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Posterior brain damage and cognitive
impairment in pediatric multiple sclerosis

ABSTRACT

Objective: We combined structural and functional MRI to better understand the mechanisms
responsible for cognitive impairment in pediatric patients with multiple sclerosis (MS).

Methods: Brain dual-echo, diffusion tensor, 3D T1-weighted, and resting-state (RS) fMRI scans
were acquired from 35 consecutive pediatric patients with MS and 16 sex- and age-matched
healthy controls. Patients with abnormalities in $2 neuropsychological tests were classified as
cognitively impaired. The regional distribution of white matter (WM) and gray matter (GM) damage
was assessed using voxel-wise analyses. Default mode network (DMN) RS functional connectivity
(FC) was also measured.

Results: Sixteen patients (45%) were classified as cognitively impaired. Compared to cognitively
preserved (CP) patients, cognitively impaired patients with MS had higher occurrence of T2 le-
sions as well as more severe damage to the WM and GM, as measured by atrophy and diffusivity
abnormalities, in the posterior regions of the parietal lobes close to the midline (precuneus, pos-
terior cingulum, and corpus callosum). Compared to the other study groups, they also showed
reduced RS FC of the precuneus, whereas CP patients experienced an increased RS FC of the
anterior cingulate cortex. A multivariable model identified diffusivity abnormalities of the cingu-
lum and corpus callosum and RS FC of the precuneus as the covariates more strongly associated
with cognitive impairment (C-index 5 0.99).

Conclusions: In pediatric patients with MS, cognitive dysfunction is associated with structural and
functional abnormalities of the posterior core regions of the DMN. WM structural abnormalities
co-occurring at this level are likely to be the substrate of such modifications. Neurology®
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GLOSSARY
ACC 5 anterior cingulate cortex; BNBC 5 Brief Neuropsychological Battery for Children; CC 5 corpus callosum; CP 5
cognitively preserved; DMN 5 default mode network; DT 5 diffusion tensor; EDSS 5 Expanded Disability Status Scale;
EPI5 echoplanar imaging; FA5 fractional anisotropy; FC5 functional connectivity; FFE5 fast field echo;GM5 gray matter;
HC 5 healthy controls; ICV 5 intracranial volume; ILF 5 inferior longitudinal fasciculus; L 5 left; LPM 5 lesion probability
map; LV 5 lesion volume; MD 5 mean diffusivity; MNI 5 Montreal Neurological Institute; MS 5 multiple sclerosis; MTG 5
middle temporal gyrus; R5 right; RD5 radial diffusivity; RF5 random forest; RRMS5 relapsing-remitting multiple sclerosis;
RS 5 resting state; SE 5 spin echo; SLF 5 superior longitudinal fasciculus; SPART 5 Spatial Recall Test; SRT 5 Selective
Reminding Test; TBSS 5 Tract-Based Spatial Statistics; TMT 5 Trail Making Test; WM 5 white matter.

Up to 10% of patients with multiple sclerosis (MS) experience their first attack during child-
hood.1 The transition to a secondary progressive course and accumulation of permanent disa-
bility is more gradual and takes longer in these patients than in those with adult-onset MS.2 The
relatively limited disease-related damage3 with preservation of structural4,5 and functional6 integ-
rity of the brain gray matter (GM) has been considered among the factors responsible for the
course of pediatric MS.

A large proportion of pediatric patients with MS experience cognitive deficits, with a prom-
inent involvement of linguistic abilities in addition to memory, attention, and executive
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functions.7 The factors associated with cogni-
tive impairment remain largely unexplored.
More severe atrophy of the thalamus and cor-
pus callosum (CC) has been found in cogni-
tively impaired than in cognitively preserved
(CP) pediatric patients with MS.8 Executive
deficits have been correlated with atrophy of
the thalamus and frontal lobes,9 while reduced
cognitive speed10 and math performance11

were correlated with CC damage.
To improve our understanding of the mech-

anisms responsible for the presence and severity
of cognitive impairment in pediatric patients
with MS, we applied a voxel-wise analysis of
advanced structural MRI techniques to deter-
mine the patterns of regional involvement of
the white matter (WM) and GM according
to their cognitive profile. We also quantified rest-
ing-state (RS) functional connectivity (FC) of the
default mode network (DMN), since this is the
most robust network identified by RS studies
of the human brain, and its disruption has been
associated with cognitive deficits in elderly indi-
viduals12 and adult patients with MS.13–15

METHODS Patients. We studied 35 consecutive right-

handed pediatric patients with relapsing-remitting MS (RRMS)

referred to specialized MS centers and 16 sex- and age-matched

right-handed healthy controls (HC) (table 1). Patients with

acute disseminated encephalomyelitis were excluded according

to published operational criteria.16 Patients had to be relapse-

and steroid-free for at least 3 months. Exclusion criteria were

concomitant therapy with antidepressants, psychoactive drugs,

or a history of major medical, neurologic, or psychiatric disorders.

Standard protocol approvals, registrations, and patient
consents. Ethics committee approval. Approval was received
from the local ethical standards committee on human experimen-

tation, and written informed consent was obtained from all sub-

jects’ parents prior to study enrollment.

Clinical and neuropsychological evaluation. All patients
underwent a neurologic examination with rating of the Expanded

Disability Status Scale (EDSS), and a neuropsychological assess-

ment using the Brief Neuropsychological Battery for Children

(BNBC), which has been standardized and validated for Italian

pediatric patients with MS.17 Both assessments were performed

within 3 days of the MRI study by an experienced observer

blinded to the clinical and MRI results. The BNBC includes

the following: (1) global cognitive functioning with IQ; (2) verbal

learning and delayed recall with the Selective Reminding Test

(SRT, SRT-Delayed); (3) visuospatial learning and delayed

recall with the Spatial Recall Test (SPART, SPART-Delayed); (4)

sustained attention and concentration with the Symbol Digit

Modalities Test and the Trail Making Test (TMT-A and

TMT-B); (5) abstract reasoning through the Modified Card

Sorting Test; (6) expressive language through a Semantic and

Phonemic verbal fluency test and an Oral Denomination test; and

(7) receptive language using the Token Test, the Indication of

Pictures from the Neuropsychological Examination for Aphasia,

and the Phrase Comprehension test from the Battery for the

Analysis of Aphasic Deficits. The 5th or 95th percentile of the

corrected scores of the normative data were used as the cutoff for

determining failure at a given test. Patients with an abnormal

performance in$2 tests were classified as cognitively impaired.17

MRI acquisition. The e-Methods on the Neurology® Web

site at Neurology.org provide a detailed description of the MRI

acquisition and analysis protocol. Using a 3.0-T scanner, the

following brain sequences were acquired, in the following order:

T2*-weighted single-shot echoplanar imaging (EPI) sequence for

RS fMRI; dual-echo turbo spin echo (SE); 3D T1-weighted fast

field echo (FFE); and pulsed-gradient SE EPI with diffusion

gradients applied in 35 noncollinear directions. The total acqui-

sition duration was around 35 minutes.

MRI postprocessing and statistical analysis. MRI analyses

were performed by an experienced observer blinded to the clinical

and neuropsychological results. T2 lesion volumes (LV) were

Table 1 Main demographic, clinical, and conventional MRI characteristics of the subjects enrolled in the study

Pediatric healthy controls

Pediatric patients with RRMS

All Cognitively preserved Cognitively impaired

Number of subjects 16 35 19 16

Girls/boys 9/7 21/14 13/6 9/7

Mean (range) age, y 14.3 (8–18) 15.3 (7–18) 15.4 (11–18) 15.2 (7–18)

Mean (SD) education, y 9.2 (4.0) 8.9 (2.3) 8.9 (2.3) 8.9 (2.3)

Median (range) EDSS score — 1.5 (0–3.5) 1.5 (0–3.0) 1.5 (0–3.5)

Mean (range) disease duration, y — 2.1 (0.2–8.1) 1.7 (0.3–5.1) 2.8 (0.2–8.1)

Therapy: none/IFN-b1a/glatiramer
acetate/natalizumab/mitoxantrone

— 6/19/4/5/1 4/10/3/2/0 2/9/1/3/1

Mean (SD) T2 LV, mL — 5.4 (6.9) 3.5 (1.8) 7.7 (9.8)

Mean (SD) T1 LV, mL — 3.4 (5.2) 1.9 (5.2) 5.2 (7.3)

Mean (SD) ICV, mL 1,450 (108) 1,392 (113) 1,379 (113) 1,403 (115)

Abbreviations: EDSS 5 Expanded Disability Status Scale; ICV 5 intracranial volume; IFN-b 5 interferon-b; LV 5 lesion
volume; RRMS 5 relapsing-remitting multiple sclerosis.
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quantified using a local thresholding segmentation technique

(Jim 5, Xinapse Systems Ltd., Northants, UK). T1 hypointense

lesions were identified and segmented on the 3D FFE images,

which were previously coregistered and resliced to match the

T2-weighted scans.

Analysis of structural regional WM and GM damage. The
e-Methods provides a comprehensive methodologic description

of the analysis used to assess structural abnormalities of the

GM and WM.

Lesion probability maps (LPMs) were produced and com-

pared between cognitively impaired and CP patients (2-sample

t test, SPM8).

Voxel-based morphometry was performed using SPM8 soft-

ware. Between-group comparisons of GM and WM maps were

assessed using analyses of covariance, including age, sex, and intra-

cranial volume (ICV) as covariates. A conjunction analysis was run

to identify atrophied areas in cognitively impaired patients vs CP

patients and HC. A linear regression analysis was used to investigate

the correlations between areas of regional atrophy associated with

cognitive impairment vs clinical variables, neuropsychological

scores, and other MRI variables (T2 and T1 LV).

Tract-Based Spatial Statistics (TBSS) analysis18 was used for

voxel-wise analysis of whole brain WM diffusion tensor (DT)

MRI measures. Voxel-wise differences in fractional anisotropy

(FA), mean diffusivity (MD), axial diffusivity, and radial diffu-

sivity (RD) values between pediatric patients and controls as well

as between cognitively impaired and CP patients were tested

using a permutation-based inference for nonparametric statistical

thresholding (“randomize” program, FSL)19 and 2-sample t tests,
adjusting for age and T2 lesion maps. A nonparametric statistical

thresholding was also used to assess the correlations between DT

MRI metrics identified by the previous analysis and clinical and

neuropsychological variables.

DMN RS FC analysis. A comprehensive methodologic

description of the fMRI analyses is provided in the e-Methods.

RS fMRI data were preprocessed using SPM8. An independent

component analysis was used to decompose RS fMRI data into

spatially independent maps and time courses (GIFT software).20

The DMN was identified through a voxel-wise correlation with

the DMN template supplied in GIFT.21 Between-group com-

parisons of RS FC were tested using factorial models, which were

explicitly masked with the binarized DMN mask extracted from

each one-sample t test using Marsbar.22 Correlations between

DMN RS FC abnormalities vs clinical variables, neuropsycho-

logical scores, and other MRI variables were assessed using linear

regression models.

Multimodal analysis. To integrate structural and RS func-

tional MRI measures, multimodal prediction models were built

to define which of the measures significantly different between

groups predicted cognitive impairment in patients. To do this,

a random forest (RF) approach (see e-Methods)23 was used to

rank the MRI variables according to their importance (ability

to predict the outcome). Thereafter, for each outcome, a multi-

variable logistic predictive model was built, using only the most

important variables detected by the RF analyses. The final pre-

dictive model was chosen according to the minimum Akaike

Information Criterion. The discriminatory power was assessed

by computing C-statistics.

RESULTS Clinical, neuropsychological, and conventional

MRI assessment. Age (p5 0.24) and sex (p5 0.32) did
not differ between pediatric HC and patients with MS.
Sixteen pediatric patients with MS (45%) were classi-
fied as cognitively impaired. Age (p 5 0.2), disease

duration (p 5 0.1), EDSS score (p 5 0.8), T2 LV
(p 5 0.1), T1 LV (p 5 0.09), and ICV (p 5 0.5)
did not differ between cognitively impaired and CP
patients with MS. The median number of abnormal
neuropsychological tests was 0 (range 5 0–1, where 0
reflects no impairment) in CP patients and 3 (range 5
2–9) in cognitively impaired patients. Table e-1 summa-
rizes the performance on individual neuropsychological
tests by pediatric patients with MS. Ten (31%) patients
showed a low IQ24 (range 70–90), including 5 (28%)
CP and 5 (36%) cognitively impaired patients. The
cognitive domains most frequently involved were spa-
tial and verbal memory (17.6% of all pediatric patients
with MS, 1% of CP, 37.8% of cognitively impaired
patients withMS), language abilities (11.5% of all pedi-
atric patients with MS, 6.6% of CP, 17.8% of cogni-
tively impaired patients), and attention (8% of all
pediatric patients with MS, 1% of CP, 15.3% of cog-
nitively impaired patients).

WM LPMs. Compared to CP patients, cognitively
impaired patients had an increased probability of har-
boring lesions in the right (R) thalamus, middle and
posterior (close to the R precuneus) CC, and bilateral
parieto-occipital WM (p , 0.001, uncorrected)
(figure 1).

GM atrophy. Table e-2 summarizes regions showing
significant differences of GM volume between pa-
tients with MS and HC as well as between patient
subgroups (p , 0.001, uncorrected). Compared to
CP patients, cognitively impaired patients had atro-
phy of the R precuneus and left (L) middle temporal
gyrus (MTG) (figure 1). No GM area was more atro-
phied in CP vs cognitively impaired patients. The
conjunction analysis showed that, compared to HC
and CP patients, cognitively impaired patients had
atrophy of the R precuneus (Montreal Neurological
Institute [MNI] coordinates: 11,259, 36) (figure 1).

WM atrophy. Table e-3 summarizes areas showing sig-
nificant differences of WM volume between groups
(p, 0.001, uncorrected). Compared to HC, pediatric
patients with MS had atrophy of the R superior lon-
gitudinal fasciculus (SLF) and L inferior longitudinal
fasciculus (ILF). Compared to HC, cognitively
impaired patients had WM atrophy of the splenium
of the CC, R SLF, WM close to L precuneus, and L
ILF. No area of WM atrophy was identified in CP
patients vs HC. Compared to CP patients, cognitively
impaired patients had WM atrophy of the splenium of
the CC, posterior cingulum, L parahippocampus,WM
close to the precuneus, bilaterally, and bilateral SLF
(figure 1). No area of WM atrophy was detected in
CP vs cognitively impaired patients. The conjunction
analysis showed that compared to HC and CP pa-
tients, cognitively impaired patients had WM atrophy
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of the splenium of the CC, posterior cingulum, and
WM close to the L precuneus (figure 1).

TBSS analysis. Compared to HC, pediatric patients
with MS had a distributed pattern of decreased FA
in the WM, as well as an increased RD of the sple-
nium of the CC and posterior parieto-occipital
WM. No MD or axial diffusivity abnormalities
were detected (figure 2). When the 2 groups of
pediatric patients with MS were analyzed separately,
no DT-MRI abnormalities were detected in CP
patients vs HC, while cognitively impaired patients
had a diffuse pattern of decreased FA and increased
RD mainly involving the CC, cingulum, fornix, and
parieto-occipital WM (figure 2). Compared to CP
patients, cognitively impaired patients had decreased
FA and increased RD of the posterior CC and
cingulum as well as decreased FA of the bilateral
parieto-occipital WM (figure 2).

DMN FC analysis. Figure 3 shows the independent
component with the highest squared spatial correla-
tion (R2 5 0.34, corresponding to a plain correlation
coefficient of r 5 0.58) with the DMN template.

Compared to HC, pediatric patients with MS
had decreased FC of the posterior regions of the
DMN (R precuneus, MNI coordinates: 24, 269,
33; t 5 3.76, k 5 16; and R angular gyrus, MNI
coordinates: 42, 258, 42; t 5 4.76, k 5 24). CP
patients vs HC had decreased RS FC of the R angular
gyrus (MNI coordinates: 42, 258, 38; t 5 4.7, k 5
11), whereas cognitively impaired patients vs both
HC and CP patients had decreased RS FC of the R
precuneus (MNI coordinates: 24, 267, 38; t 5 3,
k 5 13). Compared to both HC and cognitively
impaired patients, CP patients experienced an
increased RS FC of the R anterior cingulate cortex
(ACC) (MNI coordinates: 3, 11, 46; t 5 3.3, k 5 5)
(figure 3). No clusters of significantly increased RS
FC were found in cognitively impaired vs CP patients
or HC.

Analysis of correlations. Table 2 summarizes correla-
tions (p , 0.001, uncorrected) between measures of
regional structural and functional damage in pediatric
patients with MS vs clinical, neuropsychological, and
other MRI variables.

Significant correlations were found between the
patterns of regional atrophy vs T2 LV, T1 LV, and
global neuropsychological performance, as well as
performance in individual neuropsychological tests.

Significant correlations were also found between
abnormalities of RS FC vs global neuropsychological
performance as well as performance on individual
neuropsychological tests.

No correlation was found between regional struc-
tural or functional abnormalities and either disease
duration or EDSS.

Multimodal analysis. The multivariable model identi-
fied cingulum FA, CCMD, CC RD, and R precuneus
RS FC (in this order of ranking) as covariates associated
with cognitive impairment (C index 5 0.99).

DISCUSSION In line with previous reports,7,17 which
applied similar neuropsychological tests and criteria to
classify patients’ cognitive status, we found that a re-
latively high percentage of pediatric patients with MS
experience cognitive impairment, with a prominent
involvement of spatial and verbal memory abilities,
language, attention, and concentration. All of this in-
dicates that our sample is representative of the more
general population of patients with pediatric MS.

Using voxel-wise methods, we determined the
relationship between the regional distribution of
damage to the WM and GM and cognitive impair-
ment in these patients. This analysis showed that
the presence and severity of cognitive impairment
was associated with structural damage to a set of brain
regions that form the posterior node of the DMN.
These regions had a high probability of harboring

Figure 1 Structural regional damage in pediatric multiple sclerosis

Brain regions show significant gray matter (GM) (cyan color scale) (top row) and white matter
(WM) (yellow color scale) (middle row) atrophy and higher frequency of T2 lesions (pink) (bot-
tom row) in cognitively impaired (CI) vs cognitively preserved (CP) patients with pediatric mul-
tiple sclerosis, superimposed on a high-resolution T1-weighted template (p , 0.001
uncorrected, cluster extent .5 voxels). In the bottom row, the results of the conjunction
analysis showing atrophied GM and WM areas in CI vs CP and healthy controls are shown.
Images are presented in radiologic convention.
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focal T2 lesions, loss of WM and GM, as well as FA
and RD abnormalities. The pattern of structural
abnormalities associated with cognitive impairment
in pediatric patients with RRMS differs significantly

from that described in adult patients with RRMS,
in whom GM loss from the frontal, parietal, and tem-
poral lobes, only marginally linked to the presence of
focal lesions, has been reported consistently.25,26 A
distributed pattern of WM FA abnormalities has also
been detected in adult patients with MS with cogni-
tive impairent.27 The colocalization of T2 lesions,
GM and WM atrophy, and DT MRI abnormalities
in brain posterior regions of pediatric patients with
MS suggests that degeneration of axons passing
through focal lesions and areas of demyelination (as
indicated by decreased FA and increased RD)28 may
lead to deafferentation and atrophy, pointing to a
pivotal role of WM damage (lesions and microstruc-
tural abnormalities) in the pathogenesis of cognitive
impairment in these patients. This hypothesis is also
supported by the results of the RF analysis, which
identified FA decrease of the cingulum as the best
predictor of cognitive impairment. In contrast to
what has been found in adult patients with MS,29

focal GM lesions are likely not to have influenced
our results, since they are found in less than 10% of
pediatric patients with MS.5

In agreement with previous studies,30,31 the anal-
ysis of regional GM atrophy confirmed that thalamic
atrophy is typically seen in pediatric MS and that it is
strongly correlated with the extent of WM lesions,
but not with disease duration.30,31 GM atrophy in
our patients was not limited to the thalamus, but
extended diffusely to several cortical and subcortical
regions. Cognitive impairment in these patients was
associated with more pronounced atrophy of the R
precuneus and L MTG. Neuroimaging findings in
healthy subjects suggest a central role of the precu-
neus in a wide spectrum of highly integrated tasks,
including visuospatial imagery, episodic memory, and
self-processing operations.32 Recently, global cogni-
tive dysfunction has been associated with reduced
thalamic volume in pediatric patients with MS,8

whereas word list learning has been correlated with
hippocampal volume.33 Differences in the analysis
methods, as well as in clinical and neuropsychological
characteristics of the patients enrolled in these studies,
may help to explain discrepancies between our results
and previous studies.8,33 Surprisingly, patients’ global
cognitive performance as well as their performance on
executive tests were not associated with atrophy of
frontal lobe regions. Different features of cognitive
impairment in adult and pediatric patients (with
prominent effects on linguistic abilities in chil-
dren)7,17 as well as a different regional vulnerability
to damage due to the variability of maturation and
myelination of CNS structures might account for the
discrepancies between pediatric and adult patients
with MS. Indeed, age-related structural changes in
GM and WM volumes and diffusivity characteristics,

Figure 2 White matter diffusivity abnormalities in pediatric multiple sclerosis

Illustrative imagesshow in red–yellow theclusters of voxelswith significantly decreased fractional
anisotropy (FA) and increased radial diffusivity (RD) values among the different study groups (p,

0.01, family-wise error corrected). The significant regions have been thickened for better visibility.
Thewhitematter skeleton, thresholded at FA.0.2, is represented in green. The background image
is the mean FAmap derived from all subjects. Images are presented in radiologic convention. CI5
cognitively impaired; CP 5 cognitively preserved; RRMS 5 relapsing-remitting multiple sclerosis.
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with a caudo-rostral pattern of myelination, have
been demonstrated consistently through childhood
and adolescence by several studies.34,35 Maturation
of the frontal lobe WM during the second decade
of life has been suggested as a possible mechanism
that confers a sort of protection from MS-related
damage.10 The notion of a higher susceptibility to
damage in specific brain regions of pediatric patients
with MS is also supported by the analysis of the
regional distribution of damage to the WM, which
showed atrophy and diffusivity abnormalities in the
posterior CC, cingulum, and parieto-occipital WM in
cognitively impaired patients.

The analysis of RS FC of the DMN disclosed that
functional abnormalities of the posterior regions of
the network (in particular the precuneus) paralleled
abnormalities detected by structural MRI in pediatric
patients with cognitive impairment. On the other
hand, CP patients experienced an increased RS FC
of the ACC. The DMN is a medial cortical network
involving several brain regions structurally connected
throughout 2 large intrahemispheric and interhemi-
spheric WM tracts (the CC and cingulum).36,37 Also,
for the analysis of RS FC, the pattern of abnormalities
we found in pediatric patients with MS with cognitive
impairment differs from that described in adult pa-
tients, in whom a consistent reduced RS FC of the
anterior regions of the DMN13,15 and an enhanced RS
FC of the posterior ones have been described.13,38 As
previously argued for the regional distribution of
structural abnormalities, maturation effects might
influence a different functional reorganization in
adult vs pediatric patients with MS. Indeed, the
long-range connections between the posterior cingu-
late cortex and the anterior prefrontal cortex have
been shown to mature with age (being immature in
7-year-old children),39,40 and to be associated with the
development of cognitive abilities.34 Importantly, the
multimodal prediction model that integrated struc-
tural and functional MRI measures showed that cog-
nitive impairment was highly associated with the
extent of structural damage and reduced RS FC of
the posterior node of the DMN. Localized structural
damage to this node was the main factor associated
with cognitive impairment. Therefore, it is tempting
to speculate that abnormalities of RS FC might be
secondary to the occurrence of WM damage in the
same region of pediatric patients with MS.

Our study is not without limitations. First, it is
cross-sectional and therefore does not allow testing
for cause-effect relationships between structural and
functional abnormalities. Second, the number of pa-
tients enrolled is relatively small, particularly when
considering the 2 groups of patients separately. Third,

Table 2 Correlations (r values) betweenmeasures of regional structural and functional damage in pediatric patients with multiple sclerosis vs
clinical, neuropsychological, and other MRI variables (p < 0.001 uncorrected)

T2 LV T1 LV
Number of abnormal
neuropsychological tests TMT-B SRT-LTS SPART SPART-D

Left thalamus volume 20.65 20.70 — — — — —

Right precuneus volume — — 20.49 — — — —

White matter close to the left precuneus volume — — 20.51 20.47 0.49 0.51 0.50

Splenium of the CC volume 20.56 20.56 — 20.42 0.50 — 0.54

Right precuneus resting-state functional connectivity — — 20.65 — — — —

Right angular gyrus resting-state functional connectivity — — — 0.63 — — —

Abbreviations: CC5 corpus callosum; LV 5 lesion volume; SPART5 10/36 Spatial Recall Test; SPART-D 5 10/36 Spatial Recall Test–Delayed; SRT-LTS5

Selective Reminding Test–Long-Term Storage; TMT 5 Trail Making Test.

Figure 3 Default mode network abnormalities in pediatric multiple sclerosis

Spatial pattern of the independent component shows the highest squared spatial correlation
with the template of the default mode network (DMN) (A). Spatial pattern of the within-group
differences of resting-state (RS) functional connectivity (FC) of the DMN among the study
groups (B): (1) decreased RS FC of the right angular gyrus in cognitively preserved (CP)
patients with multiple sclerosis (MS) vs healthy controls; (2) decreased RS FC of the right pre-
cuneus in cognitively impaired (CI) patientswithMS vsboth healthy controls andCPpatients; (3)
increased RS FC in the anterior cingulum in CP patients vs healthy controls and CI patients.
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disease duration of the cohort was relatively short and
their EDSS score relatively low, thus potentially influ-
encing our correlation analyses. Finally, we did not
perform a neuropsychological evaluation (including
assessment of global IQ) in controls.
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