to the 

suspension, the solid was filtered and washed with water, then it was dissolved in chloroform and 

washed again with water. The product obtained was recrystallized from ethanol as a yellow solid. 

Yield: 55% 

1H NMR (400 MHz; CDCl3; T = 300K) δ 7.76 (d, J = 8.2 Hz, 2H, ArH), 7.72 (d, J = 8.2 Hz, 2H, ArH), 7.37 

(d, J = 8.0 Hz, 2H, ArH), 7.32 (d, J = 8.0Hz, 2H, ArH), 4.83 (t, J = 6.1 Hz, 1H, NH), 4.07 (t, J = 5.1 Hz, 2H, 

CH2O), 3.25 (pq J = 5.5 Hz, 2H, CH2NH), 2.48 (s, 3H, CH3), 2.45 (s, 3H, CH3). 

 

4.2.2  N-tosyl ariziridine 

 

 

The reaction was carried out in air. A solution of KOH (5.516g, 98.3 mmol) in water (30.0 mL) was 

added dropwise to a suspension of 2-tosyl ammine ethyl toluene sulfonate (10.651g, 28.8 mmol) in 

toluene (80.0 mL). The resulting solution was stirred for 2 hours at room temperature, then diluted 

with water and toluene. The organic phase was washed with water obtaining a white solid 2a. (MW 

197.25 g/mol). 

 
Yield: 88% 

1H NMR (400 MHz; CDCl3; T = 300K) δ 7.85 (d, J = 8.2 Hz, 2H, ArH), 7.37 (d, J = 8.2 Hz, 2H, ArH), 

2.47 (s, 4H, CH2), 2.39 (s, 3H, CH3).  
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4.2.3 2-substituted N-tosyl ariziridine 2b-c 

 

 

Aminoalcohol (30 mmol) was dissolved in CH3CN dist. (125.0 ml) and TEA (120 mmol, 16.5 ml) was 

added. The solution was cooled to 0°C and tosylchloride (66 mmol) was added in four parts over 

one hour, followed by DMAP (3 mmol). The solution was allowed to react 20 hours at room 

temperature, then was concentrated, diluted with AcOEt and washed with brine (6x). The organic 

layer was anhydrified with Na2SO4, filtered, concentrated in vacuum to give the pure products as 

white powder. The products were characterized by 1H NMR spectroscopy and the results are 

according with the tabulated data. 

Yields:  2b 97% 

  2c 92% 

 

 

        1H NMR (300 MHz, CDCl3, T = 300 K) δ = 7.83 (d, J = 8.6 Hz, 2H, Hb), 7.33 (d, J = 8.6 

Hz, 2H, Hc), 2.61 (d, J = 7.0 Hz, 1H, H1), 2.55-2.49 (m, 1H, H2), 2.45 (s, 3H, 

He), 2.10 (d, J = 4.8 Hz, 1H, H1), 1.42 (m, J = 7.0 Hz, 1H, H3), 0.90 (d, J = 6.8 

Hz, 3H, H4), 0.80 (d, J = 7.0 Hz, 3H, H4). 

 

 

 

1H NMR (300 MHz, CDCl3, T = 300 K) δ = 7.83 (d, J = 8.6 Hz, 2H, Hb), 7.33 (d, J = 8.6 

Hz, 2H, Hc), 2.82-2.80 (m, 1H, H2), 2.65 (d, J = 7.0 Hz, 1H, H1), 2.46 (s, 3H, 

He), 2.05 (d, J = 4.6 Hz, 1H, H1), 1.42 (hep, J = 6.6 Hz, 1H, H4), 1.42-1.30 (m, 

2H, H3), 0.91 (d, J = 6.6 Hz, 3H, H5), 0.90 (d, J = 6.6 Hz, 3H, H5). 
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4.2.4 Aziridines 2d-e 

 

 

Aminoalcohol (26 mmol) and TEA (103 mmol) were dissolved in CH2Cl2 (75.0 ml) and the solution 

was cooled to 0°C then tosylchloride (28 mmol) was added. The solution was allowed to react at 0°C 

for 20 minutes, then for one hour at room temperature. The solvent was evaporated and AcOEt 

(100.0 ml) was added. The solid residuals were filtered and solvent was evaporated. CH2Cl2 (75.0 

ml), TEA (103 mmol) and DMAP (26 mmol) were added and mesylchloride (52 mmol) was added 

dropwise. The solution became ever darker. After 2h30’, the solvent was evaporated and AcOEt 

(150 ml) was added. The insoluble residuals were filtered and the product was obtained by 

concentrating the solution in vacuum. The products were characterized by 1H NMR spectroscopy. 

Yields:  2d 88% 

   2e 87% 

 

 

         1H NMR (400 MHz; CDCl3; T = 300K) δ 7.82 (d, J = 8.2 Hz, 2H, Hb), 7.32 (d, J 8.2, 

2H, Hc), 2.55 (dd, J = 7.6 Hz, 4.4 Hz, 1H, H2), 2.51 (d, J = 7.6 Hz, 1H, H1), 

2.44 (s, 3H, He), 2.16 (d, J = 4.4 Hz, 1H, H1), 1.36 (1 H, s), 0.78 (s, 9H, H4). 

 

 

1H NMR (400 MHz; CDCl3; T = 300K) δ 7.85 (d, J = 8.1 Hz, 2H, Hb), 7.36 (d, J = 8.1 

Hz, 2H, Hc), 2.62 (d, J = 7.0 Hz, 1H, H1), 2.56 (ddd, J = 11.8, 6.0 Hz, 1H, 

H2), 2.47 (s, 3H, He), 2.12 (d, J = 4.5 Hz, 1H, H1’), 1.75-1.50 (b, 5H, Hcy), 

1.25-0.90 (b, 6H, Hcy) 

13C NMR  (75 MHz; CDCl3) δ 144.78 (Cb), 135.52 (Cd), 129.97 (Ca), 128.46 (Cc), 45.52 (C2), 37.74 

(C3), 33.01 (C1), 30.55 (Ccy), 30.00 (Ccy), 26.40 (Ccy), 25.94 (Ccy), 25.75 (Ccy), 22.01 (Ce) 
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4.3  Nosyl protected aziridines 

4.3.1 o-Nosyl Aziridine 2f 

 

Step 1 

Ethanolamine (3.0 mL, 49.7 mmol) was added to a mixture of ethyl acetate (80.0 mL) and a solution 

of Na2CO3 (149.1 mmol) in water (200.0 mL). A solution of nosyl chloride (49.7 mmol) in ethyl acetate 

(40.0 mL) was added dropwise at 0°C. The reaction was left at room temperature for 4 hours and 

the product formation was evaluated with TLC chromatography (n-exane/ethyl acetate = 4:6). The 

two layers were then separated, the organic phase was washed with brine, dried and evaporated. 

A slightly yellowish solid was obtained. 

Yield: 92% 

1H NMR (300 MHz, CDCl3, T = 300K) δ 8.17 (m, 1H), 7.80 (m, 1H), 7.89 (m, 2H), 5.80 (s, 1H), 3.78 (m, 

2H), 3.28 (dd, J = 10.4, 5.8 Hz, 2H), 1.90 (s, 1H). 

 
Step 2 

Triethylamine (69.0 mmol) was added to a solution of 2-nosyl amino ethanol (34.6 mmol) in ethyl 

acetate (94.0 mL) and the reaction mixture was cooled to 15°C. Keeping the temperature between 

15 and 18 °C, a solution of mesyl chloride (34.6 mmol) in ethyl acetate (2.7 mL) was added dropwise, 

leading to the formation of abundant white precipitate. After the addition the flask was left at room 

temperature for 4 hours and the product formation was evaluated with TLC chromatography (n-

hexane/ethylacetate = 6:4). The precipitate was then filtered away and the solvent was washed with 

brine, dried and evaporated. A white solid was obtained. 

Yield: 95%  

1H NMR (400 MHz, CDCl3, T = 300K) δ 8.17 (dd, J = 5.8, 3.4 Hz, 1H), 7.96-7.86 (m, 1H), 7.86-7.72 (m, 

2H), 5.89 (t, J = 5.7 Hz, 1H), 4.32 (t, J = 5.2 Hz, 2H), 3.52 (m, 2H), 3.04 (s, 3H). 
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Step 3 

KOH (28.5 mmol) in water (90.0 mL) was added to a solution of methanesulfonic acid 2-(2-

nitrobenzenesulfonylamino) ethyl ester (28.5 mmol) in toluene (180.0 mL). The mixture was stirred 

for one hour, concentrated, diluted with ethyl acetate and the organic phase was washed with water 

and brine and dried over Na2SO4. The organic layer was concentrated and the crude was isolated as 

white solid. 

Yield: 80% 

1H NMR (400 MHz, CDCl3, T = 300K) δ 8.20-8.19 (m, 1H), 8.18-8.17 (m, 3H), 7.83-7.81 (m, 1H), 2.61 

(s, 4H). 

 

4.3.2 Nosyl protected (S)-isopropyl aziridine 2g 

 

L-Valinol (576.1 mg, 5.6 mmol) was added to a solution of dichloromethane (35.0 mL) and pyridine 

(14.0 mL) at 0°C. A solution of ortho-nosyl chloride (727.0 mg, 12.3 mmol) in dichloromethane (35.0 

mL) was dropwise and the solution is allowed to react at 0°C for 4 hours. 

The mixture is diluted with 70 mL of dichloromethane and then washed three times 2M HCl (3 x 

25.0 mL). The aqueous layers were washed again with dichloromethane (3 x 25.0 mL) and the 

collected organic phases were washed with aqueous KOH (3 x 50.0 mL), treated with Na2SO4 and 

concentrated in vacuum. 

The crude was dissolved in dichloromethane (3.0 mL) and the pure product was obtained by 

precipitation, layering n-n-hexane on the solution.  

Yield: 84% 

 

1H NMR (400 MHz, CDCl3, T = 300K) δ 8.22 (d, J = 5.3 Hz, 1H, HAr), 7.79 – 7.74 (m, 

3H, HAr), 2.85-2.84 (m, 2H, H1), 2.35-2.34 (m, 1H, H2), 1.61-1.59 (m, 1H, 

H3), 0.99 (d, J = 6.7, 3H, H4), 0.93 (d, J = 6.7, 3H, H4)  
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4.4  Bis-sulfonamides 

4.4.1 Bis-sulfonamides 3a-i  

 

A solution of 2 (7.3 mmol) and amine (3.3 mmol – see table 3.1) in toluene (12.0 mL) and CH3CN 

(8.0 mL) was stirred and refluxed for (see table 3.1). The mixture was dried and purified by column 

chromatography on silica using AcOEt/n-hexane = (see table 3.1) as eluent. Yields are reported in 

the table 3.1. 

Table 3.1 – Reaction conditions for compounds 3a-i 

 

Product Amine Reaction time AcOEt/n-hexane Yield 

3a Benzylamine 4 hours 1:1 97% 

3b S-Benzylamine 4 hours 1:1 74% 

3c R-Benzylamine 4 hours 1:1 75% 

3d 1- Naphthylmethylamine 5 hours 2:3 78% 

3e 1-(S)-Napthylethylamine 10 hours 2:3 97% 

3f 1-(R)-Napthylethylamine 10 hours 2:3 96% 

3g 1-(R)-Napthylethylamine 72 hours 3:7 40% 

3h 1-(S)-Napthylethylamine 72 hours 3:7 41% 

3i 1-(R)-Napthylethylamine 72 hours 3:7 43% 
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1H NMR (400 MHz; CDCl3; T = 300K) δ 7.73 (d, J = 8.0 Hz, 4H, Hf), 7.29 (d, J = 8.0 Hz, 4H, Hg), 

7.27-7.25 (m, 3H, HAr), 7.13 (m, 2H, HAr), 5.17 (br s, 2H, NH), 3.44 (s, 2H, H3), 2.95 (m, 

4H, H1), 2.57 (m, 4H, H2), 2.42 (s, 6H, H4) 

13C NMR (100 MHz; CDCl3; T = 300K) δ 143.8 (Ch), 138.2 (Ce), 137.1 (Ca), 130.2 (Cf), 129.3 (Cb), 

128.9 (Cc), 127.8 (Cd), 127.5 (Cg), 58.8 (C3), 53.6 (C1), 41.0 (C2), 21.9 (C4) 

Elem. an.  found: C, 60.0; H, 6.2; N, 8.6% 

calculated: C, 59.9; H, 6.2; N, 8.4% 

MS (EI) m/z 501 (M+ 100%) 

 

 

 

1H NMR (400 MHz; CDCl3; T = 300K): δ 7.72 (d, J = 8.4 Hz, 4H, Hf), 7.34–7.28 (m, 7H, Hg, Hb, Hc), 

7.18–7.16 (m, 2H, Hb’, Hc’), 4.85 (brs, 2H, NH), 3.73 (q, J = 6.9 Hz, 1H, H3), 2.88 (m, 4H, 

H2), 2.61 (m, 2H, H1’), 2.43 (m, 6H, H5), 2.42 (m, 2H, H1), 1.30 (d, J = 6.9 Hz, 3H, H4). 

13C NMR  (100 MHz; CDCl3; T = 300K): δ 143.9 (C), 137.2 (C), 136.7 (C), 130.3 (Cg), 128.8 (Cb), 

128.4 (Cc), 127.8 (Cd), 127.55 (Cf), 58.8 (C3), 50.5 (C1), 41.6 (C2), 21.9 (C5), 21.5 (C4). 

MS m/z 516.4 (M+1), 538.4 (90 + Na), 1053.1 (100 2M + Na). 
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1H NMR  (300 MHz; CDCl3; T = 300K) δ 8.14 (d, J = 8.3 Hz, 1H, Hi), 7.86 (d, J = 8.3 Hz, 1H, HAr), 

7.78 (m, 1H, HAr), 7.54 (d, J = 8.0 Hz, 4H, Hn) overlapping with 7.61-7.49 (m, 2H, HAr), 

7.42-7.32 (m, 2H, HAr), 7.19 (d, J = 8.0 Hz, 4H, Ho), 4.83 (bs, 2H, NH), 4.00 (br, 2H, H3), 

2.90 (m, 4H, H1), 2.66 (m, 4H, H2), 2.38 (s, 6H, H4). 

13C NMR  (75 MHz; CDCl3; T = 300K) δ 143.5 (C), 136.7 (C), 134.0 (C), 132.0 (C), 129.8 (CH), 129.0 

(Co), 127.1 (Cn), 126.3 (CH), 125.4 (CH), 123.7 (Ci), 54.2(CH2), 40.8 (C3), 21.6 (C4). 

Signals relative to a quaternary carbon, three aromatic CH and a couple of CH2 were 

not detected. 

 

 

1H NMR  (400 MHz; CDCl3; T = 300K): δ 8.36 (d, J = 8.6 Hz, 1H, HAr), 7.86 (d, J = 7.5 Hz, 1H, Hn), 

7.76 (m, 1H, Hc), 7.67 (m, 1H, HAr), 7.54 (m, 1H, HAr), 7.50 (d, J = 8.0 Hz, 4H, Ho), 7.41–

7.40 (m, 2H, Hb), 7.24 (d, J = 8.0, 4H, HAr), 4.69 (q, J = 6.7, 1H, H3), 4.63 (brs, 2H, NH), 

2.82–2.71 (m, 2H, H1’), 2.69 (m, 4H, H2), 2.56 (m, 2H, H1), 2.42 (s, 6H, H5), 1.46 (d, J = 

6.7 Hz, 3H, H4). 

13C NMR  (100 MHz; CDCl3; T = 300K) δ 143.2 (CH), 138.3 (Ch), 136.7 (Ca), 134.9 (CH), 133.9 (Ci), 

131.6 (Cp), 129.7 (CH), 128.3 (Cc), 126.6 (Co), 124.2 (CH), 57.1 (CH), 51.1 (C3), 41.8 (Ci), 

21.5 (C5), 12.7 (C4). 
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1H NMR (400 MHz; CDCl3; T = 300K) δ 7.94 (m, 1H, Hi) 7.79(d, J = 8.0 Hz, 4H, Hn) overlapping 

with 7.79 (m, 1H, HAr), 7.73 (dd, J = 5.8 Hz, J = 3.4 Hz, 1H, HAr), 7.45-7.42 (m, 2H, HAr), 

7.40-7.39 (m, 2H, HAr), 7.29 (d, J = 8.0 Hz, 4H, Ho), 4.66 (d, J = 7.9 Hz, 2H, NH), 4.59 (q, 

J = 6.6 Hz, 1H, H6), 3.26 (m, 1H, H2), 2.46 (dd, J = 13.4 Hz, J = 5.1 Hz, 2H, H1), 2.41 (s, 

6H, H8), 1.55 (m, 2H, H3), 1.20 (d, J = 6.6 Hz, 3H, H7) 0.56 (d, J = 6.9 Hz, 6H, H4), 0.19 

(d, J = 6.8 Hz, 6H, H5). 

13C NMR  (75 MHz; CDCl3; T = 300K) δ 143.4 (C), 138.2 (C), 138.0 (C), 134.1 (C), 132.1 (C), 129.7 

(Cn), 128.8 (CH), 128.2 (CH), 127.3 (Co), 125.6 (CH), 125.5 (CH), 125.1 (CH), 125.0 (CH), 

123.9 (CH), 56.6 (C2), 53.6 (C6), 52.3 (C1), 27.6 (C3), 21.6 (C8), 19.3 (C4), 14.8 (C5), 12.4 

(C7). 

15N NMR  (40 MHz; CDCl3; T = 300K) δ 94.0 (NHTs), 38.3 (NHC6). 

Elem. An.  Found: C, 66.6; H, 7.6; N, 6.5% 

Calculated: C, 66.5; H, 7.3; N, 6.5% 

[α]D
20   - 47.22 (c 1.37 in CHCl3) 

 

 

 

1H NMR  (300 MHz; CDCl3; T = 300K) δ 8.73 (d, J = 8.2 Hz, 1H, Hi), 7.73 (d, J = 7.8 Hz, 2H, HAr), 

7.70 (d, J = 8.3 Hz, 4H, Hn), 7.56 (pt, J = 8.2 Hz, 1H, HAr), 7.43-7.37 (m, 2H, HAr), 7.29 

(m, 1H, HAr), 7.24 (d, J = 8.3 Hz, 4H, Ho), 5.36 (d, J = 5.4 Hz, 2H, NH), 5.13 (q, J = 6.5 Hz, 

1H, H6), 3.68 (m, 2H, H2), 2.48-2.42 (m, 4H, H1), overlapping with 2.42 (s, 6H, H8), 1.76 
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(m, 2H, H3), 1.48 (d, J = 6.5 Hz, 3H, H7), 0.68 (d, J = 7.0 Hz, 6H, H4), 0.35 (d, J = 7.0 Hz, 

6H, H5) 

13C NMR (75 MHz; CDCl3; T = 300K) δ 143.0 (Cp), 139.3 (C), 137.9 (C), 134.1 (C), 131.7 (C), 129.5 

(Cn), 128.4 (CH), 127.4 (CH), 127.1 (Co), 125.9 (CH), 125.2 (CH), 124.9 (CH), 124.6 (CH), 

54.7 (C2), 53.3 (C6), 48.1 (C1), 29.6 (C3), 21.7 (C8), 18.0 (C4), 15.9 (C5), 11.1 (C7). A signal 

relative to an aromatic carbon was not detected. 

Elem. An.  Found: C, 66.4; H, 7.3; N, 6.7% 

Calculated: C, 66.5; H, 7.3; N, 6.5%. 

MS (EI)  m/z 650 (M++1). 

[α]D
20   - 33.65 (c 0.28 in CHCl3). 

 

 
 
1H NMR (300 MHz; CDCl3) 8.02 (dd, J = 6.1, 3.4 Hz, 1H, Hh), 7.84-7.82 (m, 1H, HAr), 7.81 (d, J = 

8.1 Hz, 4H, Hm), 7.77–7.74 (m, 1H, HAr), 7.46 (dd, J = 6.3, 3.2 Hz, 2H, HAr), 7.44 – 7.41 

(m, 2H, HAr), 7.32 (d, J = 8.1 Hz, 4H, Ho), 4.70 (q, J = 6.6 Hz, 1H, H7) 4.65-4.61 (m, 2H, 

NH), 3.29 (b, 2H, H2), 2.70 (dd, J = 13.4, 5.3 Hz, 2H, H1), 2.44 (s, 6H, H9), 2.36 (dd, J = 

13.4, 8.0 Hz, 2H, H1’), 1.33 (d, J = 6.6 Hz, 3H, H8), 1.28 (m, 2H, H4), 0.93 (ddd, J = 13.8, 

9.2, 4.6 Hz, 2H, H3), 0.70 (ddd, J = 14.1, 9.1, 4.8 Hz, 2H, H3’), 0.51 (d, J = 6.3 Hz, 6H, 

H5,6), 0.50 (d, J = 6.4 Hz, 6H, H5’,6’). 

13C NMR (75 MHz; CDCl3) δ 143.66 (Cp), 138.67 (Cm), 138.58 (Ca), 134.30 (Cl), 132.60 (Ce), 129.99 

(Co), 129.19 (CH), 128.32 (CH), 127.56 (Cn), 126.26 (CH), 125.80 (Ch), 125.31 (CH), 

125.24 (CH), 124.08 (CH), 57.52 (C1), 54.25 (C7), 51.05 (C2), 43.28 (C3), 24.57 (C4), 

23.31 (C5,6), 21.96 (C5’,6’), 21.89 (C9), 14.46 (C8). 
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4.4.2 Synthesis of bis-sulfonamides 3j-k-l 

 

 

A solution of 2 (7.5 mmol in 8.0 mL of toluene) was added dropwise at 60°C over a period of 90 

minutes to a suspension of aminoester hydrochloride (2.5 mmol) in toluene (4.0 mL) and CH3CN (8.0 

mL) and TEA (2.6 mmol). The resulting mixture was stirred and refluxed for 6h. The mixture was 

dried and purified by column chromatography on silica using AcOEt/n-hexane = 7:3 as eluent.  

Yields:  3j 48% 

   3k 69% 

  3l 35% 

 

1H NMR (300 MHz, CDCl3) δ, ppm 7.77 (4H, d, J =8.2 Hz, Hb), 7.30 

(4H, d, J = 7.9 Hz, Ha), 5.50 (2H, m, H6), 3.74 (3H, s, H1), 2.88 (4H, 

m, CH2), 2.50-2.33 (10H, m, H7 + CH2). 

 
13C NMR (75 MHz, CDCl3) δ, ppm 174.54 (C2), 130.16 (Cb), 

127.69 (Ca), 53.71(C), 52.70 (C1), 48.63 (C), 40.93 (C), 32.31 (C), 21.89 (C7). 

 

 

 

1H NMR (400 MHz, CDCl3) δ, ppm 7.75 (4H, d, J = 8.2 Hz, 

Hatosile), 7.35-7.28 (9H, m, Hb + HCbz), 5.49 (1H, d, J = 8.1 Hz, 

H12), 5.12 (2H, s, H13), 4.35 (1H, m, H3), 3.73 (3H, s, H1), 3.01(3H, 

br, CH2), 2.63 (3H, br, CH2), 2.44 (8H, m, H11 + CH2) 1.78 (2H, m, 

H4), 1.64 (2H, m, H5), 1.41 (2H, m, CH2), 1.32-1.23 (2H, m, CH2). 
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13C NMR (100 MHz, CDCl3) δ, ppm 172.96 (C2), 158.45 (C13), 143.71 (Cquaternarytosyl), 

137.01(CquaternaryCbz), 129.93 (Cb), 128.68 (CCbz), 127.27 (Ca), 67.25 (C13), 60.37 (C3), 53.70 (CH2), 

52.71 (C1), 40.47 (CH2), 32.55 (C4), 32.29 (C5), 22.85 (CH2), 21.66 (C11), 21.19 (CH2), 14.35 (CH2). 

[α]D
20

 5.60° (c 0.75 in CH2Cl2) 

 

 

 

1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 8.2 Hz, 4H, Ha), 7.33 

(m, 5H, HAr), 7.26 (m, 6H, HAr), 5.41 (m, 3H, NH12,10), 5.11 (s, 

2H, H13), 4.38 (dd, J = 14.8, 6.2 Hz, 1H, H3), 3.74 (s, 3H, H1), 

3.48 – 3.32 (m, 2H, CH2), 2.40 (s, 8H, H11 overlapping with 

CH2), 2.29 (dd, J = 13.1, 5.0 Hz, 2H, CH2), 2.20 (m, 1H, CH2), 

1.95 – 1.75 (m, 3H, H8 + CH2), 1.72 – 1.59 (m, 1H, CH2), 1.41 – 

1.16 (m, 6H, CH2), 0.76 (dd, J = 10.8, 6.9 Hz, 12H, H15) 

 

13C NMR (100 MHz, CDCl3) δ 143.0 (Cquaternary tosyl), 139.1 (Cquaternary Cbz), 129.6 (Cb), 128.7 (CHCBz), 128.3 

(CHCBz), 127.1 (Ca), 67.1 (C13), 56.2 (CH), 54.0 (CH2), 53.9 (C3), 53.4 (CH2), 52.5 (C13), 32.7 (C4), 30.2 

(C14), 25.3 (CH2), 23.1 (CH2), 21.7 (C11), 17.9 (C15) 
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4.5 Mono-sulfonamides 

4.5.1 Synthesis of monosulfonamides 4a-c 

 

Aziridine 2 (12.9 mmol) was dissolved in MeOH (4.2 ml) and 1-(R)-naphthylethylamine (13.2 mmol) 

is added. The solution was allowed to react to reflux for 8 hours.  

The crude was obtained by concentrating the solution in vacuum and was purified, if needed, by 

chromatographic column (n-n-hexane/AcOEt = 7:3). 

Yields   4a: 95% 

   4b: 93% 

   4c: 71% 

 

1H NMR  (400 MHz; CDCl3, 300 K) δ 8.02 (d, J = 7.9 Hz, 1H, Hh), 7.89-7.87 (m, 1H, HAr), 7.84 (d, 

J = 8.2 Hz, 2H, Hn), 7.76 (d, J = 8.1 Hz, 1H, HAr), 7.55-7.46 (m, 2H, HAr), 7.41 (d, J = 6.9 

Hz, 1H, HAr), 7.29 (d, J = 8.1 Hz, 2H, Ho), 5.05 (b, 1H, NH), 4.37 (b, 1H, H5), 3.16 (dd, J = 

4.8 Hz, 5.7 Hz, 1H, H2), 2.52-2.43 (m, 2H, H1), 2.41 (s, 3H, H7), 1.37 (d, J = 6.3 Hz, 3H, 

H6), 0.79 (s, 9H, H4). One NH signal is too broad to be detected. 

13C NMR (100 MHz; CDCl3, 300 K) δ 143.27 (Cp), 138.43 (Cm), 133.95 (CAr), 131.12 (CAr), 129.62 

(Cn), 129.04 (CAr), 127.44 (CAr), 127.19 (Co), 125.95 (CAr), 125.66 (CAr), 125.50 (Cnaphthyl), 

122.58 (Ch), 122.44 (CAr), 61.78 (C2), 53.72 (C5), 47.59 (C1), 34.61 (C3), 26.98 (C4), 23.52 

(C6), 21.49 (C7). 
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1H NMR (400 MHz; CDCl3; T = 300K) δ 8.03-8.00 (m, 1H, Hh), 7.89 (m, 1H, HAr), 7.78-7.75 (m, 

3H, Hn and HAr), 7.52 (m, 4H, HAr), 7.27 (2H, d, J = 8.2 Hz, Ho), 5.09 (b, 1H, NH), 4.38 

(pd, 1H, J = 6.4 Hz, H9), 3.07 (pd, J = 4.5 Hz, 1H, NH), 2.51-2.37 (m, 3H, H1 and H2), 2.42 

(3H, s, H11), 1.68-1.58 (5H, m), 1.51-1.47 (m, 1H), 1.38 (3H, d, J = 6.5 Hz, H10), 1.14-

1.01 (m, 3H), 0.85-0.76 (m, 2H) 

13C NMR (100 MHz; CDCl3) δ 143.18 (Cp), 140.18 (Ca), 137.98 (Cm), 133.97 (Cl), 131.13 (Ce), 

129.56 (Cn), 129.03 (CAr), 127.49 (CAr), 127.16 (Co), 125.93 (CAr), 125.59 (CAr), 125.52 

(CAr), 122.66 (Ch), 122.55 (CAr), 58.17 (C2), 53.35 (C9), 47.31 (C1), 40.14 (C3), 29.24 (Ccy), 

28.85 (Ccy), 26.19 (Ccy), 26.09 (Ccy), 26.03 (Ccy), 23.24 (C10), 21.49 (C11) 

 

 

 

1H NMR  (300 MHz; CDCl3; T = 300K) δ 8.03 (m, 1H, Hi), 7.89 (m, 1H, HAryl), 7.78 (d, J = 8.4 Hz, 

2H, Hn) overlapping with 7.79-7.75 (m, 1H, HAryl) 7.52-7.45 (m, 4H, HAryl), 7.25 (d, J = 

8.4 Hz, 2H, Ho), 5.22 (br, 1H, NH), 4.35 (q, J = 6.6 Hz, 1H, H5), 3.08 (m, 1H, H2), 2.46-

2.42 (m, 2H, H1), 2.40 (s, 3H, H7), 1.85 (dh, J = 13.4 Hz, J = 6.8 Hz, 1H, H3), 1.36 (d, J = 

6.6 Hz, 3H, H6), 0.81 (d, J = 6.8 Hz, 3H, H4), 0.78 (d, J = 6.8 Hz, 3H, H4) One NH signal is 

too broad to be detected. 

13C NMR (75 MHz; CDCl3; T = 300K) δ 143.2 (CAryl), 140.8 (CAryl), 138.2 (CAryl), 134.1 (CAryl),131.3 

(CAryl),129.6 (Co), 129.1 (CAryl),127.4 (CAryl), 127.2 (CAryl), 125.9 (CAryl), 125.7 (CAryl), 

125.5 (CAryl), 122.8 (Ci),122.6 (CAryl), 59.0 (C2), 53.3 (C6), 47.4 (C1), 30.4 (C3), 23.5 (C7), 

21.5 (C8), 18.8 (C4), 18.4 (C5). 
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4.5.2 Monosubstituted bis-sulfonamides 

 

Monoamine 4 (0.33mmol) was dissolved in MeOH (1ml) and N-Ts aziridine (0.33mmol) was added. 

The solution was allowed to react to reflux for 16 hours. The crude was obtained by concentrating 

the solution in vacuum and purified by chromatographic column (n-hexane/AcOEt = 7:3). 

 

 
 
1H NMR  (300 MHz; CDCl3) δ 8.18 (d, J = 8.4 Hz, 1H, Hh), 7.87-7.82 (m, 5 H, Hn, Hr, HAr), 7.76 (d, J 

= 8.0 Hz, 1H, HAr), 7.56-7.51 (m, 2H, HAr), 7.51-7.45 (m, 2H, HAr), 7.33-7.27 (m, 4H, Ho, 

Hs), 6.31 (b, 1H, NH11), 4.84 (q, J = 6.8 Hz, 1H, H6), 4.45 (d, J = 8.1 Hz, 1H, NH10), 3.42-

3.38 (m, 1H, H2), 3.07-3.02 (m, 1H, H5), 2.99-2.91 (m, 2H, H5, H4), 2.75-2.68 (m, 2H, H4, 

H1), 2.44 (s, 6H, H8, H9), 2.42-2.39 (m, 1H, H1), 1.52 (d, J = 6.8 Hz, 3H, H7), 0.54 (s, 9H, 

H3). 

13C NMR  (75 MHz; C6D6) δ 143.32 (Cp, Ct), 139.55 (Cm), 139.46 (Ca), 137.84 (Cq), 134.24 (Cl), 

132.33 (Ce), 129.92 (Co), 129.83 (Cs), 129.21 (CH), 127.93 (CH), 127.59 (Cn), 127.43 

(Cr), 126.56 (CH), 125.90 (CH), 125.64 (CH), 124.93 (CH), 123.82 (Ch), 62.41 (C2), 55.17 

(C6), 54.20 (C1), 51.27 (C4), 42.11 (C5), 34.90 (C), 27.81 (C3), 27.33 (C3), 27.01 (C3), 21.90 

(C8, C9), 20.00 (C7) 

Elem. An.  Found: C, 65.41; H, 7.10; N, 6.71 

Calculated: C, 65.67; H, 6.97; N, 6.76 

[α]D
20 -15.41 (in CHCl3) 

MS (ESI) m/z 725.4 (M+1), 747.5 (M+Na) 
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1H NMR (400 MHz; CDCl3) δ 8.13 (d, J = 8.3 Hz, 1H, Hh), 7.86 (d, J = 7.3 Hz, 1H, HAr), 7.77 (dd, J 

= 5.5 Hz, 3.9 Hz, 1H, HAr), 7.73 (d, J = 8.2 Hz, 2H, Hn), 7.64 (d, J = 8.2 Hz, 2H, Hr), 7.57-

7.52 (m, 1H, HAr), 7.53-7.48 (m, 1H, HAr), 7.42-7.40 (m, 1H, HAr), 7.41 (s, 1H, HAr), 7.28 

(m, 4H, Ho, Hs), 4.93 (t, J = 5.5 Hz, 1H, H15), 4.63 (q, J = 6.6 Hz, 1H, H12), 4.46 (d, J = 7.9 

Hz, 1H, H14), 3.07 (m, 1H, H2), 3.03-2.98 (m, 1H, H9), 2.91-2.83 (m, 1H, H9), 2.83-2.76 

(m, 1H, H8), 2.70-2.64 (m, 1H, H8), 2.53 (dd, J = 13.3, 8.4 Hz, 1H, H1), 2.43 (s, 6H, H10, 

H11), 2.38 (dd, J = 13.3, 5.8 Hz, 1H, H1), 1.39 (d, J = 6.6 Hz, 3H, H13), 1.44 (m, 1H, H7), 

1.36 (m, 1H, H6), 1.23 (m, 1H, H5), 1.05 (m, 1H, H8), 0.99 (m, 1H, H3), 0.77-0.73 (m, 2H, 

H7, H6), 0.63 (m, 1H H8), 0.56 (m, 1H, H4), 0.39 (ddd, J = 3.1, 12.1 Hz, 1H, H4), 0.19 (m, 

1H, H5) 

13C NMR (100 MHz; CDCl3) δ 143.28 (Cp), 143.14 (Ct), 138.01 (Ca), 137.86 (Cm), 137.15 (Cq), 

134.07 (Cl), 131.84 (Ce), 129.60 (Co), 129.57 (Cs), 128.97 (CH), 128.20 (CH), 127.18 

(Cm), 127.03 (Cr), 126.23 (CH), 125.71 (CH), 124.94 (CH), 124.75 (CH), 123.60 (Ch), 

57.23 (C2), 55.51 (C12), 52.58 (C1), 51.55 (C8), 41.45 (C9), 38.09 (C3), 29.41 (Ccy), 26.17 

(Ccy), 28.08 (Ccy), 25.97 (Ccy), 25.66 (Ccy), 21.50 (C10, C11), 12.92 (C13) 

Elem. An.  Found: C, 66.91; H, 6.88; N, 6.37% 

Calculated: C, 66.74; H, 7.00; N, 6.49% 

[α]D
20 -13.18 (in CHCl3) 

MS (ESI) m/z 670.6 (M+Na) 
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1H NMR (300 MHz; CDCl3) δ 8.08 (d, J = 8.2 Hz, 1H, Hi) 7.85 (m, 1H, Hf), 7.77 (m, 1H, Hc), 7.71 

(d, J = 8.2 Hz, 2H, Hn),7.59 (d, J = 8.2 Hz, 2H, Hr),7.52 (m, 2H, Hg, Hh), 7.42 (m, 2H, Hb, 

Hd) 7.28-7.24 (m, 4H, Ho, Hs), 4.82 (m, 1H, NH13), 4.63 (q, J = 6.6 Hz, 1H, H6), 4.30 (d, J 

= 7.5 Hz, 1H, NH12), 3.14 (m, 1H, H2), 2.83 (m, 2H, H9, H9’), 2.70 (m, 2H, H8, H8’), 2.46 

(m, 2H, H1, H1’), 2.42 (br, 6H, H10, H11), 1.40 (d, J = 6.6 Hz, 3H, H7) overlapping with 

1.41-1.39 (m, 1H, H3), 0.44 (d, J = 6.9 Hz, 6H, H4), 0.17 (d, J = 6.8 Hz, 6H, H5). 

13C NMR  (75 MHz; CDCl3) δ 143.5 (Cn), 143.2 (Cq), 138.3 (Cp), 137.9 (Ca), 137.2 (Ct), 134.2 (C), 

131.9 (Cl), 129.8 (Cs), 129.7 (Co), 129.1 (Cf), 128.4 (CH), 127.3 (Cr), 127.2 (Cn), 126.4 

(CH), 125.9 (CH), 125.2 (CH), 124.9 (CH), 123.7 (Ci), 57.4 (C2), 55.7 (C6), 53.5 (C1), 51.4 

(C8), 41.6 (C9), 28.4 (C3), 21.7 (C11,10), 18.6 (C4), 15.6 (C5), 14.0 (C7).  

Elem. An.  Found: C, 65.61; H, 7.02; N, 6.58% 

Calculated: C, 65.21; H, 6.80; N, 6.91% 

[α]D
20 -32.88 (c 0.420 in CHCl3) 

MS (ESI) m/z 608 (M+1) 
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4.5.3 Synthesis of Ns-protected bis-sulfonamides 

 

Amine (4.0 mmol – see table 3.2) was added to a solution of aziridine 2 (8.0 mmol) in distilled 

toluene (20 mL). The solution was allowed to reflux for (see table 3.2) and was monitored by TLC. 

The crude was recovered by concentrating the solution and was purified by chromatographic 

column (see table 3.2). 

 

Product Amine Reaction time AcOEt/n-hexane Yield 

3m Benzylamine 6 hours 7:3 70% 

3n 1-(R)-Naphthylethylamine 40 hours 6:4 58% 

3o 1-(R)-Naphthylethylamine 6 hours 8:2 60% 

3p 1-(R)-Methyl Benzylamine 6 hours 7:3 75% 

 
 

 

 

1H NMR (300 MHz; CDCl3) δ 8.04 (m, 2H, H5), 7.83 (m, 2H, H6), 7.79-7.66 (m, 4H, HAr), 7.37-

7.04 (m, 5H, HAr), 5.63 (s, 2H, NH), 3.07 (t, J = 6.0 Hz, H2), 2.63 (t, J = 6.0 Hz, H1)  

13C NMR (75 MHz; CDCl3) δ 148.46 (Ci), 138.15 (Ca), 134.14 (Cg), 133.50 (Cj), 133.25 (Cf), 

131.26 (Ch), 129.29 (CH), 129.02 (CH), 127.95 (CH), 125.91 (Ce), 59.4 (C3), 54.02 (C1), 

41.79 (C2) 
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1H NMR (300 MHz; CDCl3) δ 8.06 (dd, J = 5.8, 3.4 Hz, 2H, Hh), 7.84 (dd, J = 5.8, 3.4 Hz, He), 7.72 

(dd, J = 5.8, 3.4 Hz, 4H, Hf,g), 7.37-7.08 (m, 5H, HAr), 5.64 (s, 2H, NH), 3.58 (s, 1H, H3), 

3.09 (br, J = 6.0 Hz, H2), 2.68 (br, J = 6.0 Hz, H1)  

13C NMR (100 MHz; CDCl3) δ 148.2 (C), 133.9 (CH), 133.8 (CH), 133.3 (C), 133.0 (CH), 131.1 (CH), 

129.1 (CH), 125.6 (CH), 59.4 (CH2), 54.2 (CH2), 42.1 (CH2) 

 

1H NMR   (400 MHz, CDCl3) δ 8.18 – 8.10 (m, 2H), 8.02 (d, J = 9.4 Hz, 1H), 7.87 (dd, J = 5.6, 3.6 

Hz, 2H), 7.85 – 7.79 (m, 1H), 7.75 (ddd, J = 13.9, 6.2, 2.9 Hz, 4H), 7.46 (td, J = 6.5, 3.6 

Hz, 4H), 5.16 (d, J = 7.7 Hz, 2H), 4.68 (q, J = 6.6 Hz, 1H), 3.45 (br, 1H), 2.57 (ddd, J = 

18.0, 13.5, 7.4 Hz, 4H), 1.65 – 1.59 (m, 2H), 1.27 (d, J = 6.7 Hz, 3H), 0.53 (d, J = 6.9 Hz, 

6H), 0.22 (d, J = 6.8 Hz, 6H). 

 

 

1H NMR  (300 MHz, CDCl3) δ 8.07 (dd, J = 5.8, 3.3 Hz, 2H), 7.86 (q, J = 4.6, 3.6 Hz, 2H), 7.80 – 

7.68 (m, 4H), 7.30 (m, 5H), 5.55 (s, 2H), 3.83 (q, J = 6.7 Hz, 1H), 3.01 (s, 4H), 2.71 (dt, 

J = 12.2, 5.9 Hz, 2H), 2.60 (dt, J = 13.2, 6.1 Hz, 2H), 1.37 (d, J = 6.8 Hz, 3H). 
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A solution of aziridine 2a (12.0 mmol) in toluene (10.0 mL) was added dropwise at RT over a period 

of 90 minutes to a solution of TEA (4.1 mmol) and N(α)-Cbz lysine aminoester hydrochloride (4.0 

mmol) in toluene (10.0 mL) and CH3CN (5.0 mL). The solution was allowed to reflux for 10h and was 

monitored by TLC. The crude was recovered by concentrating the solution and 3q was purified by 

chromatographic column using AcOEt/n-hexane 8:2 as eluent. 

Yield: 25% 

1H NMR  (300 MHz, CDCl3) δ 8.20 – 8.12 (m, 2H), 7.93 – 7.85 (m, 2H), 7.80 – 7.74 (m, 4H), 5.78 

(s, 2H), 3.77 (t, J = 5.0 Hz, 5H), 3.28 (q, J = 5.5 Hz, 5H), 1.76 (br, 5H). 
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4.5.4 Synthesis of Ns-protected mono-sulfonamide 4d 

 

A solution of 2i (2.5 mmol in 5.0 mL of toluene) was added to a solution of (R)-naphtyl ethylamine 

(2.5 mmol) in toluene (5.0 mL) and CH3CN (5.0 mL). The resulting mixture was stirred and refluxed 

for 16h. The mixture was dried and purified by column chromatography on silica using AcOEt/n-

hexane = 3:7 as eluent. 

Yield: 65% 

1H NMR  (400 MHz, CDCl3) δ 8.22 – 8.16 (m, 2H), 8.13 (dd, J = 5.8, 3.4 Hz, 1H), 7.90 (dd, J = 5.8, 

2.7 Hz, 1H), 7.79 – 7.66 (m, 9H), 5.57 (d, J = 8.0 Hz, 1H), 3.98 (dd, J = 5.8, 2.4 Hz, 1H), 

3.60 (dd, J = 8.8, 4.5 Hz, 1H), 3.51 (qd, J = 9.4, 4.6 Hz, 2H), 2.82 (m, 4H), 2.32 (d, J = 3.7 

Hz, 3H), 2.03 (dd, J = 13.5, 6.7 Hz, 1H), 1.68 – 1.64 (m, 1H), 1.63 – 1.52 (m, 6H). 

4.5.5 Synthesis of Ns-protected mono-substituted bisulfonamide 5d   

 

A solution of N-Ts aziridine (2.1 mmol in 5.0 mL of toluene) was added to a solution of 4e (2.1 mmol) 

in toluene (5.0 mL). The resulting mixture was stirred and refluxed for 8h. The mixture was dried 

and 5e waspurified by column chromatography on silica using AcOEt/n-hexane = 3:7 as eluent. 

Yield: 82% 

1H NMR  (300 MHz, CD2Cl2) δ 8.18 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 8.07 – 7.99 (m, 

1H), 7.85 – 7.63 (m, 9H), 7.58 – 7.36 (m, 4H), 5.58 (br, 1H), 5.17 (d, J = 7.2 Hz, 1H), 

4.70 (q, J = 6.3 Hz, 1H), 3.29 (br, J = 7.0 Hz, 1H), 3.11 (s, 2H), 2.92 (dd, J = 11.2, 5.6 Hz, 

2H), 2.68 (dd, J = 13.4, 8.4 Hz, 1H), 2.51 (dd, J = 13.5, 5.8 Hz, 1H), 1.46 (d, J = 6.5 Hz, 

3H), 0.34 (d, J = 6.9 Hz, 3H), 0.11 (d, J = 6.8 Hz, 3H).  
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4.6 Synthesis of macrocycles 

4.6.1 Synthesis of 2,6-bis (OMs-methyl)-pyridine 

 

 

2,6-bismethanolpyridine (15.6 mmol) was suspended in AcOEt (45.0 mL) and TEA (10.9 mL, 78.0 

mmol) was added. The temperature was set to 0°C and MsCl (3.6 mL, 46.7 mmol) was added 

dropwise. After 15’, the reaction was quenched with a saturated NaHCO3 (50 mL) solution in water 

and the product was extracted with AcOEt (3 x 40.0 mL). The organic layers were treated with 

Na2SO4 and concentrated in vacuum giving the final product as white powder (13.2 mmol, 85%). 

 

 

 

1H NMR  (400 MHz; CDCl3; T = 300 K) δ 7.88 (t, J = 7.8 Hz, 1H, Ha), 7.52 (d, J = 7.8 Hz, 2H, Hb), 

5.36 (s, 4H, H1), 3.13 (s, 6H, H2). 
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4.6.2 Synthesis of macrocycles 6a-q 

 

2,6-(bis-mesylmethyl)pyridine (1.5 mmol) in distilled CH3CN (9 mL) was added dropwise to a 

suspension of K2CO3 (4.5 mmol) and bisulfonamide 3 (1.5 mmol) in distilled CH3CN (25 mL). The 

reaction was allowed to react to reflux for (see table for reaction time). The reaction mixture was 

then quenched with water (25 mL) and washed with AcOEt (3 x 25 mL). The organic phases were 

concentrated in vacuum and the crude was purified by (see table). 

Product 
Reaction 

time 
Purification Yield Product 

Reaction 

time 
Purification Yield 

6a 11 hours 
Cristallized by layering n-
hexane on warm AcOEt 

88% 6j 35 hours 
Column (n-

hexane/AcOEt = 7:3) 
47% 

6b 11 hours As for 6a 72% 6k 70 hours As for 6j 48% 

6c 11 hours As for 6a 73% 6l 22 hours As for 6k 55% 

6d 45 hours 
Column 

(Toluene/CH2Cl2/iPrOH = 
90:10:5) 

51% 6m 5 hours 
Column 

(CH2Cl2/MeOH 
10:0.3) 

80% 

6e 10 hours As for 6a 80% 6n 5 hours As for 6m 58% 

6f 10 hours As for 6a 78% 6o 32 hours - 50% 

6g 40 hours 
Column (n-hexane/AcOEt 

= 6:4) 
47% 6p 8 hours - 85% 

6h 53 hours 
Column (n-

hexane/CH2Cl2/iPrOH = 
80:17.5:2.5) 

50% 6q 15 hours - 68% 

6i 24 hours As for 6h 67%     
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1H NMR  (400 MHz; CDCl3; T = 300 K): δ 7.78 (t, J = 7.7 Hz, 1H, Hi), 7.61 (d, J = 8.0 Hz, 4H, Hf), 

7.38 (d, J = 7.7 Hz, 2H, Hl), 7.34–7.32 (m, 3H, HPh), 7.27 (d, J= 8.0 Hz, 4H, Hg), 7.20 (m, 

2H, HPh), 4.37 (m, 4H, H10
 and H2), 3.52 (s, 2H, H13), 3.13 (m, 4H, H4

 and H8), 2.45 (s, 

6H, H14), 2.32 (m, 4H, H5 and H7). 

13C NMR  (100 MHz; CDCl3; T = 300 K): δ 154.9 (C1), 143.3 (Ch), 139.2 (Ce), 138.8 (Ci), 136.0 (Ca), 

129.7 (Cg), 128.6 (CPh), 128.3 (CPh), 128.2 (CPh), 127.1 (Cf), 124.0 (Cl), 59.4 (C13), 54.3 

(C5), 50.0 (C2), 44.2 (C4), 21.5 (C14). 

15N NMR  (40 MHz; CDCl3; T = 300 K): δ 312 (N12), 94 (N-Ts), 32 (N6). 

Elem. an.  Found: C, 63.6; H, 6.2; N, 9.2% 

Calculated: C, 63.6; H, 6.0; N, 9.3% 

MS (FAB)  m/z (%)605 (80) [MH]+, 449 (100) [M – Ts]+ 

UV-vis λmax [nm], (log ε) = 241 (4.19); 263 (3.93) nm. (c 5.2 10-5 mol/L in CHCl3 in 1 cm 

cuvettes) 
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1H NMR  (400 MHz; CDCl3; T = 300 K): δ 7.78 (t, J = 7.7 Hz, 1H, Hn), 7.57 (d, J = 8.1 Hz, 4H, Hh), 

7.40 (d, J = 7.7 Hz, 2H, Ho), 7.34–7.32 (m, 3H, HAr), 7.26 (d, J = 8.1 Hz, 4H, HAr), 7.20 

(m, 2H, HAr), 4.32 (m, 4H, H2 and H10), 3.58 (q, J= 6.6 Hz, 1H, H13), 3.13 (m, 2H, H5), 

3.00–2.92 (m, 2H, H7), 2.44 (s, 6H, H15), 2.23–2.19 (m, 4H, H4 and H8), 1.24 (d, J = 6.6 

Hz, 3H, H14). 

13C NMR  (75 MHz, CDCl3; T = 300 K) δ 155.3 (C), 145.4 (C), 139.2 (Cn), 136.2 (CH), 130.1 (CH), 

128.7 (CH), 127.6 (Ci), 127.5 (Cf), 127.3 (Ch), 124.6 (Co), 61.7 (CH), 54.8 (C2), 50.1 (C4), 

45.7 (C5), 21.9 (C15), 20.5 (C14). One signal relative to an aromatic quaternary carbon 

was not detected. 

15N NMR  (40 MHz; CDCl3; T = 300 K): δ 312 (N12), 95 (N-Ts), 41 (N6). 

Elem. An.  Found: C, 64.0; H, 6.2; N, 9.1% 

Calculated: C, 64.05; H, 6.2; N, 9.05%. 

MS   m/z 619 (M+100%), 516 (45). 

IR ν (cm-1)  1743.6 (w), 1594.1 (w), 1492.0 (w), 1460.1 (w), 1344.6 (m), 1160.6 (s). 

[α]D
20   -50 (c 1 in CHCl3) (ligand 6b). 

50 (c 1 in CHCl3) (ligand 6c). 
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1H NMR (300 MHz; CDCl3; T = 300 K) δ 8.11 (d, J = 8.1 Hz, 1H, Hi), 7.90-7.83 (m, 2H, HAr), 7.76 

(pst, J = 7.8 Hz, 1H, Hr), 7.50 (d, J = 8.2 Hz, 4H, Hn), overlapping with 7.52-7.23 (m, 6H, 

HAr), 7.19 (d, J = 8.2 Hz, 4H, Ho), 4.31 (br, 4H, H2), 3.93 (br, 2H, H13), 3.07 (m, 4H, H4), 

2.39 (s, 6H, H14) overlapping with 2.36 (m, 4H, H5). 

13C NMR  (75 MHz, CDCl3; T = 400 K) δ 155.0 (C), 143.3 (C), 138.8 (Cr), 135.9 (C), 134.5 (C), 133.9 

(C), 129.7 (Co), 128.4 (C), 128.1 (C), 127.0 (Cn), 125.6 (C), 125.6 (C), 125.3 (C), 124.7 

(Ci), 124.0 (C), 58.1 (C13), 54.3 (C2), 50.4 (C5), 44.3 (C4), 21.5 (C14). A signal relative to 

an aromatic quaternary carbon and an aliphatic carbon were not detected. 

Elem. An. Found: C, 66.2; H, 5.8; N, 8.4% 

Calculated: C, 66.0; H, 5.8; N, 8.6%. 

  



 

131 

 

 

 

1H NMR  (300 MHz; CDCl3; T = 300 K): δ 8.16 (d, J = 8.4 Hz, 1H, Hi), 7.94 (d, J = 7.5 Hz, 1H, HAr), 

7.87-7.77 (m, 2H, HAr), 7.56–7.54 (m, 4H, HAr), 7.43 (d, J = 7.5 Hz, 2H, HAr), 7.41 (d, J = 

8.1 Hz, 4H, Hn), 7.13 (d, J = 8.1, 4H, Ho), 4.37 (q, J = 6.5 Hz, 1H, H13), 4.27 (m, 4H, H2
 

and CH10), 3.09 (m, 2H, H7), 2.82-2.85 (m, 2H, H5), 2.37 (s, 6H, H15), 2.28-2.32 (m, 4H, 

H4
 and H8), 1.34 (d, J = 6.5 Hz, 3H, H14). 

13C NMR  (75 MHz; CDCl3; T = 300 K) δ 155.3 (C), 143.6 (C), 140.5 (C), 139.2 (C), 136.0 (C), 134.4 

(C), 132.0 (C), 130.0 (Cn), 129.1 (CH), 127.9 (CH), 127.4 (Co), 126.1 (CH), 125.8 (CH), 

125.7 (CH), 124.8 (CH), 124.6 (CH), 124.5 (CH), 58.2 (C13), 54.8 (C2), 50.2 (C4), 45.6 (C5), 

21.8 (C15), 14.5 (C14). 

15N NMR  (40 MHz; CDCl3; T = 300 K): δ 313 (N12), 39 (N6).The signals relative to N(Ts) were not 

detected. 

Elem. An.  Found: C, 66.2; H, 6.2; N, 8.3% 

Calculated: C, 66.4; H, 6.0; N, 8.4%. 

MS  m/z 669 (M+ 100%). 

IR ν (cm-1) 1595.1 (w), 1457.7 (w), 1357.0 (w), 1339.8 (s), 1253.4 (w), 1158.0 (s).  

[α]D
20   -43 (c 1 in CHCl3) (ligand 6e) 

  +43 (c 1 in CHCl3) (ligand 6f) 
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1H NMR  (300 MHz; CDCl3; T = 300 K) δ 8.58 (d, J = 8.1 Hz, 1H, Hi), 7.89 (m, 1H, HAr), 7.83 (d, J = 

8.1 Hz, 1H, HAr), 7.69 (d, J = 8.1 Hz, 1H, HAr), 7.64-7.42 (m, 8H, HAr), 7.12 (d, J = 7.8 Hz, 

4H, Ho), 7.05 (m, 2H, HAr), 5.18 (m, 1H, H13), 4.72 (m, 2H, H2), 3.94-3.82 (m, 6H, H), 

2.63-2.60 (m, 2H, H), 2.40 (m, 2H, H) overlapping with 2.33 (s, 6H, CH17), 1.57 (d, J = 

6.5 Hz, 3H, H14), 0.44 (m, 12H, H16). 

13C NMR  (75 MHz; CDCl3; T = 300 K) δ 156.5 (C), 142.5 (C), 142.2 (C), 138.9 (C), 137.0 (CH), 

134.2 (C), 131.7 (C), 129.2 (Co), 128.9 (CH), 127.8 (Cn), 127.0 (CH), 126.0 (CH), 125.9 

(CH), 125.8 (Ch), 125.2 (CH), 124.0 (Ci), 120.7 (CH), 66.5 (CH), 50.8 (CH2), 49.5 (CH2), 

30.0 (CH), 23.8 (C14), 21.5 (C18), 21.1 (C16). A signal relative to a CH was not detected. 

15N NMR  (40 MHz; CDCl3; T = 300 K) δ 33.2 (N6). The signals relative to N-Ts and N12
 were not 

detected. 

Elem. An. Found: C, 68.4; H, 7.4; N, 7.1% 

Calculated: C, 68.6; H, 7.0; N, 7.4%. 

MS (FAB)  m/z 753 (M+1). 

  



 

133 

 

 

 
 
1H NMR  (300 MHz; CDCl3;T = 300 K) δ 8.54 (m, 1H, Hi), 7.89 (m, 1H, HAr), 7.85 (d, J = 8.1 Hz, 1H, 

HAr), 7.77 (d, J = 8.1 Hz, 1H, HAr), 7.64-7.41 (m, 8H, HAr), 7.09-6.99 (m, 6H, HAr), 5.01 

(m, 1H, H13), 4.76 (m, 2H, H2), 3.86 (m, 2H, H2’), 3.77 (m, 2H, H4), 3.55 (m, 2H, H5), 2.36 

(m, 2H, H5‘), 2.29 (s, 6H, CH17), 1.48 (d, J = 6.6 Hz, 3H, CH14), 1.34-1.23 (m, 2H, H15), 

0.60 (m, 6H, CH16), 0.38 (m, 6H, CH16). 

13C NMR  (75 MHz; CDCl3; T = 300 K) δ 156.3 (C), 142.3 (C), 141.4 (C), 139.2 (C), 137.3 (CH), 134.1 

(C), 132.5 (C), 128.9 (Cn), 128.8 (CH), 127.7 (Co), 127.6 (CH), 126.7 (CH), 126.2 (CH), 

125.4 (CH), 124.1 (CH), 120.7 (CH), 66.0 (C4), 56.0 (C13), 51.0 (C5), 49.3 (C2), 30.2 (C15), 

21.4 (C17), 20.8 (C14), 20.1 (C16) overlapping with 20.1 (C16). 

Elem. An. Found: C, 68.6; H, 7.2; N, 7.4 

Calculated: C, 68.6; H, 7.0; N, 7.4 

MS (FAB) m/z 753 (M+1). 
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1H NMR  (300 MHz; CDCl3;T = 300 K) δ 8.29 (m, 1H, HAr), 7.85-7.84 (m, 1H, HAr), 7.79-7.69 (m, 

3H, HAr), 7.58-7.43 (m, 6H, HAr), 7.38 (m, 1H, HAr), 7.30-7.25 (m, 4H, HAr), 4.90-4.88 (m, 

1H, H13), 4.79-4.74 (m, 1H, H2), 4.45 (br, 1H, H10), 3.99-3.94 (m, 1H, H2), 3.86-3.81 (m, 

1H, H5), 3.65 (br, 1H, H10), 3.50 (m, 1H, H7), 3.05 (m, 1H, H7), 2.94 (m, 1H, H5), 2.43 (s, 

6H, H18), 1.43 (d, J = 6.2 Hz, 3H, H14), 1.37-1.25 (m, 6H, H15 and H16), 0.76-0.21 

(widespread, 12H, H17) 

13C NMR  (75 MHz, CDCl3) δ 143.07 (C), 140.68 (C), 138.56 (CH), 134.65 (C), 132.16 (C), 129.72 

(CH), 129.05 (CH), 127.68 (CH), 127.63 (CH), 126.03 (CH), 125.74 (CH), 125.52 (CH), 

124.89 (CH) 58.30 (C13), 31.88 (C2), 23.81 (C18), 24.80 (C4), 24.72 (C16), 22.93 (C5), 21.68 

(C17), 14.31 (C14). 

 

 
Two major conformers (1:1). Signals of the second conformer are reported as marked by *. 

1H NMR  (300 MHz; CDCl3, 300 K) δ 8.29-8.25 (m, 1H, Hh), 8.27-8.19 (m, 1H, Hh*), 7.91-7.86 (m, 

2H, HAr), 7.79-7.76 (m, 4H, HAr), 7.64-7.59 (m, 1H, HAr), 7.55-7.36 (m, 13H, HAr), 7.31-

7.20 (m, 10H, HAr), 7.08 (d, J = 7.6 Hz, 1H, HAr), 6.99 (d, J = 8.1, 2H, HAr), 6.73 (d, J = 7.6 

Hz, 1H, HAr), 4.85 (d, J = 14.5, 2H, H2-2*), 4.78 (q, J = 6.5 Hz, 1H, H13), 4.62 (d, J = 15.2 

Hz, 1H, H10), 4.57 (q, J = 6.7 Hz, 1H, H13*), 4.48 (d, J = 12.1 Hz, 1H, H10*), 4.44 (d, J = 



 

135 

 

14.5 Hz, 1H, H2), 4.43-4.35 (m, 1H, H2*), 4.19 (d, J = 15.2 Hz, 1H, H10), 4.03 (d, J = 9.1 

Hz, 1H, H4), 3.99 (d, J = 12.1 Hz, 1H, H10*), 4.03 (d, J = 8.9 Hz, 1H, H4*), 3.63 (dd, J = 

13.4, 9.1 Hz, 2H, H5, 5*), 3.39-3.27 (m, 1H, H8), 3.24-3.11 (m, 1H, H8*), 3.08-2.95 (m, 

2H, H5, 7), 2.93 – 2.82 (m, 2H, H8, 8*), 2.77 (d, J = 13.4 Hz, 1H, H5*), 2.69-2.41 (m, 2H, 

H7*), 2.46-2.30 (m, 12H, H17-18 and H17*-18*), 1.77-1.65 (m, 1H, H7), 1.53 (d, J = 6.5 Hz, 

3H, H14), 1.52 (d, J = 6.7 Hz, 3H, H14*), 0.94 (s, 9H, H16), 0.91 (s, 9H, H16) 

13C NMR  (75 MHz; CDCl3, 300 K) δ 156.48 (C2,2*), 155.96 (C10), 155.58 (C10*), 143.22 (Ck), 143.21 

(Ck*), 143.05 (Cr), 142.96 (Cr*), 140.74 (Ca), 139.69 (Ca*), 139.58 (Cn), 139.57 (Cn*), 

138.19 (Ct), 137.38 (Ct*), 137.17 (Co), 136.94 (Co*), 134.50 (Cj), 134.49 (Cj*), 132.19 (Ce), 

131.99 (Ce*), 129.83 (2CTs), 129.70 (2CTs), 129.51 (2CTs), 129.18 (2CTs), 129.06 (2CTs), 

128.36 (2CTs), 127.82 (CAr), 127.60 (2CAr), 127.45 (CAr), 127.14 (2CTs), 127.12 (2CTs), 

125.97 (CAr), 125.64 (CAr), 125.48 (CAr), 125.46 (CAr), 125.42 (CAr), 125.33 (CAr), 125.29 

(CAr), 124.46 (CAr), 124.18 (CAr), 123.91 (CAr), 123.75 (CAr), 123.49 (CAr), 123.17 (CAr), 

121.53 (CAr), 69.03 (C4), 68.02 (C4*), 59.34 (C13), 55.98 (C10), 55.18 (C10*), 54.92 (C8), 

52.81 (C7), 50.65 (C2,2*), 49.51 (C7*), 47.62 (C8*), 38.42 (C15), 36.45 (C15*), 29.26 (C16), 

29.05 (C16*), 22.31 (C14), 21.59 (C18), 21.54 (C18*), 21.51 (C17), 21.47 (C17*), 17.97 (C14).  

MS (FAB) m/z 751.5 (M+1), 773.5 (M+Na). 

[α]D
20   - 64.3 (in CHCl3). 

 

 

1H NMR  (300 MHz; CDCl3, 300 K) δ 8.57 (d, J = 8.6 Hz, 1H - Hh), 7.83-7.71 (m, 6H – HAr), 7.58-

7.53 (m, 2H – HAr), 7.45-7.37 (m, 2H – HAr), 7.16-7.12 (m, 2H – HAr), 6.94 – 6.89 (m, 4H 

– HAr), 5.00-2.50 (m, 10H), 2.04 (s, 6H, H21 and H22), 1.70-0.65 (m, 16H). 
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13C NMR  (75 MHz; CDCl3, 300 K) δ 142.86 (Ck-r), 140.56 (C11), 137.82 (CAr), 134.89 (CAr), 132.88 

(CAr), 129.95 (4CTs), 129.55 (CPy), 129.34 (CAr), 127.50 (CAr), 125.84 (CAr), 125.54 (CAr), 

124.79 (Ch), 124.04 (CAr), 65.75, 31.51, 26.75, 26.63, 21.29 (C21-22) 

 
 
1H NMR  (300 MHz; CDCl3; T = 300 K) δ 8.25 (m, 1H, Hi), 7.87 (m, 1H, HAr), 7.77 (d, J = 7.6 Hz, 

1H, HAr) 7.65-7.62 (m, 2H, HAr), 7.50-7.40 (m, 7H, HAr), 7.26 (4H, covered by solvent 

residual peak), 7.17 (m, 2H, HAr), 4.80-4.20 (m, 4H, CH2), 3.80-2.60 (m, 4H, CH2), 2.43 

(s, 3H, H18), 2.37 (s, 3H, H17), 2.00-1.76 (m, 1H, CH2), 1.46 (d, J = 6.2 Hz, 3H, CH14), 0.77 

(m, 3H, CH16), 0.59 (m, 3H, H16). Some signals were too broad to be detected. 

1H NMR  (400 MHz; C6D5CD3; T = 373 K) δ 8.36 (d, J = 8.6 Hz, 1H, Hi), 7.68 (d, J = 8.0 Hz, 1H, HAr), 

7.60-7.54 (m, 3H, HAr), 7.48-7.44 (m, 3H, HAr), 7.38 (pst, J = 7.5 Hz, 1H, HAr), 7.31 (d, J 

= 7.0 Hz, 1H, HAr), 7.27 (d, J = 7.0 Hz, 1H, HAr), 7.10-6.80 (m, 7H, HAr overlapped with 

toluene), 4.59 (q, J = 6.1 Hz, 1H, H13), 4.29-4.14 (m, 4H, H2 and H10), 3.77 (m, 1H, H8), 

3.28-3.08 (m, 4H, H4
 and H7), 2.93 (m, 1H, H5), 2.08 (s, 3H, H18), 2.05 (s, 3H, H17), 2.01 

(m, 1H, H5), 1.88 (m, 1H, H15),1.46 (d, J = 6.6 Hz, 3H, H14), 0.90 (d, J = 6.7 Hz, 3H, H16), 

0.69 (d, J = 6.7 Hz, 3H, H16). 

13C NMR  (75 MHz; C6D5CD3; T = 300 K) δ 156.3 (C), 156.2 (C), 141.9 (C), 134.5 (C), 132.1 

(C),129.2 (CH), 128.9 (CH), 128.8 (CH), 128.7 (CH), 127.8 (C), 127.8 (CH), 127.4 (CH), 

126.9 (CH) 125.3 (CH), 125.2 (CH), 125.0 (CH), 124.0 (Ci), 123.2 (CH), 20.8 (CH), 20.7 

(CH), 20.6 (CH). Signals relative to aromatic and aliphatic carbons were not detected. 

Elem. An. Found: C, 67.1; H, 6.9; N, 7.6%  

Calculated: C, 67.6; H, 6.5; N, 7.9%. 

MS (EI) m/z 555 (M-NaphCH3CH), 155 (NaphCH3CH). 

[α]D
20   - 60.7 (c 1.01 in CHCl3). 
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1H NMR (400 MHz; CDCl3; T = 300 K) δ 7.80 (m, 3H, HAr), 7.72-7.57 (m, 6H, HAr), 7.46 (d, J = 7.7 

Hz, 2H, HAr), 7.34-7.23 (m, 4H, HAr), 7.19 (d, J = 6.3 Hz, 1H, HAr), 4.58 (s, 4H, H2 and 

H10), 3.53 (s, 2H, H13), 3.38-3.15 (m, 4H, H4 and H8), 2.55-2.41 (m, 4H, H5 and H7) 

13C NMR (75 MHz; CDCl3, T = 300 K) δ 153.7 (CH), 139.3 (CH), 133.6 (CH), 131.8 (CH), 131.1 

(CH), 129.0 (CH), 128.8 (CH), 128.4 (CH), 124.3 (CH), 59.4 (CH2), 54.3 (CH2), 49.8 

(CH2), 44.4 (CH2) 

 

 

 

1H NMR (400 MHz; CDCl3; T = 300 K) δ 8.21-8.19 (s, 1H, HAr), 7.88-7.41 (m, 17H, HAr), 4.52 (s, 

4H, H2 and H10), 4.41 (q, 1H, H13), 3.22 (ddd, 2H, H4), 2.98 (ddd, 2H, H8), 2.51 (ddd, 2H, 

H5), 2.38 (ddd, 2H, H7), 1.38 (d, 3H, H14) 

  



 

138 

 

 

 

1H NMR  (300 MHz, Tol-d8) δ 8.94 (m, 1H), 8.62 (m, 1H), 8.37 (m, 1H), 8.11 (m, 1H), 7.93 (m, 

1H), 7.80 (s, 3H), 7.69 (d, J = 8.1 Hz, 2H), 7.55 (m, 6H), 7.41 – 7.23 (m, 4H), 6.91 (m, 

4H), 6.79 (m, 3H), 6.68 (br, 8H), 5.69 (br, 1H), 5.50 (br, 1H), 5.01 (d, J = 16.2 Hz, 2H), 

4.69 (m, 2H), 4.49 (m, 3H), 4.21 (m, 2H), 3.92 (m, 8H), 3.74 – 3.54 (m, 2H), 3.15 (d, J = 

16.2 Hz, 2H), 1.81 (br, 4H), 1.74 (s, 2H), 1.46 (br, 6H), 1.35 (br, 5H), 1.18 (s, 4H), 0.52 

(br, 3H), 0.39 (br, 6H), 0.27 (br, 6H). 

13C NMR  (75 MHz, Tol-d8) δ 137.1 (CH), 134.8 (C), 132.5 (CH), 131.3 (CH), 130.4 (CH), 127.4 

(CH), 126.1 (CH), 125.4 (C), 123.5 (CH), 121.7 (CH), 121.2 (CH), 118.6 (CH), 70.8 (CH2), 

67.1 (CH), 64.5 (CH2), 60.0 (CH2), 51.7 (CH2), 50.2 (CH2), 37.0 (CH), 30.3 (CH2), 30.0 

(CH3), 23.9 (CH3), 20.6 (CH3).  
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1H NMR  (400 MHz, CDCl3) δ 7.91 – 7.78 (m, 1H, He), 7.78 – 7.69 (m, 5H), 7.64 (dd, J = 14.6, 7.0 

Hz, 4H), 7.50 (d, J = 7.7 Hz, 2H), 7.30 (m, 3H), 7.22 (d, J = 7.4 Hz, 2H), 4.58 (q, J = 13.0 

Hz, 4H, H2,10), 3.62 (q, J = 6.5 Hz, 1H, H13), 3.26 (dt, J = 15.9, 8.2 Hz, 2H), 3.12 (dt, J = 

14.8, 7.6 Hz, 2H), 2.43 (br, 4H, 1.32 – 1.20 (m, 3H).  

MS (EI) 681.3 m/z [M+] 

 

 
1H NMR  (300 MHz, Tol-d8, T = 353 K) δ 8.37 (d, J = 8.4 Hz, 1H), 7.73 – 7.22 (m, 13H), 7.21 – 6.77 

(m, 20H), 4.70 (d, J = 6.5 Hz, 1H), 4.42 (ddd, J = 40.6, 17.5, 11.1 Hz, 6H), 3.91 – 3.75 

(m, 1H), 3.47 – 3.04 (m, 6H), 2.82 (d, J = 27.4 Hz, 2H), 2.50 (d, J = 6.3 Hz, 2H), 1.73 (br, 

2H), 1.45 (d, J = 6.5 Hz, 3H), 1.26 (dd, J = 18.5, 9.2 Hz, 5H), 0.72 (d, J = 6.6 Hz, 3H), 0.64 

(d, J = 6.3 Hz, 3H), 0.55 – 0.29 (m, 2H).  
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4.6.3 Synthesis of macrocycles 6r-u 

 
2,6-(bis-mesylmethyl)pyridine (1.5 mmol) in distilled CH3CN (9.0 mL) was added dropwise to a 

suspension of K2CO3 (4.5 mmol) and amine 3 (1.5 mmol) in distilled CH3CN (25.0 mL). The reaction 

was allowed to react to reflux for (see table for reaction time). The reaction mixture was then 

quenched with water (25.0 mL) and washed with AcOEt (3 x 25.0 mL). The organic phases were 

concentrated in vacuum leading to the desired product with no further purification. 

Product Reaction time Yield 

6r 6h 97% 

6s 6h 98% 

6t 10h 95% 

6u 10h 94% 

 

1H NMR  (400 MHz, CDCl3) δ 7.77–7.69 (m, 5H, Har), 7.37–7.29 (m, 6H, Har), 4.32 (s, 4H, CH2), 

3.64 (s, 3H, OCH3), 3.10 (m, 4H, CH2), 2.65 (m, 2H, CH2), 2.44 (s, 6H, CH3), 2.35–2.24 

(m, 6H, CH2) 

13C NMR  (100 MHz, CDCl3) δ 172.8 (CO), 155.2 (CAr), 143.7 (CAr), 138.9 (CHAr), 130.0 (CHAr), 

127.3 (CHAr), 124.2 (CHAr), 54.7 (CH2), 51.7 (CH2), 51.3 (OCH3), 51.1 (CH2), 45.2 (CH2), 

34.0 (CH2), 22.9 (CH2), 21.7 (CH3) 

MS (ESI):  m/z = 601.3 [MH]+ 
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Elem. An.   Calculated: C, 57.98; H, 6.04; N, 9.33 

Found: C, 57.62; H, 5.92; N, 9.12 

UV/vis  λmax [nm] = 234 nm 

IR (ATR)  ν (cm-1) 2949 (w), 1733 (CO), 1157 

 

 
1H NMR  (300 MHz, CDCl3) δ 7.73–7.69 (m, 5H, Har), 7.38–7.27 (m, 11H, Har), 5.29 (m, 1H, 

NHCbz), 5.11 (s, 2H, H22), 4.39–4.28 (m, 5H, CH and CH2), 3.74 (s, 3H, H19), 3.10 (m, 

4H, CH2), 2.44 (s, 6H, H12), 2.32–2.20 (m, 6H, CH2), 1.79 (m, 1H, CH2), 1.63 (m, 1H, 

CH2), 1.36–1.16 (m, 4H, CH2)  

13C NMR  (75 MHz, CDCl3) δ 173.1 (CO), 155.1 (C), 143.7 (CAr), 138.9 (CHAr), 136.2 (CAr), 130.0 

(CHAr), 128.7 (CHAr), 128.3 (CHAr), 127.3 (CHAr), 124.2 (CHAr), 67.1 (CH2), 55.2 (CH2), 

54.6 (CH2), 54.0 (CH2), 52.5 (OCH3), 51.8 (CH2), 44.8 (CH2), 32.6 (CH2), 27.78 (CH2), 

22.8 (CH2), 21.7 (CH3) 

MS (ESI)  m/z = 792.4 [MH]+  

Elem. An. Calculated: C, 60.66; H, 6.24; N, 8.84  

Found: C, 60.28; H, 5.96; N, 8.60  

[a]D   (c 1.0 in CHCl3) 3.82 

UV/vis  λmax [nm] = 234 nm 

IR (ATR)  ν (cm-1)  3337 (NH), 2932 (w), 1750 (CO), 1152 
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1H NMR  (300 MHz, CDCl3) δ 7.85–7.45 (m, 3H, Har), 7.39–7.13 (m, 9H, Har), 7.12-6.83 (m, 3H, 

Har) 5.40 (m, 1H, NHCbz), 5.11 (s, 2H, H22), 4.73 (m, 1H), 4.39 (m, 1H, H17), 3.74 (s, 3H, 

H19), 3.58-3.35 (m, 1H), 3.26 (m, 1H), 2.40 (s, 3H, CH12), 2.29 (s, 3H, H12), 1.96-1.56 

(m, 3H, CH2), 1.47-1.20 (m, 3H, CH2 + H23), 1.05–0.69 (m, 12H, H24)  

 

 

1H NMR  (300 MHz, CDCl3) δ 8.03 (m, 2H, HAr), 7.75–7.50 (m, 6H, Har), 7.45–7.30 (m, 8H, Har), 

5.40 (m, 1H, NHCbz), 5.10 (s, 2H, H22), 4.60-4.30 (m, 4H), 3.74 (m, 4H, H19 + H17), 3.25-

2.99 (m, 4H, CH2), 2.92 (m, 2H, CH2), 2.44-2.32 (m, 2H, CH2), 1.85-1.19 (m, 8H, CH2) 
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4.6.4 Synthesis of macrocycle 6v 

 

2,6 pyridinedimethanol 2,6-dimesylate (1.5 mmol) in distilled CH3CN (9.0 mL) was added dropwise 

to a suspension of K2CO3 (4.5 mmol) and N,N’,N’’-tritosyldiethylentriamine (1.5 mmol) in distilled 

CH3CN (25.0 mL). The reaction was allowed to react to reflux for 3 hours. The reaction mixture was 

then quenched with water (25.0 mL) and washed with AcOEt (3 x 25.0 mL). The organic phases were 

concentrated in vacuum leading to the pure product as a white powder. 

Yield: 99% 

 

1H NMR (300 MHz; CDCl3; T = 300 K) δ 7.80 – 7.69 (m, 7H, HAr), 7.66 (d, J = 8.2 Hz, 2H, Hb), 7.44 

(d, J = 7.7 Hz, 2H, Hc), 7.36 (d, J = 8.1 Hz, 4H, Hg), 7.29 (d, J = 7.9 Hz, 2H, Hi), 4.30 (s, 

4H, H2,10), 3.33 (t, J = 7.5 Hz, 4H, CH2), 3.22 – 3.07 (m, 2H, CH2), 2.77 (s, 2H, CH2), 2.46 

(s, 6H, H14), 2.42 (s, 3H, H13) 
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4.6.5 Synthesis of macrocycle 6w 

 

1,3 dibromopropane (1.5 mmol) in distilled CH3CN (9.0 mL) was added dropwise to a suspension of 

K2CO3 (4.5 mmol) and bisulfonamide 3f (1.5 mmol) in distilled CH3CN (25.0 mL). The reaction was 

allowed to react to reflux for 6 hours. The reaction mixture was then quenched with water (25.0 

mL) and washed with AcOEt (3 x 25.0 mL). The organic phases were concentrated in vacuum leading 

to the pure product as a white powder. 

Yield:   99% 

1H NMR (300 MHz, CDCl3) δ 8.64 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.75 – 7.55 (m, 6H), 

7.45 (dt, J = 6.9, 5.0 Hz, 4H), 7.31 (s, 2H), 5.11 – 4.89 (m, 2H), 3.33 – 3.19 (m, 2H), 3.17 

– 2.93 (m, 7H), 2.96 – 2.82 (m, 3H), 2.43 (s, 6H), 2.16 – 2.09 (m, 2H), 1.53 (d, J = 6.7 

Hz, 3H). 
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4.6.6 Synthesis of macrocycle 6x 

 

α,α′-Dibromo-m-xylene (1.2 mmol) in distilled CH3CN (7.0 mL) was added dropwise to a suspension 

of K2CO3 (4.5 mmol) and bisulfonamide 3f (1.2 mmol) in distilled CH3CN (22.0 mL). The reaction was 

allowed to react to reflux for 6 hours. The reaction mixture was then quenched with water (20.0 

mL) and washed with AcOEt (3 x 20.0 mL). The organic phases were concentrated in vacuum leading 

to the pure product as a white powder. 

Yield:   99% 

1H NMR (300 MHz, CDCl3) δ 8.17 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 6.5 Hz, 1H), 7.84 (d, J = 7.2 Hz, 

1H), 7.55 – 7.39 (m, 9H), 7.37 – 7.20 (m, 9H), 4.46 – 4.33 (m, 1H), 4.18 (s, 4H), 2.90 – 

2.76 (m, 2H), 2.70 – 2.51 (m, 2H), 2.44 (s, 7H), 2.29 (s, 3H), 1.38 (d, J = 6.5 Hz, 3H). 
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4.7 Deprotection of macrocycles 

4.7.1 Deprotection of Nosyls 

 

A solution of 6 (0.68 mmol), micronized potassium carbonate (2.72 mmol) and thiophenol (2.04 

mmol) in distilled CH3CN (17 mL) was allowed to react at 50 °C for 5 hours. Then CH2Cl2 (10 mL) is 

added. The mixture was extracted with a 1M solution of HCl (3 x 10 mL) and the aqueous phases 

were basified with NaOH. The suspension was extracted with CH2Cl2 (3 x 10 mL) and the organic 

phases were then treated with Na2SO4 and concentrated in vacuum. A yellowish powder was 

obtained. 

 

 

Yield:  84% 

1H NMR  (300 MHz; CDCl3; T = 300K) δ 7.53 (t, J = 7.6 Hz, 1H, Hf), 7.40-7.19 (m, 5H, Ha,b,c,d), 6.99 

(d, J = 7.6 Hz, 2H, He), 3.92 (s, 4H, H2,10), 3.64 (s, 2H, H13), 2.69-2.51 (m, 4H, H4-8 

overlapping with br NH), 2.42-2.25 (m, 4H, H5,7) 

13C NMR (75 MHz; CDCl3; T = 300K) δ 156.8 (C1), 155.3 (CH), 138.0 (C), 137.6 (CH), 129.6 (CH), 

128.7 (CH), 127.6 (CH), 120.8 (CH), 60.0 (CH2), 54.0 (CH2), 53.0 (CH2), 46.8 (CH2) 
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Yield  65% 

1H NMR (400 MHz, CDCl3) δ 7.55 (t, J = 7.6 Hz, 1H), 7.43 – 7.33 (m, 5H), 6.99 (d, J = 7.6 Hz, 2H), 

4.16 (q, J = 6.9 Hz, 1H), 3.93 (s, 4H), 2.76 – 2.56 (m, 4H), 2.49 (s, 6H), 1.48 (d, J = 6.9 

Hz, 3H). 

MS (EI) m/z  311.3  [M+] 

 

 

Yield  78% 

1H NMR  (400 MHz; CDCl3; T = 300K) δ 8.59-8.56 (d, J = 8.61 Hz, 1H, Hh), 7.86 (d, J = 8.1 Hz, 1H, 

HAr), 7.82 (m, 1H, HAr), 7.56-7.41 (m, 5H, HAr), 6.91 (d, J = 7.6, 2H, HAr), 4.95 (q, J = 6.8, 

1H, H13), 3.88 (d, J = 16.8, 2H, H2-10 ), 2.88-2.84 (m, 6H, H4-8 and NH), 2.53-2.43 (m, 2H, 

H5), 2.38-2.30 (m, 2H, H7), 1.57 (d, J = 6.8, 3H, H14)  

 

13C NMR  (100 MHz; CDCl3; T = 300K) δ 158.04 (CAr), 139.31 (CAr), 136.24 (CHAr), 134.07 (CAr), 

132.14 (CAr), 128.73 (CHAr), 128.01 (CHAr), 125.73 (CHAr), 125.32 (CHAr), 124.65 (CHAr), 

119.76 (CHAr), 77.34 (C2), 77.02 (C10), 76.70 (C4), 59.34 (C13), 54.62 (C8), 52.51 (C5), 

48.05 (C7), 12.48 (C14) 
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Yield  74% 

1H NMR  (300 MHz; CDCl3; T = 300K) δ 8.21 (d, J = 8.7 Hz, 1H, Hh), 7.80 (d, J = 8.2 Hz, 1H, HAr), 

7.77-7.68 (m, 1H, HAr), 7.54 (t, J = 7.6 Hz, 1H, Ha), 7.41-7.39 (m, 2H, HAr), 7.39-7.29 (m, 

1H, HAr), 7.11-7.03 (m, 1H, Har), 6.94 (d, J = 7.6 Hz, 2H, Hb), 4.85 (q, J = 6.6 Hz, 1H, H15), 

3.94 (d, J = 15.6 Hz, 2H, H2-10), 3.49 (d, J = 15.6, 2H, H2-10), 2.65-2.61 (m, 4H, H4-8), 2.44-

2.41 (m, 4H, H5-7), 1.59 (d, J = 6.6, 3H, H16) overlapped with (br, 2H, NH), 1.31-1.19 (m, 

1H, H13), 0.84 (d, J = 6.8 Hz, H14), 0.76 (d, J = 6.8 Hz, H14) 

 

Yield  84% 

1H NMR  (400 MHz, CDCl3) δ 8.19 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 5.2 Hz, 

1H), 7.51 (t, J = 7.7 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.31 (dd, J = 14.4, 6.7 Hz, 1H), 7.07 (s, 

1H), 6.91 (d, J = 7.6 Hz, 2H), 4.83 (d, J = 6.9 Hz, 1H), 3.91 (d, J = 15.9 Hz, 2H), 3.62 – 

3.42 (m, 2H), 2.71 – 2.55 (m, 3H), 2.41 (m, 4H), 1.68 – 1.50 (m, 6H), 0.87 – 0.78 (d, J = 

6.8 Hz, 6H), 0.76 (d, J = 6.8 Hz, 6H). 

13C NMR  (101 MHz, CDCl3) δ 159.3 (C), 140.2 (C), 136.6 (CH), 133.9 (C), 132.1 (C), 128.8 (CH), 

128.6, (CH) 127.9 (CH), 127.6 (CH), 125.8 (CH), 125.6 (CH), 125.3 (CH), 125.3 (CH), 

125.1 (CH), 124.5 (CH), 124.5 (CH), 124.3 (CH), 124.2 (CH), 119.2 (CH), 62.0 (CH), 57.7 

(CH), 57.5 (CH2), 56.7 (CH2), 54.9 (CH), 51.8 (CH2), 32.0 (CH3), 30.3 (CH3), 19.3 (CH3), 

18.5 (CH3), 17.8 (CH3). 
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The general procedure for the deprotection of nosyls described above was performed also with 6u 

leading to the formation of product 7f with no need of further purification. 

Yield  72% 

1H NMR  (300 MHz, DMSO-d6, T = 363 K) δ 7.73 – 7.53 (m, 1H), 7.40 – 7.05 (m, 7H), 5.03 (m, 

2H), 4.54 (s, 1H), 4.27 (m, 1H), 3.77 (m, 2H), 3.63 (m, 2H), 2.67 – 2.57 (m, 2H), 2.57 – 

2.45 (m, 3H), 2.40 (m, 2H), 1.68 (m, 2H), 1.43 – 1.21 (m, 2H). 
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4.7.2 Deprotection of Tosyls 

 

HBr 47% (80.0 mmol) was carefully added to a solution of phenol (8.0 mmol) and macrocycle 6 (1.0 

mmol) in acetic acid (40.0 mmol). The reaction was refluxed for 10 hours and then concentrated in 

vacuum. The crude dark slime was washed with Et2O (5 x 15.0 mL) and then dissolved in the 

minimum necessary amount of cold water. Cold acetone was added leading to the formation of the 

product 7 as a white heavy precipitate recovered by filtration. 

 

Yield: 88% 

1H NMR (300 MHz; D2O; T = 300 K) δ 8.06 (t, J = 7.8 Hz, 1H, Ha), 7.58 (d, J = 7.8 Hz, 2H, Hb), 4.70 

(s, 4H, H2,10), 3.40 (br, 4H, H4,8), 3.24 (br, 4H, H5,7) 
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Yield: 71% 

1H NMR (300 MHz; D2O; T = 300 K) δ 7,90-7,87 (1H, t, Ha), 7,41-7,37 (7H, m, Hb+c), 4,58 (4H, m, 

H2,10), 3,81 (2H, s, H13), 3,22-3,20 (4H, m, CH2), 2,79-2,77 (4H, m, CH2) 

 

 

Yield: 61% 

1H NMR  (400 MHz, D2O): δ 7.90 (t, J = 7.8 Hz, 1H, Ha), 7.40 (d, J = 7.8 Hz, 4H, Hb), 4.56 (m, 4H, 

H2+10), 3.96 (pst, 1H, H17), 3.74-3.39 (m, 2H, NH), 3.17 (s, 4H, H5+7), 2.81 (s, 4H, H4+8), 

2.68 (pst, 1H), 1.91 (m, 2H, H16), 1.55 (m, 2H, H14), 1.34 (m, 2H, H15).  

13C NMR  (101 MHz, D2O) δ 149.00 (C1), 139.77 (Ca), 122.28 (Cb), 54.94 (C13), 53.25 (C17), 50.47 

(C4), 49.50 (C2), 46.00 (C5), 29.75 (C16), 23.68 (C14), 22.12 (C15).  
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4.7.3 Other deprotections 

 

Macrocycle 6s (0.787 g, 0.99 mmol) was dissolved in 38.0 mL of MeOH and 6.0 mL DCM. Pd/C was 

added and the resulting suspension was put under hydrogen atmosphere for 20h. The Pd/C was 

filtered on a celite pad and the solvent was dired in vacuum. 

Yield  88% 

 

1H NMR (300 MHz, CD3OD) δ 7.87 (d, J = 8.3 Hz, 4H, Hc), 7.79 (q, J = 7.7 Hz, 1H, Ha), 7.52 (d, J = 8.1 

Hz, 4H, Hd), 7.30 (d, J = 7.8 Hz, 2H, Hb), 4.66 (d, J = 15.7 Hz, 4H, H2 + H10), 4.20 (t, J = 6.5 Hz, 1H, H17), 

3.92 (s, 3H, H19), 3.88 – 3.66 (m, 4H, CH2), 3.54 (d, J = 25.0 Hz, 2H, CH2), 3.19 (d, J = 17.4 Hz, 2H, CH2), 

2.47 (d, J = 15.2 Hz, 8H, H12 + CH2), 2.26 – 2.09 (m, 2H, CH2), 2.08 – 1.93 (m, 2H, CH2), 1.73 (d, J = 

25.5 Hz, 2H, CH2). 
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Macrocycle 6s (0.285 g, 0.47 mmol) was dissolved in 15.0 mL of THF and 8.0 mL of H2O. LiOH (0.081 

g, 1.92 mmol) was added and the mixture was left to react at 0°C for 4h. Then, after 3h stirring at 

RT, LiOH was quenched with HCl. The solvend was concentrated and the precipitate was recovered 

by filtration. 

Yield  89% 

 
1H NMR  (300 MHz, CDCl3) δ 7.80 – 7.68 (m, 5H, Ha + Hc), 7.34 (dd, J = 12.6, 7.9 Hz, 6H, Hb + Hd), 

4.36 (s, 4H, H2 + H10), 3.34 – 3.21 (m, 4H, H4 + H8), 2.70 (dt, J = 21.3, 6.4 Hz, 6H, H5 + 

H7 + H13), 2.46 (s, 6H, H12), 2.42 (d, J = 5.9 Hz, 2H, H14). 

 

1H NMR  (400 MHz, CD3OD) δ 7.87 (d, J = 8.2 Hz, 4H, Hc), 7.77 (t, J = 7.7 Hz, 1H, Ha), 7.49 (d, J = 

8.1 Hz, 4H, Hd), 7.29 (d, J = 7.7 Hz, 2H, Hb), 4.61 (s, 8H, H2 + H10 + H4 + H8), 4.03 (t, J = 

6.4 Hz, 2H, CH2), 3.51 (s, 4H, H5 + H7), 2.63 (t, J = 6.5 Hz, 2H, CH2), 2.47 (s, 6H, H12). 

 

Elem. An. Calculated for C28H34N4O6S2: C 57.32; H 5.84; N 9.55. Found: C 54.69; H 5.50; N 8.69. 
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4.8 Functionalized ligands 

4.8.1 Synthesis of ligand 8a 

 

 

A solution of propargyl bromide (3.5 mmol) in acetonitrile (3.0 mL) was dropwise over a period of 

15 minutes to a solution of ligand 7g (1.0 mmol) and DiPEA (8.0 mmol) in acetonitrile (5.0 mL). The 

mixture was allowed to react over night, then was dried in vacuum and the crude was dissolved in 

DCM (7.0 mL). The organic solution was washed with H2O (5 x 5.0 mL) and brine (3 x 5.0 mL) in order 

to remove the unreacted materials and the ammonium salt. The organic phase was then treated 

with Na2SO4 and dried in vacuum leading to product 8a as an orange oil with no further purification. 

Yield:  67% 

 
1H NMR (300 MHz, CDCl3) δ 7.60 (t, J = 7.1 Hz, 1H), 7.11 (d, J = 7.6 Hz, 2H), 3.94 (m, 4H), 3.56 

(m, 4H), 3.32 (m, 2H), 2.66 (m, 8H), 2.27 (s, 2H), 2.16 (s, 1H). 
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4.8.2 Synthesis of ligand 8b 

 

A solution of benzyl bromide (3.5 mmol) in acetonitrile (3.0 mL) was dropwise over a period of 15 

minutes to a solution of ligand 7g (1.0 mmol) and DiPEA (8.0 mmol) in acetonitrile (5.0 mL). The 

mixture was allowed to react over night, then was dried in vacuum and the crude was dissolved in 

DCM (7.0 mL). The organic solution was washed with H2O (5 x 5.0 mL) and brine (3 x 5.0 mL) in order 

to remove the unreacted materials and the ammonium salt. The organic phase was then treated 

with Na2SO4 and dried in vacuum leading to product 8b as a brown oil with no further purification. 

Yield: 72% 

 

1H NMR  (300 MHz; CDCl3; T = 300 K) δ 7.48 (t, J = 7.6 Hz, 1H, Hj), 7.42-7.15 (m, 15H), 6.84 (d, J 

= 7.7 Hz, 2H, Hi), 4.20 (s, 2H, H14), 3.86 (s, 4H2,10), 3.75-3.60 (m, 8H, H4,8,13), 3.07 (br, 

4H, H5,7) 

13C NMR (101 MHz, D2O) δ 159.1 (C1), 138.0 (CH), 137.4 (C), 130.9 (CH), 129.9 (CH), 129.5 (CH), 

129.4 (CH), 128.7 (CH), 128.0 (CH), 120.7 (CH), 61.8 (CH2), 58.8 (CH2), 52.7 (CH2), 52.2 

(CH2), 50.1 (CH2) 

MS (EI) m/z 476.7 [M+]. 
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4.8.3 Synthesis of ligand 8c 

 

Ligand 7j (0.88 mmol) was dissolved in AcOH (1.5 mL). NaCNBH3 (2.65 mmol) was added and the 

mixture was let to stir 10 min at rt. Acetaldehyde (19.36 mmol) was added ver 72 h in small amounts 

(4 eq. every 12 h). The solvent was evaporated to dryness, then brine (10.0 mL) was added and the 

solution was extracted with DCM (5 x 10.0 mL). The organic phase was treated with Na2SO4 and the 

solvent was evaporated to dryness yielding to 8c as a light yellow foam.  

Yield: 61% 

1H NMR  (400 MHz, CDCl3) 7.72 (d, J = 8.2 Hz, 5H, HAr), 7.32 (t, J = 8.5 Hz, 6H, HAr), 4.34 (s, 4H, 

CH2), 3.67 (s, 3H, OCH3), 3.31 (t, J = 7.4 Hz, 1H, CH), 3.15–3.03 (m, 4H, CH2), 2.70 (dq, 

J = 14.5, 7.2 Hz, 2H, CH2), 2.51–2.40 (m, 8H, CH2 + CH3), 2.27 (dd, J = 16.6, 9.9 Hz, 6H, 

CH2), 1.60 (ddd, J = 15.6, 14.6, 9.2 Hz, 2H, CH2), 1.31 (m, 2H, CH2), 1.02 (t, J = 7.1 Hz, 

6H, CH3)  

13C NMR  (100 MHz, CDCl3) 174.2 (CO), 155.1 (CAr), 143.6 (CAr), 138.9 (CHAr), 136.2 (CAr), 130.0 

(CHAr), 127.3 (CHAr), 124.2 (CHAr), 110.7 (CH), 63.2 (CH), 55.5 (CH2), 54.8 (CH2), 51.7 

(CH2), 51.1 (CH), 44.7 (CH2), 29.9 (CH2), 28.3 (CH2), 24.1 (CH2), 21.7 (CH3), 14.1 (CH3) 

MS (ESI):  m/z (%) = 712.3 (100) [MH]+ 

Elem. An.  calcd for C36H51N5O6S2: C, 60.56; H, 7.20; N, 9.81. Found: C, 60.22; H, 7.12; N, 10.02 
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4.8.4 Synthesis of ligand 8d 

 

Ligand 7j (0.094 g, 0.143 mmol) was dissolved in 6.0 mL ofacetonitrile. The other reagents were 

added in this order: biotin (0.035 g, 0.146 mmol), CDMT (0.027 g, 0.152 mmol) and 24.0 𝜇L of N-

metilmorpholine. The mixture was left to react at RT for 24h, then refluxed for 3h. 

The solvent was concentrated, water was added and the water phase was washed with 3 x 15.0 mL 

of DCM. The organic phases were collected and dried leading to 8d. 

Yield  54% 

 

1H NMR  (400 MHz, DMSO-d6) δ 7.83 (t, J = 7.6 Hz, 1H, Ha), 7.77 (d, J = 7.7 Hz, 4H, Hc), 7.45 (d, 

J = 7.8 Hz, 4H, Hd), 7.28 (d, J = 7.4 Hz, 2H, Hb), 6.38 (d, J = 18.8 Hz, 2H, H30 s a 6.40 ppm 

+ H31 s a 6.35 ppm), 4.29 (d, J=10.6 Hz, 4H, H2 + H10 + H28), 4.11 (s, 1H, H29), 3.77 (d, J 

= 4.0 Hz, 1H, H17), 3.65 – 3.58 (m, 3H, H19), 3.04 (s, 5H, H4 + H8 + H26), 2.80 (dd, J = 

12.4, 4.9 Hz, 1H, H27), 2.57 (d, J = 12.4 Hz, 1H, H27’), 2.41 (s, 6H, H12), 2.31 (d, J = 39.1 

Hz, 4H, H5 + H7), 2.26 (s, 4H, CH2), 2.17 – 2.08 (m, 2H, H22), 1.75 – 1.04 (m, 10H, CH2). 
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13C NMR  (101 MHz, DMSO-d6) δ 172.61 (s, C18), 172.12 (s, C21), 162.44 (s, C32), 154.82 (s, C1 + 

C11), 143.16 (s, Ce), 138.50 (s, Ca), 135.22 (s, Cf), 129.73 (s, Cd), 126.79 (s, Ca), 123.04 

(s, Cb), 60.80 (s, C29), 58.96 (s, C28), 54.80 (s, C25), 54.13 (s, C2 + C10 + CH2), 53.92 (s, 

C17), 51.50 (d, J = 8.9 Hz, C19), 50.50 (s, C5 + C7), 44.89 (s, C4 + C8), 40.68 – 37.75 (m, 

DMSO-d6 + CH2), 34.46 (s, C22), 30.56 (s, CH2), 27.80 (d, J = 4.8 Hz, CH2), 24.97 (s, CH2), 

22.67 (s, CH2), 20.75 (s, C12). 

14N NMR  (41 MHz, DMSO-d6) δ 310.92 (s, 1N, N pyridine), 91.07 (s, 1N, N20), 84.93 (s, 1N, N30), 

75.64 (s, 1N, N31), 30.11 (s, 1N, N6). 

MS (ESI)  m/z 885. 

 

 

 

 

4.8.5 Synthesis of ligand 8e 

 

A solution of compound 7k (0.4 mmoles) and the selected dipeptide (0.4 mmoles) in DCM (0.1 M) 

was treated with DIC (1.1 equivalents), ethylencianooxime (1.1 equivalents) and DiPEA (1.1 

equivalents). The resulting mixture was stirred at RT for 12 hours. The solvent was dried and the 

crude was purified with SiO2 flash column chromatography using DCM/MeOH 20 : 1 as the eluent. 

Yield: 60% 
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1H NMR  (400 MHz, CDCl3) δ 7.71 (dd, J = 16.9, 9.7 Hz, 6H, Har), 7.54 (s, 2H, Har), 7.38 – 7.10 (m, 

11H,  Har), 7.04 (t, J = 9.0 Hz, 1H, Hq), 5.68 (t, J = 8.5 Hz, 1H, H20), 4.46 (d, J = 10.1 Hz, 

1H, H21), 4.40 – 4.28 (m, 4H, H2 + H10), 4.23 – 4.13 (m, 1H, H17), 3.47 (s, 3H, H23), 3.12 

(s, 4H, H4 + H8), 2.43 (d, J = 14.2 Hz, 12H, H12 s a 2.44 ppm + H5 + H7 + CH2), 2.11 (d, J 

= 19.0 Hz, 2H, CH2), 1.60 (s, 2H, NH), 1.05 (d, J = 5.9 Hz, 3H, H24). 

13C NMR  (101 MHz, CDCl3) δ 170.97 (C18 + C22), 154.99 (Car), 143.78 (Car), 138.84 (Car), 135.71 

(Car), 129.99 (Car), 129.76 (Car), 127.89 (Car), 127.24 (Car), 124.54 (Car), 123.91 (Car), 

115.24 (d, J = 23.0 Hz, Cq), 54.49 (C20), 52.17 (C23), 50.75 (C5 + C7 + CH2), 48.94 (C21), 

48.40 (C17), 44.29 (C4 + C8), 32.99 (CH2), 21.55 (C12), 16.42 (C24). 

19F NMR  (282 MHz, CDCl3) δ -117.93 (1F, Fr) 

MS (ESI)  m/z 914 
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4.9 Copper complexes 

4.9.1 Method 1: 

Copper(I) triflate benzene complex (40 mg, 0.08 mmol) was added to a solution of 6 (0.16 mmol) in 

dichloroethane (5 mL). The solution was stirred at room temperature for 1 hour, toluene (10 mL) 

was layered. After standing at room temperature for 16 hours, the white precipitated was filtered 

and dried in vacuum under nitrogen atmosphere.  

Yields  6a-CuOTf:  95%  

6d-CuOTf:  98% 

  6e-CuOTf: 97%  

 
 

1H NMR  (400 MHz; CDCl3): δ 7.79 (m, 4H, HTs), 7.74 (m, 1H, HAr), 7.64 (m, 1H, HAr), 7.58–7.53 

(m, 2H, HAr), 7.46 (m, 2H, HAr), 7.42–7.40 (m, 4H, HTs), 7.34 (m, 1H, HAr), 7.09 (m, 1H, 

HAr), 5.14 (m, 1H, CH2), 4.94 (m, 2H, H13), 4.50 (d, J = 17.2 Hz, 1H, CH2), 4.39 (m, 1H, 

CH2), 4.23 (d, J = 17.2 Hz, 1H, CH2), 4.07 (m, 1H, CH2), 3.82 (m, 2H, CH2), 3.40 (m, 1H, 

CH2), 3.26–3.10 (m, 3H, CH2), 2.51 (s, 3H, H14), 2.48 (s, 3H, H14), 2.28 (m, 1H, CH2) 

13C NMR  (100 MHz; CDCl3) δ 157.1 (C), 139.4 (C), 139.0 (C), 131.3 (CH), 130.6 (CH), 130.4 (CH), 

130.3 (C), 130.0 (CH), 128.7 (CH), 127.8 (CH), 125.9 (CH), 124.1 (CH), 121.5 (CH), 58.7 

(CH2), 56.1 (CH2), 53.9 (CH2), 52.8 (CH2), 50.1 (CH2), 48.4 (C13), 45.6 (CH2), 21.6 (C14) 

15N NMR  (40 MHz; CDCl3; T = 300 K): δ 278 (N12), 92 (NTs), 46 (N6) 

19F NMR  (376 MHz; CDCl3; T= 300 K): δ -78.3 

Elem. an.  Found: C, 48.6; H, 4.6; N, 6.7% 

Calculated: C, 48.5; H, 4.4; N, 6.9% 
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1H NMR  (300 MHz; CDCl3; T = 300 K) δ 8.97 (d, J = 7.8 Hz, 1H, Hi), 8.08-8.05 (m, 2H, HAr), 7.92 

(m, 1H, HAr), 7.85-7.75 (m, 2H, Hr) 7.65-7.52 (m, 7H, HAr), 7.42-7.37 (m, 4H, HAr), 7.27-

7.17 (m, 2H, HAr), 4.89 (d, J = 14.7 Hz, 2H, H2 and H10), 4.46 (m, 2H, H13), 3.68 (d, J = 

14.7 Hz, 2H, H2 and H10), 3.53 (m, 2H, H4 and H8), 2.93 (m, 2H, H4 and H8), 2.82 (m, 2H, 

H5 and H7), 2.50 (s, 6H, H14), overlapping with 2.58-2.50 (m, 2H, H5 and H7) 

Elem. An.  Found: C, 51.4; H, 4.3; N, 6.1 

Calculated: C, 51.2; H, 4.4; N, 6.6 

 

1H NMR  (400 MHz; CDCl3; T = 300 K) δ 8.93 (d, J = 8.1 Hz, 1H, Hi), 8.07 (d, J = 8.3 Hz, 1H, Hf), 

7.92–7.88 (m, 3H, HAr), 7.82–7.74 (m, 2H, HAr), 7.69–7.62 (m, 2H, Hb
 and Hc), 7.53–

7.48 (m, 3H, HAr), 7.39–7.36 (m, 3H, HAr), 7.29 (m, 2H, Ho), 7.05 (d, J = 7.5 Hz, 1H, Hq), 

5.59 (q, J = 6.5 Hz, 1H, H13), 5.31 (d, J = 16.4 Hz, 1H, H10), 4.69 (m, 1H, H7), 4.35 (m, 

1H, H2), 3.94 (d, J = 16.6 Hz, 1H, H10’), 3.18 (m, 1H, H2’), 3.04 (d, J = 14.2 Hz, 1H, H8), 

2.88–2.82 (m, 3H, CH2), 2.56 (s, 3H, H15), 2.42 (s, 3H, H15), 2.34 (m, 2H, CH2), 2.21 (d, 

J = 14.2 Hz, 1H, H5), 1.69 (d, J = 6.5 Hz, 3H, H14) 

13C NMR  (100 MHz; CDCl3; T = 300 K) δ 156.2 (C11), 152.9 (C2), 146.2 (CH), 145.9 (CH), 140.0 

(Cr), 137.2 (Ca), 134.1 (Cf), 131.9 (CH), 131.5 (CH), 130.6 (Co’), 130.0 (Co), 129.2 (Cn), 

128.9 (CH), 128.3 (CH), 128.2 (CH), 126.7 (Cb), 126.0 (Cc), 125.2 (Cq’), 124.7 (Cg), 
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124.6 (CH), 124.1 (CH), 118.2 (Ch), 94.2 (Ci), 56.5 (C2), 56.1 (C10), 53.1 (C13), 51.0 (C5), 

48.9 (C7), 45.9 (C4), 21.7 (C15’), 21.5 (C15), 12.9 (C14) 

15N NMR  (40 MHz; CDCl3; T = 300 K) δ 245 (N12), 51 (N6). The signals relative to N-Ts were not 

detected 

19F NMR  (376 MHz; CDCl3; T = 300 K) δ - 78.6 (s) 

IR ν (cm-1)  1447.0 (w), 1343.5 (w), 1223.5 (w), 1260.9 (s), 1223.5 (m), 1165.4 (s), 1085.3 (w), 

1029.5 (s), 802.6 (w), 759.7 (m), 720.4 (m), 710.0 (m), 660.5 (s), 637.6 (s) 

Elem. An.:  Found: C, 51.6; H, 4.9; N, 6.7 

Calculated: C, 51.9; H, 4.6; N, 6.4 

[α]D
20  - 115 (c 0.5 in CHCl3) 
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4.9.2 Method 2: 

Copper(I) triflate benzene complex (30.0 mg, 0.06 mmol) was added to a solution of 6 or 7 or 8 (0.12 

mmol) in dichloroethane (10.0 mL). The solution was stirred at room temperature for 1 hour, then 

was concentrated to half volume and n-hexane was layered until the product precipitates as white 

powder. The white precipitated was filtered and dried in vacuum under nitrogen atmosphere.  

Yields  6g-CuOTf: 97% 

  6j-CuOTf: 97% 

  6k-CuOTf: 98% 

  7j-CuOTf: 21% (not soluble in the common NMR solvents) 

  8d-CuOTf: 38% 

 

1H NMR  (300 MHz; CDCl3) δ 8.68 (d, J = 8.7 Hz, 1H, Hi), 7.93 (d, J = 8.0 Hz, 1H, HAr), 7.87 (d, J = 

8.1 Hz, 4H, Hn), 7.80-7.69 (m, 3H, HAr), 7.62-7.40 (m, 7H, HAr), 7.23-7.16 (m, 2H, HAr), 

5.95 (q, J = 6.6 Hz, 1H, H14), 5.25 (d, J = 20 Hz, 1H, H2), 4.79 (d, J = 12.7 Hz, 1H, H7), 

4.71 (d, J = 14.6 Hz, 1H, H10), 4.62 (d, J = 20 Hz, 1H, H2’), overlapping with 4.61 (m, 1H, 

H8), 4.01 (d, J = 14.6 Hz, 1H, H10’), 2.78 (d, J = 12.7 Hz, 1H, H7’), 2.57 (s, 3H, CH18), 

overlapping with 2.57 (m, 1H, H4), 2.52 (s, 3H, H18’), 2.42-2.37 (m, 1H, H5), 2.30-2.15 

(m, 2H, H5’ and H15’), 2.10 (d, J = 6.8 Hz, 3H, H14), 1.59 (m, 1H, H15), 0.90 (d, J = 6.7 Hz, 

3H, CH16’), 0.68 (d, J = 6.2 Hz, 3H, H17), 0.29 (d, J = 6.5 Hz, 3H, H17), -0.49 (d, J = 6.2 Hz, 

3H, H16) 

13C NMR  (75 MHz; CDCl3) δ 155.7 (C11), 151.2 (C1), 145.6 (Cp’), 145.3 (Cp), 140.4 (CH), 134.8 (Ca), 

134.5 (Cl), 133.9 (C), 132.1 (C), 131.5 (CH), 130.4 (Co), 129.8 (CH), 129.3 (CH), 128.9 

(CH), 127.7 (CHh), 127.3 (CH), 126.4 (CH), 125.2 (CH), 124.8 (CH), 124.5 (CH), 123.9 

(CH), 122.8 (Ci), 64.7 (C4), 62.0 (C8), 57.4 (C5), 57.1 (C10), 56.4 (C13), 55.5 (C7), 46.8 (C2), 
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29.9 (C15’), 27.1 (C15), 24.5 (C14), 22.4 (C16’), 21.9 (C18 and 18’), 21.3 (C17’), 20.3 (C17), 18.5 

(C16) 

19F NMR  (282 MHz; CDCl3; T = 300 K) δ - 78.58 (s) 

Elem. An.  Found: C, 54.7; H, 5.2; N, 5.7 

Calculated: C, 54.7; H, 5.4; N, 5.8 

 

 

 

1H NMR  (300 MHz; CDCl3) δ 8.59 (d, J = 7.3 Hz, 1H, Hh), 8.06-7.12 (m, 17H), 6.00 (m, 1H, H14), 

5.25 (d, J = 18.9 Hz, 1H, H2), 4.81-4.64 (m, 3H, H2’, H8 and H10), 4.60-4.55 (m, 1H, H4), 

3.63 (d, J = 15.4 Hz, 1H, H10’), 3.14 (d, J = 13.2 Hz, 1H, H8’), 2.96 (m, 1H, H7,7’), 2.79-2.36 

(m, 2H, H5,5’), 2.57-2.55 (m, 6H, H17 and H18), 2.15 (m, 3H, H14), 0.35 (s, 9H, H16). 

 

13C NMR  (75 MHz; CDCl3) δ 154.59 (C2), 152.91 (C10), 147.18 (Cr), 145.81 (Ck), 140.38 (Ct), 

136.25 (Ca), 134.78 (CAr), 133.71 (CAr), 132.07 (CAr), 131.13 (CAr), 132.07 (CAr), 131.13 

(CAr), 130.63 (CAr), 130.29 (CAr), 129.89 (CAr), 129.82 (CAr), 129.11 (CAr), 128.72 (CAr), 

128.28 (CAr), 128.17 (CAr), 127.66 (CAr), 126.52 (CAr), 125.71 (CAr), 124.60 (CAr), 123.85 

(CAr), 122.70 (CAr), 62.40 (C4), 56.47 (C13), 56.35 (C10), 55.69 (C5), 52.49 (C8), 49.68 (C7), 

48.46 (C2), 35.10 (C15), 27.65 (C16), 24.92 (C14), 22.11 (C17 and C18) 
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1H NMR  (300 MHz; CDCl3) δ 8.67 (d, J = 8.7 Hz, 1H, Hh), 7.95 (d, J = 8.0 Hz, 1H, HAr), 7.88-7.78 

(m, 6H, HAr), 7.67-7.58 (m, 4H), 7.54-7.52 (m, 4H, Hl, Hq), 7.29 (d, J = 4.9 Hz, 1H - Hs), 

7.16 (d, J = 7.4 Hz, 1H – Hu), 5.96 (d, J = 6.9 Hz, 1H - H13), 5.17 (d, J = 19.5 Hz, 1H - H2), 

4.75-4.66 (m, 1H – H7), 4.70 (d, J = 15.6 Hz, 1H – H10), 4.58 (m, 1H – H4), 4.44 (d, J = 

19.5 Hz, 1H – H2’), 3.56 (d, J = 15.6 Hz, 1H – H10’), 3.00-2.76 (m, 3H, H7’, H8-8’), 2.55 (s, 

3H, H21), 2.54 (s, 3H, H22), 2.54-2.47 (m, 1H, H5), 2.34 (d, J = 6.5 Hz, 1H – H5’), 1.66-

1.54 (m, 2H, H20 – H17), 1.40-1.36 (m, 1H, H18), 1.16-1.10 (m, 1H, H15), 1.05-0.96 (m, 

2H, H19 - H17), 0.77-0.70 (m, 2H, H20’ - H19’), 0.68-0.56 (m, 1H, H18’), 0.17 (d, J = 11.6 

Hz, 1H – H16), -1.22 (d, J = 11.6 Hz, 1H – H16’) 

13C NMR  (75 MHz; CDCl3) δ 155.23 (C11), 152.26 (C1), 147.07 (Cr), 145.52 (Ck), 140.06 (Ct), 

135.62 (Ca), 134.77 (Cj), 133.29 (Cn), 132.17 (Ce), 131.05 (CTs), 129.88 (CAr), 129.77 

(CAr), 129.21 (Cm), 128.72 (CAr), 128.54 (Co), 127.55 (CAr), 126.43 (CAr), 125.63 (CTs), 

125.04 (CTs), 123.31 (Cu), 123.09 (Cs), 123.04 (Ch), 61.74 (C4), 56.32 (C5 - C10), 56.00 

(C13), 51.81 (C7), 49.20 (C2), 46.80 (C8), 36.48 (C15), 30.30 (C16), 29.35 (C17), 29.06-25.96 

(C20 – C18 – C19), 24.27 (C14), 22.13 (C21), 22.08 (C22) 
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1H NMR  (400 MHz, DMSO-d6) δ 7.88 (dd, J = 14.2, 7.8 Hz, 5H, Ha piridina + Hc tosile), 7.52 (d, J 

= 7.9 Hz, 4H, Hd tosile), 7.46 (d, J = 7.7 Hz, 2H, Hb piridina), 6.39 (d, J = 29.1 Hz, 3H, H30 

s a 6.40 ppm + H31 s a 6.35 ppm+ H20), 4.61 (d, J = 17.2 Hz, 2H, H2 + H10), 4.34 – 4.27 

(m, 2H, H28), 4.19 (d, J = 17.1 Hz, 2H, H2’ + H10’), 4.16 – 4.10 (m, 2H, H29), 4.07 (s, 2H, 

H5 + H7), 3.80 (d, J = 10.1 Hz, 4H, H19 + H16), 3.60 (s, 2H, H4 + H8)), 3.51 (s, 2H, H22), 3.34 

(s, 2H, H4 + H8), 3.17 (s, 1H, H16’), 3.10 (s, 3H, H5 + H7 + H26), 2.82 (dd, J = 12.5, 4.9 Hz, 

1H, H27), 2.78 (s, 1H, H17), 2.58 (d, J = 12.4 Hz, 1H, H27’), 2.45 (s, 6H, H12), 2.20 (s, 2H, 

H13), 1.69 – 1.21 (m, 10H, CH2) 

13C NMR  (101 MHz, DMSO-d6) δ 174.12 (C18), 162.43 (C21 + C32), 157.61 (C1 + C11), 144.21 (Ce), 

138.93 (Ca), 133.02 (Cf), 129.90 (Cd), 127.34 (Cc), 121.13 (Cb), 60.78 (C29), 58.91 (C28), 

55.09 (C26), 52.68 (C19), 52.32 (C16), 51.38 (C2 + C10), 48.26 (C4 + C8), 45.22 (C5 + C7), 

42.27 (C17), 41.24 (C22), 33.20 (C13), 27.78 (CH2), 24.25 (CH2), 20.77 (C12) 

14N NMR  (41 MHz, DMSO-d6) δ 278.15 (s, 1N, N piridina), 85.17 (s, 1N, N30), 75.81 (s, 1N, N31) 

Elem An.  Calculated for C43H57CuF3N7O11S4: C 47.09; H 5.24; N 8.94 

Found: C 47.71; H 5.42; N 8.88 

MS (MALDI)  m/z 946.8 
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4.10 Silver complexes 

4.10.1 Synthesis of silver BF4 complexes 

General Procedure 

Silver tetrafluoroborate (165.0 mg, 0.85 mmol) was added to a solution of ligand 6 or 7 or 8 in 

dichloroethane (20.0 mL). The solution – kept in the dark until the final isolation of the product – 

was stirred at room temperature for one hour. The solvent was then concentrated to 3.0 mL and 

distilled n-hexane was added causing the precipitation of the product. The precipitate was 

recovered by filtration and dried in vacuum. 

Yields  6a-AgBF4: 91%   

6b-AgBF4: 93% 

  6d-AgBF4: 90%  

  6f-AgBF4: 98% 

  6r-AgBF4: 99% 

6s-AgBF4: 99% 

7j-AgBF4: 75% 

7k-AgBF4: 77% 

8c-AgBF4: 97% 

8d-AgBF4: 55% 

8e-AgBF4: 37% 
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1H NMR (300 MHz, CDCl3, T = 300 K): δ = 7.77 (t, J = 7.7 Hz, 1H) overlapping with 7.74 (d, J = 

8.0 Hz, 4H), 7.60 (d, J = 6.9 Hz, 2H), 7.45 (d, J = 8.0 Hz, 4H) overlapping with 7.42 (m, 

3H), 7.28 (d, J = 7.7 Hz, 2H), 5.04 (d, J = 15.2 Hz, 2H), 3.97 (s, 2H), 3.70 (d, J = 15.2 Hz, 

2H), 3.51 (m, 2H), 2.94 (m, 2H), 2.65 (m, 2H), 2.49 (s, 6H), 2.06 (m, 2H) 

13C NMR (100 MHz, CDCl3, T = 300 K) δ 153.4, 145.9, 140.5, 135.6, 130.9, 130.7, 130.6, 128.8, 

128.6, 128.4, 125.0, 58.4, 56.3, 52.9, 47.5, 21.9  

19F NMR (282 MHz, CDCl3, T = 300 K): δ = -152.8 

MS (FAB) m/z (%) = 711 m/z (100) [M+ – BF4], 605 (94) [MH – AgBF4]+ 

UV/vis  (5.2x10-5 mol/L, CHCl3 in 1cm cuvettes): λmax [nm], (log ε) = 243 (4.26); 263 (3.89) nm 

 

1H NMR (300 MHz, CDCl3, T = 300 K) δ = 7.82 (m, 5H, HAr), 7.51 (m, 4H, HAr), 7.46 (m, 4H, HAr), 

7.39 (m, 2H, HAr), 7.26 (m, 1H, HAr), 5.10 (d, J = 16.1 Hz, 1H, H2), 4.99 (d, J = 14.8 Hz, 

1H, H10), 4.82 (q, J = 6.7 Hz, 1H, H13), 4.33 (br, 1H), 3.96 (br, 1H), 3.87 (d, J = 16.1 Hz, 

1H, H2), 3.65 (d, J = 14.8 Hz, 1H, H10), 3.64 (br, 1H), 3.15 (br, 1H), 2.76 (m, 1H), 2.54 (s, 

3H, H15), 2.53 (s, 1H, H15), 2.45 (br, 1H), 1.95 (br, 1H), 1.86 (br, 1H), 1.80 (d, J = 6.7 Hz, 

3H, H14). 

19F NMR (225 MHz, CDCl3, T = 300 K) δ = -152.85 (10BF4), -152.90 (11BF4). 
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1H NMR (300 MHz, CDCl3, T = 300 K): δ 9.16 (d, J = 8.1 Hz, 1H, Hi), 8.12 (d, J = 8.1 Hz, 1H, Hf), 

7.99 (d, J =8.1 Hz, 1H, Hd), 7.90 (m, 1H, Hh), 7.81 (t, J = 7.9 Hz, 1H, Hr), 7.72 (m, 1H, 

Hb), 7.67-7.59 (m, 2H, Hc and Hg) overlapping with 7.59 (d, J = 7.8 Hz, 4H, Hn), 7.41 (d, 

J = 7.8 Hz, 4H, Ho), 7.24 (d, J = 7.9 Hz, 2H, Hq), 4.89 (d, J = 15.0 Hz, 2H, H2 and H10), 4.35 

(br s, 2H, H13), 3.50 (d, J = 15.0 Hz, 2H, H2’ and H10’) overlapping with 3.51-3.48 (m, 2H, 

CH2), 2.81 (m, 2H, CH2), 2.59 (m, 2H, CH2), 2.49 (s, 6H, H14), 2.13 (m, 2H, CH2) 

13C NMR (75 MHz, CDCl3, T = 300 K): δ 154.0 (C1), 146.0 (Cp), 141.0 (Cr), 135.3 (Cm), 133.8 (C), 

133.2 (C), 132.5 (Cf), 131.1 (C), 130.8 (Co), 130.7 (Cb), 130.0 (Cd), 128.6 (Cn), 127.1 (Ch), 

126.4 (CH), 125.8 (CH), 125.3 (Cq), 112.3 (Ci), 56.4 (C13), 56.3 (C2 and C10), 54.7 (CH2), 

48.3 (CH2), 22.1 (C14) 

19F NMR (282 MHz, CDCl3, T = 300 K): δ -152.8 

MS (FAB)  m/z (%) = 761/763 (90/100) [M – BF4]+, 655 (37) [MH – AgBF4]+ 

Elem. An.  Found: C, 50.75; H, 4.61; N, 6.43 Calculated: C, 50.90; H, 4.51; N, 6.60 
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1H NMR   (400 MHz, CDCl3): δ 9.42 (pst, J = 7.1 Hz, 1H, Hi), 8.15 (d, J = 8.3 Hz, 1H, HAr), 8.00 (m, 

1H, Hh), 7.94 (d, J = 7.5Hz, 1H, HAr), 7.87 (d, J = 8.2 Hz, 2H, Hn), 7.83 (pst, J = 7.8 Hz, 

1H, Hr), 7.68–7.62 (m, 3 H, HAr), 7.52 (d, J = 8.2 Hz, 2H, Ho), 7.38 (d, J = 8.2 Hz, 2H, Hn), 

7.33 (d, J = 7.9 Hz, 1H, Hq), 7.29 (d, J = 8.2 Hz, 2H, Ho), 7.08 (d, J = 7.6 Hz, 1H, Hq), 5.66 

(q, J = 6.7 Hz, 1H, H13), 5.11 (d, J = 15.4 Hz, 1H, H2), 4.70 (m, 1H, H4), 4.40 (d, J = 13.9 

Hz, 1H, H10), 3.64 (d, J = 15.4 Hz, 1 H, H2), 3.04 (d, J = 13.9 Hz, 1H, H10), 2.99–2.95 (m, 

2H, CH2), 2.63 (m, 1H, CH2), 2.54 (s, 3H, H14), 2.49 (m, 1H, CH2), 2.41 (s, 3H, H14), 2.41– 

2.09 (m, 3H, CH2) 

13C NMR   (100 MHz, CDCl3): δ 154.3 (C1), 152.6 (C11), 145.9 (Cp), 145.7 (Cp’), 141.3 (CHr), 137.4 

(C), 135.2 (C), 133.8 (CH), 132.4 (C), 131.8 (C), 130.8 (CHo), 130.3 (CH o’), 129.7 (C), 

129.6 (CH), 128.7 (CHn’), 128.3 (CHn), 127.7 (CH), 126.30 (CH), 126.26 (CH), 125.5 (CH), 

125.3 (CH), 125.1 (CHh), 104.7 (CHi), 56.7 (C2), 56.4 (C10), 51.8 (C13), 49.2 (CH2), 48.9 

(CH2), 48.8 (CH2), 45.5(CH2), 9.0 (C14) 

19F NMR  (282 MHz, CDCl3): δ   –153.03 (10BF4), –153.08 (11BF4)  

11B NMR  (128 MHz, CDCl3): δ   –1.39 (p, JB-F = 1.1 Hz) 

15N NMR  (40 MHz, CDCl3): δ    265 (N12), 101 and 97 (N3 and N9), 40 (N6)  

109Ag NMR  (19 MHz, CDCl3): δ   536 

Elem. An.  C37H40AgBF4N4O4S2: calcd. C 51.46, H 4.67, N 6.49; found C 51.15, H 4.57, N 6.21 
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1H NMR  (400 MHz, CDCl3): δ 7.91-7.70 (5H, m, Hc + Ha), 7.45 (4H, d, J = 7.8 Hz, Hd), 7.32-7.28 

(2H, m, Hb), 5.04 (2H, d, J = 14.5 Hz, H2 + H10), 3.79 (3H, s, H14), 3.72-3.60 (2H, m, H2’ 

+ H10’), 3.50-3.43 (2H, m, H12), 3.05 (2H, br, CH2), 2.92-2.76 (4H, br, H7 + H5), 2.72-2.58 

(2H, br, CH2), 2.49 (6H, s, H15), 2.11 (2H, br, H11) 

13C NMR  (100 MHz, CDCl3): δ 145.26 (Cquaternarytosyl), 140.2 (Ca), 130.2 (Cd), 127.8 (Cc), 125.0 

(Cb), 56.0 (C2 + C10), 52.7 (C), 52.3 (C14), 48.4 (C), 46.4 (C), 45.1 (C), 21.3 (C17) 

IR (ATR):  1727 cm-1 (νC=O, ester), 1161 cm-1 (sulfonamide) 

UV-vis:  (CH2Cl2): λMAX (log ε) 237 nm (4.44), 264 nm (3.96) 

MS (FAB+)  m/z 709 [M]+ 

Elem. An.  C29H36N4O6S2AgBF4 Calculated: C, 43.79; H, 4.56; N, 7.04 

Found: C, 41.89; H, 4.42; N, 6.52 
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1H NMR  (300 MHz, CDCl3) δ 7.86-7.62 (5H, m, Ha + Hc), 7.49-7.27 (11H, m, Hb + Hd + He), 5.61 

(1H, m, H21), 5.23-4.92 (4H, m, H23 + H2 + H10), 4.51 (1H, m, H18), 3.76-3.61 (5H, s, H20 

+ H2’ + H10’), 3.46 (1H, br, CH2), 3.29 (1H, br, CH2), 2.97 (1H, br, CH2), 2.80-2.54 (4H, m, 

CH2), 2.53-2.25 (7H, m, H13 + CH2), 2.09 (1H, br, CH2), 1.94 (1H, m, CH2), 1.78 (3H, m, 

CH2), 1.60 (2H, m, CH2), 1.25 (2H, br, CH2) 

13C NMR  (75 MHz, CDCl3) δ 173.36 (C19), 157.06 (C22), 153.77 (C1), 146.06 (Cquaternarytosyl), 

140.36 (Ca), 130.90 (C),130.37 (Cd), 128.58 (Cquaternarytosyl),128.02 (CCbz), 127.90 (Cc), 

125.34 (C) 124.82 (Cb), 67.17 (C23), 56.37 (C2 + C10), 53.43 (C), 53.41 (C), 53.37 (C18), 

52.39 (C20), 46.69 (C), 29.60 (C), 22.63 (C), 21.47 (C13) 

IR (ATR):  2351 cm-1 (NC=O, amide), 1718 cm-1 (νC=O, ester), 1160 cm-1 (sulfonamide) 

UV-vis   (CH2Cl2): λMAX (log ε) 237 nm (4.37), 264 nm (3.86) 

Elem. An.  C40H49N5O8S2AgBF4 Calculated C, 48.96; H, 5.01; N, 7.10  

Found: C, 51.54; H, 5.16; N, 7.16 

MS (FAB+)  m/z 900 [M]+ 
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1H NMR  (300 MHz, CD3OD) δ 7.93–7.67 (m, 5H, Ha + Hc), 7.53–7.20 (m, 6H, Hb + Hd), 4.61 (d, J 

= 17.4 Hz, 2H, NH2), 4.44–4.14 (m, 2H, CH2), 4.06 (d, J = 17.1 Hz, 2H, CH2), 3.81–3.53 

(m, 4H, H20 + CH2), 3.50–3.27 (m, 4H, CH2), 3.20–2.91 (m, 3H, CH2 + CH), 2.45 (s, 6H, 

H13), 2.23–1.77 (m, 4H, CH2), 1.74–1.51 (m, 2H, CH2).  

13C NMR  (75 MHz, CD3OD) δ 159.3 (CO), 146.5 (CAr), 140.3 (CHAr), 134.7 (CAr), 131.4 (CHAr), 

131.0 (CHAr), 129.1 (CHAr), 128.2 (CHAr), 122.6 (CHAr), 67.8 (CH2), 53.9 (CH), 53.7 

(OCH3), 53.4 (CH2), 46.7 (CH2), 43.6 (CH2), 23.2 (CH2), 21.5 (CH3), 20.2 (CH2) 

MS (FAB+):  m/z (%) = 766 (100); 764 (97%); 767 (40%); 765 (38%) [M - BF4]+ 

Elem An.  C32H43AgBF4N5O6S2 Calculated: C, 45.08; H, 5.08; N, 8.21 

Found: C, 44.96; H, 5.42; N, 7.93 

 

1H NMR  (300 MHz, DMSO-d6) δ 8.03-7.61 (5H, m, HAr), 7.61-7.20 (6H, m, HAr), 4.88-3.64 (6H, 

br, CH2), 3.12-2.68 (4H, br, CH2), 2.47 (6H, s, H13) 

IR (ATR):  1741 cm-1 (νC=O, COOH), 1158 cm-1 (sulfonamide) 

UV-vis   (CH2Cl2): λMAX (log ε) 237 nm (4.37), 264 nm (3.85) 

Elem. An.  C28H34N4O6S2AgBF4 Calculated: C, 43.04; H, 4.89; N, 7.17  

Found: C, 39.40; H, 4.21; N, 8.49 
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1H NMR  (600 MHz, CDCl3) δ 7.78 (br, 5H, Ha + c), 7.46 (br, 4H, HAr), 7.32–7.26 (m, 2H, HAr) 5.09 

(d, J = 13.8 Hz, 2H, CH2), 3.82–3.58 (m, 6H, H20 + CH2), 3.20 (s, 1H, H18), 3.09–2.79 (m, 

4H, CH2), 2.70–2.54 (m, 6H, CH2), 2.48 (s, 6H, H13), 2.23–2.05 (m, 2H, CH2), 2.02–1.81 

(m, 3H, CH2), 1.75–1.45 (m, 2H, CH2), 1.27 (br, 2H, CH2), 1.15 (br, 6H, H22) 

13C NMR  (151 MHz, CDCl3) δ 153.7 (CAr), 145.8 (CAr), 140.6 (CHAr), 130.7 (CHAr), 128.7 (CHAr), 

128.6 (CHAr), 125.0 (CHAr), 56.5 (CH2), 21.8 (CH3) 

MS (FAB):  m/z (%)  822 (100); 820 (97); 821 (40); 823 (38) [M-BF4]+ 

Elem. An.  C36H51AgBF4N5O6S2 Calculated: C, 47.59; H, 5.66; N, 7.71 

Found: C, 47.62; H, 5.32; N, 7.75 
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1H NMR  (400 MHz, DMSO-d6) δ 7.88 (dd, J = 14.2, 7.8 Hz, 5H, Ha + Hc), 7.52 (d, J = 7.9 Hz, 4H, 

Hd), 7.46 (d, J = 7.7 Hz, 2H, Hb), 6.39 (d, J = 29.1 Hz, 3H, H30 + H31 + H20), 4.61 (d, J = 

17.2 Hz, 2H, H2 + H10), 4.34 – 4.27 (m, 2H, H28), 4.19 (d, J = 17.1 Hz, 2H, H2’ + H10’), 4.16 

– 4.10 (m, 2H, H29), 4.07 (s, 2H, H5 + H7), 3.80 (d, J = 10.1 Hz, 4H, H19 + H16), 3.60 (s, 

2H, H4 + H8)), 3.51 (s, 2H, H22), 3.34 (s, 2H, H4 + H8), 3.17 (s, 1H, H16’), 3.10 (s, 3H, H5 + 

H7 + H26), 2.82 (dd, J = 12.5, 4.9 Hz, 1H, H27), 2.78 (s, 1H, H17), 2.58 (d, J = 12.4 Hz, 1H, 

H27’), 2.45 (s, 6H, H12), 2.20 (s, 2H, H13), 1.69 – 1.21 (m, 10H, CH2) 

13C NMR  (101 MHz, DMSO-d6) δ 174.1 (C18), 162.4 (C21 + C32), 157.6 (C1 + C11), 144.2 (Ce), 138.9 

(Ca), 133.0 (Cf), 129.90 (Cd), 127.3 (Cc), 121.1 (Cb), 60.8 (C29), 58.9 (C28), 55.1 (C26), 52.7 

(C19), 52.3 (C16), 51.4 (C2 + C10), 48.3 (C4 + C8), 45.2 (C5 + C7), 42.3 (C17), 41.2 (C22), 33.2 

(C13), 27.8 (CH2), 24.3 (CH2), 20.8 (C12) 

Elem An.  C42H57AgBF4N7O8S3 Calculated: C 46.76; H 5.33; N 9.09 

Found: C 47.31; H 5.47; N 8.89 

MS (MALDI)  m/z 992.25 
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1H NMR  (300 MHz, CDCl3) δ 5.06 (d, J = 14.8 Hz, 2H, H2 + H10), 3.67 (d, J = 14.2 Hz, 2H, H2’ + 

H10’), 3.51 (s, 3H, H23), 2.51 (d, J = 5.3 Hz, 6H, H12 + H12’) 

19F NMR  (282 MHz, CDCl3) δ -116.25 (1F, Fr), -151.34 (4F, Fanion) 

Elem. An.  C47H53AgBF5N6O8S2 Calculated: C 50.96; H 4.82; N 7.59 Found: C 52.20; H 5.03; N 7.08 

MS (FAB):  m/z 1019 
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4.10.2 Synthesis of silver OTf complexes 

General Procedure: 

Silver triflate (89.0 mg, 0.34 mmol) was added to a solution of 6 or 7 or 8 in dichloroethane (17.0 

ml). The solution – kept in the dark until the final isolation of the product – was stirred at room 

temperature for one hour. The solvent was then concentrated to 3.0 mL and distilled n-hexane was 

added causing the precipitation of the product. The precipitate was recovered by filtration and dried 

in vacuum. 

Yields  6a-AgOTf: 94%   

6b-AgOTf: 92% 

  6d-AgOTf: 91%  

  6r-AgOTf: 98% 

6s-AgOTf: 97% 

 

1H NMR (300 MHz, CDCl3): δ 7.83 (t, J = 7.7 Hz, 1H), 7.72 (d, J = 8.0 Hz, 4H), 7.65 (d, J = 7.1 Hz, 

2H), 7.50 (m, 3H) overlapping with 7.45 (d, J = 8.0 Hz, 4H), 7.33 (d, J = 7.7 Hz, 2H), 5.01 

(d, J = 14.9 Hz, 2H), 3.89 (s, 2H) overlapping with 3.85 (m, 2H), 3.53 (m, 2H), 3.04 (m, 

2H), 2.87 (m, 2H), 2.51 (s, 6H), 2.22 (m, 2H) 

13C NMR (75 MHz, CDCl3): δ 153.7, 145.9, 140.5, 136.0, 130.9, 130.7, 130.6, 129.1, 128.7, 128.2, 

125.0, 58.9, 56.4, 53.5, 47.7, 21.8 

19F NMR (282 MHz, CDCl3): δ -78.7 (anion) 

MS (FAB) m/z (%) = 711 m/z (100) [M+ – CF3SO3], 605 (90) [MH – AgCF3SO3]+  

UV/vis  (5.1 10-5 mol/L, CHCl3 in 1cm cuvettes): λmax [nm], (log ε) = 242 (4.32); 263 (3.94) 
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1H NMR (300 MHz, CDCl3) δ 7.80 (m, 5H, HAr), 7.43 (m, 10H, HAr), 7.29 (m, 1H, HAr), 5.07 (d, J = 

15.2 Hz, 1H, H2), 4.92 (d, J = 14.6 Hz, 1H, H2), 4.69 (br, 1H, H13), 3.98 (br, 2H), 3.69 (m, 

2H), 3.11 (br, 1H), 2.83 (br, 1H), 2.62 (m, 1H), 2.51 (s, 6H, H15), 2.44 (m, 1H), 1.97 (m, 

1H), 1.84 (m, 1H), 1.77 (d, J = 6.8 Hz, 3H, H14) 

19F NMR (225 MHz, CDCl3) δ -78.37 (anion) 

 

 

1H NMR (300 MHz, CDCl3): δ 9.18 (d, J = 8.4 Hz, 1H, Hi), 8.12 (d, J = 8.4 Hz, 1H, Hf), 8.00 (d, J 

=8.1 Hz, 1H, Hd), 7.92 (m, 1H, Hh), 7.84 (t, J = 7.7 Hz, 1H, Hr), 7.73 (m, 1H,Hb), 7.69-

7.62 (m, 2H, Hc and Hg), 7.59 (d, J = 8.2 Hz, 4H, Hn), 7.41 (d, J = 8.2 Hz, 4H, Ho), 7.26 (d, 

J = 7.7 Hz, 2H, Hq), 4.88 (d, J = 15.0 Hz, 2H, H2 and H10), 4.36 (br s, 2H, H13), 3.59 (d, J 

= 15.0 Hz, 2H, H2’ and H10’) overlapping with 3.57-3.49 (m, 2H, CH2), 2.84 (m, 2H, CH2), 

2.74 (m, 2H, CH2), 2.50 (s, 6H, H14), 2.26 (m, 2H, CH2) 

13C NMR (75 MHz, CDCl3): δ 154.1 (C1), 146.0 (Cp), 141.0 (Cr), 135.3 (Cm), 133.7 (C), 133.2 (C), 

132.7 (Cf), 131.2 (C), 130.8 (Co) overlapping with 130.8 (Cb), 130.1 (Cd), 128.6 (Cn), 

127.1 (Ch), 126.5 (CH), 125.9 (CH), 125.4 (Cq), 112.4 (Ci, J1H-13C = 156.8 Hz), 56.6 (C13), 

56.4 (C2 and C10), 54.8 (CH2), 48.3 (CH2), 22.1 (C14) 

19F NMR (282 MHz, CDCl3): δ -78.5 (anion) 
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MS (FAB) m/z (%) = 761/763 (90/100) [M – CF3SO3]+, 655 (35) [MH – AgCF3SO3]+ 

Elem. An.  Found: C, 48.41; H, 4.52; N, 6.02 

 Calculated: C, 48.74; H, 4.20; N, 6.14 

 

 

1H NMR  (300 MHz, CDCl3) δ 7.86 (1H, t, J =7.7 Hz, Ha), 7.76 (4H, d, J = 8.2 Hz, Hc), 7.46 (4H, d, J 

= 8.2 Hz, Hd), 7.31 (2H, d, J = 7.7 Hz, Hb), 5.04 (2H, d, J = 14.6 Hz, H10 + H2), 3.72 (3H, s, 

H17), 3.69 (2H, d, J = 14.8 Hz, H10’+H2’), 3.46 (2H, m, CH2), 3.04 (2H, m, CH2), 2.95-2.63 

(6H, m, CH2), 2.48 (8H, m, H13 + CH2) 

13C NMR  (75 MHz, CDCl3) δ 153.04 (C), 145.43 (Cquaternarytosyl), 140.48 (Ca), 130.25 (Cd), 127.87 

(Cc), 125.12 (Cb), 56.14 (C2 + C10), 52.98 (C), 52.51 (C14), 48.46 (C), 46.57 (C), 31.49 (C), 

21.41 (C15) 

IR (ATR):  1728 cm-1 (νC=O, ester), 1155 cm-1 (sulfonamide) 

UV-vis   (CH2Cl2): λMAX (log ε) 237 nm (4.47), 264 nm (4.02) 

MS (FAB)  m/z 709 [M]+ 

Elem. An.  C30H36N4O9S3AgF3 Calculated: C, 42.01; H, 4.23; N, 6.53 

Found: C, 42.13; H, 4.16; N, 6.49 
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1H NMR  (300 MHz, CDCl3) δ 7.85 (1H, t, J = 7.7 Hz, Ha), 7.80-7.68 (4H, m, Hc), 7.49-7.28 (11H, 

m, HArCbz + Hd + Hb), 5.56 (1H, m, H21), 5.17 (2H, s, H23), 5.14-5.05 (2H, m, H2),4.52 

(1H, m, H18), 3.76 (3H, s, H20), 3.73-3.67 (2H, m, H10), 3.48 (2H, m, CH2), 2.30 (1H, m, 

CH2), 3.03 (1H, m, CH2), 2.88-2.55 (4H, m, CH2), 2.51 (6H, s, H13),2.17 (2H, m, CH2), 

1.95 (1H, m, CH2), 1.81 (2H, m, CH2), 1.59 (2H, m, CH2), 1.25 (2H, m, CH2) 

IR (ATR):  1717 cm-1 (νC=O, ester), 1156 cm-1 (sulfonamide) 

UV-vis   (CH2Cl2): λMAX (log ε) 237 nm (4.43), 264 nm (3.97) 

MS (FAB)  m/z 900 [M]+ 

Elem. An. C41H49N5O11S3AgF3 Calculated: C, 46.95; H, 4.71; N, 6.68 

Found: C, 44.47; H, 4.35; N, 6.17 
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4.11 Iron complexes 

General procedure 

A solution of iron (II) or iron (III) salt (0.85 mmol) [see table below] in acetonitrile (3.0 mL) was added 

dropwise to a solution of ligand 7 or 8 in acetonitrile (5.0 mL). A change to dark-red/brown colour 

was observed. The mixture was left to react for 1 hour at RT, then the solvent was evaporated and 

the residual dense oil was treated with Et2O (5.0 mL). The suspension was left to stir for 1 hour 

during which the dense oil turned to brown powder. The precipitate was then recovered by filtration 

and dried in vacuum. 

Yields  7a-FeCl3 94%  [iron source: FeCl3 ∙ 6H2O]   

  7a-Fe(OTf)3 95%  [iron source: Fe(OTf)3 anhydrous] 

  7b-FeCl3 91%  [iron source: FeCl3 ∙ 6H2O] 

  7f-FeBr2 88%  [iron source: FeBr2 anhydrous] 

  7i-FeCl3 45%  [iron source: FeCl3 ∙ 6H2O] 

  8b-FeCl3 97%  [iron source: FeCl3 ∙ 6H2O] 

  8b-Fe(OTf)3 93%  [iron source: Fe(OTf)3 anhydrous] 

 

 

 

MS (FAB) m/z (%) 422 (100), 424 (63) [M-Cl] 

Elem. An. C18H24Cl3FeN4 Calculated: C 47,14; H 5,27; N 12,22 

   Found: C 47,81; H 5,39; N 12,47 
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MS (FAB) m/z (%) 501 (100), 503 (27) [M-2OTf] 

Elem. An. C21H24F9FeN4O9S3 Calculated: C 31,55; H 3,03; N 7,01 

   Found: C 32,01; H 3,84; N 7,89 

 

 

 

MS (FAB) m/z (%) 401 (100), 403 (63) [M-2Cl] 

Elem. An. C19H26Cl3FeN4 Calculated: C 48,28; H 5,54; N 11,85 

   Found: C 48,45; H 5,85; N 11,47 

 

 

       MS (FAB) m/z (%) 699 (100), 697 (58), 701 (49) [M+] 

       Elem. An. C26H37Br2FeN5O4 Calculated: C 44,66; H 5,33; N 10,02 

   Found: C 58,12; H 6,67; N 11,02 

 

 

 

MS (FAB) m/z (%) 461 (100), 463 (65) [M-Cl] 

Elem. An. C17H29Cl3FeN5O2 Calculated: C 41,03; H 5,87; N 14,07 

   Found: C 40.70; H 6,07; N 14,54 
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MS (FAB)  m/z (%) 567 (100), 569 (62) [M-2Cl] 

Elem. An. C32H36Cl3FeN4 Calculated: C 60,16; H 5,68; N 8,77 

   Found: C 58,99; H 6,09; N 9,13 

 

 

MS (FAB) m/z (%) 830 (100), 831 (37) [M-OTf] 

Elem. An. C35H36F9FeN4O9S3 Calculated: C 42,91; H 3,70; N 5,72 

   Found: C 42,24; H 4,04; N 6,18 

 

 

  



 

184 

 

4.12 Zinc complexes 

 
 

A solution of Zn(AcO)2 ∙ 2 H2O (0.15 mmol) in dry DCM (7.0 mL) was added dropwise to a solution of 

ligand 7a (0.15 mmol) in dry DCM (3.0 mL). The mixture was left to react for 2 hours, then the solvent 

was evaporated and n-hexane (8.0 mL) was added. The resulting suspension was stirred for 30 

minutes, then the product was recovered by filtration as a pale yellow solid. 

Yield: 83% 

 

1H NMR  (400 MHz, CDCl3) δ 7.82 (t, J = 7.5 Hz, 1H, Hb), 7.34 (m, 

3H, He, Hf), 7.24 (d, J = 7.5 Hz, 2H, Ha), 7.11 (m, 2H, Hd), 

4.78 (dd, J = 16.6, 6.8 Hz, 2H, H10’, H2’) 4.54 (s, 2H, HNH), 

4.05 (s, 2H, H13), 3.75 (d, J = 16.8 Hz, 2H, H10, H2), 2.81 

(d, J = 13.2 Hz, 2H, H5,7) 2.60 (d, J = 13.6 Hz, 2H, H4,8), 

1.46 (t, J = 13.6 Hz, 2H) 

 

MS (FAB) m/z 473.3 [M + 3H2O - CH3COO-], 419.3 [M - CH3COO-] 
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A solution of Zn(OTf)2 (0.15 mmol) in dry DCM (7.0 mL) was added dropwise to a solution of ligand 

7a (0.15 mmol) in dry DCM (3.0 mL). The mixture was left to react for 2 hours, then the solvent was 

evaporated and n-hexane (8.0 mL) was added. The resulting suspension was stirred for 30 minutes, 

then the product was recovered by filtration as a pale yellow solid. 

Yield: 83% 

1H NMR (300 MHz, CDCl3) δ 8.07 (t, J = 7.7 Hz, 1H), 7.49 (d, J = 7.7 

Hz, 2H), 7.37 (d, J = 6.4 Hz, 3H), 7.23 (d, J = 7.2 Hz, 2H), 4.98 (d, J = 

5.5 Hz, 2H), 4.44 (dd, J = 17.9, 7.5 Hz, 2H), 3.92 (d, J = 18.1 Hz, 2H), 

3.83 (s, 1H), 3.47 (dd, J = 14.7, 13.6 Hz, 2H), 2.64 (d, J = 12.9 Hz, 4H), 

2.54 – 2.45 (m, 2H), 1.44 – 1.28 (m, 2H). 

13C NMR (75 MHz, DMSO-d6) δ 155.0 (C), 141.9 (CH), 133.0 (CH), 

132.5 (C), 129.0 (CH), 122.1 (CH), 53.4 (CH2), 50.8 (CH2), 48.2 (CH2). 

19F NMR (282 MHz, Methylene Chloride-d2) δ -78.01. 

MS (FAB) m/z 359 [M -H -2OTf]
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A solution of Zn(AcO)2 ∙ 2 H2O (0.18 mmol) in dry DCM (8.0 mL) was added dropwise to a solution of 

ligand 7e (0.18 mmol) in dry DCM (4.0 mL). The mixture was left to react for 2 hours, then the solvent 

was evaporated and n-hexane (8.0 mL) was added. The resulting suspension was stirred for 30 

minutes, then the product was recovered by filtration as a pale yellow solid. 

Yield: 68% 

 

MS (FAB) m/z  525 [M + 2H2O - 2CH3COO-] 

Elem. An. C32H44N4O6Zn Calculated: C 59,49; H 6,86; N 8,67 

  Found: C 58,52; H 6,88; N 8,46 
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A solution of ZnCl2 (0.2 mmol) in dry DCM (8.0 mL) was added dropwise to a solution of ligand 7e 

(0.2 mmol) in dry DCM (4.0 mL). The mixture was left to react for 2 hours, then the solvent was 

evaporated and n-hexane (8.0 mL) was added. The resulting suspension was stirred for 30 minutes, 

then the product was recovered by filtration as a pale yellow solid. 

Yield: 88% 

 

MS (FAB) m/z 501 [M - Cl-] 

Elem. An. C26H34Cl2N4Zn (+2H2O) Calculated: C 52,34; H 6.66; N 9.75 

  Found: C 53,01; H 6,42; N 9.86 
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A solution of Zn(AcO)2 ∙ 2 H2O (0.42 mmol) in dry DCM (10.0 mL) was added dropwise to a solution 

of ligand 8a (0.42 mmol) in dry DCM (5.0 mL). The mixture was left to react for 2 hours, then the 

solvent was evaporated and n-hexane (10.0 mL) was added. The resulting suspension was stirred 

for 30 minutes, then the product was recovered by filtration as a pale yellow solid. 

Yield: 97% 

1H NMR   (300 MHz, CDCl3) δ 7.86 (t, J = 7.7 Hz, 1H), 7.26 

(d, J = 7.5 Hz, 2H), 4.44 (d, J = 16.7 Hz, 2H), 4.19 (dd, J = 18.0, 

2.2 Hz, 2H), 4.17 (dd, J = 18.0, 2.2 Hz, 2H), 3.96 (d, J = 16.7 

Hz, 2H), 3.73 (bs, 2H), 2.98 (dt, J = 22.4, 14.1 Hz, 6H), 2.38 

(s, 2H), 2.19 (s, 1H), 1.54 (t, J = 13.1 Hz, 2H). 
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A solution of 8a-Zn(AcO)2 (0.12 mmol) in dry THF (10.0 mL) was added dropwise to a solution of 

CuSO4 (0.43 mmol) and Na-ascorbate (0.43 mmol) in H2O (5.0 mL). 3,5 bis-CF3 phenylazide (0.43 

mmol) was added in one portion and the resulting mixture was left to react over night, then the 

solvent was evaporated and DCM (10.0 mL) was added. The organic layer was washed with brine (3 

x 7.0mL), treated with Na2SO4 and dried in vacuum leading to the product as a pale yellow solid. 

Yield: 97% 

1H NMR  (400 MHz, CDCl3) δ 10.49 (s, 1H), 9.02 (s, 

2H), 8.65 (s, 2H), 8.36 (s, 4H), 7.88 (s, 1H), 7.85 (s, 

2H), 7.51 (t, 1H), 7.01 (d, 2H), 5.76 (bs, 3H), 4.35 

(m, 8H), 3.97 (m, 2H), 3.82 (m, 2H), 3.44 (m, 2H), 

3.14 (m, 4H), 1.99 (s, 6H, AcO). 

 

 

13C NMR (101 MHz, CDCl3) δ 173.1 (C16), 138.5 (Ca), 

138.0 (Cg), 137.7 (Cg’),132.5 (q, JCF 30Hz,Cf), 132.5 

(q, JCF 30Hz,Cf’), 122.7 (q, JCF 135Hz,C17), 122.6 (q, JCF 135Hz,C17’), 122.4 (Cc), 122.1 (Cd’), 120.7 (Cd,Cb), 

58.3 (C13), 51.9 (C2,C10), 51.7 (C13’), 46.2 (C5,C7). 
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A solution of Zn(AcO)2 ∙ 2 H2O (0.42 mmol) in dry acetonitrile (10.0 mL) was added dropwise to a 

solution of ligand 7i (0.42 mmol) and TEA (1.3 mmol) in dry acetonitrile (5.0 mL). The mixture was 

left to react for 2 hours, then the solvent was evaporated and n-hexane (10.0 mL) was added. The 

resulting suspension was stirred for 30 minutes, then the product was recovered by filtration as a 

pale yellow solid. 

Yield: 97% 

 

1H NMR  (400 MHz, D2O): δ 8.03 (t, J = 7.8 Hz, 1H, Ha), 7.47 (d, J = 7.8 Hz, 2H, Hb), 4.56 – 4.41 

(pst, 2H, H2+10), 3.99 (m, 2H, H2’+10’), 3.58 (m 1H, H17), 3.40 (m, 2H, H13), 3.08 – 2.57 

(m, 8H, CH2), 2.07 – 1.37 (m, 6H, CH2). 

13C NMR  (101 MHz, D2O): δ 154.30 (C1), 141.17 (Ca), 121.66 (Cb), 54.38 (CH), 52.38 (C2+12), 50.88 

(CH2), 46.69 (CH2), 31.25(CH2), 22.44 (CH2), 20.34 (CH2). 

19F NMR  (282 MHz, Deuterium Oxide): δ -79.11 (CF triflate). 

MS (FAB+) m/z 398 [M]2+ 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4.13 Other transition metal complexes 

 

 
 

To a solution of 7a (271.6 mg; 0.9 mmol) in distilled THF (14.0 mL), was added of BuLi (0.8 mL, 1.8 

mmol) in n-hexane (5.0 mL) solution. During the addition the mixture changed its color from yellow 

to dark red and Ru(COD)Cl2 (260.2 mg, 0.9 mmol) was added. The reaction was refluxed for 30 

minutes and then filtered. The precipitate was then extracted in soxhlet for 15 hours using the 

filtrated solution. The solid was then recovered from the soxhlet giving the complex as brownish 

poweder. 

Yield: 45% 

 

1H NMR  (400 MHz, DMSO) δ 7.93 (t, J = 7.9 Hz, 1H, Hb), 7.69 (s, 

2H, NH), 7.57 (d, J = 7.9 Hz, 2H, Ha), 7.41 – 7.37 (m, 3H, HAr), 7.30 

– 7.22 (m, 2H, HAr), 5.30 (dd, J = 18.6, 6.4 Hz, 2H, H2,10), 4.60 (d, J 

= 18.6 Hz, 2H, H2,10), 4.54 (s, 2H, Hδ), 4.23 (t, J = 13.9 Hz, 2H, H4,8), 

3.98 (s, 2H, H13), 3.48 (s, 2H, Hα), 3.35 (s, 2H, H4,8), 2.85 – 2,61 (m, 

4H, Hγ), overlapped 2.72 (d, J = 13.9 Hz, 2H, H5,7), 2.37 – 2.14 (m, 

4H, Hβ), 2.00 (t, J = 13.9 Hz, 2H, H5,7) 

 

13C NMR (300 MHz, DMSO) δ 160.26(C1,11), 138.61(Ca), 133.83(CH), 131.07(C), 128.79 (CH), 

120.39 (CHb), 86.67 (Cα), 85.09 (Cδ), 64.95 (C2 and C11), 59.17(C4 and C8), 52.41(C5 and 

C7), 51.77(C13), 29.53(Cβ), 28.97(Cγ) 

MS (FAB) m/z 505 (M+) [considering the ligand deprotonated on both N-H] 
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To a solution of 7e (0.9 mmol) in distilled THF (15.0 mL), was added of BuLi (1.8 mmol) in n-hexane 

(5.0 mL) solution. During the addition the mixture changed its color from yellow to dark red and 

Ru(COD)Cl2 (0.9 mmol) was added. The reaction was refluxed for 30 minutes and then filtered. The 

precipitate was then extracted in soxhlet for 15 hours using the filtrated solution. The solid was then 

recovered from the soxhlet giving the complex as brownish poweder. 

Yield: 62% [Not soluble in the common NMR solvents] 

MS (FAB) m/z (%) 612 (100), 611 (58), 614 (54) [M-2Cl]  

Elem. An. C36H46N4Cl2Ru Calculated: C 59,81; H 6,79; N 8,21 

  Found: C 57,91; H 6,47; N 8,72 

 

A solution of NiCl2 ∙ 6H2O (0.29 mmol) in EtOH (2.0 mL) was added dropwise to a solution of 7e (0.29 

mmol) in EtOH (2.0 mL). The mixture changed colour from yellow to dark green and the product 

started to precipitate. The mixture was refluxed for 1 hour, then cooled and the complex was 

recovered by filtration as a light green powder. 

Yield 51% [Not soluble in the common NMR solvents] 

MS (FAB) m/z (%) 460 (100) [M-2Cl]  

Elem. An. C26H34N4Cl2Ni Calculated: C 58,68; H 6,44; N 10,53 

  Found: C 57,95; H 6,49; N 10,72 



 

193 

 

 

A solution of Pd(CH3CN)2Cl2 (0.27 mmol) in DCM (8.0 mL) was added dropwise to a solution of 7e 

(0.27 mmol) in DCM (2.0 mL). The mixture was refluxed for 1 hour, then cooled and the complex 

was recovered by filtration as a light grey powder. 

Yield 87%  

MS (FAB) m/z (%) 983 [M+]  

Elem. An. C52H68N8Cl2Pd Calculated: C 63,57; H 6,98; N 11,41 

  Found: C 63.52; H 6,77; N 10,78 
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A solution of CdCl2 ∙ 2.5 H2O (0.32 mmol) in EtOH (8.0 mL) was added dropwise to a solution of 7e 

(0.32 mmol) in EtOH (4.0 mL). The mixture changed colour from yellow to white and the product 

started to precipitate. The mixture was refluxed for 1 hour, then cooled and the complex was 

recovered by filtration as a white powder. 

Yield 72% [Not soluble in the common NMR solvents] 

MS (FAB) m/z (%) 550 (100), 548 (75) [M+]  

Elem. An. C26H33N4ClCd Calculated: C 56,84; H 6,05; N 10,20 

  Found: C 56.01; H 5,55; N 10,09 

 

 

A solution of Co(AcO)2 ∙ 4 H2O (0.35 mmol) in MeOH (7.0 mL) was added dropwise to a solution of 

7a (0.35 mmol) in EtOH (5.0 mL). The mixture changed colour from yellow to purple and was refluxed 

for 1 hour, then cooled and the complex was recovered by filtration as a lilac powder. 

Yield 75% 

MS (FAB) m/z (%) 473 [M+]  

Elem. An. C22H30CoN4O2 Calculated: C 55,81; H 6,39; N 11,83 

  Found: C 55.05; H 5,96; N 11.02 
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A solution of Co(AcO)2 ∙ 4 H2O (0.30 mmol) in MeOH (7.0 mL) was added dropwise to a solution of 

7d (0.30 mmol) in EtOH (4.0 mL). The mixture changed colour from yellow to purple and was 

refluxed for 1 hour, then cooled and the complex was recovered by filtration as a lilac powder. 

Yield 85% 

MS (FAB) m/z (%) 566 [M - AcO]  

Elem. An. C33H46CoN4O4Calculated: C 63,76; H 7,46; N 9,01 

  Found: C 60,08; H 6,98; N 7,87 

 

A solution of Co(AcO)2 ∙ 4 H2O (0.31 mmol) in MeOH (7.0 mL) was added dropwise to a solution of 

7e (0.31 mmol) in EtOH (4.0 mL). The mixture changed colour from yellow to purple and was 

refluxed for 1 hour, then cooled and the complex was recovered by filtration as a lilac powder. 

Yield 81% 

MS (FAB) m/z (%) 520 [M - AcO]  

Elem. An. C30H40CoN4O4 Calculated: C 62,17; H 6,96; N 9,67 

  Found: C 60,18; H 7,05; N 8,69 
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A solution of CoCl2 (0.37 mmol) in MeOH (7.0 mL) was added dropwise to a solution of 7e (0.37 

mmol) in EtOH (4.0 mL). The mixture changed colour from yellow to purple and was refluxed for 1 

hour, then cooled and the complex was recovered by filtration as a lilac powder. 

Yield 65% 

MS (FAB) m/z (%) 496 [M - Cl]  

Elem. An. C26H33N4CoCl2 Calculated: C 58,65; H 6,44; N 10,42 

  Found: C 57,43; H 5,98; N 9,42 

 

 

A solution of CoCl2 (0.37 mmol) in MeOH (7.0 mL) was added dropwise to a solution of 7e (0.37 

mmol) in EtOH (4.0 mL). The mixture changed colour from yellow to purple and was refluxed for 1 

hour, then cooled and the complex was recovered by filtration as a lilac powder. 

Yield 65% 

MS (FAB) m/z (%) 665 [M – Cl + 4 H2O]  

Elem. An. C34H39N4ClCoO2 Calculated: C 64,81; H 6,24; N 8,89 

  Found: C 63,77; H 6,02; N 9,12 
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4.B Catalysis 

4.14   X-H carbene insertion106 

Copper-catalyzed Si–H bond carbene insertion using diazo compounds 

 

Representative procedure for the synthesis of compounds 3: 

Under Ar atmosphere, a solution of 6a or 6e (0.0044 mmol) and [(CuOTf)2∙C6H6)] (0.002 mmol) in 

1,2-dichloroethane (1.0 mL) was stirred for 1h at rt. The silane 13 (0.6 mmol) was added, followed 

by the slow addition during 1.5 h of a solution of the diazocompound 12 (0.2 mmol) in 1,2-

dichloroethane (1.0 mL) using a syringe pump. The resulting mixture was stirred at this temperature 

until disappearance of the starting material (checked by TLC analysis). The solvent was removed 

under vacuum. The resulting residue was purified by flash column chromatography (SiO2, hexanes : 

ethyl acetate) to afford 14. 

 

 

Ethyl 2-(dimethyl(phenyl)silyl)-2-phenylacetate (14a): The representative procedure was followed 

using dimethylphenylsilane (13a, 90 μL, 0.6 mmol) and ethyl diazo(phenyl)acetate (12a, 38.0 mg, 

0.2 mmol). After 18 h, purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14a 

(51.0 mg, 85% with 6a; 55.0 mg, 92% with 6e) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 0.35 (s, 3H), 0.40 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H), 3.62 (s, 1H), 4.03 (qd, J = 

7.1, 1.6 Hz, 2H), 7.10-7.51 (m, 10H). 

13C NMR (75 MHz, CDCl3): -4.5 (CH3), -3.9 (CH3), 14.3 (CH3), 46.3 (CH), 60.3 (CH2), 125.7 (CH), 127.8 

(CH), 128.1 (CH), 128.5 (CH), 129.7 (CH), 134.2 (CH), 135.7 (C), 136.2 (C), 172.8 (C). 

HR-MS (EI) calc. for C18H22NaO2Si [M+Na+] 321.1281, found 321.1282. 

HPLC: Chiralcel OD-H column (250 mm); detected at 230 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 6.6 min, 12.5 min. 
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The spectroscopic data are in agreement with those previously reported. 

 

Ethyl 2-(dimethyl(phenyl)silyl)-2-(o-tolyl)acetate (14b): The representative procedure was 

followed using 13a (90 μL, 0.6 mmol) and 12b (41.0 mg, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14b (52.0 mg, 83% with 6a; 54.0 mg, 87% with 

6e) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 0.34 (s, 3H), 0.43 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H), 2.06 (s, 3H), 3.88 (s, 1H), 

4.05 (qd, J = 7.1, 1.7 Hz, 2H), 7.01-7.11 (m, 2H), 7.12-7.21 (m, 1H), 7.26-7.43 (m, 5H), 7.61 (d, J = 7.6 

Hz, 1H). 

13C NMR (75 MHz, CDCl3): -4.1 (CH3), -3.5 (CH3), 14.4 (CH3), 20.5 (CH3), 40.7 (CH), 60.4 (CH2), 125.7 

(CH), 125.8 (CH), 127.8 (CH), 129.1 (CH), 129.7 (CH), 130.2 (CH), 134.1 (CH), 134.6 (C), 135.0 (C), 

136.1 (C), 172.9 (C). 

HR-MS (ESI) calc. for C19H24NaO2Si [M+Na+] 335.1438, found 335.1439. 

HPLC: Chiralcel OD-H column (250 mm); detected at 235 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 6.3 min, 8.0 min. 

The spectroscopic data are in agreement with those previously reported. 

 

 

 

Ethyl 2-(dimethyl(phenyl)silyl)-2-(m-tolyl)acetate (14c): The representative procedure was 

followed using 13a (90 μL, 0.6 mmol) and 12c (41.0 mg, 0.2 mmol). After 24 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14c (52.0 mg, 83% with 6a; 59.0 mg, 94% with 

6e) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 0.33 (s, 3H), 0.37 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H), 2.28 (s, 3H), 3.56 (s, 1H), 

4.00 (qd, J = 7.1, 1.2 Hz, 2H), 6.92-7.17 (m, 4H), 7.29-7.46 (m, 5H). 
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13C NMR (75 MHz, CDCl3): -4.5 (CH3), -3.9 (CH3), 14.3 (CH3), 21.6 (CH3), 46.1 (CH), 60.3 (CH2), 125.6 

(CH), 126.5 (CH), 127.7 (CH), 128.0 (CH), 129.3 (CH), 129.7 (CH), 134.2 (CH), 135.8 (C), 136.0 (C), 

137.6 (C), 172.8 (C). 

HR-MS (ESI) calc. for C19H24NaO2Si [M+Na+] 335.1438, found 335.1438. 

HPLC: Chiralcel OD-H column (250 mm); detected at 235 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 6.2 min, 12.0 min. 

The spectroscopic data are in agreement with those previously reported. 

 

 

 

Ethyl 2-(dimethyl(phenyl)silyl)-2-(p-tolyl)acetate (14d): The representative procedure was 

followed using 13a (90 μL, 0.6 mmol) and 12d (41.0 mg, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14d (51.0 mg, 82% with 6a; 52.0 mg, 83% with 

6e) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 0.32 (s, 3H), 0.36 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H), 2.30 (s, 3H), 3.56 (s, 1H), 

3.99 (qd, J = 7.1, 2.5 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 7.28-7.46 (m, 5H). 

13C NMR (75 MHz, CDCl3): -4.5 (CH3), -3.8 (CH3), 14.3 (CH3), 21.1 (CH3), 45.8 (CH), 60.3 (CH2), 127.8 

(CH), 128.4 (CH), 128.9 (CH), 129.7 (CH), 133.0 (C), 134.2 (CH), 135.2 (C), 135.9 (C), 172.9 (C). 

HR-MS (ESI) calc. for C19H24NaO2Si [M+Na+] 335.1438, found 335.1439. 

HPLC: Chiralcel OD-H column (250 mm); detected at 235 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 6.2 min, 8.9 min. 
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Ethyl 2-(dimethyl(phenyl)silyl)-2-(4-methoxyphenyl)acetate (14e): The representative procedure 

was followed using 13a (90 μL, 0.6 mmol) and 12e (44.0 mg, 0.2 mmol). After 18 h, purification by 

flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14e (47.0 mg, 72% with 6a; 59.0 mg, 90% 

with 6e) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 0.34 (s, 3H), 0.38 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H), 3.56 (s, 1H), 3.80 (s, 3H), 

4.02 (qd, J = 7.1, 2.0 Hz, 2H), 6.80 (dap, J = 8.8 Hz, 2H), 7.16 (dap, J = 8.8 Hz, 2H), 7.30-7.48 (m, 5H). 

13C NMR (75 MHz, CDCl3): -4.5 (CH3), -4.0 (CH3), 14.2 (CH3), 45.0 (CH), 55.2 (CH3), 60.2 (CH2), 113.5 

(CH), 127.6 (CH), 128.1 (C), 129.4 (CH), 129.5 (CH), 134.1 (CH), 135.8 (C), 157.6 (C), 172.9 (C). 

HR-MS (ESI) calc. for C19H24NaO3Si [M+Na+] 351.1387, found 351.1386. 

HPLC: Chiralcel OD-H column (250 mm); detected at 240 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 8.7 min, 19.9 min. 

 

 

 

Ethyl 2-(4-bromophenyl)-2-(dimethyl(phenyl)silyl)acetate (314f): The representative procedure 

was followed using 13a (90 μL, 0.6 mmol) and 12f (44.0 mg, 0.2 mmol). After 18 h, purification by 

flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14f (61.0 mg, 81% with 6a; 71.0 mg, 94% 

with 6e) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 0.33 (s, 3H), 0.36 (s, 3H), 1.12 (t, J = 7.1 Hz, 3H), 3.56 (s, 1H), 4.02 (qd, J = 

7.1, 1.5 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.29-7.43 (m, 7H). 

13C NMR (75 MHz, CDCl3): -4.4 (CH3), -4.0 (CH3), 14.3 (CH3), 45.8 (CH), 60.5 (CH2), 119.6 (C), 127.9 

(CH), 129.9 (CH), 130.2 (CH), 131.1 (CH), 134.2 (CH), 135.2 (C), 135.3 (C), 172.4 (C). 

HR-MS (ESI) calc. for C18H21BrO2Si [M+] 376.0489, found 376.0495. 

HPLC: Chiralcel OD-H column (250 mm); detected at 245 nm; hexane/i-propanol = 98:2; flow = 0.7 

mL/min; Retention time: 8.8 min, 9.6 min. 
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Ethyl 2-(dimethyl(phenyl)silyl)-2-(4-(trifluoromethyl)phenyl)acetate (14g): The representative 

procedure was followed using 13a (90 μL, 0.6 mmol) and 12g (44.0 mg, 0.2 mmol). After 48 h, 

purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14g (46.0 mg, 63% with 

6a; 47.0 mg, 65% with 6e) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 0.34 (s, 3H), 0.37 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H), 3.67 (s, 1H), 4.03 (qd, J = 

7.1, 1.5 Hz, 2H), 7.29-7.42 (m, 7H), 7.46 (d, J = 8.2 Hz, 2H). 

13C NMR (75 MHz, CDCl3): -4.5 (CH3), -4.1 (CH3), 14.3 (CH3), 46.5 (CH), 60.6 (CH2), 125.0 (q, J = 3.7 Hz, 

CH), 127.9 (CH), 128.6 (CH), 130.0 (CH), 134.1 (CH), 134.9 (C), 140.5 (C), 172.2 (C) (two quaternary 

carbons could not be located). 

19F NMR (282 MHz, CDCl3): -62.30 (CF3). 

HR-MS (ESI) calc. for C19H21F3NaO2Si [M+Na+] 389.1161, found 389.1157. 

The spectroscopic data are in agreement with those previously reported. 

HPLC: Chiralcel OD-H column (250 mm); detected at 230 nm; hexane/i-propanol = 98:2; flow = 0.7 

mL/min; Retention time: 16.4 min, 23.0 min. 

 

 

 

Methyl 2-(dimethyl(phenyl)silyl)-2-phenylacetate (14h): The representative procedure was 

followed using 13a (90 μL, 0.6 mmol) and 12h (35.0 mg, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14h (48.0 mg, 84% with 6a; 51.0 mg, 89% with 

6e) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 0.33 (s, 3H), 0.36 (s, 3H), 3.56 (s, 3H), 3.61 (s, 1H), 7.11-7.25 (m, 5H), 7.29-

7.43 (m, 5H). 

13C NMR (75 MHz, CDCl3): -4.4 (CH3), -4.0 (CH3), 46.2 (CH), 51.4 (CH3), 125.8 (CH), 127.8 (CH), 128.2 

(CH), 128.5 (CH), 129.8 (CH), 134.1 (CH), 135.6 (C), 136.1 (C), 173.2 (C). 
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HR-MS (ESI) calc. for C17H20NaO2Si [M+Na+] 307.1125, found 307.1125. 

HPLC: Chiralcel OD-H column (250 mm); detected at 235 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 7.1 min, 16.9 min. 

The spectroscopic data are in agreement with those previously reported. 

 

 

 

Isopropyl 2-(dimethyl(phenyl)silyl)-2-phenylacetate (14i): The representative procedure was 

followed using di 13a (90 μL, 0.6 mmol) and 12i (41.0 mg, 0.2 mmol). After 48 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14i (47.0 mg, 75% with 6a; 49.0 mg, 78% with 

6e) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 0.31 (s, 3H), 0.38 (s, 3H), 1.05 (d, J = 6.3 Hz, 3H), 1.15 (d, J = 6.3 Hz, 3H), 

3.57 (s, 1H), 4.90 (hept, J = 6.3 Hz, 1H), 7.09-7.25 (m, 5H), 7.29-7.45 (m, 5H). 

13C NMR (75 MHz, CDCl3): -4.4 (CH3), -3.8 (CH3), 21.9 (CH3), 22.1 (CH3), 46.3 (CH), 67.8 (CH), 125.7 

(CH), 127.8 (CH), 128.1 (CH), 128.5 (CH), 129.7 (CH), 134.3 (CH), 135.8 (C), 136.4 (C), 172.3 (C). 

HR-MS (ESI) calc. for C19H24NaO2Si [M+Na+] 335.1838, found 335.1434. 

HPLC: Chiralcel OD-H column (250 mm); detected at 230 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 6.1 min, 7.0 min. 

The spectroscopic data are in agreement with those previously reported. 

 

 

 

Diethyl ((dimethyl(phenyl)silyl)(phenyl)methyl)phosphonate (14j): The representative procedure 

was followed using dimethylphenylsilane 13a (90 μL, 0.6 mmol) and 12j (51.0 mg, 0.2 mmol). After 

8 h at 60°C, purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14j (40.0 mg, 

55% with 6e) as a colourless oil. 
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1H NMR (300 MHz, CDCl3): 0.35 (s, 3H), 0.52 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H), 

2.87 (d, J = 24.4 Hz, 1H), 3.68-3.99 (m, 4H), 7.05-7.22 (m, 5H), 7.24-7.44 (m, 5H). 

13C NMR (75 MHz, CDCl3): -3.1 (d, J = 2.4 Hz, CH3), -2.9 (CH3), 16.2 (CH3), 16.3 (CH3), 37.2 (d, J = 126.4 

Hz, CH), 61.1 (d, J = 6.6 Hz, CH2), 62.4 (d, J = 6.8 Hz, CH2), 125.7 (d, J = 2.7 Hz, CH), 127.6 (CH), 128.3 

(CH), 129.4 (CH), 129.6 (d, J = 8.3 Hz, CH), 134.33 (CH), 134.69 (d, J = 7.0 Hz, C), 136.73 (d, J = 4.0 Hz, 

C). 

HR-MS (ESI) calc. for C19H27O3PSi [M+H+] 363.1540, found 363.1541. 

HPLC: Chiralcel AD-H column (250 mm); detected at 220 nm; hexane/i-propanol = 95:5; flow = 0.7 

mL/min; Retention time: 13.1 min, 14.4 min. 

The spectroscopic data are in agreement with those previously reported. 

 

 

 

Ethyl 2-(triethylsilyl)acetate (14k): The representative procedure was followed using 13c (96 μL, 0.6 

mmol) and 12m (25 μL of a solution at 87% w/w, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14k (39.0 mg, 96%) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 0.62 (q, J = 7.9 Hz, 6H), 0.96 (t, J = 7.9 Hz, 9H), 1.23 (t, J = 7.1 Hz, 3H), 1.88 

(s, 2H), 4.08 (q, J = 7.1 Hz, 2H). 

13C NMR (75 MHz, CDCl3): 3.9 (CH3), 7.4 (CH2), 14.8 (CH3), 22.3 (CH2), 60.2 (CH2), 173.8 (C). 

The spectroscopic data are in agreement with those previously reported. 

 

 

Ethyl 2-(methyldiphenylsilyl)-2-phenylacetate (14l): The representative procedure was followed 

using 13b (120 μL, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14l (56.0 mg, 78% with 6a; 60.0 mg, 83% with 

6e) as a colourless oil.  
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1H NMR (300 MHz, CDCl3): 0.62 (s, 3H), 1.01 (t, J = 7.2 Hz, 3H), 3.85-3.99 (m, 2H), 4.00 (s, 1H), 7.08-

7.48 (m, 13H), 7.51-7.63 (m, 2H). 

13C NMR (75 MHz, CDCl3): -5.2 (CH3), 14.1 (CH3), 45.0 (CH), 60.5 (CH2), 125.9 (CH), 127.8 (CH), 127.9 

(CH), 128.1 (CH), 129.0 (CH), 129.8 (CH), 129.9 (CH), 133.8 (CH), 134.2 (C), 135.1 (C), 135.3 (CH), 

135.7 (C), 172.7 (C). 

HR-MS (EI) calc. for C23H24NaO2Si [M+Na+] 383.1438, found 383.1437. 

HPLC: Chiralcel OD-H column (250 mm); detected at 230 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 6.7 min, 10.4 min. 

 

 

 

Ethyl 2-phenyl-2-(triethylsilyl)acetate (14m): The representative procedure was followed using 13c 

(96 μL, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 24 h, purification by flash chromatography 

(SiO2, hexane/EtOAc = 20:1) yielded 14m (46.0 mg, 82% with 6a; 51.0 mg, 91% with 6e) as a 

colourless oil.  

1H NMR (300 MHz, CDCl3): 0.59 (ddd, J = 10.6, 7.9, 1.7 Hz, 6H), 0.91 (t, J = 7.9 Hz, 9H), 1.28 (t, J = 7.1 

Hz, 3H), 3.51 (s, 1H), 4.13 (qd, J = 7.1, 2.0 Hz, 2H), 7.04-7.43 (m, 5H). 

13C NMR (75 MHz, CDCl3): 2.9 (CH2), 7.2 (CH3), 14.5 (CH3), 43.0 (CH), 60.3 (CH2), 125.6 (CH), 128.2 

(CH), 128.6 (CH), 136.5 (C), 173.3 (C). 

HR-MS (EI) calc. for C16H26NaO2Si [M+Na+] 301.1594, found 301.1594. 

HPLC: Chiralcel OD-H column (250 mm); detected at 230 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 5.7 min, 8.0 min. 

The spectroscopic data are in agreement with those previously reported. 
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Ethyl 2-phenyl-2-(triisopropylsilyl)acetate (14n): The representative procedure was followed using 

13d (123 μL, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 24 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14n (39.0 mg, 61% with 6a; 44.0 mg, 68% with 

6e) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 0.99 (d, J = 7.2 Hz, 9H), 1.06 (d, J = 7.1 Hz, 9H), 1.13-1.32 (m, 6H), 3.68 (s, 

1H), 4.11 (qd, J = 7.2, 2.2 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 7.27 (t, J = 7.4 Hz, 2H), 7.41 (d, J = 7.2 Hz, 

2H). 

13C NMR (75 MHz, CDCl3): 11.7 (CH), 14.5 (CH3), 18.7 (CH3), 18.8 (CH3), 41.7 (CH), 60.5 (CH2), 125.8 

(CH), 128.2 (CH), 129.6 (CH), 137.1 (C), 173.8 (C). 

HR-MS (EI) calc. for C19H32NaO2Si [M+Na+] 343.2064, found 343.2069. 

HPLC: Chiralcel OD-H column (250 mm); detected at 220 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 5.4 min, 6.3 min. 

 

 

 

Ethyl 2-phenyl-2-(triphenylsilyl)acetate (14o): The representative procedure was followed using 

13e (156.0 mg, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 24 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14o (33 mg, 39% with 6a; 57.0 mg, 67% with 

6e) as a white solid. 

1H NMR (300 MHz, CDCl3): 0.94 (t, J = 7.1 Hz, 3H), 3.90 (qd, J = 7.1, 1.9 Hz, 2H), 4.25 (s, 1H), 7.12 (s, 

5H), 7.28-7.46 (m, 15H). 

13C NMR (75 MHz, CDCl3): 13.9 (CH3), 44.8 (CH), 60.7 (CH2), 126.2 (C), 127.8 (CH), 128.1 (CH), 130.0 

(CH), 130.1 (CH), 132.4 (CH), 135.4 (C), 136.7 (CH), 172.7 (C). 

HR-MS (EI) calc. for C28H26NaO2Si [M+Na+] 445.1594, found 445.1596. 

HPLC: Chiralcel OD-H column (250 mm); detected at 230 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 6.5 min, 8.5 min. 
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Ethyl 2-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)-2-phenylacetate (14p): The representative 

procedure was followed using 0.005 mmoles of [(CuOTf)2∙C6H6)], 0.011 mmoles of the Ligand (6a o 

6e), 13f (163 μL, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 24 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14p (62.0 mg, 80% with 6a; 63.0 mg, 82% with 

6e) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 0.01 (s, 18H), 0.10 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H), 3.39 (s, 1H), 4.04-4.23 

(m, 2H), 7.16 (tt, J = 7.2, 1.5 Hz, 1H), 7.26 (t, J = 7.4 Hz, 2H), 7.32-7.37 (m, 2H). 

13C NMR (75 MHz, CDCl3): 1.4 (CH3), 1.7 (CH3), 14.5 (CH3), 47.8 (CH), 60.4 (CH2), 125.8 (CH), 128.1 

(CH), 129.1 (CH), 136.1 (C), 172.3 (C). 

HR-MS (EI) calc. for C17H33O4Si3 [M+H+] 385.1681, found 385.1687. 

HPLC: Chiralcel OD-H column (250 mm); detected at 220 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 5.1 min, 6.1 min. 

 

 

 

Ethyl 2-(1,1,3,3,3-pentamethyldisiloxanyl)-2-phenylacetate (14q): The representative procedure 

was followed using 13g (117 μL, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 18 h, purification by 

flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14q (53.0 mg, 85% with 6e) as a 

colourless oil. 

1H NMR (300 MHz, CDCl3): 0.01 (s, 9H), 0.11 (d, J = 2.6 Hz, 6H), 1.28 (t, J = 7.1 Hz, 3H), 3.45 (s, 1H), 

4.15 (q, J = 7.1 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.27 (t, J = 7.5 Hz, 2H), 7.35 (d, J = 7.1 Hz, 2H). 

13C NMR (75 MHz, CDCl3): -0.4 (CH3), 1.8 (CH3), 14.5 (CH3), 48.2 (CH), 60.4 (CH2), 125.7 (CH), 128.2 

(CH), 128.8 (CH), 136.3 (C), 172.5 (C). 

HR-MS (EI) calc. for C15H26NaO3Si2 [M+Na+] 333.1313, found 333.1313. 

HPLC: Chiralcel OD-H column (250 mm); detected at 220 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 5.4 min, 7.5 min. 
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Ethyl 2-phenyl-2-(1,1,3,3-tetramethyldisiloxanyl)acetate (14r): The representative procedure was 

followed using 13h (106 μL, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 24 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14r (56.0 mg, 94% with 6a; 56.0 mg, 95% with 

6e) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 0.10 (d, J = 2.8 Hz, 6H), 0.13 (s, 6H), 1.28 (t, J = 7.1 Hz, 3H), 3.47 (s, 1H), 

4.15 (q, J = 7.1 Hz, 2H), 4.61 (dt, J = 5.5, 2.8 Hz, 1H), 7.13-7.22 (m, 1H), 7.24-7.31 (m, 2H), 7.32-7.39 

(m, 2H). 

13C NMR (75 MHz, CDCl3): -0.7 (CH3), 0.7 (CH3), 14.5 (CH3), 48.1 (CH), 60.5 (CH2), 125.8 (CH), 128.3 

(CH), 128.8 (CH), 136.1 (C), 172.5 (C). 

HR-MS (EI) calc. for C14H24NaO3Si2 [M+Na+] 319.1156, found 319.1157. 

HPLC: Chiralcel OD-H column (250 mm); detected at 225 nm; hexane/i-propanol = 97:3; flow = 0.7 

mL/min; Retention time: 5.3 min, 7.3 min. 

 

 

Diethyl 2,2'-(1,1,3,3-tetramethyldisiloxane-1,3-diyl)bis(2-phenylacetate) (14s): The representative 

procedure was followed using 13h (36 μL, 0.2 mmol) and 12a (200.0 mg, 1 mmol, 5.0 equiv.). After 

18 h, purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 14s (72.0 mg, 79% 

with 6e) as a colourless oil. (14s is a mixture of diastereoisomers). 

1H NMR (300 MHz, CDCl3): -0.03 (d, J = 2.3 Hz, 6H), 0.03 (d, J = 1.3 Hz, 6H), 1.25 (td, J = 7.1, 1.9 Hz, 

6H), 3.39 (s, 2H), 4.12 (q, J = 7.1 Hz, 4H), 7.04-7.38 (m, 10H). 

13C NMR (75 MHz, CDCl3): -0.9 (CH3), -0.6 (CH3), 14.5 (CH3), 48.0 (CH), 60.5 (CH2), 125.9 (CH), 128.3 

(CH), 128.8 (CH), 136.0 (C), 172.3 (C). 

HR-MS (EI) calc. for C24H35O5Si2 [M+H+] 459.2018, found 459.2018. 
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Copper-catalyzed Si–H bond carbene insertion using enynones. 

 

Representative procedure for the synthesis of compounds 16: 

Under Ar atmosphere, a solution of 6e (0.0044 mmoles) and [(CuOTf)2∙C6H6)] (0.002 mmoles) in 1,2-

dichloroethane (1.0 mL) was stirred for 1h at rt. Silane 13a (0.6 mmoles) was added, followed by the 

slow addition during 1.5 h of a solution of the enynone 15 (0.2 mmoles) in 1,2-dichloroethane (1.0 

mL) using a syringe pump. The resulting mixture was stirred at this temperature until disappearance 

of the starting material (checked by TLC analysis). The solvent was removed under vacuum. The 

resulting residue was purified by flash column chromatography (SiO2, hexanes:ethyl acetate) to 

afford 16. 

 

 

1-(5-((dimethyl(phenyl)silyl)(phenyl)methyl)-2-methylfuran-3-yl)ethanone (16a): The 

representative procedure was followed using 13a (90 μL, 0.6 mmol) and 15a (42.0 mg, 0.2 mmol). 

After 18 h, purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 16a (43.0 mg, 

61% with 6e) as a pale yellow oil. 

1H NMR (300 MHz, CDCl3): 0.33 (s, 6H), 2.32 (s, 3H), 2.53 (s, 3H), 3.70 (s, 1H), 6.16 (s, 1H), 6.96-7.06 

(m, 2H), 7.09-7.41 (m, 8H). 

13C NMR (75 MHz, CDCl3): -3.8 (CH3), -3.6 (CH3), 14.5 (CH3), 29.3 (CH3), 38.3 (CH), 106.5 (CH), 122.3 

(C), 125.6 (CH), 127.7 (CH), 128.1 (CH), 128.4 (CH), 129.5 (CH), 134.3 (CH), 136.6 (C), 139.7 (C), 154.1 

(C), 156.9 (C), 194.5 (C). 

HR-MS (EI) calc. for C22H24NaO2Si [M+Na+] 371.1443, found 371.1434. 

HPLC: Chiralcel OD-H column (250 mm); detected at 235 nm; hexane/i-propanol = 98:2; flow = 0.7 

mL/min; Retention time: 11.0 min, 11.9 min. 



 

209 

 

 

 

1-(5-(1-(dimethyl(phenyl)silyl)hexyl)-2-methylfuran-3-yl)ethanone (16b): The representative 

procedure was followed using 13a (90 μL, 0.6 mmol) and 15b (41.0 mg, 0.2 mmol). After 18 h, 

purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 16b (48.0 mg, 70% with 

6e) as a pale yellow oil. 

1H NMR (300 MHz, CDCl3): 0.23 (s, 3H), 0.31 (s, 3H), 0.81 (t, J = 6.7 Hz, 3H), 1.06-1.37 (m, 6H), 1.45-

1.69 (m, 2H), 2.24 (dd, J = 11.1, 4.2 Hz, 1H), 2.35 (s, 3H), 2.49 (s, 3H), 5.97 (s, 1H), 7.30-7.38 (m, 3H), 

7.42 (dt, J = 6.1, 2.8 Hz, 2H). 

13C NMR (75 MHz, CDCl3): -4.8 (CH3), -3.8 (CH3), 14.2 (CH3), 14.5 (CH3), 22.6 (CH2), 28.3 (CH2), 29.1 

(CH2), 29.3 (CH2), 29.4 (CH3), 31.6 (CH), 104.4 (CH), 122.3 (C), 127.8 (CH), 129.3 (CH), 134.0 (CH), 

137.4 (C), 155.8 (C), 156.2 (C), 194.7 (C). 

HR-MS (EI) calc. for C21H30NaO2Si [M+Na+] 365.1913, found 365.1910. 
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Copper-catalyzed O–H/N–H bond carbene insertion using diazo compounds 

 

 

Representative procedure for the synthesis of compounds 18 and 20: 

Under Ar atmosphere, a solution of 6e (0.0044 mmoles) and [(CuOTf)2∙C6H6)] (0.002 mmoles) in 1,2-

dichloroethane (1.0 mL) was stirred for 1h at rt. The substrate 17 or 19 (0.6 mmoles) was added, 

followed by the slow addition during 1.5 h of a solution of the diazo compound 12 (0.2 mmoles) in 

1,2-dichloroethane (1.0 mL) using a syringe pump. The resulting mixture was stirred at this 

temperature until disappearance of the starting material (checked by TLC analysis). The solvent was 

removed under vacuum. The resulting residue was purified by flash column chromatography (SiO2, 

hexanes:ethyl acetate) to afford 18 or 20. 

 

 

Ethyl 2-phenoxy-2-phenylacetate (18a): The representative procedure was followed using phenol 

(17a, 56.0 mg, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 18a (42.0 mg, 83%) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 1.21 (t, J = 7.1 Hz, 3H), 4.13 - 4.29 (m, 2H), 5.63 (s, 1H), 6.96 (m, 3H), 7.27 

(m, 2H), 7.35 - 7.45 (m, 3H), 7.59 (dd, J = 7.7, 1.6 Hz, 2H). 

13C NMR (75 MHz, CDCl3): 14.2 (CH3), 61.7 (CH2), 78.9 (CH), 115.7 (CH), 121.9 (CH), 127.2 (CH), 128.9 

(CH), 129.0 (CH), 129.7 (CH), 135.7 (C), 157.5 (C), 170.1 (C). 

MS (EI) calc. for C16H16O3 [M+] 256.1, found 256. 

The spectroscopic data are in agreement with those previously reported. 
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Ethyl 2-phenyl-2-(p-tolyloxy)acetate (18b): The representative procedure was followed using p-

cresol (17b, 65.0 mg, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 18b (39.5 mg, 73%) as a colourless oil. 

1H NMR (300 MHz, CDCl3): 1.21 (t, J = 7.1 Hz, 3H), 2.27 (s, 3H), 4.07-4.31 (m, 2H), 5.59 (s, 1H), 6.85 

(d, J = 8.6 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 7.32-7.46 (m, 3H), 7.58 (d, J = 6.1 Hz, 2H). 

13C NMR (75 MHz, CDCl3): 14.2 (CH3), 20.6 (CH3), 61.7 (CH2), 79.0 (CH), 115.5 (CH), 127.2 (CH), 128.9 

(CH), 129.0 (CH), 130.1 (CH), 131.2 (C), 135.8 (C), 155.4 (C), 170.2 (C). 

HR-MS (ESI) calc. for C17H18NaO3 [M+Na+] 293.1148, found 293.1150. 

HPLC: Chiralcel OD-H column (250 mm); detected at 220 nm; hexane/i-propanol = 99:1; flow = 0.7 

mL/min; Retention time: 16.4 min, 20.8 min. 

 

 

Ethyl 2-(4-bromophenoxy)-2-phenylacetate (18c): The representative procedure was followed 

using 4-bromophenol (17c, 104.0 mg, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 18 h, 

purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 18c (43.5 mg, 65%) as a 

colourless oil. 

1H NMR (300 MHz, CDCl3): 1.21 (t, J = 7.1 Hz, 3H), 4.12 - 4.27 (m, 2H), 5.57 (s, 1H), 6.84 (d, J = 8.9 Hz, 

2H), 7.31 - 7.45 (m, 5H), 7.50 - 7.61 (m, 2H). 

13C NMR (75 MHz, CDCl3): 14.2 (CH3), 61.9 (CH2), 79.1 (CH), 114.3 (C), 117.5 (CH), 127.2 (CH), 129.0 

(CH), 129.2 (CH), 132.6 (CH), 135.2 (C), 156.6 (C), 169.7 (C). 

(The product contains traces of the ester used for the synthesis of the diazo-compound) 

MS (EI) calc. for C16H15BrO3 [M+] 234.0, found 234. 
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Ethyl 2-phenoxyacetate (18d): The representative procedure was followed using phenol (17a, 56.0 

mg, 0.6 mmol) and 12m (25 μL of a solution at 87% w/w, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 18d (32.0 mg, 90%) as a colourless oil.  

1H NMR (300 MHz, CDCl3): 1.29 (t, J = 7.1 Hz, 3H), 4.27 (q, J = 7.1 Hz, 2H), 4.61 (s, 2H), 6.91 (d, J = 8.0 

Hz, 2H), 6.99 (t, J = 7.4 Hz, 1H), 7.29 (t, J = 8.0 Hz, 2H). 

13C NMR (75 MHz, CDCl3): 14.3 (CH3), 61.5 (CH2), 65.6 (CH2), 114.8 (CH), 121.9 (CH), 129.7 (CH), 158.0 

(C), 169.1 (C). 

MS (EI) calc. for C10H12O3 [M+] 180.1, found 180. 

The spectroscopic data are in agreement with those previously reported. 

 

 

Ethyl 2-phenyl-2-(phenylamino)acetate (20a): The representative procedure was followed using 

aniline (19a, 54 μL, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 18 h, purification by flash 

chromatography (SiO2, hexane/EtOAc = 20:1) yielded 20a (41.0 mg, 81%) as a white solid. 

1H NMR (300 MHz, CDCl3): 1.22 (t, J = 7.1 Hz, 3H), 4.07-4.33 (m, 2H), 4.97 (d, J = 5.2 Hz, 1H), 5.07 (d, 

J = 5.8 Hz, 1H), 6.57 (d, J = 7.7 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 7.13 (dd, J = 8.5, 7.4 Hz, 2H), 7.29-7.40 

(m, 3H), 7.51 (d, J = 6.6 Hz, 2H). 

13C NMR (75 MHz, CDCl3): 14.2 (CH3), 60.9 (CH), 62.0 (CH2), 113.5 (CH), 118.2 (CH), 127.3 (CH), 128.3 

(CH), 128.9 (CH), 129.4 (CH), 137.8 (C), 146.1 (C), 172.0 (C). 

HR-MS (ESI) calc. for C16H18NO2 [M+H+] 256.1332, found 256.1333. 

The spectroscopic data are in agreement with those previously reported. 
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Ethyl 2-phenyl-2-(p-tolylamino)acetateacetate (20b): The representative procedure was followed 

using 4-methylaniline (19b, 65.0 mg, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). After 18 h, purification 

by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 20b (47.0 mg, 88%) as a white solid. 

1H NMR (300 MHz, CDCl3): 1.23 (t, J = 7.1 Hz, 3H), 2.22 (s, 3H), 3.99 - 4.32 (m, 2H), 5.07 (s, 1H), 6.52 

(d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.1 Hz, 2H), 7.26 - 7.43 (m, 3H), 7.52 (m, 2H). 

13C NMR (75 MHz, CDCl3): 14.1 (CH3), 20.5 (CH3), 61.3 (CH), 61.8 (CH2), 113.8 (CH), , 127.3 (CH), 127.4 

(C), 128.3 (CH), 128.9 (CH), 129.8 (CH), 137.9 (C), 143.8 (C), 172.0 (C). 

MS (EI) calc. for C17H19NO2 [M+] 269.1, found 269. 

The spectroscopic data are in agreement with those previously reported. 

 

 

Ethyl 2-phenyl-2-((4-(trifluoromethyl)phenyl)amino)acetate (20c): The representative procedure 

was followed using 4-trifluoromethylaniline (19c, 97.0 mg, 0.6 mmol) and 12a (38.0 mg, 0.2 mmol). 

After 18 h, purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 20c (55.0 mg, 

85%) as a white solid. 

1H NMR (300 MHz, CDCl3): 1.23 (t, J = 7.1 Hz, 3H), 4.02 - 4.37 (m, 2H), 5.09 (s, 1H), 6.57 (d, J = 8.5 Hz, 

2H), 7.29 - 7.42 (m, 5H), 7.49 (dd, J = 7.8, 1.4 Hz, 2H). 

13C NMR (75 MHz, CDCl3): 14.1 (CH3), 60.4 (CH), 62.2 (CH2), 112.8 (CH), 119.8 (q, J2
C-F = 32.6 Hz, C), 

121.4 (q, J1
C-F = 271.0 Hz, CF3), 126.7 (q, J3

C-F = 4.1 Hz, CH), 127.2 (CH), 128.6 (CH), 129.1 (CH), 137.0 

(C), 148.4 (C), 171.4 (C). 

19F NMR (282 MHz, CDCl3): -61.47 (CF3). 

MS (EI) calc. for C17H16F3NO2 [M+] 323.1, found 323. 

The spectroscopic data are in agreement with those previously reported. 
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Ethyl 2-(phenylamino)acetate (20d): The representative procedure was followed using 4-

trifluoromethylaniline (19a, 97.0 mg, 0.6 mmol) and 12m (25 μL of a solution at 87% w/w, 0.2 mmol). 

After 18 h, purification by flash chromatography (SiO2, hexane/EtOAc = 20:1) yielded 20d (32.6 mg, 

91%) as a white solid. 

1H NMR (300 MHz, CDCl3): 1.31 (t, J = 7.1 Hz, 3H), 3.91 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 6.63 (d, J = 7.8 

Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 7.21 (t, J = 7.9 Hz, 2H). 

13C NMR (75 MHz, CDCl3): 14.3 (CH3), 46.0 (CH2), 61.4 (CH2), 113.2 (CH), 118.3 (CH),  129.4 (CH), 

147.1 (C), 171.3 (C). 

MS (EI) calc. for C10H13NO2 [M+] 179.1, found 179. 

The spectroscopic data are in agreement with those previously reported. 
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4.15 Silver catalysed Henry reaction80 

 
Entry Cat. X Solv. Base Yield (%)b 

1  Ag(OTf)  CH2Cl2 TEA 21 

2c  Ag(BF4)  CH2Cl2 Cs2CO3 25 

3d  -  CH2Cl2 TEA 35 

4  6f-Ag OTf CH2Cl2 TEA 84 

5  6f-Ag BF4 CH2Cl2 TEA 75 

6e 6f-Ag BF4 CH2Cl2 TEA 85 

7  6f-Ag OTf CH3NO2 TEA 84 

8  6f-Ag OTf Tol TEA 60 

9  6f-Cu OTf CH2Cl2 TEA 85 
a Reactions were performed with [Ag(I)] (3.2 x 10-2 mmol) in the solvent (5 mL) at a 

cat./base/aldehyde/nitromethane ratio of 1:1:10:50 at rt for 20 h; lower catalyst loadings 

(1 mol%), resulted in very slow reactions. b Isolated yields based on initial 4-

nitrobenzaldehyde; unreacted aldehyde accounted for the rest of the reaction mass balance. 
c T = 30 °C, t = 6 h. d Reaction conditions in the absence of metal catalyst: 

TEA/aldehyde/nitromethane ratio of 1:10:500 at rt for 20 h. Unreacted 4-nitrobenzaldehyde 

did not account for the rest of the reaction mass balance and some unidentified by-products 

derived from competitive side reactions were observed. e In the presence of molecular sieves 

(4 Å). 
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Entry Cat. X Base Solv. t (h) T (°C) Yield 22a (%)b 

1 6r-Ag OTf TEA CH2Cl2 20 rt 60 

2 6r-Ag OTf TEA Tol 40 rt 15 

3 6r-Ag OTf DiPEA CH2Cl2 20 rt 53 

4 6r-Ag OTf DMAP CH2Cl2 20 rt 53 

5 6r-Ag OTf Morfoline CH2Cl2 20 rt 50 

6 6r-Ag OTf K2CO3 CH2Cl2 20 rt 45 

7 6r-Ag OTf Cs2CO3 CH2Cl2 20 rt 70 

8 6r-Ag BF4 Cs2CO3 CH2Cl2 20 rt 70 

9 6s-Ag OTf TEA CH2Cl2 20 rt 67 

10 6s-Ag BF4 TEA CH2Cl2 20 rt 65 

11 6s-Ag BF4 DiPEA CH2Cl2 20 rt 75 

12 6s-Ag BF4 Cs2CO3 CH2Cl2 20 rt 90 

13 6s-Ag BF4 Cs2CO3 CH2Cl2 20 30 95 

14 6s-Ag BF4 Cs2CO3 CH2Cl2 12 30 92 

15 6s-Ag BF4 Cs2CO3 CH2Cl2 6 30 75 

16 6s-Ag BF4 Cs2CO3 CH2Cl2 3 30 45 

17 6s-Ag OTf - CH2Cl2 20 rt 25 

18 - - Cs2CO3 CH2Cl2 20 30 55 

19c 7j-Ag BF4 - CH2Cl2 20 rt - 

20c 7j-Ag BF4 - MeNO2 20 rt - 

21 7j-Ag BF4 - MeOH 20 rt -d 

22 8c-Ag BF4 Cs2CO3 CH2Cl2 12 30 90 

23 8c-Ag BF4 - CH2Cl2 12 30 64 
a Reactions were performed with [Ag(I)] (3.2 x 10-2 mmol) in the solvent (5 mL) at a 

cat./base/aldehyde/nitromethane ratio of 1:1:10:50 in the presence of molecular sieves (4 Å). b Yields based on 

initial 4-nitrobenzaldehyde calculated via 1H NMR using 2,4-dinitrotoluene (DNT) as internal standard; unreacted 

aldehyde accounted for the rest of the reaction mass balance. c The metal complex 7j-BF4 is not soluble in the 

reaction medium: no reaction after 20 h as judged by TLC analysis. d Dimethyl acetal derived from the nucleophilic 

attack of MeO- on the 4-nitrobenzaldehyde was recovered in 25% yield (see SI). 
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Entry R1 R2 Product syn/antib Yieldc (%) 

1 4-NO2C6H4 H 22a - 92 (90) 

2  4-CNC6H4 H 22b - 83 (80) 

3  4-CF3C6H4 H 22c - 93 (92) 

4  4-BrC6H4 H 22d - 85 (82) 

5  4-ClC6H4 H 22e - 83 (80) 

6  4-FC6H4 H 22f - 70 (64) 

7  C6H5 H 22g - 60 (55) 

8d  4-MeC6H4 H 22h - 15 

9  4-ButC6H4 H - - n.d. 

10  4-MeOC6H4 H - - n.d. 

11  4-Et2NC6H4 H - - n.d. 

12 C6F5 H 22i - 72 (68) 

13  3,5-(CF3)2C6H4 H 22j - 70 (66) 

14  2-NO2C6H4 H 22k - 97 (95) 

15  2-BrC6H4 H 22l - 72 (65) 

16  2,6-Cl2C6H4 H 22m - 70 (68) 

17  2-MeOC6H4 H 22n - 10 

18  3-MeOC6H4 H - - n.d. 

19  Cy H - - n.d. 

20   H - - n.d. 

21  

 

H - - n.d. 

22  
 

H 22o - 65 (62) 

23  
 

H 22p - 10 

24 4-NO2C6H4 CH3 22q 60:40 95 (90) 

25e  4-NO2C6H4 CH3 22q 60:40 90 

26  2-NO2C6H4 CH3 22r 45:55 96 (93) 

27  4-CF3C6H4 CH3 22s 51:49 93 (89) 

28  4-ClC6H4 CH3 22t 61:39 80 (75) 

29 C6H5 CH3 22u 55:45 75 (60) 
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a Reactions were performed with [Ag(I)] (3.2 x 10-2 mmol) in CH2Cl2 (5 mL) at a 

cat./Cs2CO3/aldehyde/nitromethane ratio of 1:1:10:50 in the presence of molecular sieves (4 Å) at 30 °C for 

12 h. b Syn/anti ratio determined by 1H NMR. c Yields based on initial aldehyde calculated via 1H NMR using 

2,4-dinitrotoluene (DNT) as internal standard (isolated yields); unreacted aldehyde accounted for the rest 

of the reaction mass balance. d Reaction performed with complex 6r-BF4 as catalyst. e Reaction performed 

with complex 8d-BF4 as catalyst and in the absence of Cs2CO3. 

 

 

2-nitro-1-(4-nitrophenyl)ethanol 22a. Yield 90% (62 mg); 1H NMR (400 MHz, CDCl3, δ) 8.27 (d, J = 8.6 

Hz, 2H, HAr), 7.63 (d, J = 8.5 Hz, 2H, HAr), 5.60 (dd, J = 7.7, 3.4 Hz, 1H, CH), 4.68 – 4.40 (m, 2H, CH2), 

3.12 (bs, 1H, OH). Spectral data are consistent with literature values. 

4-(1-hydroxy-2-nitroethyl)benzonitrile 22b. Yield 80% (49 mg); 1H NMR (300 MHz, CDCl3, δ) 7.71 (d, 

J = 8.4 Hz, 2H, HAr), 7.56 (d, J = 8.1 Hz, 2H, HAr), 5.55 (dd, J = 7.9, 3.8 Hz, 1H, CH), 4.68 – 4.43 (m, 2H, 

CH2), 3.11 (bs, 1H, OH). Spectral data are consistent with literature values. 

2-nitro-1-(4-(trifluoromethyl)phenyl)ethanol 22c. Yield 92% (69 mg); 1H NMR (300 MHz, CDCl3, δ) 

7.68 (d, J = 8.3 Hz, 2H, HAr), 7.56 (d, J = 8.2 Hz, 2H, HAr), 5.56 (d, J = 6.6 Hz, 1H, CH), 4.70 – 4.45 (m, 

2H, CH2), 2.96 (bs, 1H, OH). Spectral data are consistent with literature values. 

1-(4-bromophenyl)-2-nitroethanol 22d. Yield 82% (65 mg); 1H NMR (300 MHz, CDCl3, δ) 7.54 (d, J = 

8.4 Hz, 2H, HAr), 7.29 (d, J = 8.2 Hz, 2H, HAr), 5.44 (dd, J = 9.2, 3.3 Hz, 1H, CH), 4.61 – 4.46 (m, 2H, 

CH2), 2.88 (bs, 1H, OH). Spectral data are consistent with literature values. 

1-(4-chlorophenyl)-2-nitroethanol 22e. Yield 80% (52 mg); 1H NMR (600 MHz, CDCl3, δ) 7.38 (d, J = 

8.6 Hz, 2H, HAr), 7.34 (d, J = 8.5 Hz, 2H, HAr), 5.44 (d, J = 9.5 Hz, 1H, CH), 4.57 (dd, J = 13.3, 9.5 Hz, 1H, 

CH2), 4.49 (dd, J = 13.3, 3.1 Hz, 1H, CH2), 3.01 (d, J = 3.6 Hz, 1H, OH). Spectral data are consistent 

with literature values. 

1-(4-fluorophenyl)-2-nitroethanol 22f. Yield 64% (38 mg); 1H NMR (300 MHz, CDCl3, δ) 7.39 (dd, J = 

8.4, 5.2 Hz, 2H, HAr), 7.10 (pst, J = 8.6 Hz, 2H, HAr), 5.46 (d, J = 9.1 Hz, 1H, CH), 4.63 – 4.47 (m, 2H, 

CH2), 2.82 (bs, 1H, OH). Spectral data are consistent with literature values. 
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2-nitro-1-phenylethanol 22g. Yield 55% (29 mg); 1H NMR (300 MHz, CDCl3, δ) 7.42 – 7.29 (m, 5H, 

HAr), 5.48 (dd, J = 9.3, 3.2 Hz, 1H, CH), 4.66 – 4.50 (m, 2H, CH2), 1.56 (bs, 1H, OH exchanging with 

water). Spectral data are consistent with literature values. 

2-nitro-1-(perfluorophenyl)ethanol 22i. Yield 68% (56 mg); 1H NMR (300 MHz, CDCl3, δ) 5.87 (ddd, J 

= 9.2, 5.8, 3.5 Hz, 1H, CH), 5.02 (dd, J = 13.9, 9.4 Hz, 1H, CH2), 4.61 (dd, J = 14.0, 3.4 Hz, 1H, CH2), 

3.08 (d, J = 6.0 Hz, 1H, OH). Spectral data are consistent with literature values. 

2-nitro-1-(2-nitrophenyl)ethanol 22k. Yield 95% (65 mg); 1H NMR (300 MHz, CDCl3, δ) 8.07 (d, J = 8.2 

Hz, 1H, HAr), 7.95 (d, J = 7.9 Hz, 1H, HAr), 7.75 (pst, J = 7.6 Hz, 1H, HAr), 7.56 (pst, J = 7.8 Hz, 1H, HAr), 

6.05 (dd, J = 9.0, 2.0 Hz, 1H, CH), 4.87 (dd, J = 13.8, 2.3 Hz, 1H, CH2), 4.55 (dd, J = 13.8, 9.1 Hz, 1H, 

CH2), 3.23 (bs, 1H, OH). Spectral data are consistent with literature values. 

1-(2-bromophenyl)-2-nitroethanol 22l. Yield 65% (51 mg); 1H NMR (300 MHz, CDCl3, δ) 7.67 (d, J = 

7.9 Hz, 1H, HAr), 7.57 (d, J = 8.0 Hz, 1H, HAr), 7.41 (pst, J = 7.1 Hz, 1H, HAr), 7.22 (pst, J = 7.7 Hz, 1H, 

HAr), 5.96 – 5.70 (m, 1H, CH), 4.70 (dd, J = 13.7, 2.3 Hz, 1H, CH2), 4.44 (dd, J = 13.7, 9.6 Hz, 1H, CH2), 

2.94 (d, J = 4.0 Hz, 1H, OH). Spectral data are consistent with literature values. 

1-(2,6-dichlorophenyl)-2-nitroethanol 22m. Yield 68% (51 mg); 1H NMR (300 MHz, CDCl3, δ) 7.37 (m, 

2H, HAr), 7.32 – 7.20 (m, 2H, HAr), 6.38 – 6.21 (m, 1H, CH), 5.17 (dd, J = 13.1, 10.1 Hz, 1H, CH2), 4.56 

(dd, J = 13.1, 3.4 Hz, 1H, CH2), 3.24 (d, J = 8.3 Hz, 1H, OH). Spectral data are consistent with literature 

values. 

1-(furan-2-yl)-2-nitroethanol 22o. Yield 62% (31 mg); 1H NMR (400 MHz, CDCl3, δ) 7.40 (s, 1H, HAr), 

6.55 – 6.23 (m, 2H, HAr), 5.51 – 5.38 (m, 1H, CH), 4.76 (dd, J = 13.4, 9.0 Hz, 1H, CH2), 4.65 (dd, J = 

13.4, 3.6 Hz, 1H, CH2), 3.18 (bs, 1H, OH). Spectral data are consistent with literature values. 

2-nitro-1-(4-nitrophenyl)propan-1-ol 22q. Yield 90% (65 mg); Diastereomeric ratio (syn/anti 60:40) 

determined by 1H NMR. Syn isomer: 1H NMR (400 MHz, CDCl3, δ) 8.25 – 8.21 (m, 2H, HAr), 7.60 – 

7.56 (m, 2H, HAr), 5.18 (d, J = 6.6 Hz, 1H, CH), 4.79 – 4.72 (m, 1H, CH), 3.15 (bs, 1H, OH), 1.37 (d, J = 

6.6 Hz, 3H, CH3). Anti isomer: 1H NMR (400 MHz, CDCl3, δ) 8.25 – 8.21 (m, 2H, HAr), 7.60 – 7.56 (m, 

2H, HAr), 5.55 (m, 1H, CH), 4.79 – 4.72 (m, 1H, CH), 3.15 (bs, 1H, OH), 1.48 (d, J = 6.6 Hz, 3H, CH3). 

Spectral data are consistent with literature values. 

2-nitro-1-(2-nitrophenyl)propan-1-ol 22r. Yield 93% (67 mg); Diastereomeric ratio (syn/anti 45:55) 

determined by 1H NMR. Syn isomer: 1H NMR (400 MHz, CDCl3, δ) 8.00 (dd, J = 8.2, 0.9 Hz, 1H, HAr), 
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7.73 – 7.69 (m, 2H, HAr), 7.56 – 7.53 (m, 1H, HAr), 5.71 (d, J = 6.6 Hz, 1H, CH), 5.01 – 4.95 (m, 1H, CH), 

3.34 (bs, 1H, OH), 1.56 – 1.51 (m, 3H, CH3). Anti isomer: 1H NMR (400 MHz, CDCl3, δ) 8.08 (dd, J = 

8.2, 1.4 Hz, 1H, HAr), 7.93 (d, J = 7.9 Hz, 1H, HAr), 7.73 – 7.69 (m, 1H, HAr), 7.56 – 7.53 (m, 1H, HAr), 

6.09 (d, J = 2.6 Hz, 1H, CH), 4.79 – 4.72 (m, 1H, CH), 3.15 (bs, 1H, OH), 1.56 – 1.51 (d, J = 6.0 Hz, 3H, 

CH3). Spectral data are consistent with literature values. 

2-nitro-1-(4-(trifluoromethyl)phenyl)propan-1-ol 22s. Yield 71% (89 mg); Diastereomeric ratio 

(syn/anti 51:49) determined by 1H NMR. Syn isomer: 1H NMR (600 MHz, CDCl3, δ) 7.69 – 7.66 (m, 

2H, HAr), 7.54 – 7.51 (m, 2H, HAr), 5.13 (d, J = 8.6 Hz, 1H, CH), 4.76 (dq, J = 8.6, 6.9 Hz, 1H, CH), 1.37 

(d, J = 6.9 Hz, 3H, CH3). Anti isomer: 1H NMR (600 MHz, CDCl3, δ) 7.69 – 7.66 (m, 2H, HAr), 7.54 – 7.51 

(m, 2H, HAr), 5.50 (d, J = 3.4 Hz, 1H, CH), 4.70 (qd, J = 6.8, 3.4 Hz, 1H, CH), 1.50 (d, J = 6.8 Hz, 3H, CH3). 

OH signal appeared as a very broad signal around 3.5 – 1.8 ppm. Spectral data are consistent with 

literature values. 

2-nitro-1-(4-chlorophenyl)propan-1-ol 22t. Yield 75% (52 mg); Diastereomeric ratio (syn/anti 61:39) 

determined by 1H NMR. Syn isomer: 1H NMR (300 MHz, CDCl3, δ) 7.39 – 7.35 (m, 2H, HAr), 7.33 – 

7.26 (m, 2H, HAr), 5.02 (d, J = 8.9 Hz, 1H, CH), 4.76 – 4.70 (m, 1H, CH), 2.67 (br, 1H, OH), 1.33 (dd, J = 

6.8, 1.6 Hz, 3H, CH3). Anti isomer: 1H NMR (300 MHz, CDCl3, δ) 7.39 – 7.35 (m, 2H, HAr), 7.33 – 7.26 

(m, 2H, HAr), 5.37 (br, 1H, CH), 4.68 – 4.62 (m, 1H, CH), 2.77 (br, 1H, OH), 1.49 (dd, J = 6.8, 1.5 Hz, 

3H, CH3). Spectral data are consistent with literature values. 

2-nitro-1phenylpropan-1-ol 22u. Yield 60% (35 mg); Diastereomeric ratio (syn/anti 55:45) 

determined by 1H NMR. Syn isomer: 1H NMR (400 MHz, CDCl3, δ) 7.41 – 7.36 (m, 5H, HAr), 5.03 (dd, 

J = 9.0, 3.0 Hz, 1H, CH), 4.77 (dq, J = 9.0, 6.8 Hz, 1H, CH), 2.58 (d, J = 3.0 Hz, 1H, OH), 1.32 (d, J = 6.8 

Hz, 3H, CH3). Anti isomer: 1H NMR (300 MHz, CDCl3, δ) 7.41 – 7.36 (m, 5H, HAr), 5.40 (pst, J = 3.5 Hz, 

1H, CH), 4.70 (qd, J = 6.8, 3.6 Hz, 1H, CH), 2.70 (d, J = 3.5 Hz, 1H, OH), 1.51 (d, J = 6.8 Hz, 3H, CH3). 

Spectral data are consistent with literature values. 

3-hydroxy-3-(nitromethyl)indolin-2-one 23a. Yield 80% (53 mg); 1H NMR (300 MHz, DMSO-d6, δ) 

10.54 (s, 1H, NH), 7.40 (dd, J = 7.3, 1.2 Hz, 1H, HAr), 7.27 (m, 1H, HAr), 7.10 – 6.82 (m, 2H, HAr), 6.74 

(d, J = 1.0 Hz, 1H, OH), 5.15 – 4.82 (m, 2H, CH2). Spectral data are consistent with literature values. 

3-hydroxy-3-(nitroethyl)indolin-2-one 23b. The product was not isolated; the yield and the 

diastereoisomeric ratio (6:4) were determined by 1H NMR (internal standard 2,4-dinitrotoluene). 
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Major isomer: 1H NMR (300 MHz, DMSO-d6, δ) 8.12 – 6.75 (m, 4H, HAr), 5.03 (m, 1H, CH), 1.34 (d, J 

= 6.8 Hz, 3H, CH2). Minor isomer: 1H NMR (300 MHz, DMSO-d6, δ) 8.12 – 6.75 (m, 4H, HAr), 5.04 (m, 

1H, CH), 1.66 (d, J = 6.8 Hz, 3H, CH2). Spectral data are consistent with literature values.  
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4.16 One-pot isochromene cycloisomerization vs Henry reaction80 

 

Entry Catalyst Base (equiv.) 
MeNO2 

(equiv.) 
Solvent t (h) 

T  

(°C) 

Yield 

25ab 

(%) 

Yield 

26ab 

(%) 

Rec. 

24a 

(%) 

1 6f-CuOTf TEA (1) 50 CH2Cl2 20 rt (56) - (35) 

2 6f-AgOTf TEA (1) 50 CH2Cl2 20 rt (17) (17) (12) 

3 6f-AgOTf TEA (1) 50 CH2Cl2 30 40 12 6 7 

4 6f-AgOTf TEA (1) 50 CH2Cl2 30 60 11 4 4 

5 
6f-AgOTf 

TEA (5) 50 CH2Cl2 22 rt 45 (39) - 
11 

(10) 

6c 6f-AgOTf TEAc c CH2Cl2 22 rt 77 - 10 

7 6f-AgOTf TEA (1) 50 Tol 20 30 30 8 11 

8 6f-AgOTf TEA (1) 50 DMF 24 30 53 - 6 

9 6f-AgOTf TEA (1) 50 THF 22 rt 46 2 21 

10 6f-AgOTf TEA (1) 11 CH2Cl2 22 rt 3 - 5 

11 6f-AgOTf TEA (1) - CH3NO2 20 rt 39 29 - 

12 AgOTf TEA (1) - CH3NO2 20 rt - 15 15 

13d 6f-AgOTf TEA (1) 500 CH2Cl2 22 rt 18 24 - 

14d 6f-AgOTf TEA (1) 500 CH2Cl2 22 rt 25 33 - 

15d 6f-AgNTf2 TEA (1) 500 CH2Cl2 22 rt 16 29 5 

16d 6f-AgBF4 TEA (1) 500 CH2Cl2 22 rt 21 (18) 33 (30) 10 (9) 

17d,e 6f-AgBF4 TEA (1) 500 CH2Cl2 22 rt 60 (57) 19 (17) - 

18d,e 6f-AgBF4 TEA (1) 500 CH3CN 22 rt 96 - - 

19d 6f-AgBF4 DIPEA (1) 500 CH2Cl2 22 rt 36 27 - 

20d 6f-AgBF4 DMAP (1) 500 CH2Cl2 22 rt 50 - 4 

21d 6f-AgOTf DBU (1) 500 CH2Cl2 22 rt 11 4 16 

22d 6f-AgBF4 NaHCO3 (1) 500 CH2Cl2 22 rt 5 1 65 

23d 6f-AgOTf Cs2CO3 (1) 500 CH2Cl2 22 rt 72 - 2 

24d 6f-AgNTf2 K2CO3 (1) 500 CH2Cl2 22 rt 78 - 2 

25e 6s-AgBF4 TEA (1) 500 CH2Cl2 22 rt 57 15 8 

26e 8c-AgBF4 - 500 CH2Cl2 22 rt 60 15 13 
a Reactions were performed with [Ag(I)] (2.5 x 10-2 mmol) in the solvent (1.25 mL) at a catalyst/aldehyde ratio of 

1:10. b Yields based on initial 24a calculated via 1H NMR using 2,4-dinitrotoluene (DNT) as internal standard; isolated 

yields in brackets. Under these conditions, unreacted starting aldehyde did not always account for the rest of the 

reaction mass balance. In some cases, unidentified by-products derived from competitive side reactions were 

detected. c TEA (2.5 x 10-2 mmol)/aldehyde/nitromethane ratio of 1:1:5. d Reaction performed with freshly distilled 

nitromethane. e In the presence of molecular sieves (4 Å). 
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Entry SM R1 X R2 R3 t (h) 
Yield 25b 

(%) 

Yield 26b 

(%) 

Rec. SM 

(%) 

1 

24a p-MeO-Ph CH 

H H 22 25a 18 26a 30 9 

2 Me H 22 
25b + 

25b’ 70c 

26b + 

26b’ 7 d 
21 

3 Me Me 22 - - 42e 

4 
24b p-Me-Ph  CH 

H H 22 25c 32 26c 31 5 

5f H H 22 25c 60 26c 5 9 

6 24c p-CF3-Ph CH H H 22 25d 45 
26d 

traces 
14 

7 
24d Me3Si CH 

H H 22 25e 48 - 45 

8f H H 22 25e 83 - 15 

9  24e n-Pr CH H H 22 25f 15 26f 54 - 

10  24f n-Pr N H H 1 25g 52 - - 

11 
24g p-MeO-Ph N 

H H 22 25h 68 - 15 

12f H H 22 25h 78 - - 
a Reactions were performed with [Ag(I)] (2.5 x 10-2 mmol) in CH2Cl2 (1.25 mL) at a 

catalyst/TEA/aldehyde/nitromethane ratio of 1:1:10:500. b Isolated yields based on initial 

alkynylbenzaldehyde 24. Under these conditions, unreacted starting aldehyde did not always account for the 

rest of the reaction mass balance. In some cases, unidentified by-products derived from competitive side 

reactions were detected. c Mixture of two diastereoisomers in 70:30. ratio. d Mixture of two diastereoisomers 

in 75:25 ratio calculated on the 1H NMR. e In this case, the isocumarine 26 (29%) was recovered as major by-

product. f In the presence of molecular sieves (4 Å). 
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1-(2-((4-methoxyphenyl)ethynyl)phenyl)-2-nitroethanol 25a. Yield 18% (13 mg); 1H NMR (300 MHz, 

CDCl3, δ) 7.62 (d, J = 7.7 Hz, 1H, HAr), 7.55 – 7.44 (m, 3H, HAr), 7.37 (td, J = 7.6, 1.3 Hz, 1H, HAr), 7.31 

(td, J = 7.5, 1.3 Hz, 1H, HAr), 6.88 (d, J = 8.9 Hz, 2H, HAr), 5.98 (dd, J = 9.8, 1.8 Hz, 1H, CH), 4.79 (dd, J 

= 13.0, 2.4 Hz, 1H, CH2), 4.50 (dd, J = 13.0, 9.9 Hz, 1H, CH2), 3.81 (s, 3H, CH3). 2.94 (s, 1H, OH). Spectral 

data are consistent with literature values. 

3-(4-methoxyphenyl)-1-(nitromethyl)-1H-isochromene 26a. Yield 30% (22 mg); 1H NMR (300 MHz, 

CDCl3, δ) 7.62 – 7.55 (m, 2H, HAr), 7.31 (td, J = 7.5, 1.1 Hz, 1H, HAr), 7.20 (td, J = 7.5, 1.1 Hz, 1H, HAr), 

7.12 (dd, J = 11.4, 7.6 Hz, 2H, HAr), 6.93 – 6.86 (m, 2H, HAr), 6.37 (s, 1H, Csp2-H), 6.11 (dd, J = 10.3, 

3.2 Hz, 1H, CH), 4.95 (dd, J = 12.3, 10.3 Hz, 1H, CH2), 4.35 (dd, J = 12.3, 3.2 Hz, 1H, CH2), 3.82 (s, 3H, 

CH3). Spectral data are consistent with literature values. 

2-nitro-1-(2-(p-tolylethynyl)phenyl)ethanol 25c. Yield 32% (23 mg) Table 5, entry 4; yield 60% (42 

mg) Table 5, entry 5; 1H NMR (300 MHz, CDCl3, δ) 7.59 (d, J = 7.6 Hz, 1H, HAr), 7.49 (dd, J = 7.6, 1.1 

Hz, 1H, HAr), 7.43 (d, J = 8.1 Hz, 2H, HAr), 7.35 (td, J = 7.6, 1.3 Hz, 1H, HAr), 7.28 (td, J = 7.5, 1.2 Hz, 1H, 

HAr), 7.14 (d, J = 7.9 Hz, 2H, HAr), 5.94 (dd, J = 9.8, 2.2 Hz, 1H, CH), 4.74 (dd, J = 13.1, 2.4 Hz, 1H, CH2), 

4.45 (dd, J = 13.1, 9.9 Hz, 1H, CH2), 2.95 (s, 1H, OH), 2.34 (s, 3H, CH3). Spectral data are consistent 

with literature values. 

1-(nitromethyl)-3-(p-tolyl)-1H-isochromene 26c. Yield 31% (22 mg) Table 5, entry 4; yield 5% (4 mg) 

Table 5, entry 5; 1H NMR (400 MHz, CDCl3, δ) 7.55 (d, J = 7.9 Hz, 2H, HAr), 7.32 (t, J = 7.5 Hz, 1H, HAr), 

7.27 – 7.04 (m, 5H, HAr), 6.45 (s, 1H, Csp2-H), 6.13 (dd, J = 10.2, 2.7 Hz, 1H, CH), 4.95 (dd, J = 12.3, 

7.2 Hz, 1H, CH2), 4.36 (dd, J = 12.3, 3.0 Hz, 1H, CH2), 2.37 (s, 3H, CH3). Spectral data are consistent 

with literature values. 
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4.17 Fe(III) catalysed alkene oxidation 

General catalytic procedure 

The catalyst (0.025 mmol), the substrate (0.5 mmol) and dodecane (60 µL, used as GC internal 

standard) were dissolved in acetone (10.0 mL). H2O2 30% (1.5 mmol) was added and the mixture 

was heated for 10 hours at 60 °C. Then H2O2 30% (1.5 mmol) was added and the mixture was heated 

for further 12-14 hours. After this period the catalyst was removed by filtration on celite pad and a 

sample of the so-obtained crude (c = 0.1 mg/mL) was used for GC and GC-MS analyses. 

General GC method 

Gaschromatographic analyses were performed with GC-FAST technique using a Shimadzu GC-2010 

equipped with a Supelco SLBTM-5ms capillary column. Dodecane was used as the internal standard. 

The samples were prepared with a concentration of 0.1 mg/mL in DCM. 

PTV parameters: 

Temperature = 120 °C 

Injection mode: SPLIT 

Pressure = 2.54 bar 

Total flow = 11 mL/min 

Column flow = 0.32 mL/min 

Linear velocity = 32.6 cm/s 

Purge flow = 1 mL/min 

Split Ratio = 30 

 

 

 

FID parameters: 

Temperature = 280 °C 

Make-up gas: N2/air 

H2 flow = 40 mL/min 

Make-up flow = 30 mL/min 

Air flow = 400 mL/min 

Column program: 

RATE Temperature 
Holding 

Time 

- 120 °C 0 min 

25 °C/min 270 °C 3 min 
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General GC-MS methods 

Instrument: TermoFisher, GC-MS Single quadrupole TRACE1300 ISQQD 

Column: VF-5ms (30 m x 0.25 mm i.d. x 0.25 µm; Agielent Technology). 

Injector: SSL (split, splitless). 

METHOD A: 

Mode: Split. 

T. injector = 290 °C 

Split Flow = 30 mL/min 

Split Ratio = 25 

Carrier Flow = 1.2 mL/min 

Purge Flow = 5 mL/min 

Vacuum Compensation: on 

Gas-saver Flow = 20 mL/min 

Gas-saver Time = 2 min 

Oven: 

RATE Temperature 
Holding 

Time 

- 120 °C 1 min 

15 °C/min 220 °C 1 min 

20 °C/min 250 °C 5 min 

Mass: 

Ion source T. = 270 °C 

Transfer line T. = 270 °C 

Ionization mode = EI 

Delay time = 3 min 

Range Mass = 50 – 500 

Dwell Times = 0.2 sec 

 

METHOD B: 

Mode: Split. 

T. injector = 280 °C 

Split Flow = 30 mL/min 

Split Ratio = 25 

Carrier Flow = 1.2 mL/min 

Purge Flow = 5 mL/min 

Vacuum Compensation: on 

Gas-saver Flow = 20 mL/min 

Gas-saver Time = 2 min 

Oven: 

RATE Temperature 
Holding 

Time 

- 50 °C 1 min 

15 °C/min 180 °C 1 min 

20 °C/min 240 °C 2 min 

Mass: 

Ion source T. = 270 °C 

Transfer line T. = 270 °C 

Ionization mode = EI 

Delay time = 3 min 

Range Mass = 50 – 500 

Dwell Times = 0.2 sec 
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29a – Method A 
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29a – Method A 

(starting from 

cis-stilbene) 
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29b – Method A 
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29c – Method B 
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29d – Method B 
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29e – Method B 
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29f – Method B 
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29g – Method B 
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29h – Method B 
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29i – Method B 
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30a – Method A 
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30a – Method A 

(starting from 

cis-stilbene) 
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30b – Method A 
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30c – Method B 

(using Cl- as 

counteranion) 
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30c – Method B 

(using OTf- as 

counteranion) 
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30d – Method B 

(using Cl- as 

counteranion) 
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30d – Method B 

(using OTf- as 

counteranion) 
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30e – Method B 
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30f – Method B 

(using Cl- as 

counteranion) 
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30f – Method B 

(using OTf- as 

counteranion) 
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30g – Method B 
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30h – Method B 



 

249 

 

 

30i – Method B 
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30l – Method B 

(using Cl- as 

counteranion) 
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30l – Method B 

(using OTf- as 

counteranion) 
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30m – Method B 
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30n – Method B 
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30o – Method B 
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30p – Method B 
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4.18 NMR-spectra of selected Ligands and Complexes 
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