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Introduction

“Super mathematics” has quite a long history, starting from the pioneering papers by Berezin [10]
and [11], before the discovery of supersymmetry in physics!. After its appearance in physics in
the 70s, however, super mathematics, and in particular supergeometry, has caught more attention
in the mathematical community, and corresponding developments appeared not only in numerous
research papers but also in books devoted to the subject, see for example [4], [9], [19], [20], [38],
[63] and the recent [16].

In most of the concrete applications of supersymmetry, like in quantum field theory or in super-
gravity, algebraic properties play a key role, whereas geometry has almost always a marginal role:
as noted by Witten at the beginning of [68] “natural physics questions requires only the most basics
facts about supermanifolds”. This is perhaps the reason why some subtle questions in superge-
ometry (see [41] and [42] for a deep mathematical approach to supergeometry) have not attracted
much attention of physicists and, as a consequence, the necessity of further developments has not
been stimulated.

String theory makes exception, though.

The interest of pure mathematics in strings dates back to the early days of the theory, when, in
the mid 80s, it was realised that the right mathematical framework needed to provide a rigorous
description of bosonic string theory is the one of the algebraic geometry of Riemann surfaces. In
particular, in the context of perturbative bosonic string theory, it was realised that the structure
of the amplitudes is related to certain invariants on the moduli space of Riemann surfaces [8]. This
fact triggered the interest of several mathematicians in string theory, resulting in a first period of
fruitful mutual exchanges between the physics of strings and pure mathematics: in this context
the work of Beilinson and Manin [7] is a representative one.

Despite some appealing features though, bosonic string theory is plagued by a number of flaws
- e.g. divergencies and absence of matter in its spectrum - that caused it to be abandoned and
relegated to the status of a toy theory. Instead, it was observed that, once properly supplemented
with supersymmetry, string theory, or better, superstring theory, reveals a number of striking fea-
tures: it admits gauge groups large enough to include the Standard Model and it has the graviton
in its spectrum. From the theoretical physics side, these discoveries instantly made superstring
theory into the strongest candidate for a unified theory of matter and interactions and put it in
the spotlight of fundamental research. On the other hand, in mathematics, the quest for rigorous
foundations of the newborn superstring theory gave rise to new questions, attracting the atten-
tion of the mathematical community to the rigorous characterisation of supersymmetry and, in
particular, to supergeometry, the kind of geometry lying at the very basis of superstring theory.
Indeed, perturbative superstring theory is expected to be described in terms of the moduli space
of super Riemann surfaces, a sort of “supergeometric analog” of ordinary Riemann surfaces, which
results to be itself a supermanifold (actually a superstack). The interested reader might want to
look, for example, at [29], [47] for references on super Riemann surfaces and their supergeometry.
Of particular interest, in the opinion of the author, are the little known papers [53] and [54], that
attempted first an algebraic geometric approach to super Riemann surfaces. However, some ambi-
guities in defining superstring amplitudes at genus higher than one suggested, already in the 80s,
that the geometry of such a supermoduli space may not be trivially obtained from the geometry
of the bosonic underlying space [3]. More than twenty years of efforts have been necessary in
order to unambiguously compute genus two amplitudes: this has been achieved by D’Hoker and

It is fair to say, though, that the introduction of anticommuting variables was proposed yet previously by
Schwinger and other physicists, see [35] for a more detailed historical account on the genesis of super-mathematics.



Phong in a series of seven celebrated papers - see in particular the first three [21] [22] [23]. These
papers also include some - actually unsuccessful - attempts in defining genus three amplitudes,
that renewed the interest of the physical and mathematical community in looking for a solution to
the problem of constructing higher genus amplitudes. Through the years, various proposals have
been put forward, see e.g. [12], [13] and [31], [56].

However, most of such constructions were based on the assumption that the supermoduli space
is projected (see the first chapter of this thesis for an explanation) so that its supergeometry can be
reconstructed by the ordinary geometry of the underlying ordinary moduli space of genus g spin
curves. A careful analysis of perturbative superstring theory [66] [67] and of the corresponding role
of supergeometry [68] [69] suggested that this could not be the case. Indeed, it has been proved
by Donagi and Witten in the groundbreaking paper [25] (see also [26]) that the supermoduli space
is not projected at least for genus g > 5. Obviously, this result gave rise to new interest in under-
standing the peculiarities of supergeometry with respect to the usual geometry, in particular from
the viewpoint of algebraic geometry: this is the main motivation at the origin of the present thesis.

Before we discuss the structure of the thesis, a brief general consideration. It is the opinion of
the author that part of the issues in understanding the geometry of supermanifolds and its dis-
tinctive features - such as for example the presence of the so-called non-projected supermanifolds -
is due in a certain amount to the absence of explicit constructions and examples in the literature.
We have taken a special care in this thesis to keep the exposition as neat and explicit as possible,
by providing every step in the proofs and computations and by supplementing every construction
and theorem with explicit realisations and examples, in order for every result to be immediately
comprehensible. This justifies, in particular, working over (complex) projective spaces - the ordi-
nary manifolds that will appear the most in this thesis -, since these varieties have an obvious open
cover that allows for a meaningful and instructive local realisation of the intrinsic constructions
that will be discussed.

More in detail, the thesis is structured as follows.

The first chapter is devoted to an introduction to algebraic supergeometry. It has to be stressed,
however, that this chapter contains original research as well (see in particular [14]).
In the first section the main definitions are given and the notation that will be used throughout the
thesis is laid down. In particular, we introduce the fundamental notions of superspace, local model
and, finally, we give the definition of supermanifold. We concentrate on complex supermanifolds,
providing the notions of projected and split complex supermanifolds, that play a central role in
the rest of the thesis. A supermanifold comes naturally endowed with a short exact sequence that
relates the structure sheaf of a supermanifold with its nilpotent sheaf and the structure sheaf of
the reduced manifold M,..4 underlying the supermanifold, we call it structural exact sequence. In
the case this short exact sequence splits we say that the associated supermanifold is projected,
otherwise we say that the supermanifold is non-projected. A split supermanifold, instead, is a
supermanifold that is globally isomorphic to its local model: a non trivial example of this class of
supermanifolds is provided by projective superspaces, P™""™.
In the second section locally-free sheaves, in particular rank 1|0 locally-free sheaves - called even
invertible sheaves - and the related even Picard group, are introduced.
The third section is concerned with the tangent and cotangent sheaf of a supermanifold. We first
work in full generality showing some short exact sequences these sheaves fit into [14]. Then we
specialise to the case of projected supermanifolds, showing that in this case the sequences split
and there exists a relationship with the fermionic sheaf F,; of the supermanifold introduced in the
first section [14].
In the third section, we introduce the Berezinian sheaf of a supermanifold. It plays a role similar
to the canonical sheaf of an ordinary complex manifold. The results obtained in the second section
are used to show that the Berezinian of a projected supermanifold can be entirely reconstructed
from two sheaves living on the reduced manifold: the canonical sheaf of reduced manifold and the
fermionic sheaf [14]. This result, in turn, allows the introduction of a notion of first Chern class for
projected supermanifolds, that coincides with the usual first Chern class of the reduced manifold
once the odd part of the geometry has been discarded [14]. Finally, we single out a special class



of supermanifolds having trivial Berezinian sheaf and we call them Calabi-Yau supermanifolds,
by analogy with the usual definition of Calabi-Yau manifolds in complex algebraic geometry [45],
[14]. All of the results, theorems and constructions of this section are supported by the explicit
example of projective superspaces. In particular, we compute the Berezinian sheaf of a projective
superspace and its first Chern class.

The second chapter of the thesis is entirely dedicated to the study of complex projective super-
spaces [14]. Projective superspaces are usually considered to be well-understood supermanifolds
(they are split supermanifolds, as shown in the first chapter, and various realisations are known).
They have also entered several formal constructions in theoretical physics. However, some of their
geometric structures and properties have never been investigated in detail, nor established on a
rigorous basis.

In particular, in the first section we compute in detail the Cech cohomology of the sheaves of the
form Opnim (£). These are the pull-back sheaves on P"™ via the projection map 7 : P™™ — P7 of
the ordinary invertible sheaves Opn (¢) on P™ [14].

Then, we study the even Picard group of projective superspaces, Picy (}P’”“”)7 that classifies locally-
free sheaves of rank 1|0 over P™™ In particular, we show that in the case of the supercurves P!
the even Picard group has a continuous part and we give the explicit form of its generators, proving
that there exist genuinely supersymmetric invertible sheaves on P™™ that do not come from any
ordinary invertible sheaves Opn(£) on P™ [14]. These prove to be non-trivial geometric objects,
indeed they have in general non-trivial cohomology, as we show by means of an example. In the
third section, using a supersymmetric generalisation of the Euler exact sequence, we study the
cohomology of the tangent sheaf of P™™ which is related to the infinitesimal automorphisms and
the first order deformations of P™™. In this context, we find that supercurves over P! yield again
the richest scenario, allowing for many deformations as their odd dimension increases [14].
Finally, with special attention to applications in theoretical physics, the example of the Calabi-Yau
supermanifold P! is examined. In particular, we show in full detail how to endow P!I? with a
structure of N' = 2 super Riemann surface. In this context, we show how to recover from first
principles the N = 2 SUSY-preserving automorphisms of P!I? when structured as a N' = 2 super
Riemann surface [14]. These SUSY-preserving automorphisms prove to be isomorphic to the Lie
superalgebra osp(2|2). We give a presentation of osp(2|2) relevant for applications of theoretical
physics, by exhibiting a particularly meaningful system of generators and displaying their structure
equations [14].

Further, following a formal construction based on the path-integral formalism due to Aganagic
and Vafa [2], we construct the “mirror supermanifold” (in the sense of Aganagic and Vafa) to P2
and we show, by some suitable changes of coordinates, that this supposed mirror supermanifold is
again P'12 that is P'1? is self-mirror in the sense of Vafa and Aganagic [45]. We stress that this
last section has a different flavour compared to the others, as it is based on a formal construction
(Aganagic and Vafa) that at present does not have a rigorous mathematical meaning.

In the second chapter of the thesis we studied the geometry of projected, actually split, su-
permanifolds such as P"™  whereas the third chapter is dedicated to the study of non-projected
supermanifolds instead [15]. We specialise to supermanifolds having odd dimension 2 and we
call these N' = 2 supermanifolds. Following Manin [41], we provide a detailed construction of
the cohomological invariant that obstructs the existence of a projection that splits the structural
exact sequence of a supermanifold. In particular, we prove that a supermanifold M of dimen-
sion n|2 is described up to isomorphism by the triple (Myeq, Far, war), where Fy, is the fermionic
sheaf of M, actually a locally-free sheaf of Oy _,-modules of rank 0|2, and where wy, is a class in
HY(Myeq, Tar.., ® Sym®Fyr). The supermanifold is non-projected (and therefore split) if and only
if wgr is non-zero in HY(Myed, Tar.., ® Sym>Far).

In the second section we specialise to the case that the reduced manifold is a complex projective
space P™ and we prove that there exist non-projected supermanifolds of dimensions n|2 over P
only for n =1 and n = 2.

In the third section, using Grothendieck’s splitting theorem for vector bundles over P!, we give a
complete classification of non-projected N’ = 2 supermanifolds over P!, here called P}, (m,n), by
also providing the explicit form of their transition functions. Also, we study the even Picard group



of P! (m,n) - which again has a continuous part - and we give the explicit form of its generators.
Finally, using these invertible sheaves, we realise an embedding of PL(2,2) into P22 proving that
the example given by Witten in [68] of a non-projected supermanifold as a complete intersection
into P22 is actually nothing but PL(2,2) itself. This is an original section that has not appeared
as a paper yet.

In the fourth section we study the non-projected structures for N' = 2 supermanifolds over P2,
that proves to be the most interesting case. Indeed, a non-projected structure over P? exists if and
only if the fermionic sheaf is such that Sym?2Fy =~ Opz(—3), the canonical sheaf of P? [15]. We
denote these non-projected supermanifolds with P2 (Fyy).

Remarkably, we prove that all of these non-projected supermanifolds are Calabi-Yau’s and, by
studying their even Picard group, we prove that they are non projective: they cannot be embed-
ded into any higher-dimensional projective superspace P"™ [15]. Instead, we show that every
non-projected supermanifold N' = 2 over P? can be embedded into a certain super Grassman-
nian: this is perhaps the main theorem of the chapter. [15]. As explicit examples, we carry out a
detailed study of two meaningful cases: when the fermionic sheaf F, is decomposable, given by
Op2(—1) @ [IOp2(—2) and when it is the cotangent sheaf IIQ, (with reversed parity) over P?
and we construct the embeddings explicitly.

In the last section of the chapter we study the split loci of the non-projected structures related
to the choices Far = IIOp2 (—1)@DIIOp2 (—2) and Fyr = IIQ}; and we compute their cohomology [15].

The fourth chapter is devoted to the geometry of Il-projective spaces. These particular super-
manifolds were introduced by Manin in [42] as the suitable spaces on which one can define the
so-called II-invertible sheaves, the candidates to take over the notion of invertible sheaf in super-
geometry.

In this chapter we provide a new construction of II-projective spaces, in particular we prove that
they arise naturally in supergeometry upon considering a non-projected thickening of P™ related
to the cotangent sheaf Qf,. More precisely we prove that for n > 2 the II-projective space P
can be constructed as the non-projected supermanifold determined by three elements (P", Q.. \),
where P is the ordinary complex projective space, Q. is its cotangent sheaf and X is a non-zero
complex number, that represents the fundamental obstruction class wa € H (Tpr @ A Qb.) = C
[46]. Likewise, in the case n = 1 the II-projective line P is the split supermanifold determined
by the pair (P!, Q}, = Op1(—2)).

Moreover we show that in any dimension IT-projective spaces are Calabi-Yau supermanifolds [46].
Also, we offer pieces of evidence that, more in general, also II-Grassmannians can be constructed
the same way using the cotangent sheaf of their underlying reduced Grassmannians, provided that
also higher, possibly fermionic, obstruction classes can be defined and taken into account [46]. This
suggests that this unexpected connection with the cotangent sheaf is characteristic of II-geometry.
Last we make the connection with the previous chapter, by discussing in more detail the possible
embeddings for P2 (F,/) in relation to IT-projective spaces. In particular, we prove that if we choose
the fermionic sheaf to be decomposable, the supermanifold P2 (F,,) is not only non projective, but
also non II-projective: it cannot be embedded into any II-projective space P}, [15]. However, if we
choose the fermionic sheaf of P2 (Fa) to be the cotangent sheaf IIQL,, then P2 (Fy) is actually
the II-projective plane P% and as such it has a minimal embedding into the super Grassmannian
G(1]1;C3B) [15).



Chapter 1

Algebraic Supergeometry

This chapter is intended to give a short but self-contained introduction to algebraic supergeometry.
In the first section, following in particular the approach of [41], we present some basic material. We
give the main definitions and we establish the notations that will be kept throughout this thesis.
In particular, attention is paid to lay down the concepts of split, projected and non-projected
supermanifold.

In the second section locally-free sheaves on supermanifolds are introduced, with a particular focus
on the case of locally-free sheaves of rank 1|0, we call them even invertible sheaves. The classifying
space for even invertible sheaves, called even Picard group by similarity with the ordinary Picard
group, is then introduced and discussed.

The third section is dedicated to two meaningful examples of locally-free sheaves that can be
defined on a supermanifold: the tangent and cotangent sheaves. The short exact sequences these
sheaves fit into are introduced and studied, in particular in the case of a projected supermanifold.
In the fourth section the Berezinian sheaf of a supermanifold is defined and a notion of Calabi-Yau
supermanifold is introduced. Again, in the case of a projected supermanifold, using the results
of the previous section, the Berezinian sheaf is studied and a supersymmetric version of the first
Chern class is laid down.

The constructions are illustrated making use of the example of the complex projective superspace
P"™ throughout the chapter.

The second, third and the fourth sections are modelled on the author’s paper [14].

1.1 Main Definitions and Fundamental Constructions

The aim of this section is to introduce the notion of (complex) supermanifolds and to discuss some
of the fundamental constructions related to their geometry.

The first step in this direction, lying on the concept of locally-ringed space, is to introduce the
basic notion of superspace.

Definition 1.1 (Superspace). A superspace is a pair (|M|,Oq), where |M| is a topological space
and Oa is a sheaf of Zy-graded rings defined over |M| and such that the stalks Oq . at every point
of | M| are local rings.

In other words, a superspace is a locally ringed space having structure sheaf given by a sheaf of
Zso-graded Tings.

For the sake of brevity we will call M the pair (||, O4) defining the superspace, that is we will
define M := (|M|, O).

Once again, that the definition of superspace we have given follows Manin [41] and his algebraic
geometrically inclined treatment of supergeometry. It is fair to say, though, that there exists a
different, more analitically inclined, approach, which is the one given, for example, in [4], where
the structure sheaf gets structured as a sheaf of Fréchet algebras, so a further notion of semi-norm
should be given.

Before we go further we need to stress two facts. The first one is that in the case of superspace



the requirement about the stalks being local rings reduces to ask that the even component of the
stalk is a usual commutative local ring, for in superalgebra one has the following lemma.

Lemma 1.1. Let A = Ag® Ay a Zy-graded ring. Then A is local if and only if its even part Ag
18.

As one can easily realize, this is connected to the fact that the odd elements in A; ¢ A are
nilpotent, and therefore the whole A; is contained in every prime and mazimal ideal of the Zo-
graded ring A. This is a very basic but fundamental fact.

Secondly, in the definition above we understood that the restriction morphisms of the Zs-graded
sheaf Oy, are compatible with the grading, that is they never map local odd sections to local even
sections and vice-versa. This is actually a general feature of morphisms in supergeometry.
Having defined a superspace as a locally ringed space, one also defines morphisms of superspaces
as morphisms of locally ringed spaces.

Definition 1.2 (Morphisms of Superspaces). Given two superspaces M and N a morphism ¢ :
M — N is a pair ¢ = (¢, d*) where

1. ¢: M| — || is a continuous map of topological spaces;

2. ¢F 1 Ox — 04Oy is a morphism of sheaves of Zy-graded rings, having the property that it
preserves the Zs-grading and that given any point x € |M|, the homomorphism

ok On,p(z) — Oar,z (1.1)

is local, that is it preserves the (unique) maximal ideal, ¢%, (Mg (z)) S My

This definition deserves to be commented a little bit further.
First, with an eye to the ordinary theory of schemes in algebraic geometry, we stress that the
request that the morphism ¢F : On,¢(x) = Oar,z preserves the maximal ideal in the second point
of the definition above is of particular significance in supergeometry. Indeed it is important to
notice that the structure sheaf O, of a superspace is in general not a sheaf of functions. As
long as the structure sheaf Qg of a certain space or, more in general, of a scheme, is a sheaf
of functions, then a section s of Qs takes values in the field of fractions k(z) = Ogy ,/m, that
depends on the point x € |9], as a function  — s(x) € k(x), and the maximal ideal m, contains
the germs of functions that vanish at 2 € |#]. In the case of superspaces, nilpotent sections -
and thus in particular all of the odd sections - would be identically equal to zero as functions on
points, and indeed the maximal ideal m, contains the germs of all the nilpotent sections in Oy ,.
In this context, the request that ¢f : Ox,¢(x) = Oar,e is local becomes crucial, while in the case of
a genuine sheaf of functions the locality is automatically achieved. In particular, locality implies
that a non unit element in the stalk Oy 4(4), such as a germ of a nilpotent section, can only be
mapped to another non unit element in Oy ., such as another germ of a nilpotent section. In
other words, nilpotent elements cannot be mapped to invertible elements.

Now a fundamental observation is in order. One can always construct a superspace out of two
data: a topological space, call it by abuse of notation ||, and a vector bundle £ over |M|, or,
analogously, a locally-free sheaf of Oy -modules. Now, we denote Os the sheaf of continuous

functions (with respect to the given topology) on |¢| and we put /\0 E* = O)g). The sheaf of
sections of the bundle of exterior algebras /\*£* has an obvious Z,-grading (by taking its natural
Z-grading mod 2) and therefore in order to realise a superspace it is enough to take the structure
sheaf Oy of the superspace to be the sheaf of sections valued in Oy of the bundle of exterior
algebras. This construction is so important to bear its own name.

Definition 1.3 (Local Model (||, E)). Given a pair (|M|,E), where | M| is a topological space
and € is a vector bundle over | M|, we call S(|M|,E) the superspace modelled on the pair (|M|,E),
where the structure sheaf is given by the O|aq-valued sections of the exterior algebra AN

Note that we have given a somehow minimal definition of local model, indeed we have let |M| to
be no more than a topological space and as such we are only allowed to take O)|4 to be the sheaf
of continuous functions on it. Clearly, we can also work in a richer and more structured category,



such as the differentiable, complex analytic or algebraic category. Working in the complex analytic
category - the one we will be most concerned with -, for example, we take |M| to be a complex
manifold, O)s to be the sheaf of holomorphic functions on it and £ a holomorphic vector bundle.
There are some easy examples of local models that deserve to be mentioned.

Example 1.1 (Affine Superspaces A’"q). These superspaces are constructed as the local models
S(AP, (95@?), where AP is the p-dimensional affine space over the ring (or field) A and Opv is the
sheaf of regular functions over it.

These are the most common superspaces one encounters in applications of supergeometry to physics.
In the differentiable category, modern supersymmetric theories are often formulated in the super-
space RP9, where O is the sheaf of C*-functions over RP: this has the advantage to make
supersymmetry manifest, as it becomes a geometric symmetry of the theory.

In what follows we will mostly be concerned with the complex analytic category and with local models
of the form CPl4 where Ocy is the sheaf of holomorphic functions over CP.

We are in the position to introduce the notion of supermanifold.

Definition 1.4 (Supermanifold). A supermanifold is a superspace M that is locally isomorphic to
some local model S(|M|,E).

In other words, if the topological space | M| has a (countable) basis {U;}icr, the structure sheaf Qg
of the supermanifold M is described via a collection {Yy,}ier of local isomorphisms of sheaves

Ui — vu, : O, /\ €*[v, (1.2)
where we have denoted with /\* E* the sheaf of sections of the exterior algebra of &.
Let us make some observations before going on, to clarify further the given definition:

1. The definition depends on the category we are working into via the local model &(|M|, E) we
choose. In the differentiable and complex analytic category one can restrict the local models
to be of the form of API9, defined as above (e.g. in the case of a differentiable supermanifold,
M is locally isomorphic to qu)’ while in the algebraic category one should allows all local
models &(|#|,E) having affine |M|. Generalizing this notion, one is led to the concept of
superscheme.

2. It is worth stressing out that this point of view, that might appear at first rather abstract,
goes along well with the differential geometric intuition behind the concept of manifold:
indeed, again, if for example a complex analytic manifold will be a certain object that locally
resembles CP, a complex analytic supermanifold will be an object that locally resemble CPle
for some p and ¢: in this case we say that the supermanifold has dimension plq.

3. Finallly, we underline that, in general, the maps in the collection of local isomorphisms
{¢v, }ier do not glue together to give an isomorphism of sheaves! That is, the local isomor-
phisms do not define in general an isomorphism of sheaves 1 : Oy — A®E*. If they do,
instead, the supermanifold is of a very special kind, as will be explained in the following.

As customary in algebraic geometry, when one is interested in understanding the geometry of a
certain geometric object, the reader needs to look at the ring of “functions” that live on it. In
our case, a very basic observation to be made is that, given a supermanifold %, because of the
Zo-grading of the structure sheaf Oy there will exist a (actually unique) sheaf of ideals Jar < Oy
generated by all the nilpotents.

Definition 1.5 (Nilpotent Sheaf Jyr). Given a supermanifold M we will call Jar the sheaf of ideals
generated by all the (nilpotent) odd sections.

Notice that Jys certainly contains the odd part O, 1 of the structure sheaf Oy = Oy 0 D O 1,
but in the case the supermanifold has more than one odd dimension, it also contains what are
called “bosonisations” in physics, which are nilpotent sections but in O/ 9. We make this clear by
mean of an example. Let us consider a supermanifold having the polynomial superalgebra given
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by C[z1, z2,01,02] as structure sheaf, we will then have elements of the form bos = f(x1,22) 0; - 0a,
where f(x1,z2) is a polynomial in the even variables z; and z5. These elements are clearly nilpotent
and therefore they are contained in Jar, but they are even, f(x1,x2) 01 - 02 € Oa 0, as the product
of two odd generators #; and 65 is actually an even element.

If on the one hand the nilpotent sheaf 7, is expression of the odd geometry of the supermanifold,
on the other hand one has also that to every supermanifold M is attached an ordinary “purely
even” manifold, call it M,.q. This constitutes the spine of the supermanifold, that can be then
somehow visualised as an ordinary manifold surrounded by a cloud of nilpotent odd elements. This
underlying manifold can be traced back from the supermanifold M as follows: Js; defines a sheaf
of ideals, therefore it always exists a closed immersion v : Myeq < M, with ¢ == (i,i%) such that

1. i :|M| — |M| is the identity map that maps | M| to itself.

2. it O — Ox /Tar is the quotient morphism at the level of the sheaves and it is sometimes
called augmentation map.

Notice that looking at the level of the stalks, the morphism i : O — Oarz / Jarw 18 clearly
surjective for every x € Qg ,, hence it indeed defines a closed immersion. The existence of such a
construction allows us to give the following

Definition 1.6 (Reduced Manifold M,..q). Given a supermanifold M = (|M|, Oa), let Tar < Oy
be its nilpotent sheaf, then we call reduced manifold M,.q the ordinary manifold given as a ringed
space by the pair (| M|, Oa.,), where Oy, is defined as Oy, = Oar | Ty, -

Incidentally, one might observe that - forgetting the issues relating to the existence of a Zs-grading
- under some circumstances, when Zariski topology is employed, one could look at M,..4 as a reduced
scheme, while M defines a non reduced scheme, as its structure sheaf contains nilpotent elements;
anyway, without giving any further details we mention that the correct framework to work in would
that of superschemes.

So far we have thus seen that every supermanifold comes endowed with a surjective morphism
of sheaves i : O —» Ous,.,, Whose kernel is, by construction, given by the nilpotent sheaf:
Jar = kerif. Therefore, we have obtained a short exact sequence, actually the most important
exact sequence attached to any supermanifold.

Definition 1.7 (Structural Exact Sequence). Given a supermanifold M := (|M|, Oar), let Tar be
its nilpotent sheaf and let Myeq = (|M|, Oqy,..,) be its reduced manifold. Then the structure sheaf
Oy, the reduced structure sheaf O, and the nilpotent sheaf Jar fit together in a short exact
sequence of Oqr-modules, given by

0 jM OM OM,,M 0. (1.3)

We call this short exact sequence the structural exact sequence for the supermanifold M.

To put things in a different way, the structural exact sequence of a supermanifold says that the
structure sheaf Oy, is an extension of Oy, by Jar.

A very natural question that arises looking at the structural exact sequence above is whether
it is split or not,

0 Tar OM p OMred 0. (1.4)

That is, one might wonder whether there exists a morphism of supermanifolds, we call it 7 : M —
M;cq, where 7 := (7, 7) are defined as

1. m: |M| — |M| is again the identity map that maps the topological space | M| to itself;

2. Oar., — Ogr is a morphism of sheaves of Oy-modules (as we are looking at Oy,
endowed by ¢ with the structure of Os-module),
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having the property that m ot = ids,,. At the level of the structure sheaves, this corresponds to
7ot =ido,, .

In particular, if the morphism 7 : M — M,..q4 does exist, then the structure sheaf Q4 is given by
the direct sum Ogr = Oy, ® Jar and the structural exact sequence becomes

0 Ta Oateo @ T O 0. (1.5)

The supermanifolds that posses such a splitting morphism are given a special name.

Definition 1.8 (Projected Supermanifolds). Let M be a supermanifold, if there exists a morphism
T M — Mypeq, satisfying mo v = ida,, splitting the structural exzact sequence of M as in (1.4),
then we say that the supermanifold M admits a projection on its underlying reduced manifold Mycq.
For short, we say that M is projected.

The study of obstructions to splitting and the investigation of some examples of non-projected
complex supermanifolds will be one the main themes of the present thesis.

Remarkably, the existence of a projection 7 : M — M,..q has also another very important conse-
quence, namely the structure sheaf O becomes a sheaf of Oy ,-modules as well, for, given an
open set U < |M|, one can define a multiplication by:

(Oat,0y ®0, Oar) (U) —— Ot (U)

f®s————al(f) s

and this extends to the whole variety || by the properties of sheaves, actually defining a sheaf of
Ou,,,~-modules, as claimed.

In general, if the supermanifold is non-projected, the structure sheaf Oy is not a sheaf of Oy -
modules. Likewise, on a non-projected supermanifold, a sheaf of O4-modules is not in general a
sheaf of Oy, -modules: this is a crucial issue in the general theory of supermanifolds.

Now that we know that the presence of a projection 7 : M — M,..4 singles out a class of relatively
easier and more tractable supermanifolds, one might further wonder whether there exists any even
simpler sub-class of supermanifolds among the projected ones. To answer this question we introduce
the following construction: we consider a supermanifold M having a given odd dimension equal to
q, together with its nilpotent sheaf Ja, then it is easily seen that we have a Jy-adic filtration on
Ogy¢ of length ¢, that is

Ty =0y >Iu>Tt>T5>...2JL > T =0. (1.6)
This allows us to give the following definition.

Definition 1.9 (Gr Qs and Gr M). Let M be a supermanifold having odd dimension q together
with the Jac-adic filtration of its structure sheaf Oar. Then we call GrD Oy = T, /j;;rl the
j;/[—adz'c component of Oy and we define the following Zs-graded sheaf

q . _
CrOn = PGt 0n = On, @ Tot T2 @ ... BT /j;l T (1.7)

i=0
where the Zo-grading is obtained by taking the obvious Z-grading mod 2. We call the superspace
Gr M := (|M],Gr Oyy) the split supermanifold associated to M.
Clearly, by adding all the successive quotients Jy / jgf/[“ for i > ¢, all yielding zeroes, Gr Q4 can

be lifted to a complex Gr*) O, (of sheaves of O ,-modules). Once we have this construction,
we can make some observations.

e The pair (|M|, Gr©0,,) defines a supermanifold, or better an ordinary manifold: indeed it
is nothing but that the reduced manifold M,..4 underlying M, for one has that Gr©® Oy =
Ot [ Tag -
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e clearly, the split supermanifold Gr M associated to M is projected, as its structure sheaf
is given in the form Oy, @ Jar, where in particular the nilpotent sheaf J, has a global
decomposition in a direct sum of sheaf of Oy, ,-modules:

q ,
Tt =~ P Ty /j;/[“. (1.8)
i=1

Notice though, that, conversely, a projected supermanifold might still not be isomorphic to
any Gr M!

o If we set (9;2) i= Oar /7+1 and we consider the pair (|, O;?), then for

i = 0: we recover again the reduced manifold 94,.4. The construction is the same as (||, Gr(¥ 0y);

0 < i < q: this construction does not yield any supermanifold, but just a locally ringed space or
maybe a supersymmetric analogue of a non-reduced scheme, since its structure sheaf is
not locally isomorphic to any exterior algebras.

1 > q: we recover the actual supermanifold M, since \7;;1 = 0.

Having clarified that to any supermanifold M is associated its split supermanifold Gr M, we now
want to make contact between Gr M and the local model superspace &(|94|, E) based on the pair
(], ). To this end we introduce the following definition.

Definition 1.10 (Fermionic Sheaf Fy;). Let M be a supermanifold having odd dimension q and
let Jar its nilpotent sheaf. We call the sheaf of locally free Qg ,-modules given by the quotient
Far = CrW 0O, = Tar /«79\24’ the fermionic sheaf of the supermanifold M.

The fermionic sheaf is a central object in the theory of supermanifolds, and indeed we will see
that it shows up also in the following section when discussing the tangent and cotangent sheaf
of a supermanifold. More important, we have that given the topological space |M| underlying a
supermanifold of odd dimension equal to g, it is its fermionic sheaf the object that completes the
correspondence with the pair (|94],£), making up the local model &(|#¢|,€). Indeed trough Fy,
one recovers the dual of the vector bundle £ over |M|: in other words, given any open set of an
open cover of ||, one has a correspondence

]:M(U) = <@1,...7@q>oMmd(U) «—> <€T,...€:‘;>OMT6(Z(U) =6*(U) (19)

where we have written {©;},-1,.. 4 for a local basis of the fermionic sheaf Fa, - which is a locally-
free sheaf, as seen above - and {e},—1 4 for a local basis of the dual vector bundle £*.

Now, as the symmetric powers of the fermionic sheaf Sym®F,, corresponds to GrY0,, = jgf{ / J. ;;’1

for ¢« = 0, the correspondence above extends to the whole complexes Gr(')OM and A° E*, so that
higher symmetric powers Sym!® Fy correspond to higher exterior powers /' E*.
This leads to the following lemma.

Lemma 1.2. Let M be a supermanifold locally modelled on the pair (|M|,E), where | M| is a
topological space and £ is a vector bundle, then the associated split supermanifold Gr M to M is
uniquely determined by the pair (|M|,E) and viceversa.

In particular, one has the isomorphism S(|M|,E) = Gr M.

Schematically, the relations between the original supermanifolds 94, its split associated superman-
ifold Gr ¢ and its local model S(|9], E) goes as follows:

M o GrM e &S(|M],E). (1.10)

The previous lemma, or the above diagram, helps us to single out a class of projected super-
manifolds, answering the question posed early on in the section: these are the so called split
supermanifolds, that constitutes the easiest examples of supermanifolds.
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Definition 1.11 (Split Supermanifold). Let M be a supermanifold. We say that M is split if it
is globally isomorphic to its local model G(|M|,E) or analogously, if it is isomorphic to its split
associated supermanifold Gr Oyy.

That is, in the case a supermanifold M is split, the schematic diagram above looks like this
M ers> GrM e~ S(|M|E). (1.11)

and one gets to an easy but deep conclusion: the problem of classifying split supermanifolds having
a certain reduced space M,.q translates into the classical problem of classifying vector bundles on
M,cq, thus revealing a connection between the moduli theory of vector bundles and the study of
split supermanifolds.

In order to give some concrete realisation of the issues discussed above and to move toward a
generalisation of ordinary algebraic geometry to a supersymmetric context, we discuss the most
important (non-trivial) examples of complex split supermanifolds: complex projective superspaces.

Example 1.2 (Complex Projective Superspaces). The complex projective superspace of dimension
n|m, denoted by P™™, is the supermanifold defined by the pair (P™, Opnjm) = S(P*, Opn (+1)®™),
so that P™™ has the ordinary complex projective space P as reduced manifold - that completely
characterises the topological aspects -, while its structure sheaf Opnim 1s given by

|_7’7’L/2J m lm/QJ_50,7nmod2 m
Opin = P Ope (262G @ @ Opn(—2k — 1)0H) (1.12)
k=0 k=0

k k
= @ A0 (-1)®"a@ @ 1 Op- (1), (1.13)
k even kodd

where we have inserted the symbol I1 as a reminder for the parity reversing.
This expression for the structure sheaf makes completely clear that P™™ is canonically isomorphic
to GrP™™ and the projection 7 : P*™ — P" embeds, at the level of the structure sheaves, Opn
into Opnim, as Opn is just a summand in the direct sum above.
The approach we have just presented has the advantage to make apparent the split nature of P™™,
which is what matters here. Though, it is fair to say that in the literature another approach is
more common: the one that looks at the complex projective superspace as a quotient by a certain
multiplicative group action.
In this perspective one starts considering the usual complex superspace C+1m .— (C™ ! Ocnir ®
AL, -, &m]), whose underlying topological space is given by C™*! endowed with the complex
topology, then one can form the superspace ((C”H‘m)X simply by considering the obvious restric-
tion of C"*1I™ to the open set C* := C"*1\{0}. The complex projective superspace PM™ is the
supermanifold obtained as the quotient of the superspace (C"1™)* by the action C* & (CP+1Im)x
defined as

A (I()a s axnvgla v 7£m) = ()\‘T()v ceey )‘:CTH )‘gla ceey Ag’m) (114)
where X\ is an element of the multiplicative group C* := C\ {0}.

We will see in the second chapter that even if projective superspaces are split supermanifolds, they
display some interesting unexpected geometric features.

1.2 Locally-Free Sheaves on a Supermanifold and Even Pi-
card Group

In the first section we have defined what is a supermanifold, so now we can start focusing on what
can be defined on a supermanifold. One of the most important and useful concept is the one of
locally-free sheaves.

Definition 1.12 (Locally-Free Sheaves on a Supermanifold). Let M := (|M|, Oa) be a superman-
ifold or, more in general, a superscheme. A locally-free sheaf G of rank p|q on M is a sheaf of
Ogar-modules which is locally isomorphic to O?{p ) (H(’)M)@q.
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Notice that this will completely replace the idea of “vector superbundle”, that will never be men-
tioned in this thesis. Likewise, we will never talk about “line superbundle”: the supersymmetric
analog of a line bundle or an invertible sheaf is defined as follows.

Definition 1.13 (Even Invertible Sheaf). Let M be a supermanifold or, more in general, a super-
scheme. An even invertible sheaf L on M is a locally-free sheaf of rank 1|0 on M. That is, L is
locally isomorphic to Oyy.

Also, in the same fashion as in the ordinary theory, we define a supersymmetric analog of the
notion of Picard group for invertible sheaves.

Definition 1.14 (Even Picard Group). Given a supermanifold M, we call the even Picard group
Pico(M) of M the group of isomorphism classes of even invertible sheaves on M,

Pico(9) := {even invertible sheaves on M} /~ (1.15)

where the group operations are given by the tensor product and the dual.

It can be checked that this definition is well-posed.

It is crucial to note that a useful cohomological interpretation, allowing for actual computations,
can be given for the even Picard group of a supermanifold. To this end, note that in general, such
as in the ordinary context, defining a locally-free sheaf G of a certain rank on a supermanifold
M, amounts to give an open covering of M, call it {{/;};er, and the transition functions {gi;}i jer
between two local frames ey, and e, in the intersections U; N U; for i, j € I, so that ey, = gijey; -
In this fashion, one has the usual correspondence G < ({U;}icr,{9:j}i,jer) , where we notice that if
G has rank p|q then g;; is a GL(p|q) transformation taking values in O (U N U;)).

It follows that, in the case we are considering an even invertible sheaf, this corresponds to transition
functions g;; taking values into ((9* ) = OF, ar,0 8s the transformation needs to be invertible and a
parity-preserving one. This has an important consequence, indeed (’)M o is a sheaf of abelian groups,
so that we are allowed to consider its cohomology groups, without confrontmg the issues related
to the definition of non-abelian cohomology (notice that the full sheaf O}, is indeed not a sheaf of
abelian groups). Clearly, in order to define an even invertible sheaf, the transition functions have
to be 1-cocycles valued in the sheaf (’)M o» S0 that we have the following easy lemma.

Lemma 1.3 (Pico(M) =~ Hl(O;\“{,O)). Let M be a supermanifold and let Pico(M) be its even Picard
group. Then, the following isomorphism holds:

Pico(M) = H'( a0 (1.16)

In what follows, just like Manin in [41] and [42], we will grant ourselves the liberty to call the
cohomology group H 1((9;“470) the even Picard group of the supermanifold, by implicitly referring
to the above isomorphism.

Note that Lemma 1.3 is nothing but the supersymmetric version of the usual isomorphism Pic(X) =~
H'(O%) for ordinary complex manifolds X - and indeed its proof follows exactly the same lines.
Likewise, the sheaf (’);‘/[ o fits into an exact sequence, we call it even exponential exact sequence, by
the obvious similarity with the ordinary exponential exact sequence:

exp

0 Z Ot 0%y ————0. (1.17)

where, beside O;} o» we recall that Zs is the ordinary sheaf of locally constant functions taking

values in Z and OM o is the even part of the structure sheaf. Given an open set of M, the even
exponential map above is defined as follows:

Ur—— expy : Oaro(U) ——— O o (U)

80 F———— expy(s0) 1= €270,

Actually, the only thing that we need to check in order to prove the exactness of the sequence
above is the surjectivity of the map exp : Oq o — Oj, ,. This is achieved in the following lemma.
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Lemma 1.4 (exp is surjective). The map exp defined above is surjective and ker(exp) = Zas.

Proof. Surjectivity is to be proved locally, on the stalks. Choosing an open set U 3 x, we can take
a representative of an element in O}, ,  such that the corresponding element in O}, (i) has the
following expansion

fo(z,0) = f(x) + N(z,0), f(z) #0. (1.18)

Notice that, for the sake of convenience, we have split the contribution on the reduced manifold,
f(2) - which is an ordinary non-zero holomorphic function since we are considering an invertible
element in OF ;(U) - and we have gathered all the nilpotent contributions in the expansion in the
term N(x,0) € Jar(U), such that N™(x,0) = 0 and N !(x,0) # 0 for some m > 2, nilpotency
index.

Now, since f(x) # 0, if one wish, it can be collected to give

N(z,0) >
fl@) )
This might be useful in writing the logarithm, defined as to be the (local) inverse of the exponential,

that is U — log;, with log;,(so) = ﬁ log(sg) for so € O}, ;. In this way, using the expression above,
one finds:

fo(z,0) = f(z) (1 + (1.19)

o8 (1o) = 5 108 () + 5 tog (14 1220 ) (1.20)
1 "2 (=1)% (N(z,0)\""!
= %bg (f(z)) + o 1 < @) > . (1.21)

This is well-defined for log (f(z)) is the logarithm of an ordinary holomorphic non-zero function
and it is locally single-valued and the remaining part is a finite sum of nilpotents. Therefore over
a generic small open set U < |M| containing z, fo = expy(logy,(fo), that is exp is surjective. We
can now evaluate the exponential of the above quantity to establish the kernel of the map:

eXpu(fo) _ e27'ri(f(m)+N(r,9)) _ e27rif(r)€27riN(m,0) _ (122)
m—1
L , N(z,0)*
— 2mif(x) <1 + 2mi kz“l kl) =1y (1.23)

Now the exponential above, e2™*/(#) is the usual complex exponential map that has kernel given

by the sheaf of locally constant functions taking integral values Z. Let suppose that f; € ker(exp),
k

the only way for this to be true is that Z;nz_ll N(x’la) = 0, which in turn implies that N(z,6) = 0,

indeed, multiplying on the left and on the right side by N™2 one has

<mZ]1 W) CN™2(z,0) = N (x,0) #0, (1.24)

= k!

thus concluding the proof. O

The even exponential sequence first appeared (without a proof) in [42], which has been our main
reference. For a different construction the reader might also refer to [4].

1.3 Tangent and Cotangent Sheaf of a Supermanifold

In this section we introduce the tangent and cotangent sheaves of a supermanifold M and we
establish their connection with the fermionic sheaf F,,, that we have discussed in the previous
section. We write down the short exact sequences the cotangent sheaf fits into, first by working
in a general framework, dealing with a generic, possibly non-projected, supermanifold. Then we
specialise to the case of projected supermanifolds. In this context, we study the Berezinian sheaf
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- the supergeometric analog of the canonical sheaf - of a projected supermanifold proving that it
can be easily reconstructed via the canonical sheaf of the reduced manifold M,.4 and the fermionic
sheaf Fys. Further, following this path, we generalise the notion of first Chern class to projected
supermanifolds. Throughout the section, we make our constructions explicit using the example
provided by the complex projective superspace P,

We start by introducing the following notion in supergeometry, generalising the ordinary one.

Definition 1.15 (Superderivation). Let A be a superalgebra over a field k, then a superderivation
D is a homogeneous a k-linear map D : A — A of parity |D| that satisfies

D(a-b) = D(a) - b+ (=1)Pllelg . D(b), (1.25)
for any a € A homogeneous of parity |a| and any b € A.

Usually, depending on its parity |D| € {0, 1}, a superderivation D is said to be either even or odd.
In particular, on the complex superspace CP19 having coordinates (z',...,z”|8',...,09), the su-
perderivations of the structure sheaf Ocpq are written as (0p1,...,00|0p1,...,0pa), where the
{0pi}iz1,..., » are the even superderivations and the {0y };j—1, .4 are the odd superderivations.

In order to define how these superderivations act, we let I := (i1,...,4,) be a multi-index with
ij ={0,1} and |I| = }.¢_, ¢ (so that 0 < |I| < ¢) and we put 6 := (91)" ... (6;)% ... (09)% (where
we let (67)° := 1¢). Then, an element f € Oyl can be written uniquely as

f=> ()6, (1.26)
I

where f7(x) € O¢r is an ordinary holomorphic function on CP for any multi-index 1.
The i-th even derivative of f is then defined as

=% (hw) e (1.27

I

To define j-th odd derivative of f we want to isolate 67 in the generic expression of f above. In order
to do so, for a multi-index I := (i1, ...,1%q), where iy, € {0,1}, we define I; := (i1,...,%;-1,0,%41,...14),
so we put i; = 0. Then, f can be rewritten as

f= D f, @05 + > fr, i (x)070% |, (1.28)
I; I;

where again f;, and fr; ; are holomorphic functions on C? for any multi-index [}, having i; = 0.
The j-th odd derivative is then defined as

)= D s )0 (1.29)
I;

It is an early result of Leites, see [38], that the Ogple-module of the C-linear superderivations is
free and has dimension p|q with basis given by {0,1,... 0z |0g1,...,0ga}. It follows that, since a
(complex) supermanifold M of dimension plq is locally isomorphic to CPI9, the Ogplo-module of
superderivations of the structure sheaf O, is actually a locally-free sheaf of O4-modules of rank
plq and we denote if by SDer(Oys). In the rest of this thesis, though, this sheaf will be referred to
as the tangent sheaf of M, as in the following definition.

Definition 1.16 (Tangent Sheaf). Let M be a (complex) supermanifold. We denote Tar the sheaf
of superderivations of Ogr, Tar := SDer(Oar).

As usual, local sections of Ty, (that is derivations of Oy) will be called local vector fields.
The cotangent sheaf or sheaf of 1-forms, is defined as usual starting from the tangent sheaf.

Definition 1.17 (Cotangent Sheaf). Let M be a (complex) supermanifold. We denote QL the
dual of the tangent sheaf Tar of M, that is Q}W = Homo,, (Tar, Oar).
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Before we go on, we notice that, given the tangent sheaf Ty, in [41] Manin distinguishes between
two possible choices for the cotangent sheaf. The first one is called (Q;{)ev and it corresponds with
what has just been defined to be Q}W and it is the one that will be used throughout this thesis. The
second possibility is to consider odd homomorphisms, and defining (Q}‘{)Odd = Homo,, (Tar, HO4).
This is the parity changed version of Q}, and, as such, if Q}, has rank p|q, then (},)o4q4 has rank
glp. This second choice for the cotangent sheaf, (},)odq, is often preferred in some applications,
in particular when looking at the de Rham theory on supermanifolds [18] [68].

As Ty, the cotangent sheaf Q}W is a locally-free sheaf of O4-modules. A local basis for Q%M is given
by {dz!,...,dzP,df*, ..., d09}, with a duality pairing with the tangent sheaf (locally) given by:

o (U @0, Tar)(U) ———— On(U)

Ww® D ——— {w, DYy := w(D)

if D and w are local sections of T, and Q;{ respectively. Given two local sections of the structure
sheaf f, g € Oa(U), the duality paring reads

(fw,g Dy = (1)1l fg (o, D)y (1.30)
Along this line, one can define a differential d : Oy — Q}W, by f — df, putting
{df, Dyu = D(f). (1.31)

This enters the definition of the de Rham complexr in the theory of supermanifolds, which is a
subtle topic we will not discuss any further.

Also, as in the ordinary case, given two supermanifolds # and Al and morphism ¢ : M — A/,
one can define a morphism of sheaves dy : Toy — ©*Ta. A (local) vector superfields X on the
supermanifold M - that is a section of the tangent sheaf, X e Ty (U) for a certain open set
U < | M| -, when acting on functions lifted from A, defines a derivation on A valued in the ring of
functions on M. This gives a morphism of O,-modules, w*(Q;[) — Oy, or equivalently, a section
of the sheaf p*(Ta), which is said to be the image of X with respect to de.

It is important to note that the restriction to the reduced manifold M,..4 splits into complementary
even and odd sub-sheaves, actually locally-free sheaves of Oy, _,-modules:

(TM)red = TM ®0M OMmd = TM,+ @ TM,*& (132)
(U red = Vi ®0, Ontyy = Uy Dy _, (1.33)

where, with reference to the first section, we have called Ty 4 := (Gr(O)TM)o and Tar 1 = (Gr(O)TM)l
and likewise for the cotangent sheaf.

Clearly, the even parts T, and Q;{ . in the previous parity splitting are easily identified as Tay,.,
and Q;[Tcd respectively, that is the tangent and cotangent sheaf of the reduced manifold 4.
In order to identify the odd parts Ta,,_ and Q;{ﬁ, we need to disclose the relationship with the
fermionic sheaf we have already mentioned early on in the first section of this chapter. Recalling
that the fermionic sheaf has been defined as Fy, := Gr(l)(’)M, we have the following

Corollary 1.1. Let M be a (complex) supermanifold, then we have the isomorphism of Oq.,-
modules

lle

For = (Gr(O)Q;{) 1 F (Gr(O)TM) 1 (1.34)

where the subscript 1 refers to the Zs-grading.

Proof. We start observing that, locally, a basis of Fy, Y / Jm24 has the form 6*mod J2 for

a=1,...,m where m is the odd dimension of M. Moreover we have that

(Gr(O)Qﬁl)l = (i ®0,, Ot [ Tng); = (Qar /Ta), (1.35)
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so that, locally, a basis of (Gr(O)Q;{)l read d#?modJaQ},, again for j = 1,...,m where m is the

odd dimension of M. The isomorphism reads
Facly ——— (Grr(o)QiM)1 L{ (1.36)
07 mod T2 - df? mod T2,
We prove that this is well-defined and independent of the chart: that is, if we let (y'|n) be

another local coordinates system, we need that the sections 7’ modjﬂff go to dn’ modeQ;\{. The
transformation for the fermionic sheaf Fy, reads n/ = Y, fi (¢)6° mod [J2, therefore one has

j oy o
diy =3’ Spdal + ) = pdd
b

b
v 00
—Zi D fi(x)6° mod T, | d b+2i > fl(x)6° mod Ty, | d6®
=250 J(z)0° mod J;; | dx 20 J(2)0° mod J;;
b c b c
J )
_ @;C;f) 6° mod 72 da® + " f] () mod 73 do”
b,c b
=" fl(x)d0" mod (Ta,) , (1.37)
b
since vac %6‘0 mod J2 dz® = 0mod T2k, concluding the proof. The other isomorphism,
involving the tangent sheaf, is proved in the same fashion. O

Notice that the previous result originally appeared in [41]: here we have just made the maps and
computations explicit.

Using Corollary 1.1 we have that the parity splitting for the reduced tangent and cotangent sheaf
reads

(Tae)red = Tatoeq © Fops (1.38)
(e)rea = Uiy, ® Far. (1.39)

red

This is a very useful decomposition that has many applications in the theory of supermanifolds
and indeed it will be often used in this thesis.

We now study the cotangent sheaf further, showing which short exact sequences it fits into. It is
understood that the same might be done for the tangent sheaf, dualising the short exact sequence.
We put ourselves in the most general setting, considering a possibly non-projected supermanifold
M : this means that in principle we only have an embedding ¢ : M,..q — M, which allows us to have
an exact sequence of O4-modules as follows

7‘85@”[

0 No,, Qk, L*lewmd — 0 (1.40)
where Np,, is a suitable sheaf of Os-module, actually kernel of the map reso,, : Q%V[ — L*Q;{md,
where L*Q}\’fred is the push-forward of the sheaf of 1-forms over the reduced variety M..q, that is
indeed a sheaf of O4,-modules.

Likewise, we can also consider the pull-back of the previous short exact sequence:

reso,,

QL Q) —————0 (1.41)

0 NOMTEd

This gives a short exact sequence of Oy, -modules. Here, similarly as above No,, , 1s the kernel.

Notice that the pull-back by ¢ makes the short exact sequence well-defined for we have L*Q;l =
Z‘71954 ®i-104 Oat,.ca-
We now wonder if there actually exists a projection 7 : M — M,.q splitting the exact sequence
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above. In presence of the projection, it makes sense to consider the following short exact sequence
of Oyr-modules:

0—— 7k, QL » Qo,, 0 (1.42)
where now Qp,, is the quotient Qp, = Q%/W*Q;\{ and Q% L= Ox Qp-10,, p QL L
o e e My

This short exact sequence splits,

proj
, K- s 1
*
0", o Ly Qo, 0, (1.43)
Notice that being Qp,, the quotient QM / T Ql , locally, we have that elements in Qp,, are of

the form Oy - {dz1,...,dzp,db1, ..., db,}mod OM {dz1,...,dzp}.
Locally, over an open set uc|m | we have:

*Ql (u) mmyy

Mred

(’)M~{dzl,...,dzp}|—>(’)M~{dzl,...,dzp,O...,O}}—>(9M-{dzl,...,dzp}.

QL () QL ()

Mred

Therefore, when dealing with a projected or a split supermanifold that possess a morphism 7 :
M — M,..q, we can consider the sheaf of 1-form Q;[ as given by a direct sum, as follows:

0————— 7, —————— 70, @ Qo, Qo,, 0. (1.44)

Now we need the following

Corollary 1.2. Let M be a projected supermanifold, with projection given by m: M — Mycq. The
the following isomorphism holds

T Far = Q5 /w*Q;{M. (1.45)
Proof. Locally elements in 7* Fy, can be written as H“modjf{ fora =1,...,m where m is the odd

dimension of M (notice the abuse of notation with respect to the previous Corollary 1.1) while
elements in QM/W*Ql have a local form given by d6® mod W*Ql ,»againfora =1,...,m where

m odd dimension of 9. The isomorphism we are considering readb

7* Far Q%% /W*Q}W (1.46)
67 mod jﬂ%[ % d# mod W*Q%ed

We need this to hold true when passing from chart to chart, that is we need that 1/ mod Jff go
to dn’ mod ’/T*Q;/[Ted, therefore we consider another local chart of M having local coordinates given
by (y°]67), and we consider the transformation of dz’ and of d¢’ for

i oy’ oy’ oy
dy' = Zb: ﬁdl'b + 2 205 —dg® = Z d;v = 0mod *Qj, | (1.47)

as Jgpy’ = 0 since M is projected and therefore y = y(z). Moreover, remembering that 7/ =
o fi (2)0° mod T, one has

dJ—Zan dx +259bd9b

- Z @ <2 £ (2)6° mod jj) da® + Eb] % <Z f1(2)0°mod Jﬁ) do”

0°mod Jy; dz’ + ) £} (z) mod Jy; d6°
b

_Zfb )d6® mod (7*Q, ), (1.48)
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thus concluding the proof. O

Then, the previous short exact sequence can be re-written in the more useful form

00— Q)  ——————— QL @ Fy * Fag 0(1.49)

This can be used to express the Berezinian sheaf, that will be introduced in the next section, in a
convenient way.

1.4 Berezinian Sheaf, First Chern Class and Calabi-Yau
Condition

When passing from the ordinary algebraic geometric setting to an algebraic supergeometric setting,
there is one issue in particular that stands out for its peculiarity: the theory of differential forms
and integrations (see for example [18] [19] [41] [45] [68]).

The main problem can be sketched as follows: when one tries to generalise the complex of forms
to supergeometry using 1-forms {df’},cr, constructed out of the 6%, then it comes natural to define
wedge products to be commutative in the df’s, as the 8’s are anticommutative elements. This
leads to the consequence that forms such as (d6?)"" := df® A ... A d§* do make sense and they are
non-zero for an arbitrary value of n, possibly exceeding the odd dimension of the supermanifold.
In other words, this says that in supergeometry the de Rham complex is not bounded from above:
there is no notion of top-form.

This obviously creates issues in the definition of a coherent notion of integration on supermanifolds.
There are actually two possible way out. One is to enlarge the de Rham complex, by supplementing
it with the so-called integral forms. Without going into details, this makes the de Rham complex
into a bi-complex, with a generalised notion of top-form that can be integrated over. The interested
reader can refer to the literature cited at the beginning of this section for further information and
discussions of integral forms and their properties on supermanifolds.

Another possibility is to look for a supergeometric analog of the canonical sheaf of an ordinary
manifold - whose sections are the elements that get integrated over. The key is to observe that the
sections of the canonical sheaf transform as densities under change of local coordinates, we thus
ask for a sheaf defined on the supermanifold M whose sections transform as densities as well. This
calls for finding a supergeometric analog of the notion of determinant (of an automorphism) that
enters the transformations of densities such as the sections of the canonical sheaf.

The supergeometric analog of the determinant is known as Berezianian. Briefly, given a free
Zy-graded module A := API9, the Berezianian is a supergroup homomorphisms

Ber : GL(p|q; A) — GL(1]|0; Ap) (1.50)

that agrees with the determinant when ¢ = 0 and it also proves to have similar properties (see [16]
[19] [41] [68]). Here GL(p|q; A) are the invertible (even) automorphisms of A. We can thus give
the following

Definition 1.18 (Berezinian Sheaf / Berezinian of M). Let M be a (complex) supermanifold and
let € be a locally-free sheaf of Oac-modules of rank plq. The Berezianian sheaf of £, we denote it
by Ber(£), is the sheaf whose sections transform with the Berezinian of the transition functions of

E.
In particular, we define the Berezinian of the supermanifold M to be the sheaf Ber(Q;l).

It turns out that the sections of the Berezianian of M are indeed the objects to call for when one
looks for a measure for integration involving nilpotent bits - the so-called Berezin integral (see for
example [63] and again [68] for details about integration on supermanifolds).

Note, by the way, that if on the one hand the definition of the Berezinian sheaf we have given
have the perk of being immediate and suitable for practical computations, on the other hand we
might be interested into having this sheaf intrinsically characterized. In this regard, the reader is
suggested to refer in particular to the very interesting paper by I.B. Penkov [51]. On the same line,
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in the context of differentiable supermanifolds, a nice intrinsic characterization of the Berezinian
sheaf a suitable quotient sheaf is provided in [32].

It is in general not obvious how to study the Berezinian of a generic supermanifold, though.
The theory we have developed in the previous section, in particular the short exact sequence (1.49),
allows for an easy result that simplifies the computation in the case of projected supermanifolds.
To the best knowledge of the author, this result has never appeared in the literature.

Theorem 1.1 (Berezinian of Projected Supermanifolds). Let M be a projected supermanifold,
with projection given by m: M — M,..q, then one has

Ber (L) = 7* (det(Q%WM) ®0,, _, (det ]—‘M)®_1> (1.51)

Proof. We have seen that in presence of a projection 7 : M — M,..4, one has that Q;{ ~ W*Q;\{md &)
7% Far, then it is enough to take the Berezinian of the both sides of the isomorphism. In particular,

the right-hand side reads
Ber (7*Q}, @ n*Far) = Ber (7*Qy, ) ®o, Ber (7% Fy)
~ ¥ (det(Q;W) ®o,, , (det ]-'M)®*1) , (1.52)

thus completing the proof. O

Notice that this result allows us to evaluate the Berezinian of projected supermanifolds by means
of completely “classical” elements. Indeed, whenever there is a projection, what one needs is to
know the canonical sheaf Ky, = det(Q}med) of the reduced manifold and the determinant sheaf
det Fyr of the fermionic sheaf, that we recall it is a (locally-free) sheaf of O, _,-modules, that is
an object living on the reduced manifold.

Using this result, for example, one can easily evaluate the Berezinian sheaf of a projective su-
perspace P™™. In order to do so, we first define the sheaves Opnjm (£) as the pull-back sheaves
7*(Opn (£)) via the projection map 7 : P*"I™ — P™ of P*I™ on its reduced manifold P", where we
recall that 7% (Opn (¢)) := 71 (Opn (£)) ®r-10,n Opnim. Then, one has the following corollary.

Corollary 1.3 (Berezinian of P (Version 1)). Let P™™ be the n|m-dimensional projective
superspace. Then

Ber(Qpajm) = Opnim (m —n — 1). (1.53)

Proof. In the case of P"™ it boils down to consider the following split exact sequence

00— Q4. QIIP,M,,L 7 (ITOpn (—1)®") ————————— 0.(1.54)
Therefore, taking the Berezinian of the short exact sequence, one gets

Ber(Qp,m) = Ber (7*Qf, @ 7* (IIOS™))
~ Ber(7*Qpn) ®o,,. Ber (7* (I1Opx (—1)®™))

*(det(Qpn) ®0opn (det(OP"(_1)®m))®_l)

3

= 7% (Opn (=1 — 1) ®0, Opr(m))

>~ 7% (Opn(m —n — 1))

=~ Opnm (M —n — 1), (1.55)
that yields the conclusion. O

In the next chapter we will prove the same result in another way, using an interesting exact sequence
that can be defined for projective superspaces P™™.

Theorem 1.1 above allows also to define a supersymmetric analog for the first Chern class of an
ordinary supermanifold, at least in the case we are dealing with a projected supermanifold. Indeed,
we can define
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Definition 1.19 (First Chern Class of a Projected Supermanifold). Let M be a projected super-
manifold. Then we define the first Chern class ¢5(Q},) € H*(Myea, Z) of the cotangent sheaf Q},
of M as

¢ () = c1(det Q}, ) — c1(det Fay), (1.56)
In particular, we define the first Chern class of M to be given by
(M) = —ci(QL)). (1.57)

Notice that this reduces to the usual definition of the first Chern class of a variety in the case we set
the odd part to zero (recall that Fay & Jar), that is we have ¢ (Mrea) = ¢1(Mpea) = —c1(det Q5 ).
This construction immediately gives the following corollary.

Corollary 1.4 (First Chern Class of P*'™). Let P"™ a projective superspace. Then we have
Py = n 41 —m. (1.58)
Proof. Since we have that Fpnm = Opn(—1)®™, we have that

P = —¢y (det QL) + ¢ (Opn (—1)8™)
= —1(Opn (=1 =n)) +m - c1(Opn (1))
=n+1l-—m, (1.59)
that proves the corollary. O

There is, though, an important remark: when dealing with a non-projected supermanifold, no exact
sequence comes in our help to study the Berezinian sheaf, moreover it is not obvious how to define
a first Chern class. Actually, one then needs to carry out explicit computations, investigating the
Berezinian of the change of coordinates of the cotangent sheaf among charts, as we will see later
on in this thesis.

There is, however, a distinct class of supermanifolds that can be singled out when looking at the
Berezinian sheaf.

Definition 1.20 (Calabi-Yau Supermanifolds). Let M be a (complex) supermanifold and let
Ber(M) be its Berezinian sheaf. We call M a Calabi- Yau supermanifold if it has a trivial Berezinian
sheaf, that is

Ber(M) = Oq. (1.60)
We will call the triviality condition on the Berezinian sheaf Calabi-Yau condition henceforth.

Again, notice that this definition is reasonable in view of the similarity between the canonical
sheaf in the context of ordinary algebraic geometry and the Berezianian in the context of algebraic
supergeometry: triviality of these two sheaves leads to the notion of Calabi-Yau manifold and
supermanifold respectively. There are two facts about Calabi-Yau supermanifolds that is worth
stressing out:

1. There is no analog of Yau’s Theorem for Calabi-Yau supermanifolds and the notion of Ricci-
flatness seems problematic in a supergeometric context (see [45] for details). In this regard,
it is the opinion of the author that a differential-geometric approach is in general not suitable
to tackle the questions of complex supergeometry.

2. the reduced manifold of a Calabi-Yau supermanifold is not in general a Calabi-Yau manifold.
We make this second point clear by using as usual complex projective spaces as example.

Example 1.3 (P*"*! is a Calabi-Yau Supermanifold). A well-known fact that can be easily red
off the theory developed above is that in the case of a projective superspace P one satisfies the
Calabi-Yau condition given above choosing m = n + 1: in other words P*™*1 for any n > 1 has
trivial Berezinian sheaf and vanishing super first Chern class.

Notice that the reduced space of P+ for all n is given by P™, which is a Fano - not a Calabi-Yau
manifold - as Kprn = Opn(—n — 1).

Actually, Calabi-Yau supermanifolds enter many constructions in theoretical physics (see, in partic-
ular [2] [44] [57], [70], and the recent [6]), but they have never really undergone a deep mathematical
investigation though.
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Chapter 2

Supergeometry of Projective
Superspaces

This chapter is entirely dedicated to the study of the geometry of complex projective superspaces,
that have been defined in the first chapter.

In the first section the cohomology of the invertible sheaves of the form Opnim (¢) is computed.
Then, in the second section, the even Picard group of P™I™ is studied and it is established that in
the case of supercurves P!™ it has a continuous part.

In the third section maps and embeddings to projective superspaces are discussed. In particular,
the notion of projective supermanifold is established.

The fourth section is dedicated to the study of infinitesimal automorphisms and first order defor-
mations of P"I" . In this context, the supercurves P!I™ prove again to be the most interesting case.
In the last sections contact with physics is made. The Calabi-Yau supermanifold P12 is given
the structure of a N' = 2 super Riemann surface and studied in detail. Last, following a formal
construction based on path-integral formalism due to Aganagic and Vafa [2], the “mirror super-
manifold” to P!1? is constructed, showing that it is P!I? again.

2.1 Cohomology of Opnm({)

We have seen in the first chapter that P™™ = &(P", Opn (+1)®™) is a split supermanifold and
as such one has that P"™ =~ GrP™™. In particular, the structure sheaf Opnm is a sheaf of
Opr-modules given by

[m/2] m [m/2] =380, mmodz .
Opuim = @ O (—26)°CH T @ Opa(—2k — 1)2015), (2.1)
k=0

k=0

where we have inserted the symbol II as a reminder for the parity reversing.

In the previous chapter we have defined the ¢-shifted sheaf Opnjm (£) as Opnim (£) := 7% (Opn (£)
via the projection morphism 7 : P*I™ — P" where we recall that in turn one has 7*(Opn (£)) :=
7T HOpn (£)) @n-10.n Opnim. These are sheaves of Opn-modules of the following form

m/2| L1m/2] =80, mmod2 N
Opuim(0) = @ Oen(—2k+ 02 @ P Opa(—2k—1+ 0960, (22)
k=0 k=0

We shall then use the well-known result about the cohomology of the sheaves Opn(¢) (see for
example [49]) in order to compute the cohomology of Opnim (£). We recall that

woem = ("), wome = (000, (2:)

where £ > 0 in the first equality and ¢ < 0 and |¢| = n + 1 in the second equality and all the other
cohomology groups are trivial.
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It is an easy consequence of the previous decomposition that when dealing with Opnjm (¢) we shall
only have non-trivial 0-th and n-th cohomology groups for any m.

In order to make the combinatorics easier when computing the cohomologies, we will consider
together the even and odd dimensions of the cohomology groups, by looking at the sheaves of
Opr-modules above simply as

Opnim (£ @oﬂm —k + 0)®(%), (2.4)

It is fair to say anyway that it would be nice and useful to separate even and odd dimensions of
the cohomology group at some point to have a result that clearly takes into account the vector
superspace nature of the cohomology groups.

We start considering the 0-th cohomology of Opnim (£). We have to deal with two cases: when
m < {, and therefore all the bits in the decomposition are contributing, and when m > ¢ and
therefore just the first ¢ contribute.

e m < {:in this case we sum over all the contributions:

WO(Opuin(0) = 3 ( (- Z e

)e k+n _mZ( >£ k+n)-...-({—k+1)

P
()bw‘“ﬁu=;;df”O+DTxl
=

(z + 1) (2 4 2)™]

|
El= 1

Il
‘& EMS i MS

1
n!
1

e Y (2.5)

e m > /{ : in this case we only sum over the first £ contributions:

000 - 3 (1) (051" - 3

4
B TRy PR
m!

k=0
4 / d€+nfm e hin B m)! dernfm vin ) 1 4
7 k) | datrn—m® wzl_mdx“”_m o +x
m! dé+n m

i ET— [(:r + )" (x+ 2)E]

=0 "

We now keep our attention on the contribution given by the n-th cohomology. Again, one needs to
distinguish between two cases: namely, when ¢ +n + 1 < 0 all the summands in the decomposition
contribute to the cohomology, while if £+ n 4+ 1 > 0 we find that the only bits contributing are the
ones having k > ¢ +n + 1.

e /+n+1<0:in this case we sum over all the contributions:

P e e et

NgE

W (Opaim (€)) =

k=0m o m
_ ;';O @)M _ ;‘;0 T]Z)(k—é—l)-...-(k—é—n)
LS5 -AlEoer]
- % [i:n(x + D)l (2 + 2)’”]36_0 (2.7)
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Actually, this holds in the case 1 < |£] < n. In the special sub-case £ = —1, one finds:

W (Opnim (—1)) = % [CZ;(er 2)m] - %m S(m=1)-...-(m—n+1)-2m"

(’:) . gm—n | (2.8)

e /+n+1>0:in this case, the first contribution comes at k = ¢+ n + 1:

vomo= 3 (6E55) - 2 G

k=L+n+1 Ck=(+1

1| a1 m ¢
= ldxw (ml) _;()(k)mkﬂl

n L
- [ddﬂmll)w ((x +om - ) (2) (x + 1)’6)] (2.9)

=0

=1

where we stress that we have changed the sum from ¢ + n + 1 to £ + 1 since the derivative
kills the respective terms, which therefore do not give a contribution. This also holds for
k=zl+n+1<m.

For the sake of notation we introduce the following definitions:

1 a" l+n—m m
Xm<e(n|m; £) == P [(z+ 1) (x+2) ]w:O (2.10)
m' d€+n_m n ¢
¢ (n|m; 0) = L (z 4+ DYz 4 2)™ (2.12)
(+n+1<0 =00 den o :

Goomprsolnms€) = l - ﬁ ((sc pom oy (i) (a4 1>k>] @13

k=0 =0
In conclusion, we have thus proved the following theorem.

Theorem 2.1. Let Opnim (€) be the sheaf of Opnim-modules as above. Then one has the following
dimensions in cohomology:

Xm<t(n|m;£) i=0,m</¢
i _ ) Xmze(n|m; €) i=0,m=>=/
WO =9 ¢ colnlms ) i=m, b+n+1<0 (2.14)
Cé+n+1>o(n|m;€) i=n,l+n+1>0.

All the other cohomologies are null.

2.2 Invertible Sheaves and Even Picard Group Picy(P"™)

We have explained in section 1.2 of the previous chapter that even invertible sheaves, that is locally-
free sheaves of Oa-modules of rank 1|0 on a supermanifold, are classified (up to isomorphism) by
the so-called even Picard group, we denote it by Pico(). This can be proved to be isomorphic
to the group Hl((’);{’o) (notice that O;\k{,o is a sheaf of abelian groups), as one might easily get by
similarity with the ordinary case [42].

In the following theorem we compute the even Picard group of P™™.
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Theorem 2.2 (Even Picard Group for ]P’”‘m). The even Picard group of the projective superspace
P™ s given by

Z.@C" P m=2+1} 1, m=2

2.1
Z else (2.15)

Pico(P"™) ~ {

Proof. The main tool to be used in order to compute the even Picard group is the even exponential
short exact sequence, introduced in section 1.2, that reads

)

0 ZM OM 0 O;(/[,O — 0. (216)

where Og is the even part of structure sheaf of 2, and likewise for O} ;. We now consider
separately the case n > 3, n =2 and n = 1.

n > 2 This is the easiest case, as one has Hi(OPn\m’O) =0 for ¢ = 1,2. So the part of the long exact
cohomology sequence we are interested into reduces to

0 ———— Picy(P"™) ——————— H?(Zpn) 22— 0,
so that one has Pico(P""™) = Z.

n = 2 The long exact cohomology sequence reduces to

0 — Pico(P?I™) —— H*(Zp2) = Z —— H*(Op2im o) — H?*(O}

]P>2|7n 0) E— 07

this splits to give Pico(P2™) =~ Z and H?(Opaim ) = (01;2\m 0)-
n = 1 This is the richest case, as one finds
0 —— HY(Opijm o) — Picg(PH™) —— H*(Zp1) = Z —— 0,

computing the dimension of H'(Opijm (), one has
[m/2]

A (Opiim o) = Z ( )2k—1)=2m2(m—2)+1. (2.17)

Indeed, one can observe that

lm/2] lm/2] /2]
m m m
Z <2k> (2k —1) = — Z <2k) + 2k(2k>

o(2) oo S ()

so that for m > 2 one might write

and using that

(1+ex)™

HMS

d [m/2] (M
— [(1 m 1—2)"=2- 2 .
T [(I+2)"+(1—2)"] ;1 kx (2k)

At x = 1, the sum yields

[m/2]
m—2 __ m
man? = Y Zk(%).

k=1
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Putting the two bits together one finds

R U
_ — (_ m—1 m—2 _ _ m—2
> <2k) + ), 2k<2k> (=21 4 1) + (m2™72) = (m —2)2™ "2 4+ 1.

k=1 k=1

So that the conclusion follows,

Pico(P!™) ~ Z@ C12" " (m=2)+1}, (2.18)

These exhaust all the possible cases, concluding the theorem. O

The previous theorem tells us that all of the invertible sheaves on P™ for n > 1 are of the form
Opnim (€). In other words, we can say that all of the invertible sheaves on P™™ for n > 1 are the
pull-backs via the projection 7 : P — P™ of the invertible sheaves Opx (£) on P", thus Theorem
2.1 exhausts the cohomology of all invertible sheaves of rank 1|0 over P™ for n > 1.
This is no longer true in the one-dimensional case: indeed over P! for m > 2, there are invertible
sheaves that cannot the obtained by the pull-back of a certain invertible sheaf Op: (£) via 7 : PH™ —
P!, i.e. there are genuinely supersymmetric invertible sheaves on P, In view of this, it can be
seen that the even supergeometry of projected, actually split supermanifolds, could effectively
become a richer geometric setting compared to its ordinary counterpart.
Before we actually give the explicit form of the transition functions of the invertible sheaves on the
supercurves P! we fix the notation. We consider P! to be covered by two affine superspaces
(U,C[2,61,...,0p]) and (V,Clw, 21 ...,9¥n]), where U = {[Xo : X1] € P! : Xo # 0} and V =
{[Xo : X1] € P! : X; # 0}. The transition functions between the two affine superspaces are the
obvious ones and are given by w = 1/z for the even part and 6; = v;/z for the odd part.
We also set I = (i1,...,im) to be a multi-index with i, = {0,1} such that [I| = })" , iy < m and
we put

Y= it i (2.19)

° m

where, clearly, w,g = 1¢. Using this notation, we have the following

*

Theorem 2.3 (Generators of H(O# Plim g

Sim o)) The cohomology group H'(O

) is generated by
the following Cech 1-cocycles:

. [m/2] 2|T|—1 I
1 ~ I
H (Og11m ) —<w SR clwf>' (2.20)

lI]=1 ¢=1
where k € Z and ct € C for each |I| =1,...,|m/2] and ¢ = 2|I| — 1.

Proof. One has to explicitly compute the representative of H'(O%¥,,. ). In order to achieve this,

Ptlim 0
the usual covering of P! given by the two open sets {{/,V} can be used, so that one has

CO({U VY, Ofiim ) = O o U) X Oy o (V) (2.21)
CH{U VY, Ofi o) = Ofij (U A V). (2.22)

The Cech 0-cochains are thus given by pairs of elements of the type (P(z,01,...,0m), Q(w, %1, ..., %m)).
Making use of the notation we set above, we can write the following expressions for the pair (P, Q):

lm/2]
P(z,61,...,00) =a+ Z Z Pr(2)6"
k=1 |I|=2k
—a+ ). Py(2)0'0" + . Pyu(2)00760%60" + ... (2.23)
i<j i<j<k<l=1
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k=1 |I|=2k
=b+ > Q'+ > Qur(w) Iyl + (2.24)
1<j i<j<k<l=1

where a,b € C*. The boundary map & : CO({U, V}, OF, .. 0) — C'({U, v}, 04, 0) acts as

5((P,Q)) = Q(w,¥1, ..., Um) P~ (2,01, ., 0m)| 1y o (2.25)

Explicitly, one finds

(P, §3<@] +;3mmvwwﬁ

2
1<j=1 w

. i (@z«jkmw) b Pyn(l/w) 1 Quy(w)Pu(l/w)

a a3 w a? w?

> Vbt + ... (2.26)

i<j<k<l=1

Clearly, one immediately sees that H° (Of;l\m 0) C*, as the group is represented by the constant

cocycles (a,a) with a # 0.
On the other hand, the elements in OP”,,L O(Ll N V) are given by expressions having the following

form
|m/2]|

W(w, 1w, ¥y, ..., 0n) = cw® + Z Z (w, 1/w)y
k=1 |I|=2k

cw® + Y Wis(w, Lw)p'y? + Y Wign(w, Lw)piy ¢Fy! +
1<j i<j<k<l=1

(2.27)

where again, clearly ¢ € C*, k€ Z and W; € Clw, 1/w] for all the multi-indices I. Confronting the
expressions in (2.26) and (2.27) one sees that b/a can be used to set the coefficient ¢ of w* to 1.
Also, for every power in the ’s, the polynomials Q 7(w) kill the regular part of the corresponding
W and the mixed terms, such as for example Q;;(w)Py(1/w)/w?, in (2.26), do not contribute
anyway, as they enter in lower-order powers in the theta’s, so that they are completely fixed.

We thus see that the non-exact 1-cocycles are given by transition functions having the following
form

|m/2] 2|1|—1 o
HY (0%, ) = <w 1+ Y > f— > (2.28)

lI|=1 ¢=1
where k € Z and each of the (m — 2)2™~2 + 1 coefficients ¢! is a complex number. O

Recalling that an even invertible sheaf on a supermanifold can be defined exactly as an ordinary
invertible sheaf in algebraic geometry, that is by giving an open covering and the transition func-
tions between the open sets of the covering, if we choose the open cover of M,.q = P! to be given
by {U,V} as above, we can adopt the following notation for the even invertible sheaves of ptm.

Opijm (k) «—— {w"}, (2.29)
[m/2] 2|T|—1

Lo (. Cpamy) <= S 1+ Y, ) cg— , (2.30)
[I]=1 ¢=1

for k € Z, ¢} € C and f(m) = (m —2)2™~2 + 1. Note that Opijm (k) := 7*Op1 (k), where 7 : M —
M,.cq is the projection map. Having set these conventions, we get the following theorem.
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Theorem 2.4 (Even Picard Group Pico(P!1")). The even Picard group of P'™ is generated by
the following even invertible sheaves

Pico(P'™) = (Opijm (k), Lprim (1,0, ...,0), ..., Lptim (0, .., Cramy) ) (2.31)
Jor k= *£1, c1,...cpum) € C and where fim) = (m—2)2m=2 4+ 1.

Proof. Taking into account the notation adopted above, this is a consequence of the previous

theorem and of the isomorphism Pico(P!™) =~ H* ((’)ﬁ,’f”m 0) O

Before we go on, we stress that one can check that Pico(]P’”m), as seen via the isomorphism with
Z @ Cm=2)2"""+1 hag the structure of an abelian group with addition, that is

ZO(CP..dC)xZD(CD...®C) Z®(C®...®C) (2.32)

((k:,cl, .. .,Cf(m)), (/:3,51, .. ~76f(m))) T — (k + ];},Cl + Cq, .. -Cf(m) T 6f(m))~

where f(m) = (m — 2)2m~2 + 1.

At this point, it is fair to say that whereas we have been able to compute the cohomology of the
invertible sheaves of the kind Opnim (£), it is instead not certainly a trivial task to deduce a general
formula for the cohomology of the most general invertible supersymmetric sheaf on P!" for n > 2,
originating by tensor product of the generators shown above.

At this stage, it would be easy to provide a general formula for the genuinely supersymmetric
generators of the even Picard group above, but this would not help to solve the general question.
We thus limit ourselves to provide the reader with an example, as to show that these invertible
sheaves have an interesting non-trivial cohomology.

Example 2.1 (The Cohomology of a Supersymmetric Invertible Sheaf). We consider the following
supersymmetric invertible sheaf on P3:

3
Lpijz == {{U,V}, ey = (1 + Z w;j“) 61;} (233)

i<jiij=1

for ey and ey two local frames on the open sets U and V respectively. Notice this is a generator of
the even Picard group for PY3. It is easy to actually compute Cech cohomology. We have that

CO({U, VY, Lpus) = Lpua(U) x Lpra(V) 3 (P(z,01,02)er, Q(w,1,12)ev)
Cl({u, V}, £P1|3) = ﬁpl\s (L{ N V) E W(w, 1/w,’(/J1,’(/)2)€v (234)

where P € C|z,01,02], Q € Clw,Y112] and W € Clw, 1/w, 1, 1)2].
By following the usual strategy, we change coordinates as to get

P(z,01,05)ey = <A<0> +2A 2)0; + Z AP (2)0:8; + A®) (2 )919293>

1<j;i,j=1

(2
<A(O (1/w) + ZA(l) 1/w) 2 (Aiju(}i/w) n A(@i}l/w)) Db+

i=1 1<j;i,7=1
3 3 m A3
+ ) (Z ) = u(}l/w) u(}l/w)) ”¢11/121/13> ey. (2.35)
1<j;i,j=1 =1

One can clearly see that there is no way to get a globally defined holomorphic section, that is to
extend P(z,01,02)ey to the whole P13 without hitting a singularity, and this tells that h°(Lpis) =
0]0.

Instead, considering (Q — P) |u~y, upon using the expression above for P in the chart V, one finds
that h'(Lpis) = 3|2, and in particular, it is generated by the following elements:

H (Lons) <z/w2 Uit Yot | divavs wlw2¢3>
C

(2.36)

’ ’ ’ 2
w w w w w
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where we have written the representative in the chart V: mnotice that all of these elements are
nilpotent, they live in Jp1s(U n'V). The cohomology of Lpijs is thus given by

i 0]0 1=0
B (Lpra) — {3I2 =Y (2.37)

Similar computations can be easily done for any invertible sheaves of this kind: in general, one
would again find a vanishing zeroth cohomology group, while a mon-vanishing - and possibly very
rich as the fermionic dimension of P™ increases - first cohomology group.

2.3 Maps and Embeddings into Projective Superspaces

For future application in this thesis we now discuss how to set up a map, or better an embedding,
into a projective superspace. Indeed, in the next chapter, beside realising examples of non-projected
supermanifolds, we will be interested into understanding whether it is possible to realise an em-
bedding of these non-projected supermanifolds into some supermanifold with a universal property,
such as, for example, a projective superspace P™™.

We first review the general framework, referring mainly to [16] and [38] for further details.
As in the ordinary theory, a sub-supermanifold is defined in general as a pair (A, ¢), were A is a
supermanifold and ¢ := (¢, %) : (N, Ox) — (M, Oyy) is an injective morphism with some regularity
property. In particular, depending on these regularity properties, we can distinguish between two
kind of sub-supermanifolds. We start from the milder notion.

Definition 2.1 (Immersed Supermanifold). Let ¢ := (i,i%) : (||, Ox) — (|M], Oa¢) be a morphism
of supermanifolds. We say that (N\,¢) is an immersed supermanifold if i : |N| — |M| is injective
and the differential (dv)y : Tac(x) — Tar(i(x)) is injective for all x € |N|.

Making stronger requests, we can give instead the following definition.

Definition 2.2 (Embedded Supermanifold). Let ¢ := (i,4%) : (|]A], Ox) — (|M|,O0) be a mor-
phism of supermanifolds. We say that (N, ) is an embedded supermanifold if it is an immersed
submanifold and i : |M| — || is an homeomorphism onto its image.

In particular, if ((|N|) < | M| is a closed subset of |M| we will say that (N, ) is a closed embedded
supermanifold.

In this thesis, we will mostly deal with closed embedded supermanifolds. Remarkably, it is possible
to show that a morphism ¢ : Al — M is an embedding if and only if the corresponding morphism
1 Ogr — Oy is a surjective morphism of sheaves (see [16]). Notice that, for example, given a
supermanifold %, one always has a natural closed embedding: the map ¢ : M,..q — M, that embeds
the reduced manifold underlying the supermanifold into the supermanifold itself.

It is anyway fair to say that these definitions apply only to honest non-singular supermanifolds,
and it is somehow tricky to generalise them, for example, to superschemes, as hinted in [16] and [38].

We now specialise to embedding into projective superspaces P™™. In a similar way as in

ordinary algebraic geometry, after Grothendieck, setting up such an embedding, calls for a search
for very ample locally-free sheaves of Og-modules of rank 1|0.
The first step into this direction is to bring to a supergeometric context the ordinary invertible
sheaves of Opn-modules Opr (¢) classified by the Picard group Pic (P") =~ H'(Of,) =~ Z. As we
have seen in the first and in the second section of this chapter, this can be achieved using the
fact that projective superspaces are split supermanifold, that is we have a projection, we write
it 7 : P"I™ — P as usual. We can thus pull-back the invertible sheaves Opn (¢) to P™™ by the
projection map and we define the sheaves Opnim (£) as the pull-back sheaves 7*(Opn (£)) as above,
where we recall that 7% (Opn (£)) := 72 (Opn () @r-10pn Opnim. Again, the most obvious way to
deal with Opnm (£) is clearly to look at them as locally-free sheaves of Opn-modules: as such, they
amount to twist the structure sheat Opnim seen as a sheaf of Opn-modules (as displayed in (2.1))
by O[Pm (@)

In particular it is important to focus on Opnim (1). Clearly, specifying a result obtained above by
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discriminating even and odd dimension, its zeroth-cohomology is given, as a sheaf of Opn-modules,
by

HY(Opnim (1)) = H(Opn (1)) ® 1T éﬁ) H(Opn) = C™Flm, (2.38)

i=1

and, with obvious notation, Opnm (1) is globally-generated by the sections { Xo, ..., X;,|01,...,0,},
that is we have a surjection H°(Opnim (1)) @ Opnim — Opnim (1).

The sheaf Opnm (1) plays an important role as one is to set up an embedding of a certain complex
supermanifold % into a projective superspace P™™. Indeed, as in ordinary algebraic geometry,
one has that if £ is a certain globally-generated sheaf of Oy-modules of rank 1|0, having n + 1|m
global sections {sg, ..., 5,|&1,...,&n}, then there exists a morphism ¢g : M — P™™ such that
E = ¢¥(Opnim (1)) and such that s; = ¢%(X;) and & = ¢%(0;) fori =0,...,nand j =1,...,m.
Notice that also the converse is true, that is given a morphism ¢ : M — P"I™ then there exists a
globally generated sheaf of Oa-modules &, such that it is generated by the global sections ¢*(X;)
and ¢*(0;) for ¢ = 0,...,n and j = 1,...,m. Relying on this result, we can give the following
definition.

Definition 2.3 (Projective Supermanifold). We say that a complex supermanifold M is projective
if there exists a morphism ¢ : M — P™™ such that ¢ is injective on Myeq and its differential d¢ is
injective everywhere on Tar.

We have thus that setting up a morphism from a supermanifolds M to P™™ calls for a search for a
suitable (very ample) locally-free sheaf of Oy-modules of rank 1|0: this, in turn, leads to consider
the even Picard group of M, that classifies such locally-free sheaves.

Before we go on we stress that an empty even Picard group Pico(M) it is enough to guarantee
the non-existence of the embedding into projective super space ¢ : M — P™™ as ¢, as morphism
of supermanifolds, is a parity-preserving one. We anticipate that this observation will be crucial
when studying the existence of embeddings of non-projected A” = 2 supermanifold over P? later
on in this thesis.

2.4 Infinitesimal Automorphisms and First Order Deforma-
tions

We are now interested into studying the infinitesimal automorphisms and first order deformations
for P™I™ by computing the cohomology of the tangent sheaf Tpajm of P*™.

The main tool that we will exploit is a generalisation to a supergeometric setting of the ordinary
Euler exact sequence [41] [42], that reads

0 —— Opnjm — Opnm (1) @ C* U™ —— Tpy —— 0. (2.39)

In the following we will write Opnjm (1)@ 1™ = Op,1 (1) @ CP ™,

In passing, we notice that this short exact sequence give another way to compute the Berezinian
of the projective superspaces, we have already computed in the first chapter. Indeed the following
theorem holds true.

Theorem 2.5 (Berezinian of P™™ (Version 2)). Let P™™ be the n|m-dimensional projective su-
perspace. Then

Ber(Qpajm) = Opnim (m —n — 1). (2.40)

Proof. We consider the dual of the supergeometric version of the Euler exact sequence in (2.39),
that is

0—— QL. — Opupm (—1)@ ™ —— Oppjy —— 0. (2.41)
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Since Ber(Opnim) is trivial, taking into account the multiplicative behaviour of the Berezinian with
respect to exact sequence, one finds

Ber(Qh) = Ber (Opaim (—1)@" ™) = Ber (Opnim (1) @ MOpaim (—1)®™)
Opnim (—m = 1) Q0. Opnim (m) = Opnim (m —n — 1), (2.42)

on|m
which concludes the proof. O

We now look at the cohomology exact sequence associated to the Euler exact sequence:

00— H%(Opnim) SN HO(Opnjm (1)@ 41m) 5 HY(Tpnim ) —————— H (Opnim) — ...

e H Y (T ————— H™(Opuim) —— s H(Opaton ()@Y oy {7 (Tp1) —— 0.

These are the only relevant parts of the long exact sequence in cohomology associated to the Euler
sequence, since, considering the Opn-module structure of the sheaf of algebras Opnjm obtained by
the projection map 7 : P"™ — P" one has the factorisation in a direct sum as in (2.1) and
Theorem 2.1 holds true.

Actually, the map &, : H"(Opuim) —> H"(Opnim (1) ® C**1™) in cohomology deserves some
special attention. One has the following theorem.

Theorem 2.6. The map
en i HY(Opnim) — H™(Opuim (1) @ C MY, (2.43)
has mazximal rank. In particular it is injective if m # n + 1.

Proof. We use the Serre duality on a supermanifold (see [65], Proposition 3, for a thorough dis-
cussion). The dualising sheaf of P"l™ is given by Ber(Qllpm‘m), that is the so called Berezinian sheaf
of P™™ which has been shown to be isomorphic to Opnjm(m —n — 1). Given a sheaf Epnjm of
Opnim-module, Serre duality then reads

H (Epnim) = H" " (Ex i @ Opuim (m — n — 1))*. (2.44)
By functoriality of Serre duality, we see therefore that the map ((2.43)) can be written as
en : H(Opnim (m —n — 1))* — H(Opujm (m — n — 2) @ CHHm Y, (2.45)
which is the dual to the map H°(Opnim (m —n — 2) ® C**1m) (¥0,.+13m) HO(Opnim (m —n — 1))
defined by multiplication of matrices of global sections.
Setting X and @;‘ to be the dual base to (Xo, ..., Xn,01,...0,,), that generates the vector super-

space H%(Opnim (1)), we can consider the superspace Up 41)m» spanned by (X, ..., X, OF,..., 0%,
and we may write

HO(Opnim (m —n = 1))* = Sym™ "1 (Un1]m)

2.46
HO(O]pn|m (m -_n— 2))* = Symmfnﬂ (Z/{TL+1|’N'L)7 ( )

where Sym denotes the symmetric power functor in the supercommutative setting. In other words,
this actually means that we are writing these spaces as the superspace of the homogeneous forms
in X}, @;‘ of global degrees m —n — 1 and m —n — 2, respectively. As usual, the dual operation to
the multiplication by a variable X* or 6;‘, is the derivation (?Xi* or 8@;57 respectively. Therefore

the map (2.45) can be written as the super gradient map

_ V(X;",e;h
En : Sym™ " Uy 1)) ————— Sym™ "2 (Up 1) @ Ccr+ilm), (2.47)
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where the super gradient map is given by

@(Xi*,@j) = " (2.48)

where the minus signs in front of the odd derivatives are due to the super transposition.
Now it is obvious by inspection that this map has non-zero kernel if and only if m = n+1, in which
case the first space consists in the constant homogeneous forms, and the second space is zero. [J

The previous theorem together with the cohomology of the sheaves Opnim (£), allows us to compute
the cohomology of the tangent space of projective super spaces P™™. Notice that, surprisingly,
some attention must be paid in the case the projective superspace is Calabi-Yau in the sense
explained above (i.e. trivial Berezinian sheaf), corresponding to m = n + 1.

In the case n > 1 one finds:

Automorphisms: taking into account the even and odd dimensions, we have that of h%(Tpnim)
matches the dimension of s{(n + 1|m), the Lie superalgebra of the Lie supergroup PGL(n + 1|m),
as somewhat expected by similarity with the ordinary case on P™. In particular, we have

RO (Tpnim) = n* +m? + 2n|2nm + 2m n>1, VYm, (2.49)
that indeed equals dim sl(n + 1|m).

Deformations: dimensional reasons assure that, in the case n > 2, the supermanifold P"™ is
rigid for all m. Moreover, in the case n = 2, Theorem 2.6 guarantees that when m # 3, we have
R (Tpnim) = 0, since éz : H?(Opajm) — HQ(O]P%?Lm(l)) is injective and therefore P2I™ is rigid also
whenever m # 3.

The only case that actually needs to be treated carefully is that of the Calabi-Yau supermanifold
P213: indeed, in this case Theorem 2.6 is not helping us, and further, since we are working over
the projective plane P? the second cohomology groups could, in principle, be non-zero. We have,
thus, the following exact sequence:

0— Hl(lﬁzzzw) I HQ(OPQB) I H2(OP2\3(+1)®3‘3) I H2(7im2|3) — 0. (250)

A direct computation, or the use of the previous formulas, shows that H?(Opes) =~ CO' and
H?(Opas (+1)®213) = 0, so one has that h'(Tp2is) = 0|1 and therefore P?3 possess a single odd
deformation. This is the only projective superspace having a first order deformation whenever
n > 2. We will see that the situation is much different over P'.

We summarise these results in the following

Theorem 2.7 (Infinitesimal Automorphisms and First-Order Deformations for P™™). Let PIm
be a projective superspace such thatn > 1. Then one has

RO (Tpnim) = dimsl(n + 1|m) = n? + m? + 2n|2nm + 2m
R (Tpnim ) = 00, (2.51)

the only exception being the Calabi- Yau supermanifold P23 which is such that h*(Tpes) = 0|1.

In the next subsection we will focus our attention on the case of supercurves over P*.
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2.4.1 Supercurves over P' and the Calabi-Yau Supermanifold P'I?

We now repeat what has been done in the previous section in the case of supercurves.

We start considering supercurves of the kind P! where m # 2. In this case, as seen above, the
map €1 : H'(Opim) — H(Opm (1)®2™) is injective and the long exact sequence in cohomology
splits in two short exact sequences.

Using some tricks similar to those employed in the proof of Theorem 2.2 to solve the combinatorics,
it is possible to give the even and odd dimensions of the cohomology groups involved in long exact
sequence related to the Euler exact sequence. We get the following

h°(Opijm) = 1|0
hY(Opiim) = (m —2)2m72 + 1| (m — 2)2m2 (2.52)
RO (Opijm (+1)82M) = m? + 4| 2m :
RY(Opijm (+1)82M) = (m? — 2m — 8)2™ =2 + m? + 4| (m? — 2m — 8)2" 2 + 4m.
We can thus conclude that
RO (Tprim ) = m? + 3| 4m (2.53)

This is, again, what we expected, since this number corresponds to the dimension of the super Lie
algebra s((2|m), connected to the super group PGL(2|m), the “superisation” of PGL(2,C), the
group of automorphisms of P!.

As for the first-order deformations, we finds that

R (Tpum) = (m? —3m —6)2™72 + m? + 3| (m? — 3m — 6)2™ 2 + 4m. (2.54)

We observe that we have no (first-order) deformations in the case of P!I' and for P*l3. We anticipate
that we also have no deformations in the Calabi-Yau case P2, that will be discussed in the next
paragraph. We start having deformations from P4, where we find for example h'(Tpia) = 11|8.
Before we go on we notice that, of course, H?(Tp1m) = 0, therefore following the supersymmetric
generalisation of a well-known result by Kodaira and Spencer ([58], page 21) due to A. Yu. Vain-
trob [61], we have that for any m > 4, the complex supermanifold P! has no obstruction classes
and there exists a Kuranishi family whose base space is a complex supermanifold having indeed
dimension equal to h'(7pim). It would be certainly interesting to study this family in detail to
get acquainted with the - still rather mysterious - odd deformations appearing in the theory of
supermanifolds.

We are left with the Calabi-Yau supermanifold P!2: in this case, the map &, : H'(Opi2) —
H'(Op12(1)®212) is not injective, the long exact sequence does not split into two short exact
sequence as for P for m # 2, and something interesting happens.

The key is to observe that in the case m = 2 we get h'(Opi2(+1)®212) = 0]0, so we immediately
have that h'(7pi2) = 0|0, which tells us that P'1? is rigid, as anticipated. We are left with the
following sequence:

0— HO(OP1\2)—>HO(0P1\2(+1)®2‘2) — H0(7Tp>1|2) — Hl(OPI\Q) — 0. (2.55)

Computing the dimensions we finds:

hO(Opi2) = 1]0
WY (Opiz) = 1[0 (2.56)
hO(Opaiz (+1)%212) = 8[8,

therefore (2.55) reads
0— CHO—C88 — HO(Tpi2) — CHO = 0, (2.57)
so as for the dimensions we have

RO (Tp112) = 8[8. (2.58)
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This is somehow surprising for this dimension does not correspond to the dimension of the super
Lie algebra s[(2|2), connected to PGL(2|2): we would indeed find dims[(2[2) = 7|8 # 8|8!

The Calabi-Yau supermanifold P!/? stands out as the unique exception among projective super
spaces having h®(Tpnim) # dimsl(n|m) (see [45]). There is indeed one more “infinitesimal au-
tomorphism” to be taken into account beside those coming from sl(2|2): it is given by the field
01020, € HO(Tpu2) (here represented in one of the two chart covering P'12), which is defined ev-
erywhere. Physically, we would say that this is the only existing bosonisation of the even (local)
coordinate z.

Notice that one might think that following the same line - that is considering bosonisations of the
even coordinates - one might discover many more everywhere-defined vector fields enlarging the
symmetry transformations of P*": this is not the case as the previous results show. Indeed, such
supposedly everywhere defined vector fields are not allowed by the transformation properties of
the local coordinates P™™: the correct compensations that makes them into global vector fields
happen only in the case of one even and two odd coordinates, corresponding to P'12. The reader
might convince himself by considering the #6-bosonisation in the case of P!I® or P22, Going up
in the order of bosonisation only makes the situation worse. We summarise the results for the
supercurves PH™ in the following

Theorem 2.8 (Infinitesimal Automorphisms and First Order Deformations for P'I™). Let P™
be a supercurve over P'. Then one has

RO (Tp1im) = dim sl(2lm) = m? + 3| 4m, (2.59)

the only exception being P'12, that is such that h°(Tpi2) = 8|8.
Moreover, if m = 4 one finds

Y (Tpiim) = (m? —3m — 6)2™ "2 + m? + 3| (m* — 3m — 6)2™ 2 + 4m. (2.60)
If m < 3 the supermanifold PI™ is rigid.

Getting back to the Calabi-Yau case P2, for future use we can be even more explicit and find a
basis of global sections generating H°(Tp2).
The most generic section, (in the local chart having coordinates z|6;,605), has the form

S(Z, 01, 92) = (a(z) + b1(2’)91 + bg(z)eg + C(Z)9192) 0,
2
+ D AD(2) + B ()01 + BY (2)02 + C9(2)0162) 2, (2.61)

i=1
By passing to the chart w|¢q, ¢2 one has the transformation

) ei:ﬁa

1 .
z=— i=1,2, (2.62)
w w

so that the local generators {0, 0g,} for i = 1,2 of Tpi2, transform as
0. = —(W?0y + WP10y, + WP20y,), 0o, = wdy,,  i=1,2. (2.63)

Imposing the absence of singularities when changing local charts, from (z|01,62) to (w|o1,p2) -
that is computing explicitly H°(7p12) - we get the following

Theorem 2.9 (Global Sections of Tpi2). A basis of the vector superspace H°(Tpu2) is given by
the sections

Vi=20,, Vo = 20, Vs =220, + 20109, + 2020,, Vi = 61650,

Vs = 6109, , Vo = 6209, , Vr = 610,, Vs = 020,, (2.64)
= 010., o = 2010, + 610200,, E3 = 050,, Ey = 2020, — 010209, ,

E5 = g, , g = 209, , E7 = 0y, Eg = 20y, (2.65)
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Notice that h%(Tpi2) = 8|8, as expected upon using homological methods. Actually, the explicit
form of the sections could be found using the fact that P2 is split, and as such Opu2 is a locally-
free sheaf of Opi-modules. In particular, also the tangent sheaf can be looked at as a locally-free
sheaf of Opi-modules and, by using one of the exact sequences introduced in section 1.3, one finds:

Tpiie = (Op1(2) @ (Op1 ® Op1 (—2) @11 (Op1 (—1)%%))) @
@I (Op1 (+1)%? @ (Op1 ® Op1 (—2) B 11 (Op1 (—1)%?))) (2.66)
>~ Op (2) ® O B11 (Op1 (+1)% @ Op (—1)%?). (2.67)

It is then easy to identify the global sections by the usual identifications.
In the next section we will start from the global sections (2.64) and (2.65) to study the N' = 2
super Riemann surface structure we can endow P2 with.

2.5 P! as ' = 2 Super Riemann Surface
We now make explicit the ' = 2 super Riemann surface structure of P12, Relying on [42] and
[69], we can give the following definition.

Definition 2.4 (N = 2 Super Riemann Surface). A N = 2 super Riemann surface is a triple
(M, D1, Dy) where M is a complex supermanifold of dimension 1|2 and D1, Ds are two rank 0|1
locally-free sub-sheaves of the tangent sheaf Tar, whose sum is direct in Tar, which satisfy the
following conditions:

1. D1, Dy are integrable. That is, if we let D;, fori = 1,2, be the local generators of D;, then
D? = LD D} = [D, (2.65)
for some odd local section f € (Ogr)1.
2. The Frobenius form
F:D1®Ds ———— (Tar)o = T /D, @ D, (2.69)
D1 ® Do——— {D1, D3} mod (D; @ Ds)

s an isomorphism.

We call the sub-sheaves D1, Do < Ty satisfying these conditions the structure distributions of the
N = 2 super Riemann surface.

Note that, looking at integrability, the second condition in the definition above is equivalent to
say that the sheaf Dy @ D, is non integrable, the obstruction to integrability being that the
anticommutator {D1, Do} is linearly independent of Dy and Ds. In this way {D1, Do, {D1, D3}}
gives a local basis for the tangent sheaf 7y, at any point, which implies the existence of the following
exact sequence

We discuss these feature in the following easy example.

Example 2.2 ((Cl‘2 as N = 2 super Riemann surface). In order to endow the complex superspace
M = C'2 with a N = 2 super Riemann surface structure one takes the sub-bundles generated, for
example, by the global sections

Dy, = 0p, + 020, Dqo = 0p, + 010, (2.71)
which are integrable (indeed {Dq;, Do} =0 fori=1,2 ) and have anticommutator given by
{Do,1,Do2} = 20, (2.72)
so that Do 1, Do 2,{Do.1,Do.2} generate the whole Teaj2, that is
Tore = Spanocl‘2 {D0717 Dy 2, {D071,D072}}. (2.73)

This is an example of non-compact N = 2 super Riemann surface.
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We note that in the previous example the sections Dg 1, Do 2, {Do 1, Do 2} defines a global N = 2
super Riemann surfaces structure on C!2. The situation is different in the case of P'12. Indeed,
the “defining sections” {Dg 1, Do.2,{Do 1, Do 2}} for the N = 2 super Riemann surface structure
of C'12, remain global sections of tangent sheaf even for the supermanifold P2, since, looking at
the previous Theorem 2.9 one has

D071 = (391 + 9282 =E3 + =5, D072 = 592 + 9152 == + =7, (2.74)
{Do,1, Do} = 20, = 2V1. (2.75)

The big difference resides in that such sections are not sufficient to generate the whole 7p12, since
0. has a double zero in w = 0. We say that these sections define a local N' = 2 super Riemann
surface structure on P12,

We can study this particular local N' = 2 super Riemann surface structure in some detail. We
choose the usual open cover of M,.q = P' as above, given by two open sets I/ and V having local
coordinates given by z|61, 62 and w|¢1, 2 respectively and related by the transformations in (2.62).
We are interested into identifying the structure distributions singled out by the derivations (2.74).
To this end, we put

Dy 1 := 0g, + 020, Dy 5 := g, + 010.. (2.76)

and we study their transformations on the intersection U n V.
In the intersection U n V), one has

DL{,l = w6¢1 + % (—w2(3’w — w¢15¢1 — w¢26¢2)

= W0y, — W20y + P10204,
(w+ ¢p1¢2) (0, — $202)

= (w+ ¢1¢2) Dy 1, (2.77)
where we have put Dy 1 := 0p, — ¢202. Similar transformation applies to Dy .

We now recall that, in the notation of section 2.2, the even Picard group of P!? is given by
Pico(P'?) =~ Z® C, and generated by

Pico(P'?) = (Opij2 (+1), Lpi2(c)) (2.78)

for ¢ € C, where Lpi2(c) < {{U,V}, (1 + chp1d2/w)}. We thus observe that taking Opi2(1) and
choosing ¢ = 1 in Lp1)2(c), we have that their tensor product yields

O]pl\z(l) ® Eﬂnm(l) «—> {{u, V}, (w + ¢1¢2)} s (279)

which is exactly the invertible sheaf identified by the transformations of the derivations Dy 1, Dy 2,
up to a parity change.
We can thus conclude that

Dy =11 (Opl\z(l) ®£P1\2(1)) y Dy =11 (O]plu(l) ®£]p1\2(1)) . (280)

This is interesting, as it shows that the most natural N’ = 2 super Riemann surfaces structure
that P12 can be endowed with is related to genuinely supersymmetric invertible sheaves - such as
Lpii2(c) -, that do not come from any pull-backs of invertible sheaves over P! by the projection
7 P2 — pl

We have seen that Dy ; and Dy o as above defined a local N' = 2 super Riemann surfaces
structure, as their commutator yields a vector field proportional to 0., that has a zero of order
2 at w = 0. Since P'1? has a large vector superspace of global sections, h(Tp2) = 8|8, one can
actually look for more general global odd sections satisfying the integrability condition.

The most general form that a global odd section can take is

8
Doaa = 2 a;E, (2.81)
i=1
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where Z’s that appeared in (2.9) are such that Spanc{Zi,...,Zs} = (H°(Tpu2)), and where o;
for i = 1,...,8 are complex numbers. We then impose the integrability condition in the form
ngd = 0. This leads to the following conditions

105 + Qroiy = 0,
asag + agay = 0, (2.82)
a1 + asas + agag + agar = 0.

Solving, we find, for example, the sections

again for ay, as, 81, B2 € C. The anticommutator reads
{D1, D2} = 2[a181V1 + aaf1 (Vs + Va) + a1 B2 (Vs + Va) + azfa V3],
or more explicitly
{D1, D5} = 2[a1610. + aafB1(0109, + 20.) + a1 Ba(0209, + 20.) + azfa(220, + 20100, + 20200,)].

Where we note that {D;, Dy} is non-zero at w = 0.
Also, notice that the sections Dy and D5 of equations (2.83), (2.84) can be re-written in the more
meaningful form

D, =[041 + OQ(Z — 9192)] (53 + 55), (285)
Dy =[B1 + B2z + 6102)](E1 + E7). (2.86)

It can be checked that the map Opij2 — Tp1j2 defined by f — fD; is injective and therefore one has
that Dy and Do generate two invertible sheaves of rank 0|1, we call them D; and D, respectively
as above. Also, as explained above, we see that now Dy, Dy and D1 ® Dy generate the whole Tpi)2,
since the triple {D1, Dy, {D1, D2}} does.

The defining superderivations in the form D; and Dy prove very useful when it comes to
investigate the automorphisms of the N’ = 2 super Riemann surface structure. Indeed, the auto-
morphisms of P'? are generated by the vector superspace of all global sections of 712 determined
above. We have to select the sub-algebra of global sections acting internally on the invertible
sheaves D1, D, i.e. the sub-algebra of the global sections whose commutators or anticommutators
with the D; is proportional to the D;. By a direct inspection we see that the automorphisms of
the A/ = 2 super structure are generated by a 4|4-dimensional linear superspace with basis given
by {U17 [N U4, 21, ey 24}, where

Uy =W, Up = Vo + V5, Us = Vs, Uy :=Va+ Vs,
=21+ =27, Yo =9 + =g, Y3 = =3+ =5, Yy =24 + =6 (287)
These generators satisfy the super commutation relations

[U17 UQ] = U17 [Ula U3] = U2 + U47 [Ula U4] = Ula
[U2,U3] = Us, [Uz,Us] =0, [Us,Us] =—Us;

{31,282} =0, {¥1,X3} =201, {¥1,%54}=20s,
{32,383} = 2Uy, {3¥2,%4} =2Us, {3,354} =0;

[U1,21] =0, [U,X2] =%, [U1,23]=0, [U,Z4]=2%3,
[U2,X1] =0, [Uz,X2] =2%a, [Usz,X3]=-X3, [Us,24]=0,
[Us,X1] = =9, [Us,22] =0, [Us,33]=-3%4, [Us,X4]=0,
(U, Z1] = =31, [Us,22] =0, [Us,X3] =0, [Us,Z4] =24.
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Something better can be done in order to write the resulting superalgebra in a more meaningful
and, in particular, physically relevant form. We define

1 1
H = Uy, K :=Us, Dizi(UQ-FUzl), Y = §(U2—U4),
1 . 1 . 1 1 .
Ql = E(Zl —223), QQ = E(Z:;—Zzl), Sl = 7(22—224) S2 = —E (24—122).

(2.88)
For completeness, we write these elements in terms of the (local) basis of the tangent space:
H = am

. K= 0
Bosonic generators: 220, + 0106,

D ZF/) (91691 + 92(392)

Y = % (0 92602) ;

Q1= (915 + 0o, —1(0p, + 020.)) ,
Qs = (891 + 050, —2(916 -‘r@@z)),

Fermionic generators:

1
7

S, = g(( 201+ 1202)0, + i(= — 0102)3p, + (—0105 — 2)0s, ),

Sy = 3 (( 205 + 2291)6 + ( z+ 9192)691 + Z(Z + 9192)@92) .

(2.89)

These definitions allow us to prove, by simply computing the supercommutators, the following
Theorem 2.10 (N = 2 SUSY Algebra). Let (P2, Dy, Dy) be the N = 2 super Riemann surfaces
constructed from P2, Then the algebra of the N = 2 SUSY-preserving infinitesimal automor-
phisms is generated by {H, K,D,Y‘Q17Q2,Sl,52} and it corresponds to the Lie superalgebra
0sp(2|2) of the orthosymplectic Lie supergroup OSp(2|2), as it satisfies the following structure
equations:

{Qi, Q;} = —2i0;; H, {Si, S} = —2i0; K, {Qi, Sj} = +2i6i;D — 2¢;5Y,

[H7 Q’L] = 0) [H, Sl] = _Qi7 [Ha QZ] = S’ia [H7 S’L] =0

1 1 1 1

[D,Qi] = —in‘, (D, S;] = isi, [Y,Qi] = 561'ij» [Y,Si] = iﬁijsj,

[Yv H] =0, [Yv D] =0, [Ya K] =0, (290)
together with the structure equations of the closed (bosonic) sub-algebra 0(2,1):

[H,D] = H, [H,K] = 2D, [D,K] =K. (2.91)

We stress that, as the reader with some expertise in supersymmetric QFT’s might have easily
noticed, the above form has the merit to make manifest all the physically relevant elements of the
superalgebra, such as the translations, rotations, supersymmetries, dilatations and so on. This
shows a direct connection with physical theories, which is sometimes left hidden in the more
mathematical oriented literature.

It is anyway fair to stress that some attention needs to to be paid here. Indeed, even if osp(2|2)
is actually the Lie superalgebra of automorphisms of P!1? as N/ = 2 super Riemann surface, the
related supergroup OSp(2|2), defined as

OSp(2|2) = {A € GL(2|2) : AStIQ‘QA = 12‘2} where 12‘2 = y (292)

is not the supergroup of automorphisms of P'? as A = 2 super Riemann surface. Instead, it turns
out (see [42]) that the supergroup of automorphisms of P!2 as a A = 2 super Riemann surfaces -

call it P}\‘/Z:Q is obtained as a suitable quotient of OSp(2|2), indeed we have

1 Zs 05p(2]2) —— Aut (P},) ————— 1. (2.93)
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where Zy = {£1}. One can see that Aut(IP’/l\lf2:2) has two connected components as OSp(2]2):
an automorphism that does not belong to the identity component interchanges the two structure
distributions, Dy < Ds.

Before we conclude this section, though, it is fair to say that at, the present state, the study
of N' = 2 super Riemann surfaces structures is still at its beginning and, as such, it is yet to be
properly developed. For example, very little is known about the supermoduli space of (compact)
N = 2 super Riemann surfaces. In particular, in genus 0 such a supermoduli space is expected
to be a point [27]. With explicit reference to the present section, this result would then call for a
deeper study even in the case of the relatively easy example of P'1? we have been concerned here.
For instance, among other issues, it would be interesting to clarify the relationship between the
two N = 2 super Riemann surfaces structures we have constructed.

2.6 Aganagic-Vafa’s Mirror Supermanifold for P'?

In [2], Aganagic and Vafa gave some prescriptions based on path-integral formalism to construct the
“mirror” of a certain supermanifold. More precisely, they developed a path-integral computation
that relates a certain Landau-Ginzburg model associated to a complex projective superspace P™"
to a o-model on a supermanifold %, embedded into a certain product of projective superspaces (we
refer directly to [2] for further details). In what follows, we employ the prescription of Aganagic
and Vafa and we construct the dual of the Landau-Ginzburg model associated to the Calabi-Yau
supermanifold P'12. This turns out to be given by a o-model on a Calabi-Yau supermanifold in
P! x P which - to a more careful analysis - is again P*2. In other words, the construction of
Aganagic and Vafa, maps P!12 to itself!

Before we go on to the actual computation, we stress that this section has a completely different
flavour compared to the others, as it is based on the formal construction of [2] that cannot be
given a rigorous mathematical meaning, mainly because of the issues related to the definition of
path-integrals and their measures.

In order to construct the Landau-Ginzburg model attached to P'12| we focus on the holomorphic
part of the superpotential, where X;,Y; for I = 0,1 are bosonic/even super fields and 7y, x1
for I = 0,1 are fermionic/odd super fields (i.e. the lowest component of their expansion is a
bosonic field and a fermionic field, respectively), while ¢ is the so called Kdhler parameter. This
superpontential is given by

1 1
Wiz (X, Y, 1, €) = f [ [ DYiDX Dy Dx 16 (Z (Y7 — Xr) - t)
=0 I=0

1
- exp { Z e Y fem X1 4 e_X’mXI} .

1=0

By a field redefinition,
X, = Xl + Yo, Y, = Yl + Yo, (294)

the path-integral above can be recast in the form:

1
JDYODXOD?lDXl ]_[ DnDx16 (Yo — Xo + Y1 — X1 — 1)
I=0

- exp {e*YO e X0 peViTYo y omXaoYo 4 e Xonoxo + anle*X“YO} .
Integrating in X, the delta imposes the following constraint on the bosonic fields:

Xo=Yo+ (Y1 — X1) —t. (2.95)
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Plugging this inside the previous path integral one gets

1
JDYE)DYlDXl H DnIDXI exp {efYo + e*YO*(Ylel)th + 67Y1*Y0 + e*Xl*YO}

1=0
exp {0 XD gy e YL
The fermionic DnyDyy integration reads
JDUODXO exp {e_yo_(yl_xl)H??oXo} =
_ JDWODXOe—YO—(YI—Xl)H (1 + noxo) = _e Yo (M=Xu)+t (2.96)

and therefore one obtains that
— J IDYOIDY/l,DXl,D'r]lDXlBiYO7(Y17X1)+t

- exp {e*YO (1 +em(mX0Ft oV g =X anlefxl)} .

Here, e~Y° might be interpreted as a Lagrange multiplier and we perform the coordinate charge

e Y0 = A, DYy = —A"'DA, (2.97)

such that the integral reads
f AT'DADY, DX, Dy Dy Ae™ V1 X0+t
FeP {A (1 +emM=Xutt g ooV g =%y 771X167Xl>} .

Finally, by another field redefinition, namely
D.’L‘l

e_Xl =T, DXl = — - (298)
1
o N D
eV = gy, DY, = _T/yl’ (2.99)
1
m = 2717 D77 = .'I}lD’F], (2100)
1

we notice that the Berezinian enters the transformation of the measure. In fact, the path-integral
acquires the following form:

Dy1 Dx . .
Weijz = JDA%T;(%DM)DM (yie") exp {A (1 + €'yy + 21 + z191 + Tix1) }

= JDADlexlDﬁlelet exp{A (1+e€'y1 + a1 + 2191 + Thixa) }- (2.101)

By noticing that the factor e! is not integrated over, and performing the integration over the
Lagrange multiplier A, one obtains that the theory is constrained on the super hypersurface

1+ 21 +x1y1 +7x + e'yr = 0. (2.102)
By redefining the field §; = 1 + y1, a more symmetric form can be achieved:

L+xg1 +ix + e (1 — 1) = 0. (2.103)
Casting the equation in homogeneous form, we have

P < P 5 XY, + X1 Y7 + iy + ' (XoY: — XoYo) = 0. (2.104)
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This is a superquadric, call it Q, in P'I' x P! with homogeneous coordinates [Xo : X : 7] and
[370 Y x| respectively, and it is a Calabi-Yau supermanifold. In the following treatment, we will
drop the tildes and we will just call the homogenous coordinates of the super projective spaces
[Xo:X1:7]=[Xo: X1 :7] and [Yy: Y1 : 9] =[Yo: Y1 : x]. We now re-write the equation for Q
in the following form:

Xo((1— €)Yy +e'Y1) + X1Y1 +nx = 0. (2.105)
Setting
(Yo, Y1) = (1 — )Yy + €'Y, (2.106)

it is not hard to see that the reduced part Q,.q in P! x P! is obtained just by setting the odd
coordinates to zero, as

P! x P! o X0 0(Yy, Y1) + X1Y1 =0, (2.107)

and one can realize that Q,.q =~ P!
We are interested into fully identifying Q as a known variety; to this end, we observe that, as
embedded into P! x P it is covered by the Cartesian product of the usual four open sets:

Up x Vo ={[Xo: X1 :1n]: Xog#0} x {[Yo:Y1:x]:Yy 0},

U()X‘/l: [X(]ZXlZ??]ZX[)#O}X{[YE)ZYEIX]ZYl?éO},

U xVo={[Xo:X1:n]: X3 #0} x {[Yo:Y1:x]:Yo #0},

Uy xVi={[Xo:X1:n]: X3 #0} x {[Yo:Y1:x]:Y1 #0} (2.108)
Moreover, one needs all the above four open sets to cover Q, because

Qrea N {Xo=0}=[0:1] x [1:0]eU; x Vp,

Qrean{X1 =0} =[1:0] x[1:1—e"" €U x Vo,

Qrea n{Yo=0}=[1:—€']x[0:1] €Uy x V1,

Qred "{Xo=X1 =1} =[1:1]x[e' +1:e' —1]eU; x V. (2.109)

Therefore, we would like to find a suitable change of coordinates allowing us to use fewer open
sets. It turns out that one can reduce to use only two open sets. Indeed, by switching coordinates
to

Yy = (Yo, Y1), Y] =Y, (2.110)
X} = Xo, X = Xy, (2.111)
n =, X =X (2.112)

the equation for Q becomes
XYy + XY +0'x =0. (2.113)

Then, by exchanging Y with Y] and dropping the primes for convenience, one obtains the following
equation for Q :

XoY:s + XaYo +nx =0. (2.114)

Since
Qred N {Xo =0} = Qrean{Yy =0} = [0 : 1] X [0 : 1] e Uy x Vq, (2.115)
Qred N {X1 =0} = Qpean{Y1 =0} =[1:0] x[1:0] €Uy x Vp, (2.116)

this change of coordinates allows us to cover Q by just two open sets, namely by :

UQ = Q M (UO X Vvo)7 (2117)
Vo i=Qn (U1 x V). (2.118)
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Therefore, by choosing the (affine) coordinates

Xl Y] n X

Up : 2 := = Q=L f = 2.119
Q z )r07 U YO’ 0 )-707 1 Y07 ( )

Xo Yo 7 X
Vo — = = = 2 2.120
Q:w )71 ) v Yl ) ¢0 )7'1 ) ¢1 Yl ) ( )

we obtain the following affine equations for Q@ on Ug and Vig:

UQ Dzt u+ 0pf = 0, (2121)
Vo : w+v—gopy =0, (2.122)

describing lines in C22. We notice that these two equations are glued together using the relations

1 1
w= -, v=—, (2.123)
z u

¢o = —wb, $1 = v0;. (2.124)

Finally, we would like to characterise the variety Q by its transition functions, in order to identify
it with a known one. By the previous equation, we may take as proper bosonic coordinates u and
v, as

Z=—U— 9091, (2.125)
W= —v + PgP1. (2126)

We already know that v = L and ¢; = %, so we still have to deal with ¢y :

u u’

90 00 Go(u — 9001) Gou 90
=2 = =2 -2 2.12
%o z u + Opbq (u + 9091)(u — 9091) u? w’ ( 7)

implying that the variety Q@ c P! x P! is actually nothing but P12,
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Chapter 3

N =2 Non-Projected
Supermanifolds over P"

This chapter is dedicated to the study of the geometry of non-projected supermanifolds having
odd dimension equal to 2 - we call them N = 2 supermanifolds - over projective spaces.

In the first section we provide the construction of the cohomological invariant that obstructs the
existence of a projection that splits the structural exact sequence of a supermanifold.

Then, in the second section we specialise to the case the reduced manifold is a projective space P"
and we prove that N = 2 non-projected supermanifolds exist only over the projective line P! and
the projective plane P2,

The third section section is dedicated to a classification of non-projected supermanifolds over P! -
we call them PL(m,n). Also, we study the even invertible sheaves that can be defined over these
non-projected supermanifolds, by computing their even Picard group. We then use these even
invertible sheaves to explicitly realise an embedding of a particular non-projected supermanifold,
namely P2 (2,2), into P22, making contact with an example of non-projected supermanifold dis-
cussed by Witten in [68].

The fourth section is dedicated to the study of the geometry of non-projected supermanifolds over
P? - we call them P2 (F,,). In particular, it is proved that all of these supermanifolds are Calabi-
Yau’s and they are all non-projective, i.e. they cannot be embedded into any projective superspace
PI™  Instead, we prove that all of these non-projected supermanifolds can always be embedded
into a certain super Grassmannian. Last, we realise explicitly these embeddings in two meaningful
cases and we study the cohomology at their split locus.

3.1 Obstruction to the Splitting of a A/ = 2 Supermanifold

In this first section we start studying the event in which a (complex) supermanifold does not ad-
mit a projection on its reduced part. In particular, we will single out a cohomological invariant
that detects an obstruction to split the structural exact sequence (1.3) attached to a particular
supermanifold.

First of all, it is important to notice that in the case a supermanifold has odd dimension equal to
one there cannot be any obstruction, as the following obvious theorem establishes.

Theorem 3.1 (Supermanifolds of dimension n|1). Let M := (|M|, Oar) a (complex) supermanifold
of odd dimension 1. Then M is defined up to isomorphism by the pair (Myeq, Far) and in fact,
M= &(M,F)

Proof. If the parity splitting reads Oa = Oar,0 @ Oar,1 and the odd dimension of the supermanifold
is 1, then ‘7_,7\2{ = 0 and one naturally has that O 1 = Jar = Far, a (locally free) sheaf of Oy, -
modules of rank 1, having odd parity, and Oa ¢ = Oy, ,, so there can’t be any bosonisation
extending Og.,- O
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Obstruction to projectedness might appear in the case the odd dimension of the supermanifold M
is at least 2. Indeed, on the one hand, by looking again at the parity splitting of the structure
sheaf O = Oar 0 @ Ogar,1, we still have that the odd part Oy, 1 coincides with the fermionic sheaf
Far = T /jff: this also tells us that Oy 1(= Far) is a sheaf of Og_,-modules and not only
a sheaf of Oy o-modules (notice that this is in general no longer true in the case the fermionic
dimension of M is greater than 2). On the other hand, the even part of the structure sheaf Oy,
which is a sheaf of rings, is an extension of Oy, by Sym?Fyy:

4

0———— SmeJ:M EE—— OM,O OMmd 0, (31)
where Sym?2Fy = Gr(Q)OM is a sheaf of Oy -ideals with square zero, that actually corresponds
to jmz/[ as Gr(z)OM = jﬂz,, /jf{ and j;’{ = 0 as M has fermionic dimension 2. The map Lg :
Oar0 — Oa., is a homomorphism of sheaves of rings, which is induced by the inclusion morphism
F 0 Ogp — Oy, well defined in a general setting, not restricted to odd dimension 2.

We recall that, in general, there is no homomorphism of sheaves of rings wg 2 Oag0y = Oar0 € Ogr
splitting Lg and Ogy is not a sheaf of Oy ,-modules: that is, a supermanifold M having odd
dimension equal to 2 does not in general admit a projection 7 : M — M.cq.

Obstruction theory for complex supermanifolds has been first discussed in the seminal work of
Green [30]. Here we will show where the obstruction to splitting lies following [41]: due to the
difficulty of the cited reference, we will provide the reader with a complete proof. We start by
proving the following fundamental lemma.

Lemma 3.1. Let M := (|M|,O4() be a (complex) supermanifold having odd dimension 2. Then
the even part of the structure sheaf Oqa o uniquely defines a class war € HY(Myed, Tar.., ®Sym?Far).

Proof. Let us consider an open cover U = {U;}icr of |M|, such that for every open set U; we do
have homomorphisms of sheaves or rings

775, 2 Ouyred — Oy 0 (3.2)

such that Lzﬁ/{i,o o 7r£{i = ido,, ,.,- This can be done if the open sets U; are chosen so that on each U;

some coordinate system z|6 is defined. We denote 7; the map 7%17, for the sake of brevity, and we

refer to the collection {m;};cr as the local splittings for the short exact sequence (3.1). Let us now
define the following morphism

Wij = (7Ti — 7Tj) [ . Ouiﬁuj,red — ker (Lglimuj,O) = Sme‘FuiﬁZ/{j’ (33)

Z/limuj

This is well-defined, indeed the difference above takes vales in the kernel of Lg{mujp, as

#
Lﬁ{iﬁuz‘;o © (ﬂ—i - ﬂ—j) l = Lumuj,o © (m)lumuj a L?’{iﬁz/’j’O © (Wﬂ')[umuj

Z/li ('\Z/{j

= idou,imuj,red - idou,imuj,red =0 (3'4)

and by the short exact sequence (3.1) we see that this kernel is given by Symz}"umuj.
Now let f,g be local sections of Oy, ~u; red, then remembering that we write mi(f) instead of
T |l/{-r\L{- (f) for the sake of brevity, we have

i J

wij(f-g) =m(f-g) —mi(f-g)
mi(f)mi(g) — 75 (f) 75(9)
mi(f) mi(g) —mi(f) 7i(g) + mi(f) mi(g) —m;(f) 7 (9)

=0
=mi(f) (mi(g) — 7;(9)) + (mi(f) — m;(f)) 7;(9)

wij(9) wiz (f)
= mi(f) wij(9) + wij (f) 7 (9), (3.5)

46



where we have used the definition of w;; and the fact that the m; are homomorphisms of sheaves
of rings. Recall that the Oy, o-module structure of Sym?2F, is the same as its Oy, ,eq-module
structure, as Sym?2Fy, = jf{/Jm?’l. By looking at the last map, this implies that

wij(f - g) = mi(f)wij(g) + wij (f) m(9) = f-wij(g) +wi;(f) - g, (3.6)
so that we have that the map wi; : Oy, Aty rea — Symz}'umuj satisfies the Leibniz rule and
therefore it is a derivation on Oy, ~y; req valued in the sheaf Symz}"umuj.

So far we have proved that w;; € (Tat,.. ® Sym?Far)(U; 0 Uj), actually the choice of the local
splittings {m; }ic; define a Cech 1-cocycle, (w;;)ijer € Z* (U, Tar,,, @ Sym?Fyr), since by definition

(wij+wjk+wki)l :(Wi_ﬂj+7rj_7rk+7rk_7ri)l =0. (37)

uiﬁUjﬁZ/{k MiﬁZ/{jﬂuk

This is clear once it is observed that (wij)i, jer is defined as the application of the Cech coboundary
operator ¢ on the 0-cochain given by the collection of the local splitting {m;}ics.
Now we want to prove that, by changing the local splitting, than the (w;;);jer only changes by a

coboundary term. To this end we let {7}};c; be another choice of local splittings: if we require

Lg{i om; =idoy,, .. to hold, then the only possibility is that

T =7+ where ;1 Oy rea — Sym?Fu, (S Oy, o), (3.8)

otherwise the composition with Lzﬁ/{i does not yield a local identity. Moreover, as 7, is a homomor-
phism of sheaves of rings, one has that 7}(f - g) = 7.(f) 7i(g). The left hand side reads

mi(f-9) = (mi+ i) (f - 9) = m(f - 9) +¢i(f - 9),
while the right hand side reads

mi(f) mi(g) = (mi + ) (f) (i + i) (g) = mi(f) mi(g) + mi(f) ¥ilg) + ¢i(f) milg)
remembering that ¥;(f) ¥;(g) = 0 as v; is valued in Sym?F,,. Then one has that

Vi(f - g) = mi(f)Yilg) + i(f) mig)- (3.9)

This proves that 1; is a derivation valued in Sym?Fy, 1; € (Tar,., ® Sym?Far)(U;), and therefore
{ml}icr defines the Cech 1-cocycle wz’-j = w;j + ¥; — ¥y, so that the 1l-cocycle (w;j)i jer only
changes by a coboundary. Thus O ¢ (and therefore Oy) uniquely defines a cohomology class
war € HY(M, Tar., ® Sym>Fyr). This completes the proof of the lemma. O

With this at hand, we are now in the position to prove the main theorem, which is actually a
simple consequence of the above lemma.

Theorem 3.2 (Obstruction to Splitting). Let M be a (complex) supermanifold of odd dimen-
sion 2. Then M is projected (and hence split) if and only if the obstruction class wgs is zero in
HY (Mred, Tatyeq ® Sym?>Far).

Proof. Using the same notation as in the above lemma, assume that wg, is trivial. Then, there

exist local splittings {m;}ier such that w;; = (m; —m;) [umuj is a coboundary, that is w;; =

(Vi — ;) [Z/l'mI/{” for some {t);}ier such that ¢; : Oy, rea = O, 0. Then we can define 7} = m; — 1
iU

so that

W' = () —m}) lumu,- = (Yi — Yi — P + ;) [umuj = 0.

This implies that 7} = 7’ on the intersections U; N Uj, therefore (restoring the original notation)
we have a global homomorphism of sheaves of rings ﬂg : Oat.py — Oar,o such that ﬂg |er,= m; and
such that Lg o 7r§j =idyy.,,-

Conversely, let M be projected, that is let 778 1 Ogy.., = Oar,0 be a global homomorphism splitting
(3.1), then it is enough to put m; := (Wg)l_ul to get a collection of local splittings defining a trivial
cocycle. O

47



The theorem above offers a simple way to detect when a complex supermanifold having odd
dimension equal 2 fails to be projected by means of a cohomological invariant that can be computed
by ordinary algebraic geometric methods. The knowledge of w4, for a supermanifold M of dimension
n|2 is a fundamental ingredient in the characterisation of the given supermanifold.

Theorem 3.3 (Supermanifolds of dimension n|2). Let M = (|M|, Oy) be a (complexr) super-
manifold of dimension n|2. Then M is defined up to isomorphism by the triple (Myed, Far, War)
where Far is a rank 0|2 sheaf of locally-free Qg ,-modules, the so called fermionic sheaf, and
War € Hl(Mreda TMT»ed ® SmeFM)

Proof. Clearly, the pair (M,cq, Far) is enough to completely characterise the underlying com-
plex manifold and the odd part Og 1 of the structure sheaf O, of the supermanifold. The
even part of the structure sheaf is determined as an extension of O, by Sym?Fs. Given
war € HY (Myea, Tar,., ® Sym>Fyr), this can be realised as follows. Let U = {U;}ie; be an
open covering of |M| such that was|y, is trivial and such that on the intersections U; n U; for
i # j one has that wa, is represented by a cocycle (w;j)ijer- Then, we construct the sheaves
Ou; 0 = (O, ® Sym>Far)|u, for U; € U and we glue them on the intersections U; N U; using
(wij)ijer:

((Oa600 ® Sym®Far) ) |, ——— (a0 ® Sym®Fae) ) |,

J 1

(fred, 900) (fred> 960 + wij(fred))-

This procedure gives the extension of Qs _, by Sym?Fy, that is the even part of the structure
sheaf Qg0 (see [33], chapter III, section 6), thus concluding the proof. O

Before going on, the following important observations are in order:

e The last part of the previous theorem can be spelled-out by saying that in presence of a non-
trivial extension, i.e. when we are dealing with a non-projected supermanifold, the transition
functions coming from the underlying manifold .4 get a correction coming from wg, as
they are lifted to #. More precisely, if {U;}icr is an open covering of |M| such that in a
certain intersection U; N U; the transition functions of 9.4 are given by certain functions
zoi = zpi(z;) for £ = 1,...,n, then the even transition functions of a non-projected n|2-
dimensional supermanifold will be given explicitly by

20i(24,0;) = z0i(z;) + wij(z;,0;)(ze:) L=1,...,n, (3.10)
where the zetas and the thetas are respectively even and odd local coordinates for M and
we recall that w;; is actually a derivation acting on zy;. Notice also that the two thetas can
only appear in w;; through their product (thus respecting parity!), indeed w;; is a derivation
taking values in Sym?Fyy;

o choosing wj,, = Awa, for A € C* defines an isomorphic extension Oy, of O, by Sym*Fa,
however the isomorphism with Oy o is not the identity on Qg , and Sym?®Fy,.

The crucial issue of finding a set of invariants that completely characterises complex supermanifolds
having odd dimension greater than 2 (up to isomorphisms) and given reduced complex manifold
remains - to the best knowledge of the author - still completely open. This is because there are sharp
limitations to the definition of higher obstruction classes beyond was € HY(Myea, Tar.., ® Sym>Far),
as discussed for example in the fourth chapter of [9], and recently in [25]. Remarkably, none of the
issues related to higher obstruction classes affects the first obstruction class wqs we have introduced,
which can therefore be legitimately called fundamental obstruction class: it is really an invariant
(this is not true for higher obstructions) for the supermanifold M and it obstructs the existence of
a projection.

In the next section we will start providing concrete examples of constructions of non-projected
supermanifolds having projective spaces as reduced manifolds.
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3.2 N = 2 Non-Projected Supermanifolds over Projective
Spaces

In this section we apply Theorem 3.3 of the previous section to the case the underlying manifolds
are ordinary projective spaces P", our aim being to identify the obstructions to the existence of
a projection and therefore to single out all the non-projected supermanifolds of odd dimension 2
having P™ as reduced space.

Since we are working over P, if we take the fermionic sheaf Fy, to be a locally-free sheaf of Opn-
module having dimension 0|2, then it follows that there exists an isomorphism Sym?F =~ Opn (k)
for some k, since all of the invertible sheaves over P are of the form Opr (k) for some k (indeed
Pic(P™) ~ Z).

The basic tool to be exploited here in association with Theorem 3.3 is the (twisted) Euler sequence
for the tangent space over P”, that reads

0 —— Opn (k) — Opn (k + 1)@ —— Tpu (k) —— 0. (3.11)

We now examine the A/ = 2 supersymmetric extensions of projective space P" for everyn = 1,2, .. ..

n = 1: In the case of P!, one has to study whenever H!(Tp ® Sym?2Fy) = H'(Tp (k)) is non-zero.
This is easily achieved, since recalling that over P! one has Tp1 = Op1(2), it amounts to find
a k such that H'(Op1(2 + k)) # 0. This is realised in the cases k = —¢ < —4, and one
finds H'(Op1 (2 —£)) = C*~3. These cohomology groups have a well-known description: they

£-3
are the C-vector spaces with bases given by {W} , where Xy and X, are the
j=1

homogeneous coordinates of P!, see for example the proof of Theorem 5.1 Chapter III of
[33]. As a result, the non-projected supermanifolds over P! are those such that Sym?F,s =
Op1(—¥) with ¢ > 4.

n = 2: The case over P? is by far the most interesting, and - surprisingly - it has been forgotten by
Manin, as he studies fermionic super-extensions over projective spaces in [41]. Since over P?
one has H(Op2(k)) = H'(Op2(k + 1)) = 0, the long exact sequence in cohomology induced
by the Euler short exact sequence splits in two exact sequences. The one we are concerned
with reads

0 —— HY(Tp2(k)) —— H?*(Op2(k)) —— H?*(Op2(k + 1)) —— H?(Tp2(k)) — 0.
Now it is convenient to distinguish between three different sub-cases.

k > —3: This is the easiest one, since H?(Op:z(k)) = 0, which implies that H'(Tp=(k)) is zero.

k = —3: In this case we have that H?(Op2(—2))®% = 0, so we get an isomorphism
H'(Tp2(—3)) = H*(Op2(—3)) = C, (3.12)

and, again, this cohomology group is generated by the cohomology class [m] in-
duced by the 2-cocycle defined by m e T'(Uy n Uy N Us, Op2(—3)).

k < —3: In this case both H?(Opz(k)) and H?(Opz(k + 1)) are non-zero. Therefore, this makes a
little bit harder to explicitly evaluate H'(7p2(k)) directly. Though, this can be achieved
upon using Bott formulas (see for example [49]) that give the dimension of cohomology
groups of the (twisted) cotangent bundles of projective spaces. First of all, we observe
that using Serre duality one gets H'(Tp2(k)) = H'(Tg(—k — 3))*. In general, Bott
formulas guarantee that H(A\" T, (k)) = 0 if ¢ # n and ¢,k # 0. In our specific case
we have ¢ = 1,n = 2,p = 1 and —k — 3 < —6, therefore H*(Tp=(k)) = 0.

The above computation yields that the only non-projected supermanifold having underlying
manifold isomorphic to P? will have a fermionic sheaf Fp, such that Sym?Fa; = Op2(—3).

n > 2: In this case it is easy to conclude that H'(7p»(k)) = 0 since in the long exact sequence in
cohomology this group sits between H!(Opn (k +1))®" ! and H?(Opn (k)) and both of these
groups are zero for every k if n > 2.
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The above results allow us to classify the non-projected supermanifolds having P! or P? as reduced
space. In the next section we take on the case over P! case.

3.3 Non-Projected Supermanifolds over P!

In this section we classify all of the non-projected supermanifolds having P! as reduced manifold.
This classification is actually rather straightforward and it directly relies on the fact that vector
bundles over P! have no continuous moduli. Indeed, one has the following

Theorem 3.4 (Non-projected N/ = 2 Supermanifolds over P'). Every non-projected N' = 2
supermanifold over P is characterised up to isomorphism by a triple (P!, Far,w) where Far is a
rank 0|2 sheaf of Op1-modules such that Far = IIOp1 (m) @ IOp1 (n) with m +n = —¢, £ = 4 and
w is a non-zero cohomology class w € H*(Op1 (2 — 1)).

Proof. We know that the obstruction to splitting is obtained for a fermionic sheaf of rank 0[2
such that Sym2F, = Opi(—f), £ > 4: in this case one gets non-zero obstruction classes in
HY (Tpr @ Op1 (—4)) = HY (Op1 (2 — £)) = C*—3.

It remains to show that the only sheaves that yield such an isomorphism are of the given form.
This is a consequence of the Grothendieck splitting theorem (see [33] or [49]), that states that every
locally-free sheaf of Opi-modules of arbitrary rank n is isomorphic to a direct sum of invertible
sheaves, that in turn are all of the form Op: (k) for some k € Z. In other words, if we let £ be a
locally-free sheaf of rank n over P!, then we have

£~ é Op: (k;) (3.13)

uniquely up to permutation of the terms at the right hand side. Since we have that F,, is a locally-
free sheaf of rank 0|2 over P!, it will be of the form Fyr =~ IOp: (m) @ I1Op: (n) for some n,m € Z
as a consequence of Grothendieck theorem. The only way one can have Sym?Fy = Opi (—£) is to
choose m and n such that m + n = —¢, and this concludes the proof. O

Adapting the notation, the previous theorem justifies the following definition.

Definition 3.1 (The Supermanifolds P} (m,n)). We denote PL(m,n), with m = n, an N' = 2
supermanifold arising from a triple (P, Far,w), where the fermionic sheaf Far = HOpi (—m) @
HOp:(—n) is such that m +n = £, £ > 4 and w is a (possibly zero) class in H'(Op1(2 —{)).

In view of Theorem 3.4, clearly, P (m,n) is a non-projected supermanifold if and only if w is a
non-zero class in H!(Op1(2 — £)).

We now look for the explicit form the of the transition functions of a non-projected supermanifold
P! (m,n), as to be able to construct the supermanifold also by the patching technique for future
simply physical applications.

Working over P! leads to consider a set of homogeneous coordinates [Xo : X;1] € P! and a set of
affine coordinates and their algebras over the two open sets of the covering U := {U,V} of PL. In
particular, working modulo J,, we have:

X

U:={Xy#0} o zmodJZ:= X—l (3.14)

0

2 Xo
Vi={X; #0} wv» wmodJ, = X (3.15)

1

The transition functions are given by:
1

UNYV: zmod JZ = —mod Tz, (3.16)

Remember that these expressions are given mod jf[ instead of mod J,, since in N' = 2 one has
that (Jar)o = T2
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Passing to the fermionic sheaf Fy, = IIOp1 (m) @ IIOp1 (n), we denote (61, 602) a local basis of Fy,
on U and (v1,12) a local basis of Fyr on V respectively, so that one can write

U= {Xo#£0} o 91::n< ! ) 92:11( ! > (3.17)

X, ™ X"
Vi={X; #0} v =11 (X}m) , Yo =11 (Xi_n) , (3.18)

where the II’s are there to remember the odd parity. The transition functions therefore are given
by

Y1

w—m’

U1

w—n’

Uny: 01 = 02 = (319)
Before we go on, a comment on the notation might be helpful. Usually the €’s and the ’s are
looked at as sections of the odd part of structure sheaf, (O]p&) (m,n))1- The identification above
makes sense recalling that when A/ = 2 one has in general (Oa); = Fyy, so that for PL(m,n) the
odd sections 6’s and ’s can indeed be identified with local sections in IIOp1 (m) @ IIOp1(n), once
the parity is taken into account. This identification is pretty useful, as the symmetric product in
Sym?2Fys can be represented as product of odd elements in (Og);. In our case in particular one
gets

1 1 1 1
0100 = ———— = — € Op (—0) (U, =——=— € Om(—0)(U). (3.20
102 = = = 5 p1 (—€)(Uo), 1o X~ xe €O (=0)(Ur). (3.20)
Before we go into to derivation of the explicit form of the transition functions for a supermanifold
of the family P (m,n), we recall that under our assumptions

-3
1
1 2 ~ 71 ~
J C
Therefore, as an element of the vector space H'(Tp1 ® Sym?Fy), the most general obstruction
class w can be represented expanded over its base as

1

w=A [_
XoX{3

1
tt M| ———,  MNeC, i=1,....6—3. 3.22
] “[Xé—?’xl] (3.22)

This gives explicitly the isomorphism H!(7p ® Sym?2F,) = C*~3 that is understood when we say
that a class w is represented by a choice of {A1,...,A\;—3}. In particular, we will call the choice
Ai=0foralli=1,...,¢— 3 the split locus of the family, as it leads to a split supermanifold.

We are now ready to give the explicit form of the transition functions of PL (m,n).

Theorem 3.5 (Transition Functions of PL (m,n)). The transition functions of an element of the
family PL(m,n) are given inU AV by

1 /'2_3 P12
i j=1 & w2ti’ (3.23)
Y1
= 24
91 wim) (3 )
U1
= 2
02 w’”’ (3 5)

where \; € C fori=1,...,0—3.

Proof. The odd transition functions for 6; ¢ = 1,2 have already been found in (3.19). We are
thus left to find the even transition function. We first recall that a section of Tp1 defined by 0,
satisfies the transformation law 0, = —w?d,,, hence it has a double zero on [0 : 1] € P! and it can
be identified with the section X2 € H°(Op1(2)), up to a non-zero scalar factor. Moreover, since
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we HY(Op1 (2 1)) one chooses, as above, w = <{[)\j /(Xo)j(X1)€—2—j]}§j>. Therefore one gets
the following identifications:

“(X)()Acv}é] ) l{ (Xo)j+é](§§)42j }Zl B “ <Xo>j+2?§ﬁ>“2 }e az] '

Now, using (3.20) above, one sees in particular that 119, = 1 /X;7™™" = 1/Xx?. Under these
identifications one gets

o 63
_ )\J £—3 i B ){1 J+2 1 - )\J 0—3
w = [{ (XO)J'+2(X1)€—J'—2 }jl Oy | = )\j ()(0> . X—faz = {W}jl 1/111,520z ,

Remembering that zmod 772 = (1/w)mod 72, and plugging the previous result into (3.10), one
has the conclusion:

1
w 2+j

- -3
2(w, 1, h2) = Z 2k Py % + 3N Z“/)Q.. (3.26)
= 1

O

The previous theorem exhaust all of the possible non-projected (non-singular) ' = 2 supermani-
folds over the projective line P': they are abstractly classified by the Theorem 3.4 at the beginning
of this section and they can be constructed explicitly by patching charts via the transition functions
we have just given.

3.3.1 Even Picard Group of P! (m,n)

In this section we start studying the even Picard group of an element of the family P (m,n) to see
what sort of even invertible sheaves can be defined on a supermanifold belonging to the family.
We first recall that in general the even part of the structure sheaf of a N' = 2 supermanifold fits
into the short exact sequence (3.1), that can be exponentiated to give

0 —— Sym2Fa —— O ) —— OF,  ——0, (3.27)

Where i : Sym?Fy — Oj; o sends a section s € Sym?Far to 1+ s € O o and j 1 OF o — Oa,,
is simply the restriction of invertible elements under the inclusion map (viewed as a morphism of
super ringed spaces) ¢ : My.cq — M, of the underlying reduced manifold in the supermanifold lying
above him (we recall that this map always exists).

The short exact sequence (3.78) enters the proof of the following theorem.

Theorem 3.6 (Even Picard Group of PL(m,n)). The even Picard group of PL(m,n) is given by
Pico(PL(m,n)) = Z®C L. (3.28)

Proof. We first recall that for the family P (m,n) we have that m + n = —¢ and £ > 4 and that
Sym?2Far = Op1 (=), so that (3.78) looks like

0 —— Op1 (=) —— O3, (mm),0 Op —— 0. (3.29)

Taking the long exact sequence in cohomology one then finds the following;:

0 H®(Op1 (1)) H®(Og1 (1.y.0) HO(Of1)
<
HI(OIF”(_K)) Hl(Of{tl (m,n), 0) H1(0;1> 0.
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Clearly, we have that H°(Op (—()) = 0 and H'(Opi(—{)) = C*~!, while as for the sheaf Of
we have H(Op1) =~ C* and Pic(P') = H'(O}) = Z. Also, considering the boundary map,
§: HY(O}) — H*(OL(—{)), we see that this can only be the zero map, as there are no ways one can
map a non-nilpotent non-zero element in H°(Of,) =~ C* to a nilpotent 1-cocycle. This implies that

the exact sequence splits into two exact sequence yielding the isomorphism H° (Opl (mun), 0) = C*
and the short exact sequence

0 —— C*~ ! —— Pico(PL(m,n)) —— Z —— 0, (3.30)
that gives the result. O

As we are working over P!, that is covered by just two sets {{, V}, it is actually possible to do more

and provide explicitly the free generators of the Picard group Picg (]P’ip), as we did for supercurves
over P! in the first chapter.

Theorem 3.7 (Generators of H'(OF, (m n))) The cohomology group H'(OF,
by the following Cech 1-cocycles

1 ¢1¢2 P12
H ( I?;l(mn)) <w 1+c¢ ..,1+Cg_1wel>, (331)

where k € Z and cy,...,coe_1 are non-zero complexr numbers.

(m n)) is generated

Proof. We aim to compute the Cech cohomology valued in the sheaf O (mm),0 explicitly. Given

the usual covering {U,V} of P!, we have
C* (U V1,08 (rny0) = Ok oy o) X OFs (. 0(V) (3.32)
ol ({u, v} 0k (m,n),o) = O (0@ O V) (3.33)

where the elements of Cech 0-cochain (’)]P,1 (o), o) x O;L(m,n),o (V) are given by pairs of elements
of the kind (P(z,6102), Q(w,¥112)) such that

P(z2,6102) = a+ P(2)0,0,  acC* PeC[z] (3.34)
Q(w,0:0:) = b+ Q(w)rihs  beC*, Qe Clw]. (3.35)
Clearly, the boundary map § : C° ({Z/{,V}, O;;(m,n),o) ! ({L{, Vi, (’)H";le(m’n)’o) acts as follows
5((P(2,0102), Q(w, 11h2))) = Q(w, 132) P~H(2,0162)[ ;.\, (3.36)
so that, in full generality, the image of § is given by
~ 1 Y1y
5((P.Q) = (b+ Qw)rv2) (a P(1/w) a;wi)
_by (Q(“’) LR “Q“’)) i (3.37)
a a a?  w

Out of this expression, incidentally, one immediately see that H° (Op1 (1)) = C* as it is given
by the constant elements (a,a) € Z! (O[p)l (m, n)) where a # 0.

On the other hand, one has that the elements in (’)Pl (mm), oU N'V) are given by expression of the
form

W (w, 1/w,¥11s) = cw® + W (w, 1/w) 111, (3.38)

where ¢ € C*, k € Z, W € C[w, 1/w]. Now, confronting the previous expression with the image of
the map § in the (3.37), one sees that b/a can be used to set the coefficient of ¢ of w* to one and
thus the non-exact 1-cocycles are indeed given by transition functions of the form

{w 1+c w;% "’Hc“ii’wf}’ (3.39)

concluding the theorem. O
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As already done in the previous chapter for the supercurves P we call the even invertible sheaves
on P! (m,n) characterised by transition functions having the above form as follows:

O, () (k) < {w"}, (3.40)
S i
Lp1 (mny(Clye ey co-1) < {1 + Zlcj wi }v (3.41)
i=
forkeZ,m+n=—{{¢>4and cy,...,co_1 € C. We have the following theorem.

Theorem 3.8 (Even Picard Group Pico(PL(m,n))). The even Picard group of PL(m,n) is gen-
erated by the following even invertible sheaves

Pico (P (m, 1)) = {Op1 (m,n) (1K), Lp1 (mn) (€1,0, ..., 0), .., Lpt () (0, ., 0,co—1) ). (3.42)
fork=+1¢1,...,co1€Candm+n=—4£,{>=4.

Proof. Taking into account the notation adopted above, this theorem is just a consequence of the
previous one by the isomorphism Pico(M) = H*(OF, ). O

3.3.2 Embedding of P!(2,2): an Example by Witten

We now focus on a specific non-projected supermanifold in the family P.(m,n) and we construct
the embedding of it into an ordinary projective superspace.

We choose to deal with probably the easiest example of a non-projected supermanifold belonging
to the family, which is given by P} (2,2): this corresponds to the choice of a fermionic sheaf of the
form Fpr = HOp1 (—2) @I Op1 (—2) so that Sym?Fys = Op1(—4). This leads to an obstruction class
w e HY(O(-2)) = C: since the obstruction cohomology group is one-dimensional, we represent w
by a complex number A (see (3.23)), which we choose to fix to be one, so that the even transition
function of our supermanifold P} (2,2) is given by

1 iipe
=t (3.43)

Notice that, choosing a different non-zero value for A, we would have gotten an (non-canonically)
isomorphic non-projected supermanifold: indeed choosing w or Aw for A € C* leads to isomorphic
supermanifolds, as stressed in the second observation following Theorem 3.3.

In the case of P} (2,2), the even Picard group is given by Picg(PL(2,2)) =~ Z ® C®3, having, in
the isomorphisms Picg(PL(2,2)) =~ Hl((’)];fi (2’2)) generators given by

1+ w;? > (3.44)

112 1t e 1o

HY(Of (5.9)) = <wka1+01 " 02

with k € Z and ¢q,ca,c3 € C.
Now, in order to explicitly find an embedding we let e;; and ey be two local frames in the open
sets of the covering of P! and we let Op o) (2) « {(U,V), ey = wPey} and Lp1 (52)(0,-1,0) <

{(U, V), ey = (1 —1p11ba/w?)ey} and we consider the invertible sheaf given by their tensor product:
Lry2.2) = Ory2.2)(2) ® Lr (22 (0, =1,0) = {U, V), e = (w® = d19pz)ev}. (3.45)
Then the following lemma holds true.

Lemma 3.2. Let E]P:}d(g,g) be the even invertible sheaf over PL(2,2) defined above. Then 2@&)(2,2)
admits the following global sections

1. Yy = {eu, (w?* —1pa)ev}
2. Y1 = {zey, wey}

3. }/2 = {(22 — 9192)61/[, ev}
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4. B = {916217 7/)1612}
.

(1]

2 = {926117 1/12612},

it is ample and it allows for an embedding ¢o : PL(2,2) — P22 whose imagine is given by the
equation

15 — Y2+ YY2 = 0. (3.46)

Proof. The proof that the five sections defined locally above are indeed global sections for pr (2,2)
amounts to the direct check that the given local definitions agree on & n V. Let us check for
example that Y5 is a global section:

Y, = (22 - 9192) eu
= (2% — 0102) (w® — 192 ey

2
_ ([1 el 1”;1’2) (w? — vryz) ev

w w3

_ (1+21/111/)2 Y12

+
w2 w w

= (752 + lb;li/z) (w? — 1¢2) ey

= €y (347)

) (w® — ¢192) ey

It is immediate to get the equation satisfied by the global sections, by looking at their local
definition, for example on the open set i/ :

[2152 — Y7 — YoYa] lu= 0102 — 2% + 2° — 6,6, = 0. (3.48)

therefore one indeed gets 12y — Y2 + Y Ys = 0.

To ensure that the corresponding map ¢o : PL(2,2) — P22 is actually an embedding we need to
check that it is injective at the level of geometric points (i.e. between the reduced manifolds) and
that its super differential is injective on the super tangent space Tp1 (2,2). To achieve this, one can

define the map ¢5 : PL(2,2) — P22 locally: on the open set U one has
Guz: (2,01,02) — [1:2: 22— 0,605 : 0, : -], (3.49)
while on V one gets
bu : (2,01,02) —> [W* —Pr1thg 1wt 1Py @ o] (3.50)

This map is seen to be injective over P'. The super differential reads

0 1 220060 0 O 2w 1 0 0 O
dpy2=10 0 —0, 1 0 dpym=1| -2 0 0 1 0],
0 0 01 0 1 +¢ 0 0 0 1
so that it d¢s is injective and this completes the proof. O

Interestingly, the embedding we have realised is related with the example of non-projected super-
manifold given by Witten in [68], page 8, as explained in the following remark.

Remark 3.1 (An Example by Witten). In order to make the concept of non-projected superman-
ifold more accessible, Witten proposes the following supercurve in P?I?

Y+ Y2 +YE+EE,=0. (3.51)
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as an example of non-projected supermanifold. Actually, even though he offers an explanation for
the non-projectedness of this supermanifold, that does not appear as completely straightforward to
the author of the present thesis.

In the opinion of the author, a framework that make clear that this supermanifold is actually non-
projected is the one developed above. Indeed, the example put forward by Witten is nothing but the
embedding of PL(2,2) in P22 we have constructed above.

We have shown in the previous theorem that the supermanifold YoYs — Y +Z1Z5 = 0 in P212 s the
image of PL(2,2) through the embedding ¢, one can then make use of a certain transformation
in PGL(3|2) - that is an automorphism supergroup of P22 - to bring the equation in the form
displayed by Witten. In particular, the transformation

10 700
07 01]00

PGL(3|2) 3 [T] = (3.52)

does the job. This shows that the mon-projective supermanifold displayed by Witten is indeed
isomorphic to the non-projected supermanifold we have called PL(2,2).

Incidentally, we stress the limits of the previous Lemma 3.2: indeed, it holds only for a single
element of the family, the supermanifold PL (2, 2).

Fixing the obstruction class to be one-dimensional - that amounts to fix Sym?2F,; =~ Opi(—4) or
in the notation adopted m +n = 4 - and considering a non-isomorphic element of the family,
which can be therefore represented as PL(m,4 —m) for m # 2, one needs to choose a different
invertible sheaf, which is likely of the form Op1 (1 4—m)(m) < {{U,V}, ey = w™ey} tensored by
another one represented by a unipotent element of the even Picard group, in order to realise the
embedding. We will not go further this direction, but pass instead to the case of non-projected
N = 2 supermanifolds of higher dimension and their embeddings, which proves to be much more
interesting.

3.4 Non-Projected Supermanifolds over P2

In this section we repeat what we have previously done over P!, now studying the non-projected
N = 2 structures over P2. We recall that this exhausts the possibilities for non-projected N' = 2
structures over projective spaces, as there are no non-projected AN/ = 2 supermanifolds over P"
whenever n > 2.

In the same spirit as Theorem 3.4, we prove the following

Theorem 3.9 (Non-Projected N/ = 2 Supermanifolds over P?). Every non-projected N' = 2
supermanifold over P? is characterised up to isomorphism by a triple (P?, Far,w) where Far is a
rank 0|2 sheaf of Op>-modules such that Sym?*Fys = Op>(—3) and w is a non-zero cohomology class
we HY (Tp2(-3)).

Proof. Tt is enough to use the result of Theorem 3.3 together with the the computations of section
3.2, in particular equation (3.12), that tells that the obstruction to splitting can be obtained only
for sheaf Fy, such that their second symmetric power - in the supersymmetric sense - is isomorphic
to the canonical sheaf of P2. O

Notice that the situation is rather more complicated over P? compared to the case over P! we have
discussed above. Indeed even if over P? the obstruction can only be one-dimensional in contrast
with the case over P!, we have that locally-free sheaves of Op2-modules do not in general split
as direct sums of invertible sheaves, and they might have a moduli space. The condition for a
supermanifold over P? to be non-projected fixes the first Chern class of the fermionic sheaf F,,
but this is not enough to uniquely fix a moduli space for these sheaves, as one would need to fix
their second Chern class as well. From this point of view, the previous theorem is not really a
classification result and in particular it is much less exhaustive compared with its analog over P!,
that exploits Grothendieck’s splitting theorem for vector bundles over P! to provide a specific form
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for the fermonic sheaf of the supermanifold.
By the way, the previous theorem justifies the following definition.

Definition 3.2 (The Supermanifolds P2 (Fy)). We denote P2(Fy) a supermanifold arising from
a triple (P2, Far,w) where the fermionic sheaf Far is a locally-free sheaf of Op2-modules of rank
012 such that Sym?Fa = Op2(—3) and such that wqa is a (possibly zero) cohomology class in

H! (7?@2 (—3)) ~ C.

Clearly, a supermanifold of the kind P2 (F,;) is not projected if and only if w is a non-zero class in

H(Tp2(—3)).

We now look for the explicit form of the transition functions for a supermanifold in the family
P2 (Fae).
Working over P? leads to consider a set of homogeneous coordinates [Xg : X : X2] on P? and in
turn the set of the affine coordinates and their algebras over the three open sets of the covering
U = {Uy,Uy,Us} of P2. In particular, working modulo J, we will have the following

X X
Uy = {Xo #* 0} w219 mod jg‘%{ = 71, 290 mod jg‘%{ = 72;
Xo Xo
X X
Uy i ={X1 #0} o 24 modjﬂ% = —0, 291 modjﬂzl = —2;
X1 Xl
X X
Z/[Q = {X2 #* 0} > Z12 mod .,79\2/[ = 70, Z992 mod jg\%[ = 71 (353)
Xs Xo
The transition functions between these charts therefore look like
1
Uy N U - z10 mod ij,[ = o mod Jf{, 290 mod jﬂ% = iﬂ mod jfl;
11 11
1
Uy nUs : 210 mod JQ,Z,[ = zﬂ mod Jf{, 290 mod j;[ = . mod jf[;
12 12
1
Ui nls:  z1mod T2 = ?modj;j, 21 m0d Ty = — mod 5. (3.54)
22 22

Again, the reason why we give expressions for the local bosonic coordinates z;; and their transfor-
mation functions mod jm24 instead of mod Jy, is that, as NV = 2, one has (Jar)o = jf{.

Moreover we will denote 61;, 62; a basis of the rank 0|2 sheaf Fj5; on any of the open sets U,
for ¢ = 0,1, 2, and, since «79\34 = 0, the transition functions among these bases will have the form

Ui n U - (Z;) = M;; - (g;) ; (3.55)

with M;; a 2 x 2 matrix with coefficients in Op=2(U; N U;). Note that in the transformation (3.55)
one can write M;; as a matrix with coefficients given by some even rational functions of 215, z2;,
because of the definitions (3.53) and the facts that 6,; € Jar and Jm?’{ =0.

Finally we note the transformation law for the products 61;602;, which is given by

01i92i = (det Mij)91j92j. (356)

Since det M is a transition function for the invertible sheaf Sym?2Fy; =~ Op2(—3) over U; N U;, this
can be written, up to constant changes of bases in F|y, and Fly;, in the more precise form

X;\°
bt = (3¢ ) 010 (3.57)
This also means that we can identify the base 01;602; of Sym?Fa|y, with the standard base % of
Op2(—3) over U;.

The relations and transition functions given above are those that all the supermanifolds of
the kind P2 (F,,) share, regardless the specific form of its fermionic sheaf F,;. In the following
theorem, in particular, we give the explicit form of the even transition functions.
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Theorem 3.10 (Transition Functions for P2 (F,)). The transition functions for an element of
the family P2 (Far) from coordinates on Uy to coordinates on Uy are given by

1
210 211
z0 | | A1 )\911921
6o | | 21 0(Z11)2 (3.58)
920 M 11
021

where X € C is a representative of the class w € H'(Tp2(—3)) = C and M is a 2 x 2 matriz with
coefficients in C[z11, zl_ll, 291] such that det M =1 /zfl . Similar transformations hold between the
other pairs of open sets.

Proof. The part of the transformation law (3.58) that relates the fermionic coordinates 619,629
and 611,021 has already been discussed above. We are therefore left to explain the part of the
transformation (3.58) that relates the bosonic coordinates z19, 220 and 211, z21. Writing the general
transformation (3.10) in this particular case, yields the following

1

zZ10 = — +w(2'10)
201
z

Z20 = = + w(220),
201

with w a derivation of Op2 with values in Sym?F,,, which identifies an element wq € H!(Tp> ®
Sym?2Fa). Recall that by Theorem 3.3 it is only the cohomology class w that matters in defining
the structure of the supermanifold 4. In particular M is non-projected if and only if w € H*(Tp> ®
SmeJ:M]Pz) is non-zero. As we have seen, the only possibility for this space to be non-zero is
Sym?®Far =~ Opz2(—3), so that w lies in H*(Tpz(—3)). Indeed this space is non-null as can be seen
by the (twisted) Euler exact sequence for the tangent space, which reads

0 —— Op2(—3) —— Op2(—2) —— Tp2(—3) —— 0. (3.59)
The long exact sequence in cohomology yields the following isomorphism:
6 HY (Tpe ® Op2(—3)) —> H*(Op2(—3)) = C (3.60)

where ¢ is the connecting homomorphism. We now will make this isomorphism more explicit.
Recall that the untwisted Euler sequence is

0—— Op2 L}Op&(l)@:s Lfﬁpz —0 (3.61)
where, if we write formally Opz(1)®3 = Op2(1)dx, @ Op2(1)0x, @ Op2(1)dx,, we have

e(f) = f(Xo0x, + X10x, + X20x,) (3.62)
W*(Xiaxj) = (9(Xj/Xi). (363)

The last relation takes place over the open set U/;, with affine coordinates X;/X;, for j # 4. This
holds because, fibrewise, the Euler sequence is provided by the differentials 7y : Tics)x,, — Tp2 [y
of the canonical projection 7 : (C3)* — P2. In particular, over Uy we have the local splitting
of Oy given by identifying z19 = X1/Xo, 220 = X2/Xo and fermionic coordinates given by the
chosen local base 619,020 of Far, and we get 0,,, = mx(X00x,). By similar reasons we can write
0z, = Tx(X10x,) over Uy and 0,,, = m«(X20x, ) over Us. Now consider the local section m €
Op2(—=3)(Uy N Uy N Us), whose class [m] is a basis of H?(Op2(—3)). We make the following
calculation on local sections over Uy N Uy N Uy of the sequence (3.59)

. 1 - Xoaxo + Xlaxl + Xgaxz
XOX1X2 B X0X1X2

1 /X, 1 /X,
— | Xo0 — | — | X0 — | = | X0
) 00Xz X} (Xz) 10%a X3 (XO) 2

X X X
010620 (X(1)> Xo0x, + 01162 <X;> X10x, + 01202 <X(2)) X,0x,. (3.64)

|
23|
R
alks
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By applying 7, to both the first and the last expression above we obtain

0106020 011021 012022
0= 0, 0 0,
ZlO 20 221 11 212 22
6110 0120 01060
_ 112 2y 4 122 25 102 20, (3.65)
211 239 250

where, for the last equality, we have used the transformations (3.54) and (3.57). The final result
is that the assignments of local sections of Tpz @ Sym2F

011021
Wwo1 = Tazzo on Z/{O ﬂul,
211
012022
W12 = —5 0z, on Uy N Uy,
222
010020
Woy = 79@2 on Uy N Us (3.66)
20

satisfy the cocycle condition

W01 |ty ~tty ~tds Fw012 Uy ALty Atds FW20 L ALty ALt = O (3.67)

and therefore define a cohomology class [w] € H!(Tp2 ® Sym?®Fy(). Moreover, by definition of the
connecting homomorphism §, one has

5([w]) = [Xo);ng] & H2(Ops(—3)). (3.68)

In particular, from the class [A\w] € H! (Tpz ® Sym?Fy), one obtains the claimed transformation

1 1
z10 = — + Awo1(210) = —, (3.69)
= 201
0116
220 = 2 + Mwon (220) = = + AL (3.70)
201 201 211
O

This theorem provides the general form of the even transition functions for supermanifolds in the
family P2 (F,/) : in the following subsections we will use this result to study some more geometry
of these particular non-projected supermanfolds.

3.4.1 P2(F,) is a Calabi-Yau Supermanifold

In the present subsection we prove that all all of the supermanifolds over P? of the form P2 (F,/),
are Calabi-Yau supermanifolds in the sense of the Definition 1.20, regardless the choice made for
the fermionic sheaf Fy,.

Theorem 3.11 (P2 (F,,) is Calabi-Yau). All of the supermanifolds of the form P2 (Fa) are Calabi-
Yau supermanifolds. That is,

Proof. We can work locally, considering transformations between Uy and U;. Then, using the
results of the previous section, we can write the transition functions for an element of the family
P2 (Fya) as in (3.58) where A\ € C is a representative of the class w € H!(Tp2(—3)) = C. We can
now compute the (super) Jacobian of this transformation, obtaining:

Jac (B) = (g%) (3.72)

59



where one has
Gy 0 0 0
A= zo1 (211)291191 1 B = ( 0 0 >